1
|
Florova G, Azghani AO, Karandashova S, Schaefer C, Yarovoi SV, Declerck PJ, Cines DB, Idell S, Komissarov AA. Targeting plasminogen activator inhibitor-1 in tetracycline-induced pleural injury in rabbits. Am J Physiol Lung Cell Mol Physiol 2017; 314:L54-L68. [PMID: 28860148 DOI: 10.1152/ajplung.00579.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Elevated active plasminogen activator inhibitor-1 (PAI-1) has an adverse effect on the outcomes of intrapleural fibrinolytic therapy (IPFT) in tetracycline-induced pleural injury in rabbits. To enhance IPFT with prourokinase (scuPA), two mechanistically distinct approaches to targeting PAI-1 were tested: slowing its reaction with urokinase (uPA) and monoclonal antibody (mAb)-mediated PAI-1 inactivation. Removing positively charged residues at the "PAI-1 docking site" (179RHRGGS184→179AAAAAA184) of uPA results in a 60-fold decrease in the rate of inhibition by PAI-1. Mutant prourokinase (0.0625-0.5 mg/kg; n = 12) showed efficacy comparable to wild-type scuPA and did not change IPFT outcomes ( P > 0.05). Notably, the rate of PAI-1-independent intrapleural inactivation of mutant uPA was 2 times higher ( P < 0.05) than that of the wild-type enzyme. Trapping PAI-1 in a "molecular sandwich"-type complex with catalytically inactive two-chain urokinase with Ser195Ala substitution (S195A-tcuPA; 0.1 and 0.5 mg/kg) did not improve the efficacy of IPFT with scuPA (0.0625-0.5 mg/kg; n = 11). IPFT failed in the presence of MA-56A7C10 (0.5 mg/kg; n = 2), which forms a stable intrapleural molecular sandwich complex, allowing active PAI-1 to accumulate by blocking its transition to a latent form. In contrast, inactivation of PAI-1 by accelerating the active-to-latent transition mediated by mAb MA-33B8 (0.5 mg/kg; n = 2) improved the efficacy of IPFT with scuPA (0.25 mg/kg). Thus, under conditions of slow (4-8 h) fibrinolysis in tetracycline-induced pleural injury in rabbits, only the inactivation of PAI-1, but not a decrease in the rate of its reaction with uPA, enhances IPFT. Therefore the rate of fibrinolysis, which varies in different pathologic states, could affect the selection of PAI-1 inhibitors to enhance fibrinolytic therapy.
Collapse
Affiliation(s)
- Galina Florova
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Ali O Azghani
- Department of Biology, The University of Texas at Tyler, Tyler, Texas
| | - Sophia Karandashova
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Chris Schaefer
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Serge V Yarovoi
- Department of Pathology and Laboratory Medicine, Perelman-University of Pennsylvania School of Medicine , Philadelphia, Pennsylvania
| | - Paul J Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven , Belgium
| | - Douglas B Cines
- Department of Pathology and Laboratory Medicine, Perelman-University of Pennsylvania School of Medicine , Philadelphia, Pennsylvania
| | - Steven Idell
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Andrey A Komissarov
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| |
Collapse
|
2
|
Zhang J, Gu C, Lawrence DA, Cheung AK, Huang Y. A plasminogen activator inhibitor type 1 mutant retards diabetic nephropathy in db/db mice by protecting podocytes. Exp Physiol 2014; 99:802-15. [PMID: 24443353 DOI: 10.1113/expphysiol.2013.077610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A mutant non-inhibiting plasminogen activator inhibitor type 1 (PAI-1), termed PAI-1R, which reduces endogenous PAI-1 activity, has been shown to inhibit albuminuria and reduce glomerulosclerosis in experimental diabetes. The mechanism of the reduction of albuminuria is unclear. This study sought to determine whether the administration of PAI-1R protected podocytes from injury directly, thereby reducing albuminuria in the db/db mouse, a model of type 2 diabetes. Untreated uninephrectomized db/db mice developed significant mesangial matrix expansion and albuminuria at week 22 of age, associated with segmental podocyte foot-process effacement, reduction of renal nephrin, podocin and zonula occludin-1 production and induction of renal desmin and B7-1 generation. In contrast, treatment with PAI-1R at 0.5 mg (kg body weight)(-1) i.p., twice daily from week 20 to 22, reduced glomerular matrix accumulation, fibronectin and collagen production and albuminuria by 36, 62, 65 and 31%, respectively (P < 0.05), without affecting blood glucose level or body weight. Podocyte morphology and protein markers were also significantly attenuated by PAI-1R administration. Importantly, recombinant PAI-1 downregulated nephrin and zonula occludin-1 but increased desmin and B7-1 mRNA expression and protein production by podocytes in vitro, similar to the effects of transforming growth factor-β1. These observations provide evidence that PAI-1, in a manner similar to transforming growth factor-β1, directly induces podocyte injury, particularly in the setting of diabetes, where elevated PAI-1 may contribute to the progression of albuminuria. Reducing the increased PAI-1 activity by administration of PAI-1R, in fact, reduces podocyte injury, thereby reducing albuminuria. Therefore, PAI-1R provides an additional therapeutic effect in slowing the progression of diabetic nephropathy via the protection of podocytes.
Collapse
Affiliation(s)
- Jiandong Zhang
- Division of Nephrology & Hypertension, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Chunyan Gu
- Division of Nephrology & Hypertension, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Alfred K Cheung
- Division of Nephrology & Hypertension, University of Utah School of Medicine, Salt Lake City, UT, USA Medical Care Center, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Yufeng Huang
- Division of Nephrology & Hypertension, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Florova G, Karandashova S, Declerck PJ, Idell S, Komissarov AA. Remarkable stabilization of plasminogen activator inhibitor 1 in a "molecular sandwich" complex. Biochemistry 2013; 52:4697-709. [PMID: 23734661 DOI: 10.1021/bi400470s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasminogen activator inhibitor 1 (PAI-1) levels are elevated in a number of life-threatening conditions and often correlate with unfavorable outcomes. Spontaneous inactivation due to active to latent transition limits PAI-1 activity in vivo. While endogenous vitronectin (Vn) stabilizes PAI-1 by 1.5-2.0-fold, further stabilization occurs in a "molecular sandwich" complex (MSC) in which a ligand that restricts the exposed reactive center loop is bound to PAI-1/Vn. The effects of S195A two-chain urokinase (tcuPA) and Vn on inactivation of wild-type (wt) glycosylated (Gl-PAI-1), nonglycosylated (rPAI-1), and nonglycosylated Q123K PAI-1 (lacks Vn binding) forms were studied. S195A tcuPA decreased the rate constant (kL) for spontaneous inactivation at 37 °C for rPAI-1, Q123K, and Gl-PAI-1 by 6.7-, 3.4-, and 7.8-fold, respectively, and both S195A tcuPA and Vn by 66.7-, 5.5-, and 103.3-fold, respectively. Analysis of the temperature dependences of kL revealed a synergistic increase in the Gibbs free activation energy for spontaneous inactivation of wt Gl-PAI-1 and rPAI-1 in MSC from 99.8 and 96.1 to 111.3 and 107.0 kJ/mol, respectively, due to an increase in the activation enthalpy and a decrease in the activation entropy. Anti-PAI-1 monoclonal antibodies (mAbs) competing with proteinase also stabilize PAI-1/Vn. The rate of inhibition of target proteinases by MSCs, with a stoichiometry close to unity, was limited by the dissociation (k = 10(-4) to 10(-3) s(-1)) of S195A tcuPA or mAb. The stabilization of PAI-1 in MSCs in vivo may potentiate uncontrolled thrombosis or extravascular fibrin deposition, suggesting a new paradigm for using PAI-1 inhibitors and novel potential targets for therapy.
Collapse
Affiliation(s)
- Galina Florova
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler , 11937 U.S. Highway 271, Tyler, Texas 75708-3154, United States
| | | | | | | | | |
Collapse
|
4
|
Komissarov AA, Stankowska D, Krupa A, Fudala R, Florova G, Florence J, Fol M, Allen TC, Idell S, Matthay MA, Kurdowska AK. Novel aspects of urokinase function in the injured lung: role of α2-macroglobulin. Am J Physiol Lung Cell Mol Physiol 2012; 303:L1037-45. [PMID: 23064953 PMCID: PMC3532585 DOI: 10.1152/ajplung.00117.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 10/10/2012] [Indexed: 12/28/2022] Open
Abstract
The level of active urokinase (uPA) is decreased in lung fluids of patients with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) whereas α(2)-macroglobulin (α(2)-M), a plasma proteinase inhibitor, is a major component of these fluids. Since there have been reports describing the ability of α(2)-M to form complexes with uPA in vitro, we hypothesized that α(2)-M may interact with uPA in the lung to modulate its biological activity. Pulmonary edema fluids and lung tissues from patients with ALI/ARDS were evaluated for the presence of uPA associated with α(2)-M. Complexes between α(2)-M and uPA were detected in alveolar edema fluids as well as in lungs of patients with ALI/ARDS where they were located mainly in close proximity to epithelial cells. While uPA bound to α(2)-M retains its amidolytic activity towards low-molecular-weight substrates, it is not inhibited by its main physiological inhibitor, plasminogen activator inhibitor 1. We also investigated the functional consequences of formation of complexes between uPA and α(2)-M in vitro. We found that when α(2)-M:uPA complexes were added to cultures of human bronchial epithelial cells (BEAS-2B), activation of nuclear factor-κB as well as production of interleukin-6 and -8 was substantially suppressed compared with the addition of uPA alone. Our findings indicate for the first time that the function of uPA in patients with ALI/ARDS may be modulated by α(2)-M and that the effects may include the regulation of the fibrinolytic and signaling activities of uPA.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Texas Lung Injury Institute, University of Texas Health Science Center, Tyler, Texas, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Komissarov AA, Florova G, Idell S. Effects of extracellular DNA on plasminogen activation and fibrinolysis. J Biol Chem 2011; 286:41949-41962. [PMID: 21976662 DOI: 10.1074/jbc.m111.301218] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increased levels of extracellular DNA found in a number of disorders involving dysregulation of the fibrinolytic system may affect interactions between fibrinolytic enzymes and inhibitors. Double-stranded (ds) DNA and oligonucleotides bind tissue-(tPA) and urokinase (uPA)-type plasminogen activators, plasmin, and plasminogen with submicromolar affinity. The binding of enzymes to DNA was detected by EMSA, steady-state, and stopped-flow fluorimetry. The interaction of dsDNA/oligonucleotides with tPA and uPA includes a fast bimolecular step, followed by two monomolecular steps, likely indicating slow conformational changes in the enzyme. DNA (0.1-5.0 μg/ml), but not RNA, potentiates the activation of Glu- and Lys-plasminogen by tPA and uPA by 480- and 70-fold and 10.7- and 17-fold, respectively, via a template mechanism similar to that known for fibrin. However, unlike fibrin, dsDNA/oligonucleotides moderately affect the reaction between plasmin and α(2)-antiplasmin and accelerate the inactivation of tPA and two chain uPA by plasminogen activator inhibitor-1 (PAI-1), which is potentiated by vitronectin. dsDNA (0.1-1.0 μg/ml) does not affect the rate of fibrinolysis by plasmin but increases by 4-5-fold the rate of fibrinolysis by Glu-plasminogen/plasminogen activator. The presence of α(2)-antiplasmin abolishes the potentiation of fibrinolysis by dsDNA. At higher concentrations (1.0-20 μg/ml), dsDNA competes for plasmin with fibrin and decreases the rate of fibrinolysis. dsDNA/oligonucleotides incorporated into a fibrin film also inhibit fibrinolysis. Thus, extracellular DNA at physiological concentrations may potentiate fibrinolysis by stimulating fibrin-independent plasminogen activation. Conversely, DNA could inhibit fibrinolysis by increasing the susceptibility of fibrinolytic enzymes to serpins.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154.
| | - Galina Florova
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154
| | - Steven Idell
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154
| |
Collapse
|
6
|
Blouse GE, Dupont DM, Schar CR, Jensen JK, Minor KH, Anagli JY, Gårdsvoll H, Ploug M, Peterson CB, Andreasen PA. Interactions of plasminogen activator inhibitor-1 with vitronectin involve an extensive binding surface and induce mutual conformational rearrangements. Biochemistry 2010; 48:1723-35. [PMID: 19193026 DOI: 10.1021/bi8017015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to explore early events during the association of plasminogen activator inhibitor-1 (PAI-1) with its cofactor vitronectin, we have applied a robust strategy that combines protein engineering, fluorescence spectroscopy, and rapid reaction kinetics. Fluorescence stopped-flow experiments designed to monitor the rapid association of PAI-1 with vitronectin indicate a fast, concentration-dependent, biphasic binding of PAI-1 to native vitronectin but only a monophasic association with the somatomedin B (SMB) domain, suggesting that multiple phases of the binding interaction occur only when full-length vitronectin is present. Nonetheless, in all cases, the initial fast interaction is followed by slower fluorescence changes attributed to a conformational change in PAI-1. Complementary experiments using an engineered, fluorescently silent PAI-1 with non-natural amino acids showed that concomitant structural changes occur as well in native vitronectin. Furthermore, we have measured the effect of vitronectin on the rate of insertion of the reactive center loop into beta-sheet A of PAI-1 during reaction with target proteases. With a variety of PAI-1 variants, we observe that both full-length vitronectin and the SMB domain have protease-specific effects on the rate of loop insertion but that the two exhibit clearly different effects. These results support a model for PAI-1 binding to vitronectin in which the interaction surface extends beyond the region of PAI-1 occupied by the SMB domain. In support of this model are recent results that define a PAI-1-binding site on vitronectin that lies outside the somatomedin B domain (Schar, C. R., Blouse, G. E., Minor, K. H., and Peterson, C. B. (2008) J. Biol. Chem. 283, 10297-10309) and the complementary site on PAI-1 (Schar, C. R., Jensen, J. K., Christensen, A., Blouse, G. E., Andreasen, P. A., and Peterson, C. B. (2008) J. Biol. Chem. 283, 28487-28496).
Collapse
Affiliation(s)
- Grant E Blouse
- Laboratory of Cellular Protein Science, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Arhus C, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Komissarov AA, Mazar AP, Koenig K, Kurdowska AK, Idell S. Regulation of intrapleural fibrinolysis by urokinase-alpha-macroglobulin complexes in tetracycline-induced pleural injury in rabbits. Am J Physiol Lung Cell Mol Physiol 2009; 297:L568-77. [PMID: 19666776 DOI: 10.1152/ajplung.00066.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The proenzyme single-chain urokinase plasminogen activator (scuPA) more effectively resolved intrapleural loculations in rabbits with tetracycline (TCN)-induced loculation than a range of clinical doses of two-chain uPA (Abbokinase) and demonstrated a trend toward greater efficacy than single-chain tPA (Activase) (Idell S et al., Exp Lung Res 33: 419, 2007.). scuPA more slowly generates durable intrapleural fibrinolytic activity than Abbokinase or Activase, but the interactions of these agents with inhibitors in pleural fluids (PFs) have been poorly understood. PFs from rabbits with TCN-induced pleural injury treated with intrapleural scuPA, its inactive Ser195Ala mutant, Abbokinase, Activase, or vehicle, were analyzed to define the mechanism by which scuPA induces durable fibrinolysis. uPA activity was elevated in PFs of animals treated with scuPA, correlated with the ability to clear pleural loculations, and resisted (70-80%) inhibition by PAI-1. Alpha-macroglobulin (alphaM) but not urokinase receptor complexes immunoprecipitated from PFs of scuPA-treated rabbits retained uPA activity that resists PAI-1 and activates plasminogen. Conversely, little plasminogen activating or enzymatic activity resistant to PAI-1 was detectable in PFs of rabbits treated with Abbokinase or Activase. Consistent with these findings, PAI-1 interacts with scuPA much slower than with Activase or Abbokinase in vitro. An equilibrium between active and inactive scuPA (k(on) = 4.3 h(-1)) limits the rate of its inactivation by PAI-1, favoring formation of complexes with alphaM. These observations define a newly recognized mechanism that promotes durable intrapleural fibrinolysis via formation of alphaM/uPA complexes. These complexes promote uPA-mediated plasminogen activation in scuPA-treated rabbits with TCN-induced pleural injury.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Texas Lung Injury Institute of The University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA.
| | | | | | | | | |
Collapse
|
8
|
Huang Y, Border WA, Lawrence DA, Noble NA. Mechanisms underlying the antifibrotic properties of noninhibitory PAI-1 (PAI-1R) in experimental nephritis. Am J Physiol Renal Physiol 2009; 297:F1045-54. [PMID: 19625379 DOI: 10.1152/ajprenal.00024.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Administration of a mutant, noninhibitory PAI-1 (PAI-1R), reduces disease in experimental glomerulonephritis. Here we investigated the importance of vitronectin (Vn) binding, PAI-1 stability and protease binding in this therapeutic effect using a panel of PAI-1 mutants differing in half-life, protease binding, and Vn binding. PAI-1R binds Vn normally but does not inhibit proteases. PAI-1AK has a complete defect in Vn binding but retains full inhibitory activity, with a short half-life similar to wild-type (wt)-PAI-1. Mutant 14-lb is identical to wt-PAI-1 but with a longer half-life. PAI-1K has defective Vn binding, inhibits proteases normally, and has a long half-life. In vitro wt-PAI-1 dramatically inhibited degradation of mesangial cell ECM while the AK mutant had much less effect. Mutants 14-1b and PAI-1K, like wt-PAI-1, inhibited matrix degradation but PAI-1R failed to reverse this inhibition although PAI-1R reversed the wt-PAI-1-induced inhibition of ECM degradation in a plasmin-, time-, and dose-dependent manner. Thus the ability of PAI-1 to inhibit ECM degradation is dependent both on its antiproteinase activity and on maintaining an active conformation achieved either by Vn binding or mutation to a stable form. Administration of these PAI-1 mutants to nephritic rats confirmed the in vitro data; only PAI-1R showed therapeutic effects. PAI-1K did not bind to nephritic kidney, indicating that Vn binding is essential to the therapeutic action of PAI-1R. The ability of PAI-1R to remain bound to Vn even in a high-protease environment is very likely the key to its therapeutic efficacy. Furthermore, because both PAI-1R and 14-1b bound to the nephritic kidney in the same pattern and differ only in their ability to bind proteases, lack of protease inhibition is also keyed to PAI-1R's therapeutic action.
Collapse
Affiliation(s)
- Yufeng Huang
- Fibrosis Research Laboratory, Division of Nephrology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
9
|
Mathiasen L, Dupont DM, Christensen A, Blouse GE, Jensen JK, Gils A, Declerck PJ, Wind T, Andreasen PA. A peptide accelerating the conversion of plasminogen activator inhibitor-1 to an inactive latent state. Mol Pharmacol 2008; 74:641-53. [PMID: 18559377 DOI: 10.1124/mol.108.046417] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The serpin plasminogen activator inhibitor-1 (PAI-1) is a specific inhibitor of plasminogen activators and a potential therapeutic target in cancer and cardiovascular diseases. Accordingly, formation of a basis for development of specific PAI-1-inactivating agents is of great interest. One possible inactivation mode for PAI-1 is conversion to the inactive, so-called latent state. We have now screened a phage-displayed peptide library with PAI-1 as bait and isolated a 31-residue cysteine-rich peptide that will be referred to as paionin-4. A recombinant protein consisting of paionin-4 fused to domains 1 and 2 of the phage coat protein g3p caused a 2- to 3-fold increase in the rate of spontaneous inactivation of PAI-1. Paionin-4-D1D2 bound PAI-1 with a K(D) in the high nanomolar range. Using several biochemical and biophysical methods, we demonstrate that paionin-4-D1D2-stimulated inactivation consists of an acceleration of conversion to the latent state. As demonstrated by site-directed mutagenesis and competition with other PAI-1 ligands, the binding site for paionin-4 was localized in the loop between alpha-helix D and beta-strand 2A. We also demonstrate that a latency-inducing monoclonal antibody has an overlapping, but not identical binding site, and accelerates latency transition by another mechanism. Our results show that paionin-4 inactivates PAI-1 by a mechanism clearly different from other peptides, small organochemical compounds, or antibodies, whether they cause inactivation by stimulating latency transition or by other mechanisms, and that the loop between alpha-helix D and beta-strand 2A can be a target for PAI-1 inactivation by different types of compounds.
Collapse
Affiliation(s)
- Lisa Mathiasen
- Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Komissarov AA, Zhou A, Declerck PJ. Modulation of serpin reaction through stabilization of transient intermediate by ligands bound to alpha-helix F. J Biol Chem 2007; 282:26306-15. [PMID: 17613529 DOI: 10.1074/jbc.m702089200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanism-based inhibition of proteinases by serpins involves enzyme acylation and fast insertion of the reactive center loop (RCL) into the central beta-sheet of the serpin, resulting in mechanical inactivation of the proteinase. We examined the effects of ligands specific to alpha-helix F (alphaHF) of plasminogen activator inhibitor-1 (PAI-1) on the stoichiometry of inhibition (SI) and limiting rate constant (k(lim)) of RCL insertion for reactions with beta-trypsin, tissue-type plasminogen activator (tPA), and urokinase. The somatomedin B domain of vitronectin (SMBD) did not affect SI for any proteinase or k(lim) for tPA but decreased the k(lim) for beta-trypsin. In contrast to SMBD, monoclonal antibodies MA-55F4C12 and MA-33H1F7, the epitopes of which are located at the opposite side of alphaHF, decreased k(lim) and increased SI for every enzyme. These effects were enhanced in the presence of SMBD. RCL insertion for beta-trypsin and tPA is limited by different subsequent steps of PAI-1 mechanism as follows: enzyme acylation and formation of a loop-displaced acyl complex (LDA), respectively. Stabilization of LDA through the disruption of the exosite interactions between PAI-1 and tPA induced an increase in the k(lim) but did not affect the SI. Thus it is unlikely that LDA contributes significantly to the outcome of the serpin reaction. These results demonstrate that the rate of RCL insertion is not necessarily correlated with SI and indicate that an intermediate, different from LDA, which forms during the late steps of PAI-1 mechanism, and could be stabilized by ligands specific to alphaHF, controls bifurcation between the inhibitory and the substrate pathways.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Department of Chemistry, Portland State University, Portland, Oregon 97207-0751, USA.
| | | | | |
Collapse
|
11
|
To BCS, Lenhoff AM. Hydrophobic interaction chromatography of proteins. J Chromatogr A 2007; 1141:191-205. [PMID: 17207806 DOI: 10.1016/j.chroma.2006.12.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 11/30/2006] [Accepted: 12/05/2006] [Indexed: 11/18/2022]
Abstract
The contributions of protein and adsorbent properties to retention and recovery were examined for hydrophobic interaction chromatography (HIC) using eight commercially available phenyl media and five model proteins (ribonuclease A, lysozyme, alpha-lactalbumin, ovalbumin and BSA). The physical properties of the adsorbents were determined by inverse size exclusion chromatography (ISEC). The adsorbents examined differ from each other in terms of base matrix, ligand density, porosity, mean pore radius, pore size distribution (PSD) and phase ratio, allowing systematic studies to understand how these properties affect protein retention and recovery in HIC media. The proteins differ in such properties as adiabatic compressibility and molecular mass. The retention factors of the proteins in the media were determined by isocratic elution. The results show a very clear trend in that proteins with high adiabatic compressibility (higher flexibility) were more strongly retained. For proteins with similar adiabatic compressibilities, those with higher molecular mass showed stronger retention in Sepharose media, but this trend was not observed in adsorbents with polymethacrylate and polystyrene divinylbenzene base matrices. This observation could be related to protein recovery, which was sensitive to protein flexibility, molecular size, and conformation as well as the ligand densities and base matrices of the adsorbents. Low protein recovery during isocratic elution could affect the interpretation of protein selectivity results in HIC media. The retention data were fitted to a previously published retention model based on the preferential interaction theory, in terms of which retention is driven by release of water molecules and ions upon protein-adsorbent interaction. The calculated number of water molecules released was found to be statistically independent of protein retention strength and adsorbent and protein properties.
Collapse
Affiliation(s)
- Brian C S To
- Merck Research Laboratories, Sumneytown Pike, West Point, PA 19486, USA
| | | |
Collapse
|
12
|
Isaksson M, Hägglöf P, Håkansson P, Ny T, Johansson LBA. Extended Förster theory for determining intraprotein distances: 2. An accurate analysis of fluorescence depolarisation experiments. Phys Chem Chem Phys 2007; 9:3914-22. [PMID: 17637983 DOI: 10.1039/b701591g] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The extended Förster theory (EFT) is for the first time applied to the quantitative determination of the intramolecular distances in proteins. It is shown how the EFT (J. Chem. Phys., 1996, 105, 10896) can be adapted to the analyses of fluorescence depolarisation experiments based on the time-correlated single photon counting technique (TCSPC). The protein system studied was the latent form of plasminogen activator inhibitor type I (PAI-1), which was mutated and labelled by the thiol reactive BODIPY(R) derivative {N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl iodoacetamide}. The energy migration occurs within pairs of photophysically identical donor groups that undergo reorientational motions on the timescales of energy migration and fluorescence relaxation. Unlike all models currently used for analysing fluorescence TCSPC data, the EFT explicitly accounts for the time-dependent reorientations that influence the rate of electronic energy transfer/migration in a complex manner. The complexity is related to the "kappa(2) problem", which has been discussed for years. The EFT brings the analyses of DDEM data to the same level of molecular description as in ESR and NMR spectroscopy, i.e. it yields microscopic information about the reorientation correlation times, the order parameters, as well as inter-chromophoric distances.
Collapse
Affiliation(s)
- Mikael Isaksson
- Department of Chemistry, Biophysical Chemistry, University of Umeå, S-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
13
|
Minor KH, Schar CR, Blouse GE, Shore JD, Lawrence DA, Schuck P, Peterson CB. A mechanism for assembly of complexes of vitronectin and plasminogen activator inhibitor-1 from sedimentation velocity analysis. J Biol Chem 2005; 280:28711-20. [PMID: 15905170 PMCID: PMC2034521 DOI: 10.1074/jbc.m500478200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) and vitronectin are cofactors involved in pathological conditions such as injury, inflammation, and cancer, during which local levels of PAI-1 are increased and the active serpin forms complexes with vitronectin. These complexes become deposited into surrounding tissue matrices, where they regulate cell adhesion and pericellular proteolysis. The mechanism for their co-localization has not been elucidated. We hypothesize that PAI-1-vitronectin complexes form in a stepwise and concentration-dependent fashion via 1:1 and 2:1 intermediates, with the 2:1 complex serving a key role in assembly of higher order complexes. To test this hypothesis, sedimentation velocity experiments in the analytical ultracentrifuge were performed to identify different PAI-1-vitronectin complexes. Analysis of sedimentation data invoked a novel multisignal method to discern the stoichiometry of the two proteins in the higher-order complexes formed (Balbo, A., Minor, K. H., Velikovsky, C. A., Mariuzza, R. A., Peterson, C. B., and Schuck, P. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 81-86). Our results demonstrate that PAI-1 and vitronectin assemble into higher order forms via a pathway that is triggered upon saturation of the two PAI-1-binding sites of vitronectin to form the 2:1 complex. This 2:1 PAI-1-vitronectin complex, with a sedimentation coefficient of 6.5 S, is the key intermediate for the assembly of higher order complexes.
Collapse
Affiliation(s)
- Kenneth H Minor
- Department of Biochemistry, Cellular, and Molecular Biology and the Center of Excellence in Structural Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Sherman WA, Blouse GE, Perron MJ, Tran T, Shore JD, Gafni A. Enthalpy measurement using calorimetry shows a significant difference in potential energy between the active and latent conformations of PAI-1. Biol Chem 2005; 386:111-6. [PMID: 15843154 DOI: 10.1515/bc.2005.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A central feature of the serpin inhibition mechanism is insertion of the reactive center loop into the central beta-sheet (beta-sheet A). This insertion also occurs when the reactive center loop is cleaved without protease inhibition. Using this effect, we have measured the enthalpy (DeltaH) of loop cleavage and insertion for plasminogen activator inhibitor 1 (PAI-1) as -38 kcal/mol. Because loop insertion can be blocked by incorporating a peptide into the central beta-sheet, it was possible to assign -7 kcal/mol to loop cleavage and -31 kcal/mol to loop insertion. These values are lower than values reported for the serpins alpha 1 -proteinase inhibitor and antithrombin of -53 to -63 kcal/mol, respectively, for loop insertion with negligible enthalpy for loop cleavage. A free energy difference of -9 kcal/mol has been reported between the active and spontaneously loop inserted "latent forms" of PAI-1, which is significantly smaller in magnitude than the -31 kcal/mol of enthalpy we measured for loop insertion. Because the enthalpy should relate closely to those regions of PAI-1 that have moved to lower potential energy, a difference distance matrix is presented that identifies regions of PAI-1 that move during loop insertion.
Collapse
Affiliation(s)
- Westley A Sherman
- Biological Chemistry Department, University of Michigan, Ann Arbor, MI 48109-1066, USA
| | | | | | | | | | | |
Collapse
|
15
|
Stefansson S, Yepes M, Gorlatova N, Day DE, Moore EG, Zabaleta A, McMahon GA, Lawrence DA. Mutants of plasminogen activator inhibitor-1 designed to inhibit neutrophil elastase and cathepsin G are more effective in vivo than their endogenous inhibitors. J Biol Chem 2004; 279:29981-7. [PMID: 15131125 DOI: 10.1074/jbc.m401913200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neutrophil elastase and cathepsin G are abundant intracellular neutrophil proteinases that have an important role in destroying ingested particles. However, when neutrophils degranulate, these proteinases are released and can cause irreparable damage by degrading host connective tissue proteins. Despite abundant endogenous inhibitors, these proteinases are protected from inhibition because of their ability to bind to anionic surfaces. Plasminogen activator inhibitor type-1 (PAI-1), which is not an inhibitor of these proteinases, possesses properties that could make it an effective inhibitor of neutrophil proteinases if its specificity could be redirected. PAI-1 efficiently inhibits surface-sequestered proteinases, and it efficiently mediates rapid cellular clearance of PAI-1-proteinase complexes. Therefore, we examined whether PAI-1 could be engineered to inhibit and clear neutrophil elastase and cathepsin G. By introducing specific mutations in the reactive center loop of wild-type PAI-1, we generated PAI-1 mutants that are effective inhibitors of both proteinases. Kinetic analysis shows that the inhibition of neutrophil proteinases by these PAI-1 mutants is not affected by the sequestration of neutrophil elastase and cathepsin G onto surfaces. In addition, complexes of these proteinases and PAI-1 mutants are endocytosed and degraded by lung epithelial cells more efficiently than either the neutrophil proteinases alone or in complex with their physiological inhibitors, alpha1-proteinase inhibitor and alpha1-antichymotrypsin. Finally, the PAI-1 mutants were more effective in reducing the neutrophil elastase and cathepsin G activities in an in vivo model of lung inflammation than were their physiological inhibitors.
Collapse
Affiliation(s)
- Steingrimur Stefansson
- Department of Vascular Biology, J. H. Holland Laboratory, Rockville, Maryland 20855, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Komissarov AA, Declerck PJ, Shore JD. Protonation State of a Single Histidine Residue Contributes Significantly to the Kinetics of the Reaction of Plasminogen Activator Inhibitor-1 with Tissue-type Plasminogen Activator. J Biol Chem 2004; 279:23007-13. [PMID: 15033993 DOI: 10.1074/jbc.m401383200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stopped-flow fluorometry was used to study the kinetics of the reactive center loop insertion occurring during the reaction of N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-3-diazole (NBD) P9 plasminogen activator inhibitor-1 (PAI-1) with tissue-(tPA) and urokinase (uPA)-type plasminogen activators and human pancreatic elastase at pH 5.5-8.5. The limiting rate constants of reactive center loop insertion (k(lim)) and concentrations of proteinase at half-saturation (K(0.5)) for tPA and uPA and the specificity constants (k(lim)/K(0.5)) for elastase were determined. The pH dependences of k(lim)/K(0.5) reflected inactivation of each enzyme due to protonation of His57 of the catalytic triad. However, the specificity of the inhibitory reaction with tPA and uPA was notably higher than that for the substrate reaction catalyzed by elastase. pH dependences of k(lim) and K(0.5) obtained for tPA revealed an additional ionizable group (pKa, 6.0-6.2) affecting the reaction. Protonation of this group resulted in a significant increase in both k(lim) and K(0.5) and a 4.6-fold decrease in the specificity of the reaction of tPA with NBD P9 PAI-1. Binding of monoclonal antibody MA-55F4C12 to PAI-1 induced a decrease in k(lim) and K(0.5) at any pH but did not affect either the pKa of the group or an observed decrease in k(lim)/K(0.5) due to protonation of the group. In contrast to tPA, the k(lim) and K(0.5) for the reactions of uPA with NBD P9 PAI-1 or its complex with the monoclonal antibody were independent of pH in the 6.5-8.5 range. Since slightly acidic pH is a feature of a number of malignant tumors, alterations in PAI-1/tPA kinetics could play a role in the cancerogenesis. Changes in the protonation state of His(188), which is placed closely to the S1 site and is unique for tPA, has been proposed to contribute to the observed pH dependences of k(lim) and K(0.5).
Collapse
Affiliation(s)
- Andrey A Komissarov
- Division of Biochemical Research, Department of Pathology, Henry Ford Health System, Detroit, Michigan 48202, USA.
| | | | | |
Collapse
|
17
|
Hägglöf P, Bergström F, Wilczynska M, Johansson LBA, Ny T. The Reactive-center Loop of Active PAI-1 is Folded Close to the Protein Core and can be Partially Inserted. J Mol Biol 2004; 335:823-32. [PMID: 14687577 DOI: 10.1016/j.jmb.2003.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasminogen activator inhibitor 1 (PAI-1) is the main inhibitor of plasminogen activators and plays an important role in many pathophysiological processes. Like other members of the serpin family, PAI-1 has a reactive center consisting of a mobile loop (RCL) with P1 and P1' residues acting as a "bait" for cognate protease. In contrast to the other serpins, PAI-1 loses activity by spontaneous conversion to an inactive latent form. This involves full insertion of the RCL into beta-sheet A. To search for molecular determinants that could be responsible for conversion of PAI-1 to the latent form, we studied the conformation of the RCL in active PAI-1 in solution. Intramolecular distance measurements by donor-donor energy migration and probe quenching methods reveal that the RCL is located much closer to the core of PAI-1 than has been suggested by the recently resolved X-ray structures of stable PAI-1 mutants. Disulfide bonds can be formed in double-cysteine mutants with substitutions at positions P11 or P13 of the RCL and neighboring residues in beta-sheet A. This suggests that the RCL may be preinserted up to residue P13 in active PAI-1, and possibly even to residue P11. We propose that the close proximity of the RCL to the protein core, and the ability of the loop to preinsert into beta-sheet A is a possible reason for PAI-1 being able to convert spontaneously to its latent form.
Collapse
Affiliation(s)
- Peter Hägglöf
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
18
|
Ibarra CA, Blouse GE, Christian TD, Shore JD. The contribution of the exosite residues of plasminogen activator inhibitor-1 to proteinase inhibition. J Biol Chem 2003; 279:3643-50. [PMID: 14594804 DOI: 10.1074/jbc.m310601200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of plasminogen activator inhibitor-1 (PAI-1) to serine proteinases, such as tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), is mediated by the exosite interactions between the surface-exposed variable region-1, or 37-loop, of the proteinase and the distal reactive center loop (RCL) of PAI-1. Although the contribution of such interactions to the inhibitory activity of PAI-1 has been established, the specific mechanistic steps affected by interactions at the distal RCL remain unknown. We have used protein engineering, stopped-flow fluorimetry, and rapid acid quenching techniques to elucidate the role of exosite interactions in the neutralization of tPA, uPA, and beta-trypsin by PAI-1. Alanine substitutions at the distal P4' (Glu-350) and P5' (Glu-351) residues of PAI-1 reduced the rates of Michaelis complex formation (k(a)) and overall inhibition (k(app)) with tPA by 13.4- and 4.7-fold, respectively, whereas the rate of loop insertion or final acyl-enzyme formation (k(lim)) increased by 3.3-fold. The effects of double mutations on k(a), k(lim), and k(app) were small with uPA and nonexistent with beta-trypsin. We provide the first kinetic evidence that the removal of exosite interactions significantly alters the formation of the noncovalent Michaelis complex, facilitating the release of the primed side of the distal loop from the active-site pocket of tPA and the subsequent insertion of the cleaved reactive center loop into beta-sheet A. Moreover, mutational analysis indicates that the P5' residue contributes more to the mechanism of tPA inhibition, notably by promoting the formation of a final Michaelis complex.
Collapse
Affiliation(s)
- Catherine A Ibarra
- Division of Biochemical, Research, Department of Pathology, Henry Ford Health Sciences Center, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
19
|
Perron MJ, Blouse GE, Shore JD. Distortion of the catalytic domain of tissue-type plasminogen activator by plasminogen activator inhibitor-1 coincides with the formation of stable serpin-proteinase complexes. J Biol Chem 2003; 278:48197-203. [PMID: 14500731 DOI: 10.1074/jbc.m306184200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a typical member of the serpin family that kinetically traps its target proteinase as a covalent complex by distortion of the proteinase domain. Incorporation of the fluorescently silent 4-fluorotryptophan analog into PAI-1 permitted us to observe changes in the intrinsic tryptophan fluorescence of two-chain tissue-type plasminogen activator (tPA) and the proteinase domain of tPA during the inhibition reaction. We demonstrated three distinct conformational changes of the proteinase that occur during complex formation and distortion. A conformational change occurred during the initial formation of the non-covalent Michaelis complex followed by a large conformational change associated with the distortion of the proteinase catalytic domain that occurs concurrently with the formation of stable proteinase-inhibitor complexes. Following distortion, a very slow structural change occurs that may be involved in the stabilization or regulation of the trapped complex. Furthermore, by comparing the inhibition rates of two-chain tPA and the proteinase domain of tPA by PAI-1, we demonstrate that the accessory domains of tPA play a prominent role in the initial formation of the non-covalent Michaelis complex.
Collapse
Affiliation(s)
- Michel J Perron
- Department of Pathology, Division of Biochemical Research, Henry Ford Health Sciences Center, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
20
|
Huang Y, Haraguchi M, Lawrence DA, Border WA, Yu L, Noble NA. A mutant, noninhibitory plasminogen activator inhibitor type 1 decreases matrix accumulation in experimental glomerulonephritis. J Clin Invest 2003. [DOI: 10.1172/jci200318038] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Czekay RP, Aertgeerts K, Curriden SA, Loskutoff DJ. Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. J Cell Biol 2003; 160:781-91. [PMID: 12615913 PMCID: PMC2173358 DOI: 10.1083/jcb.200208117] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The binding of urokinase plaminogen activator (uPA) to its cell surface receptor (uPAR; CD87) promotes cell adhesion by increasing the affinity of the receptor for both vitronectin (VN) and integrins. We provide evidence that plasminogen activator inhibitor (PAI)-1 can detach cells by disrupting uPAR-VN and integrin-VN interactions and that it does so by binding to the uPA present in uPA-uPAR-integrin complexes on the cell surface. The detached cells cannot reattach to VN unless their surface integrins are first activated by treatment with MnCl2. Immunoprecipitation and subcellular fractionation experiments reveal that PAI-1 treatment triggers deactivation and disengagement of uPA-uPAR-integrin complexes and their endocytic clearance by the low density lipoprotein receptor-related protein. Transfection experiments demonstrate that efficient cell detachment by PAI-1 requires an excess of matrix-engaged uPA-uPAR-integrin complexes over free engaged integrins and that changes in this ratio alter the efficacy of PAI-1. Together, these results suggest a VN-independent, uPA-uPAR-dependent mechanism by which PAI-1 induces cell detachment. This pathway may represent a general mechanism, since PAI-1 also can detach cells from fibronectin and type-1 collagen. This novel "deadhesive" activity of PAI-1 toward a variety of cells growing on different extracellular matrices may begin to explain why high PAI-1 levels often are associated with a poor prognosis in human metastatic disease.
Collapse
Affiliation(s)
- Ralf-Peter Czekay
- The Scripps Research Institute, Dept. of Cell Biology, Div. of Vascular Biology, 10550 N. Torrey Pines Rd., VB-3, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
22
|
Komissarov AA, Declerck PJ, Shore JD. Mechanisms of conversion of plasminogen activator inhibitor 1 from a suicide inhibitor to a substrate by monoclonal antibodies. J Biol Chem 2002; 277:43858-65. [PMID: 12223472 DOI: 10.1074/jbc.m204110200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have delineated two different reaction mechanisms of monoclonal antibodies (mAbs), MA-8H9D4 and either MA-55F4C12 or MA-33H1F7, that convert plasminogen activator inhibitor 1 (PAI-1) to a substrate for tissue (tPA)- and urokinase plasminogen activators. MA-8H9D4 almost completely (98-99%) shifts the reaction to the substrate pathway by preventing disordering of the proteinase active site. MA-8H9D4 does not affect the rate-limiting constants (k(lim)) for the insertion of the reactive center loop cleaved by tPA (3.5 s(-1)) but decreases k(lim) for urokinase plasminogen activator from 25 to 4.0 s(-1). MA-8H9D4 does not cause deacylation of preformed PAI-1/proteinase complexes and probably acts prior to the formation of the final inhibitory complex, interfering with displacement of the acylated serine from the proteinase active site. MA-55F4C12 and MA-33H1F7 (50-80% substrate reaction) do not interfere with initial PAI-1/proteinase complex formation but retard the inhibitory pathway by decreasing k(lim) (>10-fold for tPA). Interaction of two mAbs with the same molecule of PAI-1 has been directly demonstrated for pairs MA-8H9D4/MA-55F4C12 and MA-8H9D4/MA-33H1F7 but not for MA-55F4C12/MA-33H1F7. The strong functional additivity observed for MA-8H9D4 and MA-55F4C12 demonstrates that these mAbs interact independently and affect different steps of the PAI-1 reaction mechanism.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Division of Biochemical Research, Henry Ford Health System, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
23
|
Kamikubo YI, Okumura Y, Loskutoff DJ. Identification of the disulfide bonds in the recombinant somatomedin B domain of human vitronectin. J Biol Chem 2002; 277:27109-19. [PMID: 12019263 DOI: 10.1074/jbc.m200354200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NH(2)-terminal somatomedin B (SMB) domain (residues 1-44) of human vitronectin contains eight Cys residues organized into four disulfide bonds and is required for the binding of type 1 plasminogen activator inhibitor (PAI-1). In the present study, we map the four disulfide bonds in recombinant SMB (rSMB) and evaluate their functional importance. Active rSMB was purified from transformed Escherichia coli by immunoaffinity chromatography using a monoclonal antibody that recognizes a conformational epitope in SMB (monoclonal antibody 153). Plasmon surface resonance (BIAcore) and competitive enzyme-linked immunosorbent assays demonstrate that the purified rSMB domain and intact urea-activated vitronectin have similar PAI-1 binding activities. The individual disulfide linkages present in active rSMB were investigated by CNBr cleavage, partial reduction and S-alkylation, mass spectrometry, and protein sequencing. Two pairs of disulfide bonds at the NH(2)-terminal portion of active rSMB were identified as Cys(5)-Cys(9) and Cys(19)-Cys(21). Selective reduction/S-alkylation of these two disulfide linkages caused the complete loss of PAI-1 binding activity. The other two pairs of disulfide bonds in the COOH-terminal portion of rSMB were identified as Cys(25)-Cys(31) and Cys(32)-Cys(39) by protease-generated peptide mapping of partially reduced and S-alkylated rSMB. These results suggest a linear uncrossed pattern for the disulfide bond topology of rSMB that is distinct from the crossed pattern present in most small disulfide bond-rich proteins.
Collapse
Affiliation(s)
- Yu-ichi Kamikubo
- Department of Cell Biology, Division of Vascular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
24
|
Backovic M, Stratikos E, Lawrence DA, Gettins PGW. Structural similarity of the covalent complexes formed between the serpin plasminogen activator inhibitor-1 and the arginine-specific proteinases trypsin, LMW u-PA, HMW u-PA, and t-PA: use of site-specific fluorescent probes of local environment. Protein Sci 2002; 11:1182-91. [PMID: 11967374 PMCID: PMC2373564 DOI: 10.1110/ps.4320102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
We have used two fluorescent probes, NBD and dansyl, attached site-specifically to the serpin plasminogen activator inhibitor-1 (PAI-1) to address the question of whether a common mechanism of proteinase translocation and full insertion of the reactive center loop is used by PAI-1 when it forms covalent SDS-stable complexes with four arginine-specific proteinases, which differ markedly in size and domain composition. Single-cysteine residues were incorporated at position 119 or 302 as sites for specific reporter labeling. These are positions approximately 30 A apart that allow discrimination between different types of complex structure. Fluorescent derivatives were prepared for each of these variants using both NBD and dansyl as reporters of local perturbations. Spectra of native and cleaved forms also allowed discrimination between direct proteinase-induced changes and effects solely due to conformational change within the serpin. Covalent complexes of these derivatized PAI-1 species were made with the proteinases trypsin, LMW u-PA, HMW u-PA, and t-PA. Whereas only minor perturbations of either NBD and dansyl were found for almost all complexes when label was at position 119, major perturbations in both wavelength maximum (blue shifts) and quantum yield (both increases and decreases) were found for all complexes for both NBD and dansyl at position 302. This is consistent with all four complexes having similar location of the proteinase catalytic domain and hence with all four using the same mechanism of full-loop insertion with consequent distortion of the proteinase wedged in at the bottom of the serpin.
Collapse
Affiliation(s)
- Marija Backovic
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Illinois at Chicago, 1853 West Polk Street, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
25
|
Okumura Y, Kamikubo Y, Curriden SA, Wang J, Kiwada T, Futaki S, Kitagawa K, Loskutoff DJ. Kinetic analysis of the interaction between vitronectin and the urokinase receptor. J Biol Chem 2002; 277:9395-404. [PMID: 11773078 DOI: 10.1074/jbc.m111225200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the urokinase receptor (uPAR) binds to vitronectin (VN) and promotes the adhesion of cells to this matrix protein, the biochemical details of this interaction remain unclear. VN variants were employed in BIAcore experiments to examine the uPAR-VN interaction in detail and to compare it to the interaction of VN with other ligands. Heparin and plasminogen bound to VN fragments containing the heparin-binding domain, indicating that this domain was functionally active in the recombinant peptides. However, no significant binding was detected when uPAR was incubated with this domain, and neither heparin nor plasminogen competed with it for binding to VN. In fact, uPAR only bound to fragments containing the somatomedin B (SMB) domain, and monoclonal antibodies (mAbs) that bind to this domain competed with uPAR for binding to VN. Monoclonal antibody 8E6 also inhibited uPAR binding to VN, and this mAb was shown to recognize sulfated tyrosine residues 56 and 59 in the region adjacent to the SMB domain. Destruction of this site by acid treatment eliminated mAb 8E6 binding but had no effect on uPAR binding. Thus, there appears to be a single binding site for uPAR in VN, and it is located in the SMB domain and is distinct from the epitope recognized by mAb 8E6. Inhibition of uPAR binding to VN by mAb 8E6 probably results from steric hindrance.
Collapse
Affiliation(s)
- Yuushi Okumura
- Department of Cell Biology, Division of Vascular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
McMahon GA, Petitclerc E, Stefansson S, Smith E, Wong MK, Westrick RJ, Ginsburg D, Brooks PC, Lawrence DA. Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis. J Biol Chem 2001; 276:33964-8. [PMID: 11441025 DOI: 10.1074/jbc.m105980200] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated expression of plasminogen activator inhibitor-1 (PAI-1) in tumors is associated with a poor prognosis in many cancers. Reduced tumor growth and angiogenesis have also been reported in mice deficient in PAI-1. These results suggest that PAI-1 may be required for efficient angiogenesis and tumor growth. In the present study, we demonstrate that PAI-1 can both enhance and inhibit the growth of M21 human melanoma tumors in nude mice and that this appears to be due to PAI-1 regulation of angiogenesis. Quantitative analysis of angiogenesis in a Matrigel implant assay indicated that in PAI-1 null mice angiogenesis was reduced approximately 60% compared with wild-type mice, while in mice overexpressing PAI-1, angiogenesis was increased nearly 3-fold. Furthermore, addition of PAI-1 to implants in wild-type mice enhanced angiogenesis up to 3-fold at low concentrations but inhibited angiogenesis nearly completely at high concentrations. Together, these data demonstrate that PAI-1 is a potent regulator of angiogenesis and hence of tumor growth and suggest that understanding the mechanism of this activity may lead to the development of important new therapeutic agents for controlling pathologic angiogenesis.
Collapse
Affiliation(s)
- G A McMahon
- Department of Vascular Biology, The Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhou A, Faint R, Charlton P, Dafforn TR, Carrell RW, Lomas DA. Polymerization of plasminogen activator inhibitor-1. J Biol Chem 2001; 276:9115-22. [PMID: 11102455 DOI: 10.1074/jbc.m010631200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of the serine proteinase inhibitor (serpin) plasminogen activator inhibitor-1 (PAI-1) is controlled by the intramolecular incorporation of the reactive loop into beta-sheet A with the generation of an inactive latent species. Other members of the serpin superfamily can be pathologically inactivated by intermolecular linkage between the reactive loop of one molecule and beta-sheet A of a second to form chains of polymers associated with diverse diseases. It has long been believed that PAI-1 is unique among active serpins in that it does not form polymers. We show here that recombinant native and latent PAI-1 spontaneously form polymers in vitro at low pH although with distinctly different electrophoretic patterns of polymerization. The polymers of both the native and latent species differ from the typical loop-A-sheet polymers of other serpins in that they readily dissociate back to their original monomeric form. The findings with PAI-1 are compatible with different mechanisms of linkage, each involving beta-strand addition of the reactive loop to s7A in native PAI-1 and to s1C in latent PAI-1. Glycosylated native and latent PAI-1 can also form polymers under similar conditions, which may be of in vivo importance in the low pH environment of the platelet.
Collapse
Affiliation(s)
- A Zhou
- Department of Haematology, University of Cambridge, Wellcome Trust Centre for Molecular Mechanisms in Disease, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 2XY, United Kingdom.
| | | | | | | | | | | |
Collapse
|
28
|
Stefansson S, Petitclerc E, Wong MK, McMahon GA, Brooks PC, Lawrence DA. Inhibition of angiogenesis in vivo by plasminogen activator inhibitor-1. J Biol Chem 2001; 276:8135-41. [PMID: 11083866 DOI: 10.1074/jbc.m007609200] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The process of angiogenesis is important in both normal and pathologic physiology. However, the mechanisms whereby factors such as basic fibroblast growth factor promote the formation of new blood vessels are not known. In the present study, we demonstrate that exogenously added plasminogen activator inhibitor-1 (PAI-1) at therapeutic concentrations is a potent inhibitor of basic fibroblast growth factor-induced angiogenesis in the chicken chorioallantoic membrane. By using specific PAI-1 mutants with either their vitronectin binding or proteinase inhibitor activities ablated, we show that the inhibition of angiogenesis appears to occur via two distinct but apparently overlapping pathways. The first is dependent on PAI-1 inhibition of proteinase activity, most likely chicken plasmin, while the second is independent of PAI-1's anti-proteinase activity and instead appears to act through PAI-1 binding to vitronectin. Together, these data suggest that PAI-1 may be an important factor regulating angiogenesis in vivo.
Collapse
Affiliation(s)
- S Stefansson
- Department of Vascular Biology, J. H. Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | | | | | | | |
Collapse
|
29
|
Podor TJ, Shaughnessy SG, Blackburn MN, Peterson CB. New insights into the size and stoichiometry of the plasminogen activator inhibitor type-1.vitronectin complex. J Biol Chem 2000; 275:25402-10. [PMID: 10821827 DOI: 10.1074/jbc.m000362200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor-type 1 (PAI-1) is the primary inhibitor of endogenous plasminogen activators that generate plasmin in the vicinity of a thrombus to initiate thrombolysis, or in the pericellular region of cells to facilitate migration and/or tissue remodeling. It has been shown that the physiologically relevant form of PAI-1 is in a complex with the abundant plasma glycoprotein, vitronectin. The interaction between vitronectin and PAI-1 is important for stabilizing the inhibitor in a reactive conformation. Although the complex is clearly significant, information is vague regarding the composition of the complex and consequences of its formation on the distribution and activity of vitronectin in vivo. Most studies have assumed a 1:1 interaction between the two proteins, but this has not been demonstrated experimentally and is a matter of some controversy since more than one PAI-1-binding site has been proposed within the sequence of vitronectin. To address this issue, competition studies using monoclonal antibodies specific for separate epitopes confirmed that the two distinct PAI-1-binding sites present on vitronectin can be occupied simultaneously. Analytical ultracentrifugation was used also for a rigorous analysis of the composition and sizes of complexes formed from purified vitronectin and PAI-1. The predominant associating species observed was high in molecular weight (M(r) approximately 320,000), demonstrating that self-association of vitronectin occurs upon interaction with PAI-1. Moreover, the size of this higher order complex indicates that two molecules of PAI-1 bind per vitronectin molecule. Binding of PAI-1 to vitronectin and association into higher order complexes is proposed to facilitate interaction with macromolecules on surfaces.
Collapse
Affiliation(s)
- T J Podor
- Department of Pathology and Molecular Medicine, McMaster University and the Hamilton Civic Hospitals Research Centre, Ontario, Canada
| | | | | | | |
Collapse
|
30
|
Fa M, Bergström F, Hägglöf P, Wilczynska M, Johansson LB, Ny T. The structure of a serpin-protease complex revealed by intramolecular distance measurements using donor-donor energy migration and mapping of interaction sites. Structure 2000; 8:397-405. [PMID: 10801484 DOI: 10.1016/s0969-2126(00)00121-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND The inhibitors that belong to the serpin family are widely distributed regulatory molecules that include most protease inhibitors found in blood. It is generally thought that serpin inhibition involves reactive-centre cleavage, loop insertion and protease translocation, but different models of the serpin-protease complex have been proposed. In the absence of a spatial structure of a serpin-protease complex, a detailed understanding of serpin inhibition and the character of the virtually irreversible complex have remained controversial. RESULTS We used a recently developed method for making precise distance measurements, based on donor-donor energy migration (DDEM), to accurately triangulate the position of the protease urokinase-type plasminogen activator (uPA) in complex with the serpin plasminogen activator inhibitor type 1 (PAI-1). The distances from residue 344 (P3) in the reactive-centre loop of PAI-1 to residues 185, 266, 313 and 347 (P1') were determined. Modelling of the complex using this distance information unequivocally placed residue 344 in a position at the distal end from the initial docking site with the reactive-centre loop fully inserted into beta sheet A. To validate the model, seven single cysteine substitution mutants of PAI-1 were used to map sites of protease-inhibitor interaction by fluorescence depolarisation measurements of fluorophores attached to these residues and cross-linking using a sulphydryl-specific cross-linker. CONCLUSIONS The data clearly demonstrate that serpin inhibition involves reactive-centre cleavage followed by full-loop insertion whereby the covalently linked protease is translocated from one pole of the inhibitor to the opposite one.
Collapse
Affiliation(s)
- M Fa
- Department of Medical Biosciences, Medical Biochemistry, Umeâ University, Umeâ, S-90187, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Lawrence DA, Olson ST, Muhammad S, Day DE, Kvassman JO, Ginsburg D, Shore JD. Partitioning of serpin-proteinase reactions between stable inhibition and substrate cleavage is regulated by the rate of serpin reactive center loop insertion into beta-sheet A. J Biol Chem 2000; 275:5839-44. [PMID: 10681574 DOI: 10.1074/jbc.275.8.5839] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serpin family of serine proteinase inhibitors is a mechanistically unique class of naturally occurring proteinase inhibitors that trap target enzymes as stable covalent acyl-enzyme complexes. This mechanism appears to require both cleavage of the serpin reactive center loop (RCL) by the proteinase and a significant conformational change in the serpin structure involving rapid insertion of the RCL into the center of an existing beta-sheet, serpin beta-sheet A. The present study demonstrates that partitioning between inhibitor and substrate modes of reaction can be altered by varying either the rates of RCL insertion or deacylation using a library of serpin RCL mutants substituted in the critical P(14) hinge residue and three different proteinases. We further correlate the changes in partitioning with the actual rates of RCL insertion for several of the variants upon reaction with the different proteinases as determined by fluorescence spectroscopy of specific RCL-labeled inhibitor mutants. These data demonstrate that the serpin mechanism follows a branched pathway, and that the formation of a stable inhibited complex is dependent upon both the rate of the RCL conformational change and the rate of enzyme deacylation.
Collapse
Affiliation(s)
- D A Lawrence
- American Red Cross Holland Laboratory, Rockville, Maryland 20855, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Bergström F, Hägglöf P, Karolin J, Ny T, Johansson LB. The use of site-directed fluorophore labeling and donor-donor energy migration to investigate solution structure and dynamics in proteins. Proc Natl Acad Sci U S A 1999; 96:12477-81. [PMID: 10535947 PMCID: PMC22954 DOI: 10.1073/pnas.96.22.12477] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The use of molecular genetics for introducing fluorescent molecules enables the use of donor-donor energy migration to determine intramolecular distances in a variety of proteins. This approach can be applied to examine the overall molecular dimensions of proteins and to investigate structural changes upon interactions with specific target molecules. In this report, the donor-donor energy migration method is demonstrated by experiments with the latent form of plasminogen activator inhibitor type 1. Based on the known x-ray structure of plasminogen activator inhibitor type 1, three positions forming the corners of a triangle were chosen. Double Cys substitution mutants (V106C-H185C, H185C-M266C, and M266C-V106C) and corresponding single substitution mutants (V106C, H185C, and M266C) were created and labeled with a sulfhydryl specific derivative of BODIPY (=the D molecule). The side lengths of this triangle were obtained from analyses of the experimental data. The analyses account for the local anisotropic order and rotational motions of the D molecules, as well as for the influence of a partial DD-labeling. The distances, as determined from x-ray diffraction, between the C(alpha)-atoms of the positions V106C-H185C, H185C-M266C, and M266C-V106C were 60.9, 30.8, and 55.1 A, respectively. These are in good agreement with the distances of 54 +/- 4, 38 +/- 3, and 55 +/- 3 A, as determined between the BODIPY groups attached via linkers to the same residues. Although the positions of the D-molecules and the C(alpha)-atoms physically cannot coincide, there is a reasonable agreement between the methods.
Collapse
Affiliation(s)
- F Bergström
- Department of Chemistry, Umeâ University, S-901 87 Umeâ, Sweden
| | | | | | | | | |
Collapse
|
33
|
Verhamme I, Kvassman JO, Day D, Debrock S, Vleugels N, Declerck PJ, Shore JD. Accelerated conversion of human plasminogen activator inhibitor-1 to its latent form by antibody binding. J Biol Chem 1999; 274:17511-7. [PMID: 10364183 DOI: 10.1074/jbc.274.25.17511] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serpin plasminogen activator inhibitor-1 (PAI-1) slowly converts to an inactive latent form by inserting a major part of its reactive center loop (RCL) into its beta-sheet A. A murine monoclonal antibody (MA-33B8), raised against the human plasminogen activator (tPA).PAI-1 complex, rapidly inactivates PAI-1. Results presented here indicate that MA-33B8 induces acceleration of the active-to-latent conversion. The antibody-induced inactivation of PAI-1 labeled with the fluorescent probe N, N'-dimethyl-N-(acetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ethylene diamine (NBD) at P9 in the RCL caused a fluorescence enhancement and shift identical to those accompanying the spontaneous conversion of the P9.NBD PAI-1 to the latent form. Like latent PAI-1, antibody-inactivated PAI-1 was protected from cleavage by elastase. The rate constants for MA-33B8 binding, measured by NBD fluorescence or inactivation, were similar (1.3-1.8 x 10(4) M-1 s-1), resulting in a 4000-fold faster inactivation at 4.2 microM antibody binding sites. The apparent antibody binding rate constant, at least 1000 times slower than one limited by diffusion, indicates that exposure of its epitope depends on an unfavorable equilibrium of PAI-1. Our observations are consistent with this idea and suggest that the equilibrium involves partial insertion of the RCL into sheet A: latent, RCL-cleaved, and tPA-complexed PAI-1, which are inactive loop-inserted forms, bound much faster than active PAI-1 to MA-33B8, whereas two loop-extracted forms of PAI-1, modified to prevent loop insertion, did not bind or bound much more weakly to the antibody.
Collapse
Affiliation(s)
- I Verhamme
- Henry Ford Health Sciences Center, Division of Biochemical Research, Detroit, Michigan 48202-3450, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Stefansson S, Muhammad S, Cheng XF, Battey FD, Strickland DK, Lawrence DA. Plasminogen activator inhibitor-1 contains a cryptic high affinity binding site for the low density lipoprotein receptor-related protein. J Biol Chem 1998; 273:6358-66. [PMID: 9497365 DOI: 10.1074/jbc.273.11.6358] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Much of the controversy surrounding the binding of plasminogen activator inhibitor-1 (PAI-1) to the low density lipoprotein receptor-related protein (LRP) may be due to the labile structure of PAI-1 and the distinct conformations that it can adopt. To examine this possibility and to test the hypothesis that PAI-1 contains a specific high affinity binding site for LRP, a sensitive and quantitative assay for PAI-1 binding to LRP was developed. This assay utilizes a unique PAI-1 mutant that was constructed with a hexapeptide tag at the NH2 terminus, which is recognized by the protein kinase, heart muscle kinase and can be specifically labeled with 32P. Our results show that only 32P-PAI-1 in complex with a proteinase binds LRP with high affinity and is efficiently endocytosed by cells, indicating that a high affinity site for LRP is generated on PAI-1 only when in complex with a proteinase. In addition, PAI-1 in complex with different proteinases is shown to cross-compete for LRP binding, demonstrating that the binding site is independent of the proteinase and therefore must reside on the PAI-1 portion of the complex. Finally, mutagenesis of PAI-1 results in loss of LRP binding, confirming that the high affinity binding site is located on PAI-1 and suggesting that the LRP binding site lays within a region of PAI-1 previously shown to contain the heparin binding domain.
Collapse
Affiliation(s)
- S Stefansson
- Departments of Biochemistry, J. H. Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Vitronectin (Vn) is a major adhesive glycoprotein in blood. However, many of the functions of Vn are regulated by its conformational state and degree of multimerization. Here, the ability of native and denatured Vn to bind to integrin adhesion receptors was compared. Three lines of evidence suggest that the native, plasma form of Vn is not an adhesive glycoprotein. (i) Antibodies that bind in close proximity to the cell adhesion domain of Vn fail to bind to native Vn present in unfractionated plasma. (ii) Denatured Vn binds to both glycoprotein IIb/IIIa and alphavbeta3 in a dose-dependent manner. In contrast, native Vn is unable to bind either integrin. (iii) Thermal denaturation of native Vn, or its complexation with type 1 plasminogen activator inhibitor, exposed the cell adhesion domain of Vn. Thus, while plasma Vn is unable to bind integrins and is not an adhesive glycoprotein, the conformationally altered from of the protein binds avidly to both alphavbeta3 and glycoprotein IIb/IIIa. The data presented here indicate that such conformational changes in Vn are likely to occur in areas of tissue injury and thrombosis.
Collapse
Affiliation(s)
- D Seiffert
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
36
|
|
37
|
Seiffert D. The glycosaminoglycan binding site governs ligand binding to the somatomedin B domain of vitronectin. J Biol Chem 1997; 272:9971-8. [PMID: 9092537 DOI: 10.1074/jbc.272.15.9971] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ligand binding functions of vitronectin (Vn) are regulated by its conformational state/degree of multimerization. In the native plasma form of Vn, the C-terminal glycosaminoglycan (GAG) binding domain is believed to be cryptic. Here, evidence is provided that the addition of fucoidan or dextran sulfate to unfractionated plasma results in the formation of covalently and non-covalently stabilized Vn multimers. These multimers express conformationally sensitive antibody epitopes and ligand binding sites located in the N terminus of the Vn molecule. While heparin forms complexes with monomeric plasma Vn and induces conformational changes, a reduction in ionic strength is required for induction of multimerization. In addition, heparin serves as a template for the assembly of type 1 plasminogen activator inhibitor-induced disulfide-linked Vn multimers. These results support a new model for the structure of native Vn. The C-terminal GAG binding domain is predicted to be exposed in the native conformation, whereas the N terminus is cryptic. Ligand binding to the GAG binding site unfolds the N terminus, thereby exposing cryptic ligand binding sites.
Collapse
Affiliation(s)
- D Seiffert
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
38
|
Lawrence DA, Palaniappan S, Stefansson S, Olson ST, Francis-Chmura AM, Shore JD, Ginsburg D. Characterization of the binding of different conformational forms of plasminogen activator inhibitor-1 to vitronectin. Implications for the regulation of pericellular proteolysis. J Biol Chem 1997; 272:7676-80. [PMID: 9065424 DOI: 10.1074/jbc.272.12.7676] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Plasminogen activator inhibitor type 1 (PAI-1), the primary physiologic inhibitor of plasminogen activation, is associated with the adhesive glycoprotein vitronectin (Vn) in plasma and the extracellular matrix. In this study we examined the binding of different conformational forms of PAI-1 to both native and urea-purified vitronectin using a solid-phase binding assay. These results demonstrate that active PAI-1 binds to urea-purified Vn with approximately 6-fold higher affinity than to native Vn. In contrast, inactive forms of PAI-1 (latent, elastase-cleaved, synthetic reactive center loop peptide-annealed, or complexed to plasminogen activators) display greatly reduced affinities for both forms of adsorbed Vn, with relative affinities reduced by more than 2 orders of magnitude. Structurally, these inactive conformations all differ from active PAI-1 by insertion of an additional strand into beta-sheet A, suggesting that it is the rearrangement of sheet A that results in reduced Vn affinity. This is supported by the observation that PAI-1 associated with beta-anhydrotrypsin, which does not undergo rearrangement of beta-sheet A, shows no such decrease in affinity, whereas PAI-1 complexed to beta-trypsin, which does undergo sheet A rearrangement, displays reduced affinity for Vn similar to PAI-1.plasminogen activator complexes. Together these data demonstrate that the interaction between PAI-1 and Vn depends on the conformational state of both proteins and suggest that the Vn binding site on PAI-1 is sensitive to structural changes associated with loss of inhibitory activity.
Collapse
Affiliation(s)
- D A Lawrence
- Department of Biochemistry, American Red Cross Holland Laboratory, Rockville, Maryland 20855, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Gibson A, Baburaj K, Day DE, Verhamme I, Shore JD, Peterson CB. The use of fluorescent probes to characterize conformational changes in the interaction between vitronectin and plasminogen activator inhibitor-1. J Biol Chem 1997; 272:5112-21. [PMID: 9030577 DOI: 10.1074/jbc.272.8.5112] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of tissue-type plasminogen activator and urokinase, is known to convert readily to a latent form by insertion of the reactive center loop into a central beta-sheet. Interaction with vitronectin stabilizes PAI-1 and decreases the rate of conversion to the latent form, but conformational effects of vitronectin on the reactive center loop of PAI-1 have not been documented. Mutant forms of PAI-1 were designed with a cysteine substitution at either position P1' or P9 of the reactive center loop. Labeling of the unique cysteine with a sulfhydryl-reactive fluorophore provides a probe that is sensitive to vitronectin binding. Results indicate that the scissile P1-P1' bond of PAI-1 is more solvent exposed upon interaction with vitronectin, whereas the N-terminal portion of the reactive loop does not experience a significant change in its environment. These results were complemented by labeling vitronectin with an arginine-specific coumarin probe which compromises heparin binding but does not interfere with PAI-1 binding to the protein. Dissociation constants of approximately 100 nM are calculated for the vitronectin/PAI-1 interaction from titrations using both fluorescent probes. Furthermore, experiments in which PAI-1 failed to compete with heparin for binding to vitronectin argue for separate binding sites for the two ligands on vitronectin.
Collapse
Affiliation(s)
- A Gibson
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|
40
|
O'Malley KM, Nair SA, Rubin H, Cooperman BS. The kinetic mechanism of serpin-proteinase complex formation. An intermediate between the michaelis complex and the inhibited complex. J Biol Chem 1997; 272:5354-9. [PMID: 9030611 DOI: 10.1074/jbc.272.8.5354] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Serine proteinase inhibitors (serpins) form enzymatically inactive, 1:1 complexes (denoted E*I*) with their target proteinases that release free enzyme and cleaved inhibitor only very slowly. The mechanism of E*I* formation is incompletely understood and continues to be a source of controversy. Kinetic evidence exists that formation of E*I* proceeds via a Michaelis complex (E.I) and so involves at least two steps. In this paper, we determine the rate of E*I* formation from alpha-chymotrypsin and alpha1-antichymotrypsin using two approaches: first, by stopped-flow spectrofluorometric monitoring of the fluorescent change resulting from reaction of alpha-chymotrypsin with a fluorescent derivative of alpha1-antichymotrypsin (derivatized at position P7 of the reactive center loop); and second, by a rapid mixing/quench approach and SDS-polyacrylamide gel electrophoresis analysis. In some cases, serpins are both substrates and inhibitors of the same enzyme. Our results indicate the presence of an intermediate between E.I and E*I* and suggest that the partitioning step between inhibitor and substrate pathways precedes P1-P1' cleavage.
Collapse
Affiliation(s)
- K M O'Malley
- Department of Chemistry, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | |
Collapse
|
41
|
Seiffert D, Loskutoff DJ. Type 1 plasminogen activator inhibitor induces multimerization of plasma vitronectin. A suggested mechanism for the generation of the tissue form of vitronectin in vivo. J Biol Chem 1996; 271:29644-51. [PMID: 8939896 DOI: 10.1074/jbc.271.47.29644] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The conformation and degree of multimerization of vitronectin (Vn) appears to be of critical importance for its functions, but little is known about the underlying mechanisms that control Vn multimerization. We report that Vn secreted by cultured hepatoma cells is present as a mixture of monomeric and multimeric forms. A single protein of Mr 45,000 co-purified with hepatoma cell-derived Vn, which was immunologically identified as type 1 plasminogen activator inhibitor (PAI-1). The possibility that PAI-1 may modulate Vn multimerization was investigated. The addition of active PAI-1 to unfractionated plasma containing Vn monomers resulted in the formation of covalently and noncovalently associated Vn multimers and expression of conformationally sensitive epitopes. In contrast, inactive forms of PAI-1 did not efficiently induce Vn multimerization and conformational change. Gel filtration analysis revealed that Vn remained multimeric after dissociation from PAI-1. Vn multimers were also assembled using purified monomeric Vn and PAI-1, suggesting that a plasma cofactor was not required to induce Vn multimerization. This study provides insights into physiological mechanism responsible for the generation of homomultimeric Vn, a multimeric form of Vn that is not in complex with other proteins and which expresses a functional repertoire distinct from that of plasma Vn.
Collapse
Affiliation(s)
- D Seiffert
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
42
|
Stefansson S, Lawrence DA. The serpin PAI-1 inhibits cell migration by blocking integrin alpha V beta 3 binding to vitronectin. Nature 1996; 383:441-3. [PMID: 8837777 DOI: 10.1038/383441a0] [Citation(s) in RCA: 479] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During wound healing, migrating cells increase expression of both the vitronectin receptor (VNR) integrins and plasminogen activators. Here we report that vitronectin significantly enhances the migration of smooth muscle cells (SMCs), and that the specific VNR alpha V beta 3 is required for cell motility. We also show that the alpha V beta 3 attachment site on vitronectin overlaps with the binding site for plasminogen activator inhibitor (PAI)-1, and that the active conformation of PAI-1 blocks SMC migration. This effect requires high-affinity binding to vitronectin, and is not dependent on the ability of PAI-1 to inhibit plasminogen activators. Formation of a complex between PAI-1 and plasminogen activators results in loss of PAI-1 affinity for vitronectin and restores cell migration. These data demonstrate a direct link between plasminogen activators and integrin-mediated cell migration, and show that PAI-1 can control cell-matrix interactions by regulating the accessibility of specific cell-attachment sites. This indicates that the localization of plasminogen activators at sites of focal contact does not initiate a proteolytic cascade leading to generalized matrix destruction, but instead is required to expose cryptic cell-attachment sites necessary for SMC migration.
Collapse
Affiliation(s)
- S Stefansson
- Biochemistry Department, J.H. Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | |
Collapse
|
43
|
Fay WP, Murphy JG, Owen WG. High concentrations of active plasminogen activator inhibitor-1 in porcine coronary artery thrombi. Arterioscler Thromb Vasc Biol 1996; 16:1277-84. [PMID: 8857925 DOI: 10.1161/01.atv.16.10.1277] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Addition of exogenous plasminogen activator inhibitor-1 (PAI-1) to fibrin clots inhibits fibrinolysis in vivo. However, it is unknown whether the localized concentrations of active PAI-1 necessary to produce this antifibrinolytic effect can be recruited to acute arterial thrombi by endogenous mechanisms. We measured PAI-1 activity and antigen in porcine coronary artery thrombi that formed in response to acute vascular injury. Mean PAI-1 activity in thrombi (n = 5) was 36 +/- 5.1 micrograms/mL, which is > 2000 times its concentration in normal porcine plasma. The presence of markedly elevated concentrations of active PAI-1 in thrombi was confirmed by an immunoactivity assay and by demonstrating formation of sodium dodecyl sulfate-stable complexes after addition of 125I-urokinase to thrombus extracts. Comparative analysis of PAI-1 antigen by Western blotting and urokinase inhibition assay suggested that approximately one third of thrombus-associated PAI-1 was active. Histological examination of coronary thrombi revealed that they consisted predominantly of dense aggregates of platelets with interspersed islands of fibrin, which closely resemble the histological appearance of thrombi in patients with myocardial infarction and unstable angina pectoris. Washed porcine platelets prepared from peripheral blood contained sufficient PAI-1 antigen and activity to account for the concentrations observed in coronary artery thrombi. However, the specific activity of human platelet PAI-1 was lower than that of porcine platelet PAI-1 (2% versus 50% active, respectively), and human platelets inhibited in vitro fibrinolysis to a lesser extent than did porcine platelets. These results indicate that active PAI-1 accumulates in porcine coronary artery thrombi in concentrations markedly higher than those present in plasma and that PAI-1 may be an important determinant of the known resistance of platelet-rich thrombi to lysis by tissue-type plasminogen activator. These studies also underscore the importance of considering possible species differences in protein function when comparing animal models of thrombosis to acute coronary thrombosis in humans.
Collapse
Affiliation(s)
- W P Fay
- Department of Internal Medicine (Cardiology), University of Michigan Medical School, Ann Arbor, USA.
| | | | | |
Collapse
|
44
|
Strömqvist M, Karlsson KE, Björquist P, Andersson JO, Byström M, Hansson L, Johansson T, Deinum J. Characterisation of the complex of plasminogen activator inhibitor type 1 with tissue-type plasminogen activator by mass spectrometry and size-exclusion chromatography. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1295:103-9. [PMID: 8679667 DOI: 10.1016/0167-4838(96)00035-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Glycosylated human plasminogen activator inhibitor type 1 (PAI-1), produced in Chinese hamster ovary (CHO) cells, showed a variety of compounds with different molecular weights when subjected to electrospray mass spectrometry (ES-MS), owing to the heterogeneity of the carbohydrate chains. However, non-glycosylated human PAI-1, produced in E. coli, gave rise to a prominent species with a molecular weight of 42,774, consistent with the amino-acid sequence. A non-glycosylated mutant of the proteinase domain (B-chain) of tissue-type plasminogen activator (tPA) produced in C 127 cells, had a molecular weight of 28,168. Full-length, glycosylated, tPA showed a large heterogeneity in molecular mass. For a mass study, a tPA-PAI-1 complex was formed, composed of non-glycosylated PAI-1 and non-glycosylated B-chain. This complex was remarkably stable at room temperature in buffer with a neutral pH. The mass spectrum of the complex provided two main species, a peptide with a mass of 3803 and a dominating species of 67,133. These masses are consistent with a complex where PAI-1 is cleaved at the P1-P1' position. A trace of a species with a molecular mass of 70,942 was also found, corresponding to the complete, non-dissociated complex with PAI-1. Separation of the cleaved peptide, corresponding to the hydrophobic C-terminal 33 amino-acid residues of PAI-1, from the complex, was achieved by size-exclusion chromatography in the presence of 30% acetonitrile. Thus, in the complex between tPA and PAI-1, the proteins are held together by a tight covalent bond, but the C-terminal cleaved peptide of PAI-1 is only bound to the complex by hydrophobic forces. To assess whether this is specific to the tPA B-chain alone, experiments with the complex of full-length, glycosylated tPA and glycosylated PAI-1 were also performed, and it was possible to demonstrate the release of the C-terminal PAI-1 peptide by chromatography, mass spectrometry, as well as by SDS-PAGE.
Collapse
|
45
|
Stefansson S, Lawrence DA, Argraves WS. Plasminogen activator inhibitor-1 and vitronectin promote the cellular clearance of thrombin by low density lipoprotein receptor-related proteins 1 and 2. J Biol Chem 1996; 271:8215-20. [PMID: 8626514 DOI: 10.1074/jbc.271.14.8215] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Thrombin is a multifunctional protein that has both proteinase and growth factor-like activities. Its regulation is largely mediated by interaction with a host of inhibitors including antithrombin III (ATIII), heparin cofactor II (HCII), alpha2-macroglobulin (alpha2-M), protease nexin I, and plasminogen activator inhibitor-1 (PAI-1). ATIII, HCII, and alpha2-M are all abundant in blood and can inactivate blood-borne thrombin leading to rapid hepatic clearance of the thrombin-inhibitor complex. PAI-1 alone, a poor solution phase inhibitor of thrombin, can efficiently inhibit thrombin in the presence of native vitronectin (VN). In this study, active thrombin was found to be efficiently endocytosed and degraded by cultured pre-type II pneumocyte cells, and both processes could be blocked by polyclonal antibodies to PAI-1. When the relative efficiency of cellular endocytosis of thrombin in complex with a number of inhibitors was examined, 125I-thrombin-PAI-1 complexes were most efficiently cleared compared to 125I-thrombin in complex with the serpins ATIII, HCII, alpha1-proteinase inhibitor, or d-phenylalanyl-l-prolyl-l-arginine chloromethyl ketone. Low density lipoprotein receptor-related proteins 1 (LRP) and 2 (gp330/megalin) mediate the endocytosis of thrombin-PAI-1, since antagonists of receptor function such as LRP-1 and LRP-2 antibodies and the 39-kDa receptor-associated protein blocked 125I-thrombin-PAI-1 endocytosis and degradation. The LRP-mediated clearance of exogenously added 125I-thrombin by cultured cells was found to be enhanced 5-fold by inclusion of wild-type PAI-1 but by only 2-fold when a mutant form of PAI-1 that is unable to bind VN was included. This wild-type PAI-1 enhancement of 125I-thrombin clearance was found to occur only in the presence of native VN and not with its conformationally altered form. The results highlight a novel mechanism for cellular clearance of thrombin involving native VN promoting the interaction of thrombin and PAI-1 and the subsequent endocytosis of the complex by LRP-1 or LRP-2. This pathway is potentially important for the regulation of the potent biological activities of thrombin, particularly at sites of vascular injury.
Collapse
Affiliation(s)
- S Stefansson
- Biochemistry Department, J. H. Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | |
Collapse
|
46
|
Kvassman JO, Lawrence DA, Shore JD. The acid stabilization of plasminogen activator inhibitor-1 depends on protonation of a single group that affects loop insertion into beta-sheet A. J Biol Chem 1995; 270:27942-7. [PMID: 7499270 DOI: 10.1074/jbc.270.46.27942] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The serpin plasminogen activator inhibitor-1 (PAI-1) spontaneously adopts an inactive or latent conformation by inserting the N-terminal part of the reactive center loop as strand 4 into the major beta-sheet (sheet A). To examine factors that may regulate reactive loop insertion in PAI-1, we determined the inactivation rate of the inhibitor in the pH range 4.5-13. Below pH 9, inactivation led primarily to latent PAI-1, and one predominant effect of pH on the corresponding rate constant could be observed. Protonation of a group exhibiting a pKa of 7.6 (25 degrees C, ionic strength = 0.15 M) reduced the rate of formation of latent PAI-1 by a factor of 35, from 0.17 h-1 at pH 9 to about 0.005 h-1 below pH 6. The ionization with a pKa 7.6 was found to have no effect on the rate by which PAI-1 inhibits trypsin and is therefore unlikely to change the flexibility of the loop or the orientation of the reactive center. The peptides Ac-TEASSSTA and Ac-TVASSSTA (cf. P14-P7 in the reactive loop of PAI-1) formed stable complexes with PAI-1 and converted the inhibitor to a substrate for tissue type plasminogen activator. We found that peptide binding and formation of latent PAI-1 are mutually exclusive events, similarly affected by the pKa 7.6 ionization. This is direct evidence that external peptides can substitute for strand 4 in beta-sheet A of PAI-1 and that the pKa 7.6 ionization regulates insertion of complementary, internal or external, strands into this position. A model that accounts for the observed pH effects is presented, and the identity of the ionizing group is discussed based on the structure of latent PAI-1. The group is tentatively identified as His-143 in helix F, located on top of sheet A.
Collapse
Affiliation(s)
- J O Kvassman
- Henry Ford Health Sciences Center, Division of Biochemical Research, Detroit, Michigan 48202-3450, USA
| | | | | |
Collapse
|