1
|
Söylemez T, Berger RG, Krings U, Yamaç M. Aflatoxin B 1 (AFB 1) biodegradation by a lignolytic phenoloxidase of Trametes hirsuta. Sci Rep 2025; 15:6330. [PMID: 39984639 PMCID: PMC11845786 DOI: 10.1038/s41598-025-90711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Aflatoxin B1 (AFB1) is a highly potent mycotoxin that poses a serious threat to human and animal health. This study investigated the biodegradation of AFB1 by the supernatant of submerged cultured Trametes hirsuta, with a focus on identifying and characterizing the responsible enzyme(s). The extracellular enzymes of the white-rot mushroom were extracted from the supernatant and pre-separated using anion exchange fast protein liquid chromatography (FPLC). To pinpoint the specific enzyme, the eluted protein fractions exhibiting the highest degradation activity were subjected to detailed biochemical and proteomic analyses. A second purification step, ultrafiltration, yielded an electrophoretically pure enzyme. Sequencing of tryptic peptides using a nano-LC system coupled to a qQTOF mass spectrometer identified the enzyme as a lignolytic phenoloxidase. The enzyme exhibited a molecular mass of 55.6 kDa and achieved an impressive AFB1 degradation rate of 77.9% under optimized experimental conditions. This is the first fungal lignolytic phenoloxidase capable of aflatoxin degradation without requiring hydrogen peroxide as a cofactor, highlighting its unique catalytic mechanism. It may be used in mycotoxin remediation strategies, such as treating the surfaces of contaminated fruits, vegetables, and nuts.
Collapse
Affiliation(s)
- Tuncay Söylemez
- Institut für Lebensmittelchemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraβe 5, 30167, Hannover, Germany.
| | - Ralf Günter Berger
- Institut für Lebensmittelchemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraβe 5, 30167, Hannover, Germany
| | - Ulrich Krings
- Institut für Lebensmittelchemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraβe 5, 30167, Hannover, Germany
| | - Mustafa Yamaç
- Faculty of Science and Letters, Department of Biology, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
2
|
Gao B, An W, Wu J, Wang X, Han B, Tao H, Liu J, Wang Z, Wang J. Simultaneous Degradation of AFB1 and ZEN by CotA Laccase from Bacillus subtilis ZJ-2019-1 in the Mediator-Assisted or Immobilization System. Toxins (Basel) 2024; 16:445. [PMID: 39453221 PMCID: PMC11511518 DOI: 10.3390/toxins16100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
The global prevalence of aflatoxin B1 (AFB1) and zearalenone (ZEN) contamination in food and feed poses a serious health risk to humans and animals. Recently, enzymatic detoxification has received increasing attention, yet most enzymes are limited to degrading only one type of mycotoxin, and free enzymes often exhibit reduced stability and activity, limiting their practicality in real-world applications. In this study, the laccase CotA gene from ZEN/AFB1-degrading Bacillus subtilis ZJ-2019-1 was cloned and successfully expressed in Escherichia coli BL21, achieving a protein yield of 7.0 mg/g. The recombinant CotA (rCotA) completely degraded AFB1 and ZEN, with optimal activity at 70 °C and pH 7.0. After rCotA treatment, neither AFB1 nor ZEN showed significantly cytotoxicity to mouse macrophage cell lines. Additionally, the AFB1/ZEN degradation efficiency of rCotA was significantly enhanced by five natural redox mediators: acetosyringone, syringaldehyde, vanillin, matrine, and sophoridin. Among them, the acetosyringone-rCotA was the most effective mediator system, which could completely degrade 10 μg of AFB1 and ZEN within 1 h. Furthermore, the chitosan-immobilized rCotA system exhibited higher degradation activity than free rCotA. The immobilized rCotA degraded 27.95% of ZEN and 41.37% of AFB1 in contaminated maize meal within 12 h, and it still maintained more than 40% activity after 12 reuse cycles. These results suggest that media-assisted or immobilized enzyme systems not only boost degradation efficiency but also demonstrate remarkable reusability, offering promising strategies to enhance the degradation efficiency of rCotA for mycotoxin detoxification.
Collapse
Affiliation(s)
- Boquan Gao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Wei An
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Jianwen Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Bing Han
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Hui Tao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Jie Liu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Zhenlong Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Jinquan Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
3
|
Al-Saadi HA, Al-Sadi AM, Al-Wahaibi A, Al-Raeesi A, Al-Kindi M, Soundra Pandian SB, Al-Harrasi MMA, Al-Mahmooli IH, Velazhahan R. Rice Weevil ( Sitophilus oryzae L.) Gut Bacteria Inhibit Growth of Aspergillus flavus and Degrade Aflatoxin B1. J Fungi (Basel) 2024; 10:377. [PMID: 38921363 PMCID: PMC11205148 DOI: 10.3390/jof10060377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
In this study, bacteria residing in the gut of the rice weevils (Sitophilus oryzae L.) (Coleoptera: Curculionidae) feeding on aflatoxin-contaminated corn kernels were isolated and evaluated for their ability to suppress Aspergillus flavus and to remove/degrade aflatoxin B1 (AFB1). Four morphologically distinct S. oryzae gut-associated bacterial isolates were isolated and identified as Bacillus subtilis (RWGB1), Bacillus oceanisediminis (RWGB2), Bacillus firmus (RWGB3), and Pseudomonas aeruginosa (RWGB4) based on 16S rRNA gene sequence analysis. These bacterial isolates inhibited A. flavus growth in the dual culture assay and induced morphological deformities in the fungal hyphae, as confirmed by scanning electron microscopy. All four bacterial isolates were capable of removing AFB1 from the nutrient broth medium. In addition, culture supernatants of these bacterial isolates degraded AFB1, and the degradation of toxin molecules was confirmed by liquid chromatography-mass spectrometry. The bacterial isolates, B. subtilis RWGB1, B. oceanisediminis RWGB2, and P. aeruginosa RWGB4, were capable of producing antifungal volatile organic compounds that inhibited A. flavus growth. These results suggest that the bacterial isolates from S. oryzae gut have the potential to bind and/or degrade AFB1. Further research on their application in the food and feed industries could enhance the safety of food and feed production.
Collapse
Affiliation(s)
- Haneen Abdullah Al-Saadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman; (H.A.A.-S.); (A.M.A.-S.); (A.A.-W.); (A.A.-R.); (M.M.A.A.-H.); (I.H.A.-M.)
| | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman; (H.A.A.-S.); (A.M.A.-S.); (A.A.-W.); (A.A.-R.); (M.M.A.A.-H.); (I.H.A.-M.)
| | - Ali Al-Wahaibi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman; (H.A.A.-S.); (A.M.A.-S.); (A.A.-W.); (A.A.-R.); (M.M.A.A.-H.); (I.H.A.-M.)
| | - Ali Al-Raeesi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman; (H.A.A.-S.); (A.M.A.-S.); (A.A.-W.); (A.A.-R.); (M.M.A.A.-H.); (I.H.A.-M.)
| | - Mohamed Al-Kindi
- College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman;
| | | | - Majida Mohammed Ali Al-Harrasi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman; (H.A.A.-S.); (A.M.A.-S.); (A.A.-W.); (A.A.-R.); (M.M.A.A.-H.); (I.H.A.-M.)
| | - Issa Hashil Al-Mahmooli
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman; (H.A.A.-S.); (A.M.A.-S.); (A.A.-W.); (A.A.-R.); (M.M.A.A.-H.); (I.H.A.-M.)
| | - Rethinasamy Velazhahan
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman; (H.A.A.-S.); (A.M.A.-S.); (A.A.-W.); (A.A.-R.); (M.M.A.A.-H.); (I.H.A.-M.)
| |
Collapse
|
4
|
Cheng S, Wu T, Zhang H, Sun Z, Mwabulili F, Xie Y, Sun S, Ma W, Li Q, Yang Y, Wu X, Jia H. Mining Lactonase Gene from Aflatoxin B 1-Degrading Strain Bacillus megaterium and Degrading Properties of the Recombinant Enzyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20762-20771. [PMID: 38103014 DOI: 10.1021/acs.jafc.3c05725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Mycotoxins are toxic secondary metabolites mainly produced by filamentous fungal species that commonly contaminate food and feed. Aflatoxin B1 (AFB1) is extremely toxic and seriously threatens the health of humans and animals. In this work, the Bacillus megaterium HNGD-A6 was obtained and showed a 94.66% removal ability of AFB1 by employing extracellular enzymes as the degrading active substance. The degradation products were P1 (AFD1, C16H14O5) and P2 (C14H16N2O2), and their toxicity was greatly reduced compared to that of AFB1. The AttM gene was mined by BlastP comparison and successfully expressed in Escherichia coli BL21. AttM could degrade 86.78% of AFB1 at pH 8.5 and 80 °C, as well as 81.32% of ochratoxin A and 67.82% of zearalenone. The ability of AttM to degrade a wide range of toxins and its resistance to high temperatures offer the possibility of its use in food or feed applications.
Collapse
Affiliation(s)
- Sizhong Cheng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Tian Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Hongxin Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Zhongke Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Fred Mwabulili
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Shumin Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Weibin Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Qian Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Xingquan Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Hang Jia
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
5
|
Shi Y, Ouyang B, Zhang Y, Zhang W, Xu W, Mu W. Recent developments of mycotoxin-degrading enzymes: identification, preparation and application. Crit Rev Food Sci Nutr 2023; 64:10089-10104. [PMID: 37293851 DOI: 10.1080/10408398.2023.2220402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mycotoxins are secondary metabolites produced by fungi during their growth. They not only seriously affect the yield of food crops but also pose a threat to human and animal health. Physical and chemical methods have been widely used to reduce the production and accumulation of mycotoxins in the field or after harvest, but these methods have difficulty in completely removing mycotoxins while keeping the nutrients at the same time. Biodegradation methods using isolated enzymes have shown superiority and potential for modest reaction conditions, high degradation efficiency and degradation products with low toxicity. Therefore, the occurrence, chemical structures, and toxicology of six prevalent mycotoxins (deoxynivalenol, zearalenone, aflatoxin, patulin, fumonisin, and ochratoxin) were described in this manuscript. The identification and application of mycotoxin-degrading enzymes were thoroughly reviewed. It is believed that in the near future, mycotoxin-degrading enzymes are expected to be commercially developed and used in the feed and food industries.
Collapse
Affiliation(s)
- Yan Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Binbin Ouyang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yulei Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Peng M, Zhang Z, Xu X, Zhang H, Zhao Z, Liang Z. Purification and characterization of the enzymes from Brevundimonas naejangsanensis that degrade ochratoxin A and B. Food Chem 2023; 419:135926. [PMID: 37011575 DOI: 10.1016/j.foodchem.2023.135926] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Ochratoxin A (OTA) and Ochratoxin B (OTB) co-contaminate many types of agricultural products. Screening enzymes that degrade both OTA and OTB has significance in food safety. In this study, four novel OTA and OTB degrading enzymes, namely BnOTase1, BnOTase2, BnOTase3, and BnOTase4, were purified from the metabolites of the Brevundimonas naejangsanensis ML17 strain. These four enzymes hydrolyzed OTA into OTα and hydrolyzed OTB into OTβ. BnOTase1, BnOTase2, BnOTase3, and BnOTase4 have the apparent Km values for hydrolyzing OTA of 19.38, 0.92, 12.11, 1.09 μmol/L and for hydrolyzing OTB of 0.76, 2.43, 0.60, 0.64 μmol/L respectively. OTα and OTβ showed no significant cytotoxicity to HEK293 cells, suggesting that these enzymes mitigate the toxicity of OTA and OTB. The discovery of the novel OTA and OTB degrading enzymes enriches the research on ochratoxin control and provides objects for protein rational design.
Collapse
Affiliation(s)
- Mengxue Peng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinge Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Haoxiang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zitong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Hleba L, Hlebova M, Kovacik A, Petrova J, Maskova Z, Cubon J, Massanyi P. Use of MALDI-TOF MS to Discriminate between Aflatoxin B1-Producing and Non-Producing Strains of Aspergillus flavus. Molecules 2022; 27:molecules27227861. [PMID: 36431961 PMCID: PMC9692738 DOI: 10.3390/molecules27227861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins. One of the producers of AFB1 is Aspergillus flavus. Therefore, its rapid identification plays a key role in various sectors of the food and feed industry. MALDI-TOF mass spectrometry is one of the fastest and most accurate methods today. Therefore, the aim of this research was to develop the rapid identification of producing and non-producing strains of A. flavus based on the entire mass spectrum. To accomplish the main goal a different confirmatory MALDI-TOF MS and TLC procedures such as direct AFB1 identification by scraping from TLC plates, A. flavus mycelium, nutrient media around A. flavus growth, and finally direct AFB1 identification from infected wheat and barley grains had to be conducted. In this experiment, MALDI-TOF mass spectrometry with various modifications was the main supporting technology. All confirmatory methods confirmed the presence of AFB1 in the samples of aflatoxin-producing strains of A. flavus and vice versa; AFB1 was not detected in the case of non-producing strains. Entire mass spectra (from 2 to 20 kDa) of aflatoxin-producing and non-producing A. flavus strains were collected, statistically analyzed and clustered. An in-depth analysis of the obtained entire mass spectra showed differences between AFB1-producing and non-producing strains of A. flavus. Statistical and cluster analysis divided AFB1-producing and non-producing strains of A. flavus into two monasteries. The results indicate that it is possible to distinguish between AFB1 producers and non-producers by comparing the entire mass spectra using MALDI-TOF MS. Finally, we demonstrated that if there are established local AFB1-producing and non-producing strains of A. flavus, the entire mass spectrum database identification of aflatoxigenic A. flavus strains can be even faster and cheaper, without the need to identify the toxin itself.
Collapse
Affiliation(s)
- Lukas Hleba
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
- Correspondence:
| | - Miroslava Hlebova
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 917 01 Trnava, Slovakia
| | - Anton Kovacik
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Jana Petrova
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Zuzana Maskova
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Juraj Cubon
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Peter Massanyi
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
8
|
Singh J, Mehta A. The main Aflatoxin B1 degrading enzyme in Pseudomonas putida is thermostable lipase. Heliyon 2022; 8:e10809. [PMID: 36217476 PMCID: PMC9547207 DOI: 10.1016/j.heliyon.2022.e10809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/11/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022] Open
Abstract
Aflatoxin B1 is a carcinogenic and mutagenic mycotoxin mainly produced by Aspergillus flavus and A. parasiticus, and prevalent in food and feed. Microbial degradation is a promising strategy which can be performed in mild and environmental friendly condition. This work is a step towards identifying the enzyme responsible for biodegradation of AFB1 by P. putida. Experiments were performed with P. putida lysate and compared with commercial lipase to see the degradation efficiency and the temperature stability. The cell free lysate of P. putida efficiently degraded AFB1 in a range of temperature from 20 to 90 °C. The lysate is thermostable and could retain its activity on pre-incubation up to 90 °C. Highest rate of degradation was observed at 70 °C. These observations show that the P. putida lysate is not only stable at higher temperatures but its enzymatic activity increases after incubation. Similarly, the commercial lipase degraded AFB1 efficiently. However, both, the P. putida lysate and lipase ceased degradation in presence of a lipase inhibitor, HgCl2. The Hill function accurately predicted enzyme activity at various times and temperatures. Like lipase, the lysate also hydrolyses the p-nitrophenyl palmitate to p-nitrophenol. Kinetic parameters such as Vmax, Km and n values are good measures to characterize the lysate response with respect to changing paranitro phenyl palmitate levels. The substrate specificity test of lipase showed linear correlation between the absorbance at 410 nm vs amount of product paranitro phenol. The value of Km, Vmax and n are 0.62 mM, 355.7 μmol min−1 and 1.29, respectively. The lipase gene presence in P. putida was confirmed using PCR technique. These observations indicate that the main enzyme responsible for AFB1 degradation by P. putida is lipase. Thus, lipase as a multifunctional biocatalyst provides a promising future for a variety of industries and may also help to ensure the food safety by degrading the mycotoxins.
Collapse
|
9
|
Yan Y, Zhang X, Chen H, Huang W, Jiang H, Wang C, Xiao Z, Zhang Y, Xu J. Isolation and Aflatoxin B1-Degradation Characteristics of a Microbacterium proteolyticum B204 Strain from Bovine Faeces. Toxins (Basel) 2022; 14:toxins14080525. [PMID: 36006187 PMCID: PMC9415550 DOI: 10.3390/toxins14080525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Aflatoxin B1 (AFB1) is one of the most harmful mycotoxins, raising serious global health and economic problems. Searching for biological approaches for effective and safe AFB1 degradation is imminent. In our study, Microbacterium proteolyticum B204 isolated from bovine faeces degraded 77% of AFB1 after 24 h, becoming the first reported bacteria from the Microbacterium family to possess AFB1 degradation characteristics. Temperature variation showed little effect on its degradation ratio, demonstrating high thermostability of 75% and 79% after boiling and sterilization, respectively. We suppose that the components playing a key role during this process were proteins, considering the decreased degradation rate caused by Proteinase K. Cell viability detection on HepG2 cells indicated that the degradation products were much less toxic than pure AFB1. Furthermore, B204 cell-free culture supernatant also degraded AFB1-contaminated food, such as peanuts, corn and cheese. These results suggested that this strain with AFB1 degradation properties could be a prospective candidate for application in the food and feed industries.
Collapse
|
10
|
Zhou Z, Li R, Ng TB, Huang F, Ye X. Considerations regarding affinity determinants for aflatoxin B 1 in binding cavity of fungal laccase based on in silico mutational and in vitro verification studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113412. [PMID: 35304333 DOI: 10.1016/j.ecoenv.2022.113412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Laccase, a multicopper oxidase, is well known for its industrial potentials to remove environmental pollutants due to its low substrate specificity to oxidize phenols and thus catalytic versatility. Many efforts focused on the metabolic mechanism, yet to decipher the structural determinants responsible for the differentiation between substrates. Aflatoxin B1 (AFB1), a new substrate for laccase, is a mycotoxin with a formidable environmental threat to public health and food safety. In the present study, we combined biochemical, in silico mutational and molecular-docking data to gain an insight to the function of key residues in the active cavity close to the T1 copper site in a characterized recombinant laccase from Cerrena unicolor (rCuL). Kinetic data for computer-assisted virtual mutants established the binding affinity of hydrogen bonds and residues (Asn336, Asp207, Val391, and Thr165) in rCuL to AFB1. The augmented binding affinity to AFB1 may be related to the conformational rearrangements of the laccase and its ability to hydrogen-bond with the substrate. Furthermore, the optimal pH and temperature for rCuL and variants mediated AFB1 degradation may depend on their pH stability and thermostability. Our findings reinforce the importance of the structure-function relationship of fungal laccases in degrading AFB1, providing mechanistic guidance for future biocatalyst and bioengineering applications.
Collapse
Affiliation(s)
- Zhimin Zhou
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China
| | - Renkuan Li
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China
| | - Tzi Bun Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong, China
| | - Fang Huang
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China
| | - Xiuyun Ye
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China.
| |
Collapse
|
11
|
Alizadeh-Bahaabadi G, Lakzadeh L, Forootanfar H, Akhavan HR. Optimization of gluten-free bread production with low aflatoxin level based on quinoa flour containing xanthan gum and laccase enzyme. Int J Biol Macromol 2022; 200:61-76. [PMID: 34973985 DOI: 10.1016/j.ijbiomac.2021.12.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/20/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022]
Abstract
This study was aimed to develop a new cereal-based product using quinoa flour, xanthan gum, and laccase and also to evaluate their effects on the quality characteristics of gluten-free bread (GFB). Experimental design method was applied for optimization of gluten-free formulation. The effects of three variables of quinoa flour (0-50%), laccase activity (0-2 U/g flour), and xanthan gum (0-0.5%) on the contents of total aflatoxin (TAF) and aflatoxin B1 (AFB1), color indices (L*, a*, and b*), and texture properties (hardness, cohesiveness, and springiness) of GFB were evaluated. The results showed that quinoa flour and laccase enzyme significantly reduced TAF and AFB1 (p < 0.05). The lowest AFB1 level (3.67 ± 0.96 ng/g) in the GFB formulation containing quinoa flour (40%), laccase enzyme (2.0 U/g), and xanthan gum (0.46%) was very close to the predicted amount (3.66 ± 0.96 ng/g). Quinoa flour significantly reduced the L* and a* values and increased b* value and improved the texture parameters. Laccase enzyme also improved color indices and texture properties. Therefore, the use of laccase enzyme and quinoa flour is recommended based on the desired effect on the quality characteristics of GFB.
Collapse
Affiliation(s)
| | - Leila Lakzadeh
- Department of Food Science and Technology, Shahreza Branch, Islamic Azad University, Shahreza, Iran.
| | - Hamid Forootanfar
- Department of Food Science and Technology, Shahreza Branch, Islamic Azad University, Shahreza, Iran; Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid-Reza Akhavan
- Department of Food Science and Technology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
12
|
Schmidt MA, Mao Y, Opoku J, Mehl HL. Enzymatic degradation is an effective means to reduce aflatoxin contamination in maize. BMC Biotechnol 2021; 21:70. [PMID: 34920704 PMCID: PMC8684248 DOI: 10.1186/s12896-021-00730-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
Background Aflatoxins are carcinogenic compounds produced by certain species of Aspergillus fungi. The consumption of crops contaminated with this toxin cause serious detrimental health effects, including death, in both livestock and humans. As a consequence, both the detection and quantification of this toxin in food/feed items is tightly regulated with crops exceeding the allowed limits eliminated from food chains. Globally, this toxin causes massive agricultural and economic losses each year. Results In this paper we investigate the feasibility of using an aflatoxin-degrading enzyme strategy to reduce/eliminate aflatoxin loads in developing maize kernels. We used an endoplasmic reticulum (ER) targeted sub-cellular compartmentalization stabilizing strategy to accumulate an aflatoxin-degrading enzyme isolated from the edible Honey mushroom Armillariella tabescens and expressed it in embryo tissue in developing maize kernels. Three transgenic maize lines that were determined to be expressing the aflatoxin-degrading enzyme both at the RNA and protein level, were challenged with the aflatoxin-producing strain Aspergillus flavus AF13 and shown to accumulate non-detectable levels of aflatoxin at 14-days post-infection and significantly reduced levels of aflatoxin at 30-days post-infection compared to nontransgenic control Aspergillus-challenged samples. Conclusions The expression of an aflatoxin-degrading enzyme in developing maize kernels was shown to be an effective means to control aflatoxin in maize in pre-harvest conditions. This aflatoxin-degradation strategy could play a significant role in the enhancement of both US and global food security and sustainability. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00730-6.
Collapse
Affiliation(s)
- Monica A Schmidt
- BIO5 Institute, University of Arizona, 1657 E. Helen St, Tucson, AZ, 85718, USA.
| | - Yizhou Mao
- BIO5 Institute, University of Arizona, 1657 E. Helen St, Tucson, AZ, 85718, USA
| | - Joseph Opoku
- Arid Land Agricultural Research Center, USDA Agricultural Research Service, 416 W Congress St, Tucson, AZ, 85701, USA
| | - Hillary L Mehl
- Arid Land Agricultural Research Center, USDA Agricultural Research Service, 416 W Congress St, Tucson, AZ, 85701, USA
| |
Collapse
|
13
|
Gómez-Salazar JA, Ruiz-Hernández K, Martínez-Miranda MM, Castro-Ríos K. Postharvest strategies for decontamination of aflatoxins in cereals. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Julián Andrés Gómez-Salazar
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | - Karla Ruiz-Hernández
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | | | - Katherin Castro-Ríos
- Grupo de Cromatografía Y Técnicas Afines, Universidad de Caldas, Manizales, Colombia
- Instituto de Investigación En Microbiología Y Biotecnología Agroindustrial, Universidad Católica de Manizales, Manizales, Colombia
| |
Collapse
|
14
|
Ali S, Hassan M, Essam T, Ibrahim MA, Al-Amry K. Biodegradation of aflatoxin by bacterial species isolated from poultry farms. Toxicon 2021; 195:7-16. [PMID: 33610638 DOI: 10.1016/j.toxicon.2021.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/30/2021] [Accepted: 02/16/2021] [Indexed: 11/29/2022]
Abstract
Aflatoxins are carcinogenic compounds produced by certain Aspergillus spp and naturally contaminate poultry rations. Exposure to low levels of Aflatoxin B1 (AFB1) in poultry feeds is the second most threatening issue facing the poultry industry in Egypt; it can cause a reduction in growth, egg production, and compromised immune functions, resulting in significant economic loss. Hence, a safe, effective and eco-friendly detoxification method is strongly required. Biological decontamination is a promising approach to reduce aflatoxin levels within threshold limits. This study explores the biodegradation capacity of bacteria isolated from the moldy feed, soil and poultry feces in various poultry farms against AFB1 (100 ppb), G1 (100 ppb), B2 (30 ppb), G2 (30 ppb). Sixty-five bacterial isolates were initially screened using coumarin media with a concentration of (0.01%-0.5%) coumarin. Only one soil isolate (SZ1) grew at the highest concentration (0.5%). Coumarin and Aflatoxin degradation rates of ten promising isolates were measured using spectrophotometry and HPLC. Six isolates reduced AFG1 by more than 90% in the liquid medium, five reduced AFB2 while only four did the same with AFB1& AFG2. Impressively, isolate SZ1 (identified as Pseudomonas fluorescens) exhibited the best degradation capacity to both coumarin and aflatoxin with 100% degradation of AFG1 and 99% degradation of AFB1, AFB2 and AFG2. Biochemical and molecular identification of the ten isolates revealed that they belong to four genera; Bacillus (6), Pseudomonas (2), Enterococcus (1) and Stenotrophomonas (1). Factors affecting Pseudomonas fluorescens SZ1 degradation activity was further investigated. Optimum temperature, time and pH for maximum aflatoxin degradation were at 37 °C, 72 h and 7, respectively. Treatment with proteinase K reduced the degradation activity of G1 (31% ± 1.438), B1 (42% ± 1.438), G2 (19% ± 1.097), and B2 (25% ± 1.732), suggesting that the effective component in aflatoxin degradation may be protein in nature. Our study suggests the biocontrol potential of several different species isolated from poultry farms; B. haynesii, B. licheniformis, B. tequilensis, B. subtilis, B. amyloliquefaciens, Pseudomonas fluorescens, Enterococcus casseliflavus, and Stenotrophomonas maltophilia. The results proposed Pseudomonas fluorescens SZ1 as an excellent candidate for bioremediation and decontamination of aflatoxin in feed matrices. To the best of our knowledge, this is the first report identifying B. haynesii, Enterococcus casseliflavus, B. tequilensis and B. amyloliquefaciens with aflatoxin degradation activity.
Collapse
Affiliation(s)
- Sabah Ali
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Tamer Essam
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khaled Al-Amry
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
15
|
Guo Y, Zhao L, Ma Q, Ji C. Novel strategies for degradation of aflatoxins in food and feed: A review. Food Res Int 2020; 140:109878. [PMID: 33648196 DOI: 10.1016/j.foodres.2020.109878] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Aflatoxins are toxic secondary metabolites mainly produced by Aspergillus fungi, posing high carcinogenic potency in humans and animals. Dietary exposure to aflatoxins is a global problem in both developed and developing countries especially where there is poor regulation of their levels in food and feed. Thus, academics have been striving over the decades to develop effective strategies for degrading aflatoxins in food and feed. These strategies are technologically diverse and based on physical, chemical, or biological principles. This review summarizes the recent progress on novel aflatoxin degradation strategies including irradiation, cold plasma, ozone, electrolyzed oxidizing water, organic acids, natural plant extracts, microorganisms and enzymes. A clear understanding of the detoxification efficiency, mechanism of action, degradation products, application potential and current limitations of these methods is presented. In addition, the development and future perspective of nanozymes in aflatoxins degradation are introduced.
Collapse
Affiliation(s)
- Yongpeng Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
16
|
Söylemez T, Yamaç M, Yıldız Z. Statistical optimization of cultural variables for enzymatic degradation of aflatoxin B 1 by Panus neostrigosus. Toxicon 2020; 186:141-150. [PMID: 32795459 DOI: 10.1016/j.toxicon.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/07/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
The aim of this study is to determine the best aflatoxin B1 degradation conditions which was optimized using a combination of the Plackett-Burman and Box-Behnken methods with Panus neostrigosus culture filtrate. Panus neostrigosus was grown in a modified Kirk Broth medium to determine optimal degradation conditions. As a result, aflatoxin B1 was degraded under varying culture conditions. The Plackett-Burman method was designed after sixteen different experiments with fifteen variables. The three most effective variables (Sucrose, yeast extract, wheat bran) were chosen for the Box-Behnken methodology. The aflatoxin B1 degradation rate was 49% in just 1 h exposure to culture filtrate which was obtained under optimal growth conditions; (g-ml/L) sucrose 10, yeast extract 3, wheat bran 3, soytone 5, KH2PO4 2, MgSO4.7H2O 0.5, CaCl2.H2O 0.1, ammonium tartrate 2, trace element solution 10; 28 °C of incubation temperature, medium pH 5, 7.5% inoculum rate, 125 rpm of agitation speed, and a twelve-day incubation period. The SDS-PAGE studies show that the enzyme responsible for AFB1 degradation has 38 kDa molecular weight and has no laccase or MnP activity. To the best of our knowledge, this is the first report for AFB1 degradation by Panus neostrigosus.
Collapse
Affiliation(s)
- Tuncay Söylemez
- Savaş Kubaş Anatolian High School, 26050, Eskişehir, Turkey.
| | - Mustafa Yamaç
- Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Biology, 26480, Eskisehir, Turkey
| | - Zeki Yıldız
- Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Statistics, 26480, Eskisehir, Turkey
| |
Collapse
|
17
|
Zhou Z, Li R, Ng TB, Lai Y, Yang J, Ye X. A New Laccase of Lac 2 from the White Rot Fungus Cerrena unicolor 6884 and Lac 2-Mediated Degradation of Aflatoxin B 1. Toxins (Basel) 2020; 12:toxins12080476. [PMID: 32727016 PMCID: PMC7472184 DOI: 10.3390/toxins12080476] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a known toxic human carcinogen and can be detoxified by laccases, which are multicopper oxidases that convert several environmental pollutants and toxins. In this study, a new laccase that could catalyze AFB1 degradation was purified and identified from the white-rot fungus Cerrena unicolor 6884. The laccase was purified using (NH4)2SO4 precipitation and anion exchange chromatography, and then identified as Lac 2 through zymogram and UHPLC-MS/MS based on the Illumina transcriptome analysis of C. unicolor 6884. Six putative laccase protein sequences were obtained via functional annotation. The lac 2 cDNA encoding a full-length protein of 512 amino acids was cloned and sequenced to expand the fungus laccase gene library for AFB1 detoxification. AFB1 degradation by Lac 2 was conducted in vitro at pH 7.0 and 45 °C for 24 h. The half-life of AFB1 degradation catalyzed by Lac 2 was 5.16 h. Acetosyringone (AS), Syrinagaldehyde (SA) and [2,2' -azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] (ABTS) at 1 mM concentration seemed to be similar mediators for strongly enhancing AFB1 degradation by Lac 2. The product of AFB1 degradation catalyzed by Lac 2 was traced and identified to be Aflatoxin Q1 (AFQ1) based on mass spectrometry data. These findings are promising for a possible application of Lac 2 as a new aflatoxin oxidase in degrading AFB1 present in food and feeds.
Collapse
Affiliation(s)
- Zhimin Zhou
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China;
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; (R.L.); (Y.L.); (J.Y.)
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China
| | - Renkuan Li
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; (R.L.); (Y.L.); (J.Y.)
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China;
| | - Yunyun Lai
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; (R.L.); (Y.L.); (J.Y.)
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China
| | - Jie Yang
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; (R.L.); (Y.L.); (J.Y.)
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China
| | - Xiuyun Ye
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China;
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; (R.L.); (Y.L.); (J.Y.)
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China
- Correspondence: ; Tel.: +86-591-2286-6376
| |
Collapse
|
18
|
Abdi M, Asadi A, Maleki F, Kouhsari E, Fattahi A, Ohadi E, Lotfali E, Ahmadi A, Ghafouri Z. Microbiological Detoxification of Mycotoxins: Focus on Mechanisms and Advances. Infect Disord Drug Targets 2020; 21:339-357. [PMID: 32543365 DOI: 10.2174/1871526520666200616145150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
Some fungal species of the genera Aspergillus, Penicillium, and Fusarium secretes toxic metabolites known as mycotoxins, have become a global concern that is toxic to different species of animals and humans. Biological mycotoxins detoxification has been studied by researchers around the world as a new strategy for mycotoxin removal. Bacteria, fungi, yeast, molds, and protozoa are the main living organisms appropriate for the mycotoxin detoxification. Enzymatic and degradation sorptions are the main mechanisms involved in microbiological detoxification of mycotoxins. Regardless of the method used, proper management tools that consist of before-harvest prevention and after-harvest detoxification are required. Here, in this review, we focus on the microbiological detoxification and mechanisms involved in the decontamination of mycotoxins.
Collapse
Affiliation(s)
- Milad Abdi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farajolah Maleki
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ilam University of Medical sciences, Ilam, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azam Fattahi
- Center for Research and Training in Skin Disease and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Ghafouri
- Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
19
|
Solis-Cruz B, Hernandez-Patlan D, Petrone VM, Pontin KP, Latorre JD, Beyssac E, Hernandez-Velasco X, Merino-Guzman R, Arreguin MA, Hargis BM, Lopez-Arellano R, Tellez-Isaias G. Evaluation of a Bacillus -Based Direct-Fed Microbial on Aflatoxin B1 Toxic Effects, Performance, Immunologic Status, and Serum Biochemical Parameters in Broiler Chickens. Avian Dis 2020; 63:659-669. [PMID: 31865681 DOI: 10.1637/aviandiseases-d-19-00100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/17/2019] [Indexed: 11/05/2022]
Abstract
The aim of the present study was to evaluate the effect of a commercial Bacillus direct-fed microbial (DFM) on aflatoxin B1 toxic effects, performance, and biochemical and immunologic parameters in broiler chickens. Ninety 1-day-old Cobb 500 male broiler chicks were raised in floor pens for a period of 21 days. Chicks were neck-tagged, individually weighed, and randomly allocated to one of three groups: Negative control (basal feed), aflatoxin B1 (basal feed + 2 ppm AFB1), and DFM (basal feed + 2 ppm AFB1 + Bacillus direct-fed microbial). Each group had three replicates of 10 chickens (n = 30/group). Body weight and body weight gain were calculated weekly, while feed intake and feed conversion ratio were determined when broilers were 21 days old. On day 21, all chickens were bled, gastrointestinal samples were collected, and spleen and bursa of Fabricius were weighed. This study confirmed that 2 ppm of AFB1 causes severe detrimental effects on performance, biochemical parameters, and immunologic parameters, generating hepatic lesions in broiler chickens (P < 0.05). However, it was also observed that DFM supplementation provided beneficial effects that might help to improve gut barrier function, anti-inflammatory and antioxidant activities, as well as humoral and cellular immunomodulation. The results of the present study suggest that this Bacillus-DFM added at a concentration of 106 spores/gram of feed can be used to counteract the negative effects that occur when birds consume diets contaminated with AFB1, showing beneficial effects on performance parameters, relative organ weights, hepatic lesions, immune response, and serum biochemical variables. The addition of this Bacillus-DFM might mitigate and decrease aflatoxicosis problems in the poultry industry, improving food security, alleviating public health problems, and providing economic benefits. Future studies are needed to fully elucidate the specific mechanisms by which this Bacillus-DFM counteracts the toxic effects of aflatoxin B1.
Collapse
Affiliation(s)
- Bruno Solis-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, State of Mexico, Mexico
| | - Daniel Hernandez-Patlan
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, State of Mexico, Mexico
| | - Victor M Petrone
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, State of Mexico, Mexico
| | - Karine P Pontin
- Departamento de Medicina Veterinária Preventiva, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Universidade Federal do Rio Grande do Sul Porto Ale re RS 97105-900 Brazil
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704
| | - Eric Beyssac
- Laboratoire de Biopharmacie et Technologie Pharmaceutique, UFR de Pharmacie, Faculté de Pharmacie, Université Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ruben Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704
| | - Raquel Lopez-Arellano
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, State of Mexico, Mexico
| | | |
Collapse
|
20
|
Guo Y, Qin X, Tang Y, Ma Q, Zhang J, Zhao L. CotA laccase, a novel aflatoxin oxidase from Bacillus licheniformis, transforms aflatoxin B 1 to aflatoxin Q 1 and epi-aflatoxin Q 1. Food Chem 2020; 325:126877. [PMID: 32387986 DOI: 10.1016/j.foodchem.2020.126877] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/17/2020] [Accepted: 04/19/2020] [Indexed: 11/26/2022]
Abstract
In the present study, the CotA protein from Bacillus licheniformis ANSB821 was cloned and expressed in Escherichia coli. Apart from the laccase activities, we found that the recombinant CotA could effectively oxidize aflatoxin B1 in the absence of redox mediators. The Km, Kcat and Vmax values of the recombinant CotA towards aflatoxin B1 were 60.62 μM, 0.03 s-1 and 10.08 μg min-1 mg-1, respectively. CotA-mediated aflatoxin B1 degradation products were purified and identified to be aflatoxin Q1 and epi-aflatoxin Q1. The treatment of human liver cells L-02 with aflatoxin Q1 and epi-aflatoxin Q1 did not suppress cell viability and induce apoptosis. Molecular docking simulation revealed that hydrogen bonds and van der Waals interaction played an important role in aflatoxin B1-CotA stability. These findings in the current study are promising for a possible application of CotA as a novel aflatoxin oxidase in degrading AFB1 in food.
Collapse
Affiliation(s)
- Yongpeng Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xiaojuan Qin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yu Tang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
21
|
Kemboi DC, Antonissen G, Ochieng PE, Croubels S, Okoth S, Kangethe EK, Faas J, Lindahl JF, Gathumbi JK. A Review of the Impact of Mycotoxins on Dairy Cattle Health: Challenges for Food Safety and Dairy Production in Sub-Saharan Africa. Toxins (Basel) 2020; 12:E222. [PMID: 32252249 PMCID: PMC7232242 DOI: 10.3390/toxins12040222] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/22/2020] [Accepted: 03/29/2020] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins are secondary metabolites of fungi that contaminate food and feed and have a significant negative impact on human and animal health and productivity. The tropical condition in Sub-Saharan Africa (SSA) together with poor storage of feed promotes fungal growth and subsequent mycotoxin production. Aflatoxins (AF) produced by Aspergillus species, fumonisins (FUM), zearalenone (ZEN), T-2 toxin (T-2), and deoxynivalenol (DON) produced by Fusarium species, and ochratoxin A (OTA) produced by Penicillium and Aspergillus species are well-known mycotoxins of agricultural importance. Consumption of feed contaminated with these toxins may cause mycotoxicoses in animals, characterized by a range of clinical signs depending on the toxin, and losses in the animal industry. In SSA, contamination of dairy feed with mycotoxins has been frequently reported, which poses a serious constraint to animal health and productivity, and is also a hazard to human health since some mycotoxins and their metabolites are excreted in milk, especially aflatoxin M1. This review describes the major mycotoxins, their occurrence, and impact in dairy cattle diets in SSA highlighting the problems related to animal health, productivity, and food safety and the up-to-date post-harvest mitigation strategies for the prevention and reduction of contamination of dairy feed.
Collapse
Affiliation(s)
- David Chebutia Kemboi
- Department of Pathology, Parasitology and Microbiology, Faculty of Veterinary Medicine, University of Nairobi, PO Box 29053, 00100 Nairobi, Kenya;
- Department of Animal Science, Chuka University, P.O Box 109-00625 Chuka, Kenya
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (G.A.); (P.E.O.); (S.C.)
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Phillis E. Ochieng
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (G.A.); (P.E.O.); (S.C.)
- Department of Food Sciences, University of Liège, Faculty of Veterinary Medicine, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (G.A.); (P.E.O.); (S.C.)
| | - Sheila Okoth
- School of Biological Sciences, University of Nairobi, P.O Box 30197-00100 Nairobi, Kenya;
| | | | - Johannes Faas
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria;
| | - Johanna F. Lindahl
- Department of Biosciences, International Livestock Research Institute (ILRI), P.O Box 30709, 00100 Nairobi, Kenya
- Department of Medical Biochemistry and Microbiology, Uppsala University, P.O Box 582, 751 23 Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O Box 7054, 750 07 Uppsala, Sweden
| | - James K. Gathumbi
- Department of Pathology, Parasitology and Microbiology, Faculty of Veterinary Medicine, University of Nairobi, PO Box 29053, 00100 Nairobi, Kenya;
| |
Collapse
|
22
|
Pfliegler WP, Pócsi I, Győri Z, Pusztahelyi T. The Aspergilli and Their Mycotoxins: Metabolic Interactions With Plants and the Soil Biota. Front Microbiol 2020; 10:2921. [PMID: 32117074 PMCID: PMC7029702 DOI: 10.3389/fmicb.2019.02921] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/04/2019] [Indexed: 01/06/2023] Open
Abstract
Species of the highly diverse fungal genus Aspergillus are well-known agricultural pests, and, most importantly, producers of various mycotoxins threatening food safety worldwide. Mycotoxins are studied predominantly from the perspectives of human and livestock health. Meanwhile, their roles are far less known in nature. However, to understand the factors behind mycotoxin production, the roles of the toxins of Aspergilli must be understood from a complex ecological perspective, taking mold-plant, mold-microbe, and mold-animal interactions into account. The Aspergilli may switch between saprophytic and pathogenic lifestyles, and the production of secondary metabolites, such as mycotoxins, may vary according to these fungal ways of life. Recent studies highlighted the complex ecological network of soil microbiotas determining the niches that Aspergilli can fill in. Interactions with the soil microbiota and soil macro-organisms determine the role of secondary metabolite production to a great extent. While, upon infection of plants, metabolic communication including fungal secondary metabolites like aflatoxins, gliotoxin, patulin, cyclopiazonic acid, and ochratoxin, influences the fate of both the invader and the host. In this review, the role of mycotoxin producing Aspergillus species and their interactions in the ecosystem are discussed. We intend to highlight the complexity of the roles of the main toxic secondary metabolites as well as their fate in natural environments and agriculture, a field that still has important knowledge gaps.
Collapse
Affiliation(s)
- Walter P. Pfliegler
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Győri
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
23
|
Nguyen T, Flint S, Palmer J. Control of aflatoxin M 1 in milk by novel methods: A review. Food Chem 2019; 311:125984. [PMID: 31855773 DOI: 10.1016/j.foodchem.2019.125984] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022]
Abstract
Aflatoxin M1 (AFM1) in milk and milk products has been recognised as an issue for over 30 years. Controlling AFM1 in milk is important to protect human health and trade. Preventing contamination by avoiding fungal contamination of cattle feed is the best method of control, however this is hard to avoid in some countries. Treating milk containing AFM1 is an alternative control measure, however, there is no single approved method. The challenge is to select a treatment method that is effective but does not affect the organoleptic quality of milk. This study reviews the strategies for degrading AFM1 in milk including yeast, lactic acid bacteria, enzyme, peroxide, ozone, UV light and cold plasma. This review compares the efficacy, influencing factors, (possible) mechanisms of activity, advantages, limitations and potential future trends of these methods and provides some recommendations for the treatment of milk to reduce the risk of AFM1 contamination.
Collapse
Affiliation(s)
- Thu Nguyen
- School of Food and Advanced Technology, Massey University, New Zealand.
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, New Zealand.
| | - Jon Palmer
- School of Food and Advanced Technology, Massey University, New Zealand.
| |
Collapse
|
24
|
Lyagin I, Efremenko E. Enzymes for Detoxification of Various Mycotoxins: Origins and Mechanisms of Catalytic Action. Molecules 2019; 24:E2362. [PMID: 31247992 PMCID: PMC6651818 DOI: 10.3390/molecules24132362] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are highly dangerous natural compounds produced by various fungi. Enzymatic transformation seems to be the most promising method for detoxification of mycotoxins. This review summarizes current information on enzymes of different classes to convert various mycotoxins. An in-depth analysis of 11 key enzyme mechanisms towards dozens of major mycotoxins was realized. Additionally, molecular docking of mycotoxins to enzymes' active centers was carried out to clarify some of these catalytic mechanisms. Analyzing protein homologues from various organisms (plants, animals, fungi, and bacteria), the prevalence and availability of natural sources of active biocatalysts with a high practical potential is discussed. The importance of multifunctional enzyme combinations for detoxification of mycotoxins is posed.
Collapse
Affiliation(s)
- Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, RAS, Moscow 119334, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
- Emanuel Institute of Biochemical Physics, RAS, Moscow 119334, Russia.
| |
Collapse
|
25
|
Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 2019; 160:12-22. [DOI: 10.1016/j.toxicon.2019.02.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/23/2018] [Accepted: 02/03/2019] [Indexed: 01/22/2023]
|
26
|
Song J, Zhang S, Xie Y, Li Q. Purification and characteristics of an aflatoxin B1 degradation enzyme isolated from Pseudomonas aeruginosa. FEMS Microbiol Lett 2019; 366:5315752. [DOI: 10.1093/femsle/fnz034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/08/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Juanjuan Song
- School of Food Science and Technology, Henan University of Technology, 100# Lianhua Street, High-tech Industrial Development Zone, Zhengzhou 450001, Henan, People's Republic of China
| | - Shujie Zhang
- College of Life Science, Henan Normal University, 46# Jianshe East Road, Muye Zone, Xinxiang 453007, Henan, People's Republic of China
| | - Yanli Xie
- School of Food Science and Technology, Henan University of Technology, 100# Lianhua Street, High-tech Industrial Development Zone, Zhengzhou 450001, Henan, People's Republic of China
| | - Qian Li
- School of Food Science and Technology, Henan University of Technology, 100# Lianhua Street, High-tech Industrial Development Zone, Zhengzhou 450001, Henan, People's Republic of China
| |
Collapse
|
27
|
Tomin M, Tomić S. Oxidase or peptidase? A computational insight into a putative aflatoxin oxidase from Armillariella tabescens. Proteins 2019; 87:390-400. [PMID: 30681192 DOI: 10.1002/prot.25661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/04/2019] [Accepted: 01/22/2019] [Indexed: 01/05/2023]
Abstract
Aflatoxin oxidase (AFO), an enzyme isolated from Armillariella tabescens, has been reported to degrade aflatoxin B1 (AFB1). However, recent studies reported sequence and structure similarities with the dipeptidyl peptidase III (DPP III) family of enzymes and confirmed peptidase activity toward DPP III substrates. In light of these investigations, an extensive computational study was performed in order to improve understanding of the AFO functions. Steered MD simulations revealed long-range domain motions described as protein opening, characteristic for DPPs III and necessary for substrate binding. Newly identified open and partially open forms of the enzyme closely resemble those of the human DPP III orthologue. Docking of a synthetic DPP III substrate Arg2 -2-naphthylamide revealed a binding mode similar to the one found in crystal structures of human DPP III complexes with peptides with the S1 and S2 subsites' amino acid residues conserved. On the other hand, no energetically favorable AFB1 binding mode was detected, suggesting that aflatoxins are not good substrates of AFO. High plasticity of the zinc ion coordination sphere within the active site, consistent with that of up to date studied DPPs III, was observed as well. A detailed electrostatic analysis of the active site revealed a predominance of negatively charged regions, unsuitable for the binding of the neutral AFB1. The present study is in line with the most recent experimental study on this enzyme, both suggesting that AFO is a typical member of the DPP III family.
Collapse
Affiliation(s)
- Marko Tomin
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sanja Tomić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
28
|
Wang L, Wu J, Liu Z, Shi Y, Liu J, Xu X, Hao S, Mu P, Deng F, Deng Y. Aflatoxin B 1 Degradation and Detoxification by Escherichia coli CG1061 Isolated From Chicken Cecum. Front Pharmacol 2019; 9:1548. [PMID: 30705630 PMCID: PMC6344451 DOI: 10.3389/fphar.2018.01548] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Aflatoxin B1 (AFB1) is one of the most hazardous mycotoxins contamination in food and feed products, which leads to hepatocellular carcinoma in humans and animals. In the present study, we isolated and characterized an AFB1 degrading bacteria CG1061 from chicken cecum, exhibited an 93.7% AFB1 degradation rate by HPLC. 16S rRNA gene sequence analysis and a multiplex PCR experiment demonstrated that CG1061 was a non-pathogenic Escherichia coli. The culture supernatant of E. coli CG1061 showed an 61.8% degradation rate, whereas the degradation rates produced by the intracellular extracts was only 17.6%, indicating that the active component was constitutively secreted into the extracellular space. The degradation rate decreased from 61.8 to 37.5% when the culture supernatant was treated with 1 mg/mL proteinase K, and remained 51.3% when that treated with 100°C for 20 min. We postulated that AFB1 degradation was mediated by heat-resistant proteins. The content of AFB1 decreased rapidly when it was incubated with the culture supernatant during the first 24 h. The optimal incubation pH and temperature were pH 8.5 and 55°C respectively. According to the UPLC Q-TOF MS analysis, AFB1 was bio-transformed to the product C16H14O5 and other metabolites. Based on the results of in vitro experiments on chicken hepatocellular carcinoma (LMH) cells and in vivo experiments on mice, we confirmed that CG1061-degraded AFB1 are less toxic than the standard AFB1. E. coli CG1061 isolated from healthy chicken cerum is more likely to colonize the animal gut, which might be an excellent candidate for the detoxification of AFB1 in food and feed industry.
Collapse
Affiliation(s)
- Lingling Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Zhiwen Liu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yutao Shi
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jinqiu Liu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaofan Xu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Shuxian Hao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Fengru Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| |
Collapse
|
29
|
Huang W, Chang J, Wang P, Liu C, Yin Q, Song A, Gao T, Dang X, Lu F. Effect of Compound Probiotics and Mycotoxin Degradation Enzymes on Alleviating Cytotoxicity of Swine Jejunal Epithelial Cells Induced by Aflatoxin B₁ and Zearalenone. Toxins (Basel) 2019; 11:toxins11010012. [PMID: 30609651 PMCID: PMC6356961 DOI: 10.3390/toxins11010012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022] Open
Abstract
Zearalenone (ZEA) and aflatoxin B1 (AFB1) are two main kinds of mycotoxins widely existing in grain and animal feed that cause a lot of economic loss and health problems for animals and humans. In order to alleviate the cytotoxic effects of AFB1 and ZEA on swine jejunal epithelial cells (IPEC-J2), the combination of a cell-free supernatant of compound probiotics (CFSCP) with mycotoxin degradation enzymes (MDEs) from Aspergillus oryzae was tested. The results demonstrated that coexistence of AFB1 and ZEA had synergetic toxic effects on cell viability. The cell viability was decreased with mycotoxin concentrations increasing, but increased with incubation time extension. The necrotic cell rates were increased when 40 µg/L AFB1 and/or 500 µg/L ZEA were added, but the addition of CFSCP + MDE suppressed the necrotic effects of AFB1 + ZEA. The viable cell rates were decreased when AFB1 and/or ZEA were added: However, the addition of CFSCP + MDE recovered them. The relative mRNA abundances of Bcl-2, occludin, and ZO-1 genes were significantly upregulated, while Bax, caspase-3, GLUT2, ASCT2, PepT1, and IL6 genes were significantly downregulated by CFSCP + MDE addition, compared to the groups containing 40 µg/L AFB1 and 500 µg/L ZEA. This research provided an effective strategy in alleviating mycotoxin cytotoxicity and keeping normal intestinal cell structure and animal health.
Collapse
Affiliation(s)
- Weiwei Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Juan Chang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Ping Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Chaoqi Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Qingqiang Yin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Andong Song
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Tianzeng Gao
- Henan Guangan Biotechnology Co., Ltd., Zhengzhou 450001, China.
| | - Xiaowei Dang
- Henan Delin Biological Product Co. Ltd., Xinxiang 453000, China.
| | - Fushan Lu
- Henan Puai Feed Co. Ltd., Zhoukou 466000, China.
| |
Collapse
|
30
|
Afsharmanesh H, Perez-Garcia A, Zeriouh H, Ahmadzadeh M, Romero D. Aflatoxin degradation by Bacillus subtilis UTB1 is based on production of an oxidoreductase involved in bacilysin biosynthesis. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Ogunade IM, Martinez-Tuppia C, Queiroz OCM, Jiang Y, Drouin P, Wu F, Vyas D, Adesogan AT. Silage review: Mycotoxins in silage: Occurrence, effects, prevention, and mitigation. J Dairy Sci 2018; 101:4034-4059. [PMID: 29685276 DOI: 10.3168/jds.2017-13788] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/28/2017] [Indexed: 01/03/2023]
Abstract
Ensiled forage, particularly corn silage, is an important component of dairy cow diets worldwide. Forages can be contaminated with several mycotoxins in the field pre-harvest, during storage, or after ensiling during feed-out. Exposure to dietary mycotoxins adversely affects the performance and health of livestock and can compromise human health. Several studies and surveys indicate that ruminants are often exposed to mycotoxins such as aflatoxins, trichothecenes, ochratoxin A, fumonisins, zearalenone, and many other fungal secondary metabolites, via the silage they ingest. Problems associated with mycotoxins in silage can be minimized by preventing fungal growth before and after ensiling. Proper silage management is essential to reduce mycotoxin contamination of dairy cow feeds, and certain mold-inhibiting chemical additives or microbial inoculants can also reduce the contamination levels. Several sequestering agents also can be added to diets to reduce mycotoxin levels, but their efficacy varies with the type and level of mycotoxin contamination. This article gives an overview of the types, prevalence, and levels of mycotoxin contamination in ensiled forages in different countries, and describes their adverse effects on health of ruminants, and effective prevention and mitigation strategies for dairy cow diets. Future research priorities discussed include research efforts to develop silage additives or rumen microbial innocula that degrade mycotoxins.
Collapse
Affiliation(s)
- I M Ogunade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608
| | - C Martinez-Tuppia
- Lallemand Animal Nutrition, Lallemand SAS, 19 rue des Briquetiers, B.P. 59, F-31702 Blagnac, France
| | - O C M Queiroz
- Chr Hansen, Animal Health and Nutrition, Chr. Hansen, Buenos Aires 1107, Argentina
| | - Y Jiang
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608
| | - P Drouin
- Lallemand Animal Nutrition, Lallemand SAS, 19 rue des Briquetiers, B.P. 59, F-31702 Blagnac, France
| | - F Wu
- Department of Food Science and Human Nutrition, Department of Agricultural, Food, and Resource Economics, Michigan State University, East Lansing 48824
| | - D Vyas
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608
| | - A T Adesogan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608.
| |
Collapse
|
32
|
Huang W, Chang J, Wang P, Liu C, Yin Q, Zhu Q, Lu F, Gao T. Effect of the combined compound probiotics with mycotoxin-degradation enzyme on detoxifying aflatoxin B 1 and zearalenone. J Toxicol Sci 2018; 43:377-385. [PMID: 29877214 DOI: 10.2131/jts.43.377] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Aflatoxin B1 (AFB1) and zearalenone (ZEA) are the secondary toxic metabolites of fungi which contaminate a wide range of food and feedstuffs. Limiting exposure of humans and livestock to them is very essential. Among numerous methods of mycotoxin-degradation, biodegradation by microorganisms and enzymes is an effective and promising approach to eliminate their hazards. The present study aims to optimize the proportion of different species of beneficial microbes by means of response surface methodology (RSM) and its combination with mycotoxin-degradation enzymes. The results indicated that AFB1 and ZEA degradation rates were 38.38% and 42.18% by individual Bacillus subtilis (P < 0.05); however, AFB1 and ZEA degradation rates reached 45.49% and 44.90% (P < 0.05) when three probiotic species such as Bacillus subtilis, Lactobacillus casein and Candida utilis were at a ratio of 1:1:1, corresponding with the predictive value of the RSM model. The further experiment showed that AFB1 and ZEA degradation rates were 63.95% and 73.51% (P < 0.05) when the compound of three probiotic species was combined with mycotoxin-degradation enzymes from Aspergillus oryzae at a ratio of 3:2. This result indicated that the combination of probiotics with mycotoxin-degradation enzymes is a promising new approach for synchronous detoxification of AFB1 and ZEA.
Collapse
Affiliation(s)
- Weiwei Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, China
| | - Juan Chang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, China
| | - Ping Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, China
| | - Chaoqi Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, China
| | - Qingqiang Yin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, China
| | - Qun Zhu
- Henan Delin Biological Product Co. Ltd., China
| | - Fushan Lu
- Henan Engineering and Technology Research Center of Feed Microbes, China
| | | |
Collapse
|
33
|
Adebo OA, Njobeh PB, Gbashi S, Nwinyi OC, Mavumengwana V. Review on microbial degradation of aflatoxins. Crit Rev Food Sci Nutr 2018; 57:3208-3217. [PMID: 26517507 DOI: 10.1080/10408398.2015.1106440] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Aflatoxin (AF) contamination presents one of the most insidious challenges to combat, in food safety. Its adulteration of agricultural commodities presents an important safety concern as evident in the incidences of its health implication and economic losses reported widely. Due to the overarching challenges presented by the contamination of AFs in foods and feeds, there is an urgent need to evolve cost-effective and competent strategies to combat this menace. In our review, we tried to appraise the cost-effective methods for decontamination of AFs. We identified the missing links in adopting microbial degradation as a palliative to decontamination of AFs and its commercialization in food and feed industries. Cogent areas of further research were also highlighted in the review paper.
Collapse
Affiliation(s)
- O A Adebo
- a Department of Biotechnology and Food Technology, Faculty of Science , University of Johannesburg , Doornfontein Campus, Johannesburg , South Africa
| | - P B Njobeh
- a Department of Biotechnology and Food Technology, Faculty of Science , University of Johannesburg , Doornfontein Campus, Johannesburg , South Africa
| | - S Gbashi
- a Department of Biotechnology and Food Technology, Faculty of Science , University of Johannesburg , Doornfontein Campus, Johannesburg , South Africa
| | - O C Nwinyi
- a Department of Biotechnology and Food Technology, Faculty of Science , University of Johannesburg , Doornfontein Campus, Johannesburg , South Africa.,b Department of Biological Sciences, School of Natural and Applied Sciences , College of Science and Technology, Covenant University , Canaan Land, Ota , Ogun State , Nigeria
| | - V Mavumengwana
- a Department of Biotechnology and Food Technology, Faculty of Science , University of Johannesburg , Doornfontein Campus, Johannesburg , South Africa
| |
Collapse
|
34
|
Crystal structures of Aflatoxin-oxidase from Armillariella tabescens reveal a dual activity enzyme. Biochem Biophys Res Commun 2017; 494:621-625. [PMID: 29050944 DOI: 10.1016/j.bbrc.2017.10.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/15/2017] [Indexed: 01/29/2023]
Abstract
Aflatoxin-oxidase (AFO), a newly discovered oxidase isolated from Armillariella tabescens, was reported to perform aflatoxin B1 (AFB1) detoxification through breaking the bisfuran ring of AFB1. However, based on sequence alignment, we found that AFO shares high sequence identities with dipeptidyl peptidase III (DPP III) family members. To understand the functions of AFO, we determined its crystal structures in the absence and presence of zinc, copper ion, and employed HPLC to test if AFO could cleave the substrates of DPP III. Our structures reveal that AFO contains the classic DPP III activity center and the HPLC results further confirm that AFO possesses the dipeptidyl peptidase activity. Therefore, AFO should belong to DPP III family. Interestingly, unlike reported classic DPP III structure that has a large domain movement upon substrate binding, the AFO structures all adopt the closed conformation, independent of substrate binding. This conformation characteristic of AFO may be related to its enzyme activities. Taken together, our results demonstrate that AFO is a dual activity enzyme with both aflatoxin-oxidase and dipeptidyl peptidase activities and its unique conformation feature expands our understanding on the mode of reaction for this enzyme family.
Collapse
|
35
|
Lou AG, Cai JS, Zhang XM, Cui CD, Piao YS, Guan LZ. The aflatoxin-detoxifizyme specific expression in the parotid gland of transgenic pigs. Transgenic Res 2017; 26:677-687. [DOI: 10.1007/s11248-017-0036-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/19/2017] [Indexed: 11/30/2022]
|
36
|
Loi M, Fanelli F, Liuzzi VC, Logrieco AF, Mulè G. Mycotoxin Biotransformation by Native and Commercial Enzymes: Present and Future Perspectives. Toxins (Basel) 2017; 9:E111. [PMID: 28338601 PMCID: PMC5408185 DOI: 10.3390/toxins9040111] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 01/13/2023] Open
Abstract
Worldwide mycotoxins contamination has a significant impact on animal and human health, and leads to economic losses accounted for billions of dollars annually. Since the application of pre- and post- harvest strategies, including chemical or physical removal, are not sufficiently effective, biological transformation is considered the most promising yet challenging approach to reduce mycotoxins accumulation. Although several microorganisms were reported to degrade mycotoxins, only a few enzymes have been identified, purified and characterized for this activity. This review focuses on the biotransformation of mycotoxins performed with purified enzymes isolated from bacteria, fungi and plants, whose activity was validated in in vitro and in vivo assays, including patented ones and commercial preparations. Furthermore, we will present some applications for detoxifying enzymes in food, feed, biogas and biofuel industries, describing their limitation and potentialities.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, Bari 70126, Italy.
- Department of Economics, University of Foggia, via Napoli 25, Foggia 71122, Italy.
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, Bari 70126, Italy.
| | - Vania C Liuzzi
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, Bari 70126, Italy.
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, Bari 70126, Italy.
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, Bari 70126, Italy.
| |
Collapse
|
37
|
Chen WB, Cheng MJ, Tian YB, Wang QH, Wang B, Li MJ, Fang RJ. Effects of Armillariella tabescens mycelia on the growth performance and intestinal immune response and microflora of early-weaned pigs. Anim Sci J 2017; 88:1388-1397. [PMID: 28183153 DOI: 10.1111/asj.12765] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 12/29/2022]
Abstract
This study was performed to evaluate effects of Armillariella tabescens (A. tabescens) on the growth performance and intestinal immune response and microflora in early-weaned pigs when used as feed additive. A. tabescens mycelia were added to basal diets at concentrations of 0%, 0.1%, 0.3% or 0.9% (w/w). A total of 144 commercial cross-bred piglets were randomly allocated to one of these four diets and fed for 30 days. The growth performance of early-weaned piglets displayed improvement with diets containing 0.1% and 0.3% dried mycelia powder from A. tabescens. Supplementing with 0.1% or 0.3% A. tabescens mycelia induced a 2.6- and three-fold increase in secretory immunoglobulin A (sIgA) content in the jejunal mucosa, respectively, but had only a marginal effect on sIgA in the ileal mucosa. Expression of interleukin-2, interferon-γ, and tumor necrosis factor-α in the jejunal mucosa were elevated with A. tabescens mycelia administration. Increased amounts of Lactobacillus spp. and Bifidobacterium spp. in the jejunum, and decreased amounts of Escherichia coli in the jejunum and ileum were observed with the administration of A. tabescens-containing diets. This study demonstrated that A. tabescens had beneficial effects on the growth performance and intestinal microflora of early-weaned pigs.
Collapse
Affiliation(s)
- Wen-Bin Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Mao-Ji Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yun-Bo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qin-Hua Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Mei-Jun Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Re-Jun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
38
|
Kim S, Lee H, Lee S, Lee J, Ha J, Choi Y, Yoon Y, Choi KH. Invited review: Microbe-mediated aflatoxin decontamination of dairy products and feeds. J Dairy Sci 2017; 100:871-880. [DOI: 10.3168/jds.2016-11264] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 09/09/2016] [Indexed: 11/19/2022]
|
39
|
Wang Y, Zhao C, Zhang D, Zhao M, Zheng D, Lyu Y, Cheng W, Guo P, Cui Z. Effective degradation of aflatoxin B 1 using a novel thermophilic microbial consortium TADC7. BIORESOURCE TECHNOLOGY 2017; 224:166-173. [PMID: 27866802 DOI: 10.1016/j.biortech.2016.11.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
We constructed a novel thermophilic microbial consortium, TADC7, with stable and efficient aflatoxin B1 (AFB1) degradation activity. The microbial consortium degraded more than 95% of the toxin within 72h when cultured with AFB1, and the optimum temperature was 55-60°C. TADC7 tolerated high doses of AFB1, with no inhibitory effects up to 5000μgL-1 AFB1; moreover, the degradation kinetics fit well with the Monod model. The proteins or enzymes in the TADC7 cell-free supernatant played a major role in AFB1 degradation. AFB1 degradation by the cell-free supernatant was stable up to 90°C, with an optimal pH of 8-10. We performed 16S rRNA sequencing to determine TADC7 community structure dynamics; the results indicated that Geobacillus and Tepidimicrobium played major roles in AFB1 degradation.
Collapse
Affiliation(s)
- Yi Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Biology and Pharmacy, Three Gorges University, Yichang 443002, China
| | - Chunxia Zhao
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Biology and Pharmacy, Three Gorges University, Yichang 443002, China
| | - Dongdong Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Mingming Zhao
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Dan Zheng
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yucai Lyu
- College of Biology and Pharmacy, Three Gorges University, Yichang 443002, China
| | - Wei Cheng
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Peng Guo
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Zongjun Cui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
40
|
Shao S, Cai J, Du X, Wang C, Lin J, Dai J. Biotransformation and detoxification of aflatoxin B1 by extracellular extract of Cladosporium uredinicola. Food Sci Biotechnol 2016; 25:1789-1794. [PMID: 30263476 PMCID: PMC6049251 DOI: 10.1007/s10068-016-0272-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022] Open
Abstract
Aflatoxin contamination of food and grain poses a serious economic and health problem globally. Aflatoxin B1 (AFB1) is extremely mutagenic and toxic as well as a potent carcinogen to both humans and livestock. In this study, the degradation of AFB1 by extracellular extract of Cladosporium uredinicola was examined using high-performance liquid chromatography (HPLC), thin-layer chromatography (TLC), and liquid chromatography mass spectrometry. Within 24 h of incubation, AFB1 was efficiently eliminated by the culture supernatant of C. uredinicola (84.5±5.7%) at 37°C; the elimination was proven to be enzymatic, and the enzyme was thermostable. The biotransformation products of AFB1 detected by HPLC and TLC were proven to be the same compound. Analysis with LCMS showed that AFB1 was bio-transformed to a structurally different compound (m/z=365 [M+Na]+), which is first reported. The cytotoxicity study to HeLa cells indicated that culture supernatant-treated AFB1 is less toxic as compared with AFB1.
Collapse
Affiliation(s)
- Shuai Shao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068 China
| | - Jun Cai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068 China
| | - Xin Du
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068 China
| | - ChangGao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068 China
| | - JianGuo Lin
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068 China
| | - Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068 China
| |
Collapse
|
41
|
Zhang L, Ma Q, Ma S, Zhang J, Jia R, Ji C, Zhao L. Ameliorating Effects of Bacillus subtilis ANSB060 on Growth Performance, Antioxidant Functions, and Aflatoxin Residues in Ducks Fed Diets Contaminated with Aflatoxins. Toxins (Basel) 2016; 9:toxins9010001. [PMID: 28025501 PMCID: PMC5308235 DOI: 10.3390/toxins9010001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 12/05/2022] Open
Abstract
Bacillus subtilis ANSB060 isolated from fish gut is very effective in detoxifying aflatoxins in feed and feed ingredients. The purpose of this research was to investigate the effects of B. subtilis ANSB060 on growth performance, body antioxidant functions, and aflatoxin residues in ducks fed moldy maize naturally contaminated with aflatoxins. A total of 1500 18-d-old male Cherry Valley ducks with similar body weight were randomly assigned to five treatments with six replicates of 50 ducks per repeat. The experiment design consisted of five dietary treatments labeled as C0 (basal diet containing 60% normal maize), M0 (basal diet containing 60% moldy maize contaminated with aflatoxins substituted for normal maize), M500, M1000, and M2000 (M0 +500, 1000 or 2000 g/t aflatoxin biodegradation preparation mainly consisted of B. subtilis ANSB060). The results showed that ducks fed 22.44 ± 2.46 μg/kg of AFB1 (M0) exhibited a decreasing tendency in average daily gain (ADG) and total superoxide dismutase (T-SOD) activity in serum, and T-SOD and glutathione peroxidase (GSH-Px) activities in the liver significantly decreased along with the appearance of AFB1 and AFM1 compared with those in Group C0. The supplementation of B. subtilis ANSB060 into aflatoxin-contaminated diets increased the ADG of ducks (p > 0.05), significantly improved antioxidant enzyme activities, and reduced aflatoxin accumulation in duck liver. In conclusion, Bacillus subtilis ANSB060 in diets showed an ameliorating effect to duck aflatoxicosis and may be a promising feed additive.
Collapse
Affiliation(s)
- Liyuan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shanshan Ma
- Heilongjiang Animal Science Institute, Qiqihar 161005, China.
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ru Jia
- College of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
42
|
Ben Salah-Abbès J, Jebali R, Sharafi H, Akbari Noghabi K, Oueslati R, Abbès S. Immuno-physiological alterations from AFB1 in rats counteracted by treatments with Lactobacillus paracasei BEJ01 and montmorillonite clay mixture. J Immunotoxicol 2016; 13:628-37. [PMID: 27294391 DOI: 10.3109/1547691x.2016.1145157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High contamination by aflatoxin B1 (AFB1) has been detected in Beja province (Tunisia) in many dairy products and animal feed, which has resulted in many tons of cereals and cereals being removed from the market, causing economic loss. While removal represents a means of reducing risk, exposures still occur. Studies have increasingly focused on means of AFB1 biodegradation/elimination using lactic acid bacteria and clay mineral. In the study here, Lactobacillus paracasei BEJ01 (LP) and montmorilonite clay (MT) were used to reduce the physio-/immunotoxicologic disorders that could develop in rats that underwent AFB1 exposures for a total of 7 consecutive days. The results indicated that rats treated with AFB1 (80 μg/kg BW) alone had significant decreases in lymphocytes in their blood (including B-lymphocytes, CD3(+), CD4(+), and CD8(+) T-lymphocyte subtypes, and NK cells), immunoglobulins (IgA and IgG) and pro-inflammatory cytokines; these rats also had altered oxidative stress status. In contrast, in rats treated with LP + MT (2 × 10(9) cfu/ml [∼ 2 mg/kg] + 0.5 mg MT/kg BW) for a total of 7 days before, concurrent with or after AFB1 treatment, there was a significant blockade/mitigation of each AFB1-impacted parameter. Moreover, treatment with the mixture at any point in relation to AFB1 treatment expectedly caused enhanced TNFα and IL-1β expression relative to control values; all other parameters were comparable to values noted in control rats. Alone, the mixture had no impact on host parameters. From the results here it may be concluded the the LP + MT mixture was effective in protecting these hosts against AFB1-induced immunologic/physiologic disorders and that LP + MT could prevent and/or mitigate AFB1 toxicities in vivo.
Collapse
Affiliation(s)
- Jalila Ben Salah-Abbès
- a Unit of Immunology, Environmental Microbiology and Cancerology, Faculty of Sciences , University of Carthage , Tunis , Tunisia ;,b Higher Institute of Biotechnology of Monastir, University of Monastir , Monastir , Tunisia
| | - Rania Jebali
- a Unit of Immunology, Environmental Microbiology and Cancerology, Faculty of Sciences , University of Carthage , Tunis , Tunisia
| | - Hakimeh Sharafi
- c National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran , Iran
| | - Kambiz Akbari Noghabi
- c National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran , Iran
| | - Ridha Oueslati
- a Unit of Immunology, Environmental Microbiology and Cancerology, Faculty of Sciences , University of Carthage , Tunis , Tunisia
| | - Samir Abbès
- a Unit of Immunology, Environmental Microbiology and Cancerology, Faculty of Sciences , University of Carthage , Tunis , Tunisia
| |
Collapse
|
43
|
Vanhoutte I, Audenaert K, De Gelder L. Biodegradation of Mycotoxins: Tales from Known and Unexplored Worlds. Front Microbiol 2016; 7:561. [PMID: 27199907 PMCID: PMC4843849 DOI: 10.3389/fmicb.2016.00561] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/04/2016] [Indexed: 12/24/2022] Open
Abstract
Exposure to mycotoxins, secondary metabolites produced by fungi, may infer serious risks for animal and human health and lead to economic losses. Several approaches to reduce these mycotoxins have been investigated such as chemical removal, physical binding, or microbial degradation. This review focuses on the microbial degradation or transformation of mycotoxins, with specific attention to the actual detoxification mechanisms of the mother compound. Furthermore, based on the similarities in chemical structure between groups of mycotoxins and environmentally recalcitrant compounds, known biodegradation pathways and degrading organisms which hold promise for the degradation of mycotoxins are presented.
Collapse
Affiliation(s)
| | | | - Leen De Gelder
- Department of Applied BioSciences, Faculty Bioscience Engineering, Ghent UniversityGhent, Belgium
| |
Collapse
|
44
|
Jia R, Ma Q, Fan Y, Ji C, Zhang J, Liu T, Zhao L. The toxic effects of combined aflatoxins and zearalenone in naturally contaminated diets on laying performance, egg quality and mycotoxins residues in eggs of layers and the protective effect of Bacillus subtilis biodegradation product. Food Chem Toxicol 2016; 90:142-50. [PMID: 26891816 DOI: 10.1016/j.fct.2016.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/07/2016] [Accepted: 02/10/2016] [Indexed: 11/18/2022]
Abstract
The toxic effect of aflatoxins (AF) and zearalenone (ZEA) and their combination on laying performance, egg quality and toxins residues in eggs, as well as the efficacy of Bacillus subtilis biodegradation product (BDP) for ameliorating these effects in layers were evaluated. Layers were submitted to a two phase experiment. The first phase was an intoxication period (18-23 wk) with birds fed 7 (3 × 2 + 1) diets (3 treatments with mycotoxins: AF (123.0 μg/kg), ZEA (260.2 μg/kg), or AF + ZEA (123.0 + 260.2 μg/kg); 2 treatments with or without BDP (1000 g/t); and a control group contained no toxins nor BDP). The next phase was a recovery period (24-29 wk) in which birds were fed a toxin-free diet. In the intoxication period, AF and AF + ZEA groups exhibited lower egg production, feed intake and shell thickness, and higher AFB1, AFB2 and AFM1 residues as compared with the control group. In addition, AF and ZEA exerted synergistic effects on egg production and feed intake. Moreover, AF alone or combined with ZEA had a continuous toxic effect on laying performance in the recovery phase. Addition of BDP offset these negative effects, showing that BDP has a protective effect on layers fed contaminated diets.
Collapse
Affiliation(s)
- Ru Jia
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yu Fan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tao Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
45
|
|
46
|
Eshelli M, Harvey L, Edrada-Ebel R, McNeil B. Metabolomics of the bio-degradation process of aflatoxin B1 by actinomycetes at an initial pH of 6.0. Toxins (Basel) 2015; 7:439-56. [PMID: 25658510 PMCID: PMC4344634 DOI: 10.3390/toxins7020439] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/09/2015] [Accepted: 01/23/2015] [Indexed: 11/30/2022] Open
Abstract
Contamination of food and feed by Aflatoxin B1 (AFB1) is a cause of serious economic and health problems. Different processes have been used to degrade AFB1. In this study, biological degradation of AFB1 was carried out using three Actinomycete species, Rhodococcus erythropolis ATCC 4277, Streptomyces lividans TK 24, and S. aureofaciens ATCC 10762, in liquid cultures. Biodegradation of AFB1 was optimised under a range of temperatures from 25 to 40 °C and pH values of 4.0 to 8.0. An initial concentration of 20 µg/mL of AFB1 was used in this study. The amount of AFB1 remaining was measured against time by thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC), coupled with UV and mass spectrometry (LC-MS). All species were able to degrade the AFB1, and no significant difference was found between them. AFB1 remained in the liquid culture for R. erythropolis, S. lividans and S. aureofaciens were 0.81 µg/mL, 2.41 µg/mL and 2.78 µg/mL respectively, at the end of the first 24 h. Degradation occurred at all incubation temperatures and the pH with the optimal conditions for R. erythropolis was achieved at 30 °C and pH 6, whereas for S. lividans and S. aureofaciens the optimum conditions for degradation were 30 °C and pH 5. Analysis of the degradative route indicated that each microorganism has a different way of degrading AFB1. The metabolites produced by R. erythropolis were significantly different from the other two microorganisms. Products of degradation were identified through metabolomic studies by utilizing high-resolution mass spectral data. Mass spectrometric analysis indicated that the degradation of AFB1 was associated with the appearance of a range of lower molecular weight compounds. The pathway of degradation or chemical alteration of AFB1 was followed by means of high resolution Fourier transform mass spectrometry (HR-FTMS) analysis as well as through the MS2 fragmentation to unravel the degradative pathway for AFB1. AFB1 bio-degradation was coupled with the accumulation of intermediates of fatty acid metabolism and glycolysis. A plausible mechanism of degradation of AFB1 by Rhodococcus was hypothesized.
Collapse
Affiliation(s)
- Manal Eshelli
- Food Science and Technology Department, Faculty of Agriculture, University of Tripoli, Tripoli, Libya.
| | - Linda Harvey
- Fermentation Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - RuAngelie Edrada-Ebel
- Fermentation Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Brian McNeil
- Fermentation Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
47
|
The furofuran-ring selectivity, hydrogen peroxide-production and low Km value are the three elements for highly effective detoxification of aflatoxin oxidase. Food Chem Toxicol 2015; 76:125-31. [DOI: 10.1016/j.fct.2014.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 11/23/2022]
|
48
|
Shcherbakova L, Statsyuk N, Mikityuk O, Nazarova T, Dzhavakhiya V. Aflatoxin B1 Degradation by Metabolites of Phoma glomerata PG41 Isolated From Natural Substrate Colonized by Aflatoxigenic Aspergillus flavus. Jundishapur J Microbiol 2015; 8:e24324. [PMID: 25789135 PMCID: PMC4350041 DOI: 10.5812/jjm.24324] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/26/2014] [Accepted: 10/31/2014] [Indexed: 11/29/2022] Open
Abstract
Background: Aflatoxin B1 (AFB1), produced by Aspergillus flavus, is one of the most life threatening food contaminants causing significant economic losses worldwide. Biological AFB1 degradation by microorganisms, or preferably microbial enzymes, is considered as one of the most promising approaches. Objectives: The current work aimed to study the AFB1-degrading metabolites, produced by Phoma glomerata PG41, sharing a natural substrate with aflatoxigenic A. flavus, and the preliminary determination of the nature of these metabolites. Materials and Methods: The AFB1-degrading potential of PG41 metabolites was determined by a quantitative high performance liquid chromatography (HPLC) of residual AFB1 after 72 hours incubation at 27ºC. The effects of pH, heat, and protease treatment on the AFB1-destroying activity of extracellular metabolites were examined. Results: The AFB1-degrading activity of protein-enriched fractions, isolated from culture liquid filtrate and cell-free extract, is associated with high-molecular-weight components, is time- and pH-dependent, thermolabile, and is significantly reduced by proteinase K treatment. The AFB1 degradation efficiency of these fractions reaches 78% and 66%, respectively. Conclusions: Phomaglomerata PG41 strain sharing natural substrate with toxigenic A. flavus secretes metabolites possessing a significant aflatoxin-degrading activity. The activity is associated mainly with a protein-enriched high-molecular-weight fraction of extracellular metabolites and appears to be of enzymatic origin.
Collapse
Affiliation(s)
- Larisa Shcherbakova
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, Moscow Region, Russia
| | - Natalia Statsyuk
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, Moscow Region, Russia
- Corresponding author: Natalia Statsyuk, All-Russian Research Institute of Phytopathology, Institute str., Bolshie Vyazemy, 143050 Russia. Tel: +7-9262427241, E-mail:
| | - Oleg Mikityuk
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, Moscow Region, Russia
| | - Tatyana Nazarova
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, Moscow Region, Russia
| | - Vitaly Dzhavakhiya
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, Moscow Region, Russia
| |
Collapse
|
49
|
Guan LZ, Sun YP, Cai JS, Wu HD, Yu LZ, Zhang YL, Xi QY. The aflatoxin-detoxifizyme specific expression in mouse parotid gland. Transgenic Res 2015; 24:489-96. [PMID: 25603989 DOI: 10.1007/s11248-015-9863-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 01/06/2015] [Indexed: 11/28/2022]
Abstract
The aflatoxin-detoxifizyme (ADTZ) gene derived from Armillariella tabescens was cloned into parotid gland-specific expression vector (pPSPBGPneo) to construct the parotid gland-specific vector expressing ADTZ (pPSPBGPneo-ADTZ). Transgenic mice were generated by microinjection and identified by using PCR and Southern blotting analysis. PCR and Southern blotting analysis showed that total six transgenic mice carried the ADTZ gene were generated. RT-PCR analysis indicated that the expression of ADTZ mRNA could be detected only in parotid glands of the transgenic mice. The ADTZ activity in the saliva was found to be 3.72 ± 1.64 U/mL. After feeding a diet containing aflatoxin B1 (AFB1) for 14 days, the effect of ADTZ on serum biochemical indexes and AFB1 residues in serum and liver of mice were evaluated. The results showed that total protein and globulin contents in the test treatment (transgenic mice) produced ADTZ were significantly higher than that of the positive control, while alanine aminotransferase and aspartate aminotransferase activity in serum of the test treatment (transgenic mice) were remarkably lower compared to that of the positive control (P < 0.05). Moreover, AFB1 residues in serum and liver of the test treatment (transgenic mice) were significantly lower compared with that of the positive control (P < 0.05). These results in the study confirmed that ADTZ produced in transgenic mice could reduce, even eliminate the negative effects of AFB1 on mice.
Collapse
Affiliation(s)
- Li-zeng Guan
- Agriculture College, Yanbian University, Gongyuan Road, Yanji, 133000, China,
| | | | | | | | | | | | | |
Collapse
|
50
|
Shi L, Liang Z, Li J, Hao J, Xu Y, Huang K, Tian J, He X, Xu W. Ochratoxin A biocontrol and biodegradation by Bacillus subtilis CW 14. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:1879-1885. [PMID: 24293396 DOI: 10.1002/jsfa.6507] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/14/2013] [Accepted: 11/30/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Ochratoxin A (OTA) is a mycotoxin produced by some Aspergillus and Penicillium species. In this study a strain of Bacillus subtilis was tested for its effects on OTA-producing Aspergillus and OTA degradation. The mechanisms of the effects were also investigated. RESULTS A strain of Bacillus spp. isolated from fresh elk droppings was screened out using the methods described by Guan et al. (Int J Mol Sci 9:1489-1503 (2008)). The 16S rRNA gene sequence suggested that it was B. subtilis CW 14. It could inhibit the growth of the OTA-producing species Aspergillus ochraceus 3.4412 and Aspergillus carbonarius, with inhibition rates of 33.0 and 33.3% respectively. At 6 µg mL(-1) OTA, both viable and autoclaved (121 °C, 20 min) cells of CW 14 bound more than 60% of OTA. In addition, OTA was degraded by the cell-free supernatant of CW 14. By high-performance liquid chromatography, the cell-free supernatant degraded 97.6% of OTA after 24 h of incubation at 30 °C, and no degradation products were produced. The fastest degradation occurred during the first 2 h. In 3 g samples of contaminated maize, 47.1% of OTA was degraded by 50 mL inocula of overnight cultures of CW 14. CONCLUSION These findings indicated that B. subtilis CW 14 could both prevent OTA contamination and degrade OTA in crops.
Collapse
Affiliation(s)
- Lei Shi
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, 100083, China
| | | | | | | | | | | | | | | | | |
Collapse
|