1
|
Carresi C, Marabelli R, Roncada P, Britti D. Is the Use of Monensin Another Trojan Horse for the Spread of Antimicrobial Resistance? Antibiotics (Basel) 2024; 13:129. [PMID: 38391515 PMCID: PMC10886233 DOI: 10.3390/antibiotics13020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is a complex and somewhat unpredictable phenomenon. Historically, the utilization of avoparcin in intensive farming during the latter part of the previous century led to the development of resistance to vancomycin, a crucial antibiotic in human medicine with life-saving properties. Currently, in the European Union, there is a growing reliance on the ionophore antibiotic monensin (MON), which acts both as a coccidiostat in poultry farming and as a preventative measure against ketosis in lactating cows. Although many researchers claim that MON does not induce cross-resistance to antibiotics of clinical relevance in human medicine, some conflicting reports exist. The numerous applications of MON in livestock farming and the consequent dissemination of the compound and its metabolites in the environment require further investigation to definitively ascertain whether MON represents a potential vector for the propagation of AMR. It is imperative to emphasize that antibiotics cannot substitute sound animal husbandry practices or tailored dietary regimens in line with the different production cycles of livestock. Consequently, a rigorous evaluation is indispensable to assess whether the economic benefits associated with MON usage justify its employment, also considering its local and global environmental ramifications and the potential risk of instigating AMR with increased costs for its control.
Collapse
Affiliation(s)
- Cristina Carresi
- Veterinary Pharmacology Laboratory, Department of Health Sciences, Interregional Research Center for Food Safety and Health IRC-FSH, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | | | - Paola Roncada
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University "Magna Graecia" of Catanzaro, CISVetSUA, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Chiem K, Nogales A, Lorenzo M, Morales Vasquez D, Xiang Y, Gupta YK, Blasco R, de la Torre JC, Martínez-Sobrido L. Identification of In Vitro Inhibitors of Monkeypox Replication. Microbiol Spectr 2023; 11:e0474522. [PMID: 37278625 PMCID: PMC10434227 DOI: 10.1128/spectrum.04745-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Monkeypox virus (MPXV) infections in humans have historically been restricted to regions of endemicity in Africa. However, in 2022, an alarming number of MPXV cases were reported globally, with evidence of person-to-person transmission. Because of this, the World Health Organization (WHO) declared the MPXV outbreak a public health emergency of international concern. The supply of MPXV vaccines is limited, and only two antivirals, tecovirimat and brincidofovir, approved by the U.S. Food and Drug Administration (FDA) for the treatment of smallpox, are currently available for the treatment of MPXV infection. Here, we evaluated 19 compounds previously shown to inhibit different RNA viruses for their ability to inhibit orthopoxvirus infections. We first used recombinant vaccinia virus (rVACV) expressing fluorescence (mScarlet or green fluorescent protein [GFP]) and luciferase (Nluc) reporter genes to identify compounds with antiorthopoxvirus activity. Seven compounds from the ReFRAME library (antimycin A, mycophenolic acid, AVN-944, pyrazofurin, mycophenolate mofetil, azaribine, and brequinar) and six compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) showed inhibitory activity against rVACV. Notably, the anti-VACV activity of some of the compounds in the ReFRAME library (antimycin A, mycophenolic acid, AVN-944, mycophenolate mofetil, and brequinar) and all the compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) were confirmed with MPXV, demonstrating their inhibitory activity in vitro against two orthopoxviruses. IMPORTANCE Despite the eradication of smallpox, some orthopoxviruses remain important human pathogens, as exemplified by the recent 2022 monkeypox virus (MPXV) outbreak. Although smallpox vaccines are effective against MPXV, access to those vaccines is limited. In addition, current antiviral treatment against MPXV infections is limited to the use of the FDA-approved drugs tecovirimat and brincidofovir. Thus, there is an urgent need to identify novel antivirals for the treatment of MPXV infection and other potentially zoonotic orthopoxvirus infections. Here, we show that 13 compounds, derived from two different libraries, previously found to inhibit several RNA viruses, also inhibit VACV. Notably, 11 compounds also displayed inhibitory activity against MPXV.
Collapse
Affiliation(s)
- Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Aitor Nogales
- Animal Health Research Centre, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Maria Lorenzo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | | | - Yan Xiang
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yogesh K. Gupta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rafael Blasco
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
3
|
Chiem K, Nogales A, Lorenzo M, Vasquez DM, Xiang Y, Gupta YK, Blasco R, de la Torre JC, Mart Nez-Sobrido L. Antivirals against monkeypox infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537483. [PMID: 37131608 PMCID: PMC10153157 DOI: 10.1101/2023.04.19.537483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Monkeypox virus (MPXV) infection in humans are historically restricted to endemic regions in Africa. However, in 2022, an alarming number of MPXV cases have been reported globally with evidence of person-to-person transmission. Because of this, the World Health Organization (WHO) declared the MPXV outbreak a public health emergency of international concern. MPXV vaccines are limited and only two antivirals, tecovirimat and brincidofovir, approved by the United States (US) Food and Drug Administration (FDA) for the treatment of smallpox, are currently available for the treatment of MPXV infection. Here, we evaluated 19 compounds previously shown to inhibit different RNA viruses for their ability to inhibit Orthopoxvirus infections. We first used recombinant vaccinia virus (rVACV) expressing fluorescence (Scarlet or GFP) and luciferase (Nluc) reporter genes to identify compounds with anti-Orthopoxvirus activity. Seven compounds from the ReFRAME library (antimycin A, mycophenolic acid, AVN- 944, pyrazofurin, mycophenolate mofetil, azaribine, and brequinar) and six compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) showed antiviral activity against rVACV. Notably, the anti-VACV activity of some of the compounds in the ReFRAME library (antimycin A, mycophenolic acid, AVN- 944, mycophenolate mofetil, and brequinar) and all the compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) were confirmed with MPXV, demonstrating the broad-spectrum antiviral activity against Orthopoxviruses and their potential to be used for the antiviral treatment of MPXV, or other Orthopoxvirus, infections. IMPORTANCE Despite the eradication of smallpox, some Orthopoxviruses remain important human pathogens, as exemplified by the recent 2022 monkeypox virus (MPXV) outbreak. Although smallpox vaccines are effective against MPXV, there is presently limited access to those vaccines. In addition, current antiviral treatment against MPXV infections is limited to the use of the FDA-approved drugs tecovirimat and brincidofovir. Thus, there is an urgent need to identify novel antivirals for the treatment of MPXV, and other potentially zoonotic Orthopoxvirus infections. Here, we show that thirteen compounds, derived from two different libraries, previously found to inhibit several RNA viruses, exhibit also antiviral activity against VACV. Notably, eleven compounds also displayed antiviral activity against MPXV, demonstrating their potential to be incorporated into the therapeutic armamentarium to combat Orthopoxvirus infections.
Collapse
|
4
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
5
|
Grote M, Schulz F. Exploring the Promiscuous Enzymatic Activation of Unnatural Polyketide Extender Units in Vitro and in Vivo for Monensin Biosynthesis. Chembiochem 2019; 20:1183-1189. [DOI: 10.1002/cbic.201800734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Marius Grote
- Fakultät für Chemie und BiochemieRuhr-Universität Bochum Universitätsstrassee 150 44780 Bochum Germany
| | - Frank Schulz
- Fakultät für Chemie und BiochemieRuhr-Universität Bochum Universitätsstrassee 150 44780 Bochum Germany
| |
Collapse
|
6
|
Salinomycin Inhibits Influenza Virus Infection by Disrupting Endosomal Acidification and Viral Matrix Protein 2 Function. J Virol 2018; 92:JVI.01441-18. [PMID: 30282713 DOI: 10.1128/jvi.01441-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022] Open
Abstract
Screening of chemical libraries with 2,000 synthetic compounds identified salinomycin as a hit against influenza A and B viruses, with 50% effective concentrations ranging from 0.4 to 4.3 μM in cells. This compound is a carboxylic polyether ionophore that exchanges monovalent ions for protons across lipid bilayer membranes. Monitoring the time course of viral infection showed that salinomycin blocked nuclear migration of viral nuclear protein (NP), the most abundant component of the viral ribonucleoprotein (vRNP) complex. It caused cytoplasmic accumulation of NP, particularly within perinuclear endosomes, during virus entry. This was primarily associated with failure to acidify the endosomal-lysosomal compartments. Similar to the case with amantadine (AMT), proton channel activity of viral matrix protein 2 (M2) was blocked by salinomycin. Using purified retroviral Gag-based virus-like particles (VLPs) with M2, it was proved that salinomycin directly affects the kinetics of a proton influx into the particles but in a manner different from that of AMT. Notably, oral administration of salinomycin together with the neuraminidase inhibitor oseltamivir phosphate (OSV-P) led to enhanced antiviral effect over that with either compound used alone in influenza A virus-infected mouse models. These results provide a new paradigm for developing antivirals and their combination therapy that control both host and viral factors.IMPORTANCE Influenza virus is a main cause of viral respiratory infection in humans as well as animals, occasionally with high mortality. Circulation of influenza viruses resistant to the matrix protein 2 (M2) inhibitor, amantadine, is highly prevalent. Moreover, the frequency of detection of viruses resistant to the neuraminidase inhibitors, including oseltamivir phosphate (OSV-P) or zanamivir, is also increasing. These issues highlight the need for discovery of new antiviral agents with different mechanisms. Salinomycin as the monovalent cation-proton antiporter exhibited consistent inhibitory effects against influenza A and B viruses. It plays multifunctional roles by blocking endosomal acidification and by inactivating the proton transport function of M2, the key steps for influenza virus uncoating. Notably, salinomycin resulted in marked therapeutic effects in influenza virus-infected mice when combined with OSV-P, suggesting that its chemical derivatives could be developed as an adjuvant antiviral therapy to treat influenza infections resistant or less sensitive to existing drugs.
Collapse
|
7
|
Bonincontro A, Risuleo G. Electrorotation: A Spectroscopic Imaging Approach to Study the Alterations of the Cytoplasmic Membrane. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ami.2015.51001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Rutkowski J, Brzezinski B. Structures and properties of naturally occurring polyether antibiotics. BIOMED RESEARCH INTERNATIONAL 2013; 2013:162513. [PMID: 23586016 PMCID: PMC3613094 DOI: 10.1155/2013/162513] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/12/2012] [Accepted: 01/04/2013] [Indexed: 11/29/2022]
Abstract
Polyether ionophores represent a large group of natural, biologically active substances produced by Streptomyces spp. They are lipid soluble and able to transport metal cations across cell membranes. Several of polyether ionophores are widely used as growth promoters in veterinary. Polyether antibiotics show a broad spectrum of bioactivity ranging from antibacterial, antifungal, antiparasitic, antiviral, and tumour cell cytotoxicity. Recently, it has been shown that some of these compounds are able to selectively kill cancer stem cells and multidrug-resistant cancer cells. Thus, they are recognized as new potential anticancer drugs. The biological activity of polyether ionophores is strictly connected with their molecular structure; therefore, the purpose of this paper is to present an overview of their formula, molecular structure, and properties.
Collapse
Affiliation(s)
- Jacek Rutkowski
- Department of Biochemistry, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland.
| | | |
Collapse
|
9
|
Structure and antimicrobial properties of monensin A and its derivatives: summary of the achievements. BIOMED RESEARCH INTERNATIONAL 2013; 2013:742149. [PMID: 23509771 PMCID: PMC3586448 DOI: 10.1155/2013/742149] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/15/2012] [Accepted: 12/29/2012] [Indexed: 11/30/2022]
Abstract
In this paper structural and microbiological studies on the ionophorous antibiotic monensin A and its derivatives have been collected. Monensin A is an ionophore which selectively complexes and transports sodium cation across lipid membranes, and therefore it shows a variety of biological properties. This antibiotic is commonly used as coccidiostat and nonhormonal growth promoter. The paper focuses on both the latest and earlier achievements concerning monensin A antimicrobial activity. The activities of monensin derivatives, including modifications of hydroxyl groups and carboxyl group, are also presented.
Collapse
|
10
|
Berardi V, Ricci F, Castelli M, Galati G, Risuleo G. Resveratrol exhibits a strong cytotoxic activity in cultured cells and has an antiviral action against polyomavirus: potential clinical use. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:96. [PMID: 19570215 PMCID: PMC2710315 DOI: 10.1186/1756-9966-28-96] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 07/01/2009] [Indexed: 01/14/2023]
Abstract
Background Resveratrol is a non flavonoid polyphenol compound present in many plants and fruits and, at especially high concentrations, in the grape berries of Vitis vinifera. This compound has a strong bioactivity and its cytoprotective action has been demonstrated, however at high concentrations the drug exhibits also an effective anti-proliferative action. We recently showed its ability to abolish the effects of oxidative stress in cultured cells. In this work we assayed the bioactivity of resveratrol as antiproliferative and antiviral drug in cultured fibroblasts. Studies by other Authors showed that this natural compound inhibits the proliferation of different viruses such as herpes simplex, varicella-zoster and influenza A. The results presented here show an evident toxic activity of the drug at high concentrations, on the other hand at sub-cytotoxic concentrations, resveratrol can effectively inhibit the synthesis of polyomavirus DNA. A possible interpretation is that, due to the damage caused by resveratrol to the plasma membrane, the transfer of the virus from the endoplasmic reticulum to the nucleus, may be hindered thus inhibiting the production of viral DNA. Methods The mouse fibroblast line 3T6 and the human tumor line HL60 were used throughout the work. Cell viability and vital cell count were assessed respectively, by the MTT assay and Trypan Blue staining. Cytotoxic properties and evaluation of viral DNA production by agarose gel electrophoresis were performed according to standard protocols. Results Our results show a clear dose dependent both cytotoxic and antiviral effect of resveratrol respectively at high and low concentrations. The cytotoxic action is exerted towards a stabilized cell-line (3T6) as well as a tumor-line (HL60). Furthermore the antiviral action is evident after the phase of virion entry, therefore data suggest that the drug acts during the synthesis of the viral progeny DNA. Conclusion Resveratrol is cytotoxic and inhibits, in a dose dependent fashion, the synthesis of polyomavirus DNA in the infected cell. Furthermore, this inhibition is observed at non cytotoxic concentrations of the drug. Our data imply that cyto-toxicity may be attributed to the membrane damage caused by the drug and that the transfer of polyomavirus from the endoplasmic reticulum to the cytoplasm may be hindered. In conclusion, the cytotoxic and antiviral properties of resveratrol make it a potential candidate for the clinical control of proliferative as well as viral pathologies.
Collapse
Affiliation(s)
- Valerio Berardi
- Dipartimento di Genetica e Biologia Molecolare, Sapienza Università di Roma, Roma, Italy.
| | | | | | | | | |
Collapse
|
11
|
Alterations of the plasma membrane caused by murine polyomavirus proliferation: an electrorotation study. J Membr Biol 2009; 229:19-25. [PMID: 19430712 DOI: 10.1007/s00232-009-9172-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
Abstract
In this report we investigate the alterations of the dielectric properties of the plasma membrane caused by the infection of cultured fibroblasts with murine polyomavirus. The approach consists in a well-established dielectric spectroscopy technique, electrorotation, which has been successfully used in our laboratory to study the alterations of the plasma membrane of cells exposed to various forms of stress. The response to viral proliferation was time dependent as shown by evaluation of the de novo synthesis of viral DNA. This response was paralleled by gradual damage of the membrane evidenced by alteration of the dielectric parameters, specific capacitance and conductance. The electrorotation results show a reduced effect on the dielectric properties of the membrane when infection is carried out in the presence of a natural oil (MEX). In this case a drastic reduction in viral DNA synthesis was also monitored, thus indicating an antiviral action of this product.
Collapse
|
12
|
Ricci F, Berardi V, Risuleo G. Differential cytotoxicity of MEX: a component of Neem oil whose action is exerted at the cell membrane level. Molecules 2008; 14:122-32. [PMID: 19127242 PMCID: PMC6253829 DOI: 10.3390/molecules14010122] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/11/2008] [Accepted: 12/18/2008] [Indexed: 11/16/2022] Open
Abstract
Neem oil is obtained from the seeds of the tree Azadirachta indica. Its chemical composition is very complex, being rich in terpenoids and limonoids, as well as volatile sulphur modified compounds. This work focused on the evaluation of a component of the whole Neem oil obtained by methanolic extraction and defined as MEX. Cytotoxicity was assessed on two different cell populations: a stabilized murine fibroblast line (3T6) and a tumor cell line (HeLa). The data presented here suggest a differential sensitivity of these two populations, the tumor line exhibiting a significantly higher sensitivity to MEX. The data strongly suggest that its toxic target is the cell membrane. In addition the results presented here imply that MEX may contain one or more agents that could find a potential use in anti-proliferative therapy.
Collapse
Affiliation(s)
- Francesca Ricci
- Dipartimento di Genetica e Biologia Molecolare, Sapienza Università di Roma, Roma, Italy.
| | | | | |
Collapse
|
13
|
Huczyński A, Ratajczak-Sitarz M, Katrusiak A, Brzezinski B. Molecular structure of rubidium six-coordinated dihydrate complex with monensin A. J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2007.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Huczyński A, Brzezinski B, Bartl F. Structures of complexes of benzyl and allyl esters of monensin A with Mg2+, Ca2+, Sr2+, Ba2+ cations studied by ESI-MS and PM5 methods. J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2007.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Huczyński A, Stefańska J, Przybylski P, Brzezinski B, Bartl F. Synthesis and antimicrobial properties of monensin A esters. Bioorg Med Chem Lett 2008; 18:2585-9. [PMID: 18375122 DOI: 10.1016/j.bmcl.2008.03.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/12/2008] [Accepted: 03/14/2008] [Indexed: 11/25/2022]
Abstract
The esters (2-10) of the ionophore antibiotic Monensin (1) were synthesized by four different methods, which are discussed in detail. These new esters were characterized by various spectroscopic techniques and subsequently tested in the face of their antimicrobial properties. Three derivatives (3, 8 and 10) showed activity against Gram-positive bacteria. Additionally derivative (10) exhibited a relatively low antifungal activity against Candida in contrast to Monensin A.
Collapse
Affiliation(s)
- Adam Huczyński
- Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Huczyński A, Przybylski P, Brzezinski B. NMR, FTIR, ESI-MS and semiempirical study of a new 2-(2-hydroxyethoxy)ethyl ester of monensin A and its complexes with alkali metal cations. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Bonincontro A, Di Ilio V, Pedata O, Risuleo G. Dielectric Properties of the Plasma Membrane of Cultured Murine Fibroblasts Treated with a Nonterpenoid Extract of Azadirachta indica Seeds. J Membr Biol 2007; 215:75-9. [PMID: 17437145 DOI: 10.1007/s00232-007-9007-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
Neem oil is a natural product obtained from the seeds of the tree Azadirachta indica. In this report, we investigate the alterations of the biophysical properties of the plasma membrane caused by treatment with the nonterpenoid fraction of neem oil that we defined as methanolic extract (MEX). The dose-response effect was evaluated and a MEX-dependent cytoxicity evidenced. The effect of MEX on the plasma membrane was studied by a well-established dielectric spectroscopy technique: electrorotation, which allows single-cell analysis. Our results show a structural/functional alteration of the plasma membrane with an evident increase of specific capacitance and conductance. The biological implications of this effect are discussed.
Collapse
Affiliation(s)
- Adalberto Bonincontro
- CNISM-Dipartimento di Fisica, Università di Roma La Sapienza, piazzale A. Moro 5, I-00185 Rome, Italy
| | | | | | | |
Collapse
|
19
|
Piccioni F, Borioni A, Delfini M, Del Giudice MR, Mustazza C, Rodomonte A, Risuleo G. Metabolic alterations in cultured mouse fibroblasts induced by an inhibitor of the tyrosine kinase receptor Fibroblast Growth Factor Receptor 1. Anal Biochem 2007; 367:111-21. [PMID: 17512489 DOI: 10.1016/j.ab.2007.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 04/06/2007] [Accepted: 04/09/2007] [Indexed: 11/15/2022]
Abstract
Proton nuclear magnetic resonance (NMR) spectroscopy was used to identify and quantify the metabolites present in cultured mouse fibroblast cells 3T6 in their native state and after treatment with PD166866, an inhibitor of the fibroblast growth factor receptor. Cell extracts were prepared according to the Bligh-Dyer protocol which prevents artifacts deriving from the chemical demolition of macromolecules. Also the growth medium was subjected to the same extraction procedure. The NMR approach made possible the identification and quantification of about 40 different metabolites at nanomoles/mg of protein level: the biological relevance of the variation of some metabolite levels is discussed. Our experimental procedure offers a prospective method for the evaluation of variations of the metabolic profile deriving from different biochemical treatments of these cells.
Collapse
Affiliation(s)
- Fabiana Piccioni
- Department of Chemistry, University of Rome La Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Huczyński A, Przybylski P, Schroeder G, Brzezinski B. Investigation of complex structures of a new 2-hydroxyethyl ester of Monensin A with Mg2+, Ca2+, Sr2+, Ba2+ cations using electrospray ionization mass spectrometry and semiempirical PM5 methods. J Mol Struct 2007. [DOI: 10.1016/j.molstruc.2006.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Spectroscopic, mass spectrometry and semiempirical investigation of a new Monensin A allyl ester and its complexes with Li+, Na+ and K+cations. J Mol Struct 2007. [DOI: 10.1016/j.molstruc.2006.05.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Monensin A benzyl ester and its complexes with monovalent metal cations studied by spectroscopic, mass spectrometry and semiempirical methods. J Mol Struct 2006. [DOI: 10.1016/j.molstruc.2006.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Huczyński A, Przybylski P, Brzezinski B, Bartl F. Spectroscopic, mass spectrometry, and semiempirical investigation of a new ester of Monensin A with ethylene glycol and its complexes with monovalent metal cations. Biopolymers 2006; 82:491-503. [PMID: 16518855 DOI: 10.1002/bip.20502] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new ester of Monensin A with ethylene glycol (MON2) has been synthesized by a new method and its ability to form complexes with Li+, Na+, and K+ cations has been studied by ESI MS, 1H and 13C NMR, FT-IR, and PM5 semiempirical methods. It is demonstrated that MON2 forms stable complexes of 1:1 stoichiometry with monovalent metal cations. The structures of the complexes are stabilized by intramolecular hydrogen bonds in which the OH groups are always involved. In the structure of MON2 the oxygen atom of the C=O ester group is involved in very weak bifurcated intramolecular hydrogen bonds with two hydroxyl groups, whereas in the complexes of MON2 with monovalent metal cations the C=O ester group is not engaged in any intramolecular hydrogen bonds. The structures of the MON2 and its complexes with Li+, Na+, and K+ cations are visualized and discussed in detail.
Collapse
Affiliation(s)
- Adam Huczyński
- Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland
| | | | | | | |
Collapse
|
24
|
Huczyñski A, Przybylski P, Brzezinski B, Bartl F. Spectroscopic and Semiempirical Studies of a Proton Channel Formed by the Methyl Ester of Monensin A. J Phys Chem B 2006; 110:15615-23. [PMID: 16884286 DOI: 10.1021/jp062160o] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monensin A is an ionophore able to carry protons and cations through the cell membrane. Its methyl ester (MON1) and its hydrates have been studied in acetonitrile, and its deuterated analogue by Fourier transform infrared (FTIR) and (1)H and (13)C NMR spectroscopies as well as by vapor pressure osmotic and PM5 semiempirical methods. Interestingly, these hydrates show new and unexpected biophysical and biochemical properties. The formation of the hydrates starts with a transfer of a proton from the O(IV)-H hydroxyl group of MON1 to an oxygen atom of a water molecule, which is subsequently hydrated by other water molecules forming the (MON1 + 3H(2)O) species. This hydrate exhibits a ringlike structure in which the water molecules form an almost linear hydrogen-bonded chain. Within this chain, the excess proton fluctuates very fast inside the water cluster as indicated by a continuous absorption in the FTIR spectra. The formation of the (MON1 + 3H(2)O) species is accompanied by a self-assembly process, leading to the formation of a proton channel made up of eight (MON1 + 3H(2)O) units with a length of 60 A, in which the proton can fluctuate over the whole distance. Semiempirical calculations suggest that due to the hydrophobic surface the channel can be incorporated readily in a lipid bilayer. This hypothetical new channel is thought to be able to transport protons through the cell membrane. Thus it is a suitable model for studying proton-transfer processes, and in addition, it may open interesting new fields of application.
Collapse
Affiliation(s)
- Adam Huczyñski
- Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland
| | | | | | | |
Collapse
|
25
|
Huczyński A, Przybylski P, Brzezinski B, Bartl F. Monensin A methyl ester complexes with Li+, Na+, and K+ cations studied by ESI-MS, 1H- and 13C-NMR, FTIR, as well as PM5 semiempirical method. Biopolymers 2006; 81:282-94. [PMID: 16312019 DOI: 10.1002/bip.20415] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Monensin A methyl ester (MON1) was synthesized by a new method and its ability to form complexes with Li+, Na+, and K+ cations was studied by electrospray ionization-mass spectroscopy (ESI-MS), 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and PM5 semiempirical methods. It is shown that MON1 with monovalent metal cations forms stable complexes of 1:1 stoichiometry. The structures of the complexes are stabilized by intramolecular hydrogen bonds in which the OH groups are always involved. In the structure of MON1, the oxygen atom of the C=O ester group is involved in very weak bifurcated intramolecular hydrogen bonds with two hydroxyl groups, whereas in the complexes of MON1 with monovalent metal cations the C=O ester group is not engaged in any intramolecular hydrogen bonds. Furthermore, it is demonstrated that the strongest intramolecular hydrogen bonds are formed within the MON1-Li+ complex structure. The structures of the MON1 and its complexes with Li+, Na+, and K+ cations are visualized and discussed in detail.
Collapse
Affiliation(s)
- Adam Huczyński
- Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland
| | | | | | | |
Collapse
|
26
|
Huczyński A, Przybylski P, Brzezinski B. Complexes of monensin A methyl ester with Mg2+, Ca2+, Sr2+, Ba2+ cations studied by electrospray ionization mass spectrometry and PM5 semiempirical method. J Mol Struct 2006. [DOI: 10.1016/j.molstruc.2005.11.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Campanella L, Delfini M, Ercole P, Iacoangeli A, Risuleo G. Molecular characterization and action of usnic acid: a drug that inhibits proliferation of mouse polyomavirus in vitro and whose main target is RNA transcription. Biochimie 2002; 84:329-34. [PMID: 12106911 DOI: 10.1016/s0300-9084(02)01386-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Usnic acid is a normal component of lichen cells. This natural compound has shown different biological and physiological activities that might have a great relevance in pharmacology and clinics. For instance, usnic acid is known for its antibacterial and antiparasitic action. Also, the drug has a potential interest in cancer therapy because of its antimitotic and antiproliferative action. The molecular structure of usnic acid has been validated and further explored in this investigation. Many biological properties of this drug are known; however its potential antiviral action has not yet been evaluated. In this paper, we demonstrate that usnic acid is a potent inhibitor of the proliferation of mouse polyomavirus. Its action is not exerted at the level of virion entry into the host cell. Moreover, the abolition of viral DNA replication is an indirect consequence of the drastic inhibition of RNA transcription.
Collapse
Affiliation(s)
- L Campanella
- Dipartimento di Chimica, Università La Sapienza, Rome, Italy
| | | | | | | | | |
Collapse
|