1
|
Ye N, Wang Q, Li Y, Zhen X. Current emerging therapeutic targets and clinical investigational agents for schizophrenia: Challenges and opportunities. Med Res Rev 2024. [PMID: 39300769 DOI: 10.1002/med.22086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Since the first discovery of antipsychotics in the 1950s, targeting dopaminergic drugs has manifested to well manage the positive symptoms of schizophrenia with limited efficacy for the negative and cognitive symptoms. In past decades, extensive efforts have been undertaken towards the development of innovative agents that can effectively stabilize the dopamine and serotonin systems or target to nondopaminergic pathways, leading to various promising drug candidates entering into clinical trials. Notably, the sigma-2, 5-HT2A, and α1A receptor antagonist roluperidone, as well as a fixed-dose combination of the M1/4 receptor agonist KarXT, have been submitted for NDA applications. The dual agonist ulotaront, which targets TAAR1 and 5-HT1A receptors, and the GlyT1 inhibitor iclepertin have advanced into phase 3 clinical trials. Nevertheless, satisfactory therapeutic strategies for schizophrenia remain elusive. This review highlights current clinical endeavors in developing novel chemical small-molecule entities and fixed-dose combinations for the treatment of schizophrenia since 2017, thus facilitating the efficient development of the next generation of antipsychotics.
Collapse
Affiliation(s)
- Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Qi Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yue Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Cao Y, Sun J, Wang X, Zhang X, Tian H, Huang L, Huang Z, Zhang Y, Zhang J, Li L, Zhou S. The double-edged nature of nicotine: toxicities and therapeutic potentials. Front Pharmacol 2024; 15:1427314. [PMID: 39206262 PMCID: PMC11350241 DOI: 10.3389/fphar.2024.1427314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Nicotine is the primary addictive component of cigarette smoke and is associated with various smoking-related diseases. However, recent research has revealed its broader cognitive-enhancing and anti-inflammatory properties, suggesting its potential therapeutic applications in several conditions. This review aims to examine the double-edged nature of nicotine, encompassing its positive and negative effects. We provide a concise overview of the physiochemical properties and pharmacology of nicotine, including insights into nicotine receptors. Therefore, the article is divided into two main sections: toxicity and therapeutic potential. We comprehensively explored nicotine-related diseases, focusing on specific signaling pathways and the underlying mechanisms that contribute to its effects. Furthermore, we addressed the current research challenges and future development perspectives. This review aims to inspire future researchers to explore the full medical potential of nicotine, which holds significant promise for the clinical management of specific diseases.
Collapse
Affiliation(s)
- Yun Cao
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Jiali Sun
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Xiaofeng Wang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Xiaoyu Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Huijuan Tian
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Lingling Huang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Yaping Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
- Key Laboratory of Aerosol Analysis Regulation and Biological Effects of Anhui Province, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Jin Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Shun Zhou
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
- Key Laboratory of Aerosol Analysis Regulation and Biological Effects of Anhui Province, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| |
Collapse
|
3
|
Pechlivanidou M, Vakrakou AG, Karagiorgou K, Tüzün E, Karachaliou E, Chroni E, Afrantou T, Grigoriadis N, Argyropoulou C, Paschalidis N, Şanlı E, Tsantila A, Dandoulaki M, Ninou EI, Zisimopoulou P, Mantegazza R, Andreetta F, Dudeck L, Steiner J, Lindstrom JM, Tzanetakos D, Voumvourakis K, Giannopoulos S, Tsivgoulis G, Tzartos SJ, Tzartos J. Neuronal nicotinic acetylcholine receptor antibodies in autoimmune central nervous system disorders. Front Immunol 2024; 15:1388998. [PMID: 38863705 PMCID: PMC11165060 DOI: 10.3389/fimmu.2024.1388998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Background Neuronal nicotinic acetylcholine receptors (nAChRs) are abundant in the central nervous system (CNS), playing critical roles in brain function. Antigenicity of nAChRs has been well demonstrated with antibodies to ganglionic AChR subtypes (i.e., subunit α3 of α3β4-nAChR) and muscle AChR autoantibodies, thus making nAChRs candidate autoantigens in autoimmune CNS disorders. Antibodies to several membrane receptors, like NMDAR, have been identified in autoimmune encephalitis syndromes (AES), but many AES patients have yet to be unidentified for autoantibodies. This study aimed to develop of a cell-based assay (CBA) that selectively detects potentially pathogenic antibodies to subunits of the major nAChR subtypes (α4β2- and α7-nAChRs) and its use for the identification of such antibodies in "orphan" AES cases. Methods The study involved screening of sera derived from 1752 patients from Greece, Turkey and Italy, who requested testing for AES-associated antibodies, and from 1203 "control" patients with other neuropsychiatric diseases, from the same countries or from Germany. A sensitive live-CBA with α4β2-or α7-nAChR-transfected cells was developed to detect antibodies against extracellular domains of nAChR major subunits. Flow cytometry (FACS) was performed to confirm the CBA findings and indirect immunohistochemistry (IHC) to investigate serum autoantibodies' binding to rat brain tissue. Results Three patients were found to be positive for serum antibodies against nAChR α4 subunit by CBA and the presence of the specific antibodies was quantitatively confirmed by FACS. We detected specific binding of patient-derived serum anti-nAChR α4 subunit antibodies to rat cerebellum and hippocampus tissue. No serum antibodies bound to the α7-nAChR-transfected or control-transfected cells, and no control serum antibodies bound to the transfected cells. All patients positive for serum anti-nAChRs α4 subunit antibodies were negative for other AES-associated antibodies. All three of the anti-nAChR α4 subunit serum antibody-positive patients fall into the AES spectrum, with one having Rasmussen encephalitis, another autoimmune meningoencephalomyelitis and another being diagnosed with possible autoimmune encephalitis. Conclusion This study lends credence to the hypothesis that the major nAChR subunits are autoimmune targets in some cases of AES and establishes a sensitive live-CBA for the identification of such patients.
Collapse
Affiliation(s)
| | - Aigli G. Vakrakou
- First Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Karagiorgou
- Tzartos NeuroDiagnostics, Athens, Greece
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute for Experimental Medical Research, Istanbul University, Istanbul, Türkiye
| | - Eleni Karachaliou
- Tzartos NeuroDiagnostics, Athens, Greece
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | - Theodora Afrantou
- Second Department of Neurology, “AHEPA“ University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Second Department of Neurology, “AHEPA“ University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Nikolaos Paschalidis
- Mass Cytometry-CyTOF Laboratory, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Elif Şanlı
- Department of Neuroscience, Aziz Sancar Institute for Experimental Medical Research, Istanbul University, Istanbul, Türkiye
| | | | | | | | | | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Andreetta
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Leon Dudeck
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Jon Martin Lindstrom
- Department of Neuroscience, Medical School, University of Pennsylvania, Philadelphia, PA, United States
| | - Dimitrios Tzanetakos
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Socrates J. Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
- Department of Pharmacy, University of Patras, Patras, Greece
| | - John Tzartos
- Second Department of Neurology, School of Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Ledneczki I, Némethy Z, Molnár KD, Tapolcsányi P, Ilkei V, Vágó I, Kolok S, Thán M, Laszy J, Balázs O, Krámos B, Szigetvári Á, Bata I, Makó A, Visegrády A, Fodor L, Vastag M, Lévay G, Lendvai B, Greiner I, Éles J. Optimization of Novel α7 Nicotinic Acetylcholine Receptor Positive Allosteric Modulators and the Discovery of a Preclinical Development Candidate Molecule (RGH-560). J Med Chem 2023; 66:16276-16302. [PMID: 37989278 DOI: 10.1021/acs.jmedchem.3c01635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
During optimization of a previously identified lead compound, attempts were made to optimize the reactive indole structural element, the suboptimal metabolic stability, as well as the low kinetic solubility. It was concluded that the indole was important for in vitro activity. With the aim of further improvements, more thorough modifications were also carried out. As a result, a new chemotype (the azetidinespirochromone family) was identified, which proved to be 1 order of magnitude less lipophilic retaining the same high level of in vitro potency as the lead series itself, however, with improved metabolic stability and kinetic solubility. Compound 53 showed the most balanced physicochemical and pharmacological profile with significant in vivo efficacy in the scopolamine-induced amnesia test. Based on these promising results, cognitive enhancement through the positive modulation of α7 nAChRs appears to be a viable approach. Compound 53 was selected to be a preclinical development candidate (as RGH-560).
Collapse
Affiliation(s)
| | - Zsolt Némethy
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | | | - Pál Tapolcsányi
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Viktor Ilkei
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - István Vágó
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Sándor Kolok
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Márta Thán
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Judit Laszy
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Ottilia Balázs
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Balázs Krámos
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Áron Szigetvári
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Imre Bata
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Attila Makó
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | | | - László Fodor
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Mónika Vastag
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - György Lévay
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Balázs Lendvai
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - István Greiner
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - János Éles
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| |
Collapse
|
5
|
Izquierdo PG, Charvet CL, Neveu C, Green AC, Tattersall JEH, Holden-Dye L, O'Connor V. Modelling organophosphate intoxication in C. elegans highlights nicotinic acetylcholine receptor determinants that mitigate poisoning. PLoS One 2023; 18:e0284786. [PMID: 37083685 PMCID: PMC10121051 DOI: 10.1371/journal.pone.0284786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
Organophosphate intoxication via acetylcholinesterase inhibition executes neurotoxicity via hyper stimulation of acetylcholine receptors. Here, we use the organophosphate paraoxon-ethyl to treat C. elegans and use its impact on pharyngeal pumping as a bio-assay to model poisoning through these neurotoxins. This assay provides a tractable measure of acetylcholine receptor mediated contraction of body wall muscle. Investigation of the time dependence of organophosphate treatment and the genetic determinants of the drug-induced inhibition of pumping highlight mitigating modulation of the effects of paraoxon-ethyl. We identified mutants that reduce acetylcholine receptor function protect against the consequence of intoxication by organophosphates. Data suggests that reorganization of cholinergic signalling is associated with organophosphate poisoning. This reinforces the under investigated potential of using therapeutic approaches which target a modulation of nicotinic acetylcholine receptor function to treat the poisoning effects of this important class of neurotoxins.
Collapse
Affiliation(s)
- Patricia G Izquierdo
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Claude L Charvet
- French National Institute for Agricultural Research (INRA), Infectiologie Animale et Santé Publique, Nouzilly, France
| | - Cedric Neveu
- French National Institute for Agricultural Research (INRA), Infectiologie Animale et Santé Publique, Nouzilly, France
| | - A Christopher Green
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - John E H Tattersall
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Lindy Holden-Dye
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Vincent O'Connor
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
6
|
Wu JX, Lau ATY, Xu YM. Indoor Secondary Pollutants Cannot Be Ignored: Third-Hand Smoke. TOXICS 2022; 10:363. [PMID: 35878269 PMCID: PMC9316611 DOI: 10.3390/toxics10070363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023]
Abstract
Smoking has been recognized by the World Health Organization (WHO) as the fifth highest threat to humanity. Smoking, a leading disease promoter, is a major risk factor for non-communicable diseases (NCDs) such as cancer, cardiovascular disease, diabetes, and chronic respiratory diseases. NCDs account for 63% of all deaths worldwide. Passive smoking is also a health risk. Globally, more than a third of all people are regularly exposed to harmful smoke. Air pollution is a common global problem in which pollutants emitted into the atmosphere undergo a series of physical or chemical reactions to produce various oxidation products, which are often referred to as secondary pollutants. Secondary pollutants include ozone (O3), sulfur trioxide (SO3), nitrogen dioxide (NO2), and respirable particulate matter (PM). It is worth mentioning that third-hand smoke (THS), formed by the reaction of nicotine with second-hand smoke (SHS) caused by indoor O3 or nitrous acid (HONO), is a major indoor secondary pollutant that cannot be ignored. As a form of indoor air pollution that is relatively difficult to avoid, THS exists in any corner of the environment where smokers live. In this paper, we summarize the important research progress on the main components, detection, and toxicity of THS and look forward to future research directions. Scientific understanding of THS and its hazards will facilitate smoking bans in indoor and public places and raise public concern for how to prevent and remove THS.
Collapse
Affiliation(s)
- Jia-Xun Wu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | | | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
7
|
Khodabandeh Z, Valilo M, Velaei K, Pirpour Tazehkand A. The potential role of nicotine in breast cancer initiation, development, angiogenesis, invasion, metastasis, and resistance to therapy. Breast Cancer 2022; 29:778-789. [PMID: 35583594 DOI: 10.1007/s12282-022-01369-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 01/03/2023]
Abstract
A large body of research studying the relationship between tobacco and cancer has led to the knowledge that smoking cigarettes adversely affects cancer treatment while contributing to the development of various tobacco-related cancers. Nicotine is the main addictive component of tobacco smoke and promotes angiogenesis, proliferation, and epithelial-mesenchymal transition (EMT) while promoting growth and metastasis of tumors. Nicotine generally acts through the induction of the nicotinic acetylcholine receptors (nAChRs), although the contribution of other receptor subunits has also been reported. Nicotine contributes to the pathogenesis of a wide range of cancers including breast cancer through its carcinogens such as (4-methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN). Current study aims to review the mechanistic function of nicotine in the initiation, development, angiogenesis, invasion, metastasis, and apoptosis of breast cancer with the main focus on nicotine acetylcholine receptors (nAChRs) and nAChR-mediated signaling pathways as well as on its potential for the development of an effective treatment against breast cancer. Moreover, we will try to demonstrate how nicotine leads to poor treatment response in breast cancer by enhancing the population, proliferation, and self-renewal of cancer stem cells (CSCs) through the activation of α7-nAChR receptors.
Collapse
Affiliation(s)
- Zhila Khodabandeh
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Mohammad Valilo
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abbas Pirpour Tazehkand
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Karagiorgou K, Dandoulaki M, Mantegazza R, Andreetta F, Furlan R, Lindstrom J, Zisimopoulou P, Chroni E, Kokotis P, Anagnostou E, Tzanetakos D, Breza M, Katsarou Z, Amoiridis G, Mastorodemos V, Bregianni M, Bonakis A, Tsivgoulis G, Voumvourakis K, Tzartos S, Tzartos J. Novel Cell-Based Assay for Alpha-3 Nicotinic Receptor Antibodies Detects Antibodies Exclusively in Autoimmune Autonomic Ganglionopathy. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/3/e1162. [PMID: 35351814 PMCID: PMC8969289 DOI: 10.1212/nxi.0000000000001162] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
Abstract
Background and Objectives Autoantibodies against α3-subunit–containing nicotinic acetylcholine receptors (α3-nAChRs), usually measured by radioimmunoprecipitation assay (RIPA), are detected in patients with autoimmune autonomic ganglionopathy (AAG). However, low α3-nAChR antibody levels are frequently detected in other neurologic diseases with questionable significance. Our objective was to develop a method for the selective detection of the potentially pathogenic α3-nAChR antibodies, seemingly present only in patients with AAG. Methods The study involved sera from 55 patients from Greece, suspected for autonomic failure, and 13 patients from Italy diagnosed with autonomic failure, positive for α3-nAChR antibodies by RIPA. In addition, sera from 52 patients with Ca2+ channel or Hu antibodies and from 2,628 controls with various neuroimmune diseases were included. A sensitive live cell-based assay (CBA) with α3-nAChR–transfected cells was developed to detect antibodies against the cell-exposed α3-nAChR domain. Results Twenty-five patients were found α3-nAChR antibody positive by RIPA. Fifteen of 25 patients were also CBA positive. Of interest, all 15 CBA-positive patients had AAG, whereas all 10 CBA-negative patients had other neurologic diseases. RIPA antibody levels of the CBA-negative sera were low, although our CBA could detect dilutions of AAG sera corresponding to equally low RIPA antibody levels. No serum bound to control-transfected cells, and none of the 2,628 controls was α3-CBA positive. Discussion This study showed that in contrast to the established RIPA for α3-nAChR antibodies, which at low levels is of moderate disease specificity, our CBA seems AAG specific, while at least equally sensitive with the RIPA. This study provides Class II evidence that α3-nAChR CBA is a specific assay for AAG. Classification of Evidence This study provides Class II evidence that an α3-nAChR cell-based assay is a more specific assay for AAG than the standard RIPA.
Collapse
Affiliation(s)
- Katerina Karagiorgou
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Maria Dandoulaki
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Renato Mantegazza
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Francesca Andreetta
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Raffaello Furlan
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Jon Lindstrom
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Paraskevi Zisimopoulou
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Elisabeth Chroni
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Panagiotis Kokotis
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Evangelos Anagnostou
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Dimitrios Tzanetakos
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Marianthi Breza
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Zoe Katsarou
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Georgios Amoiridis
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Vasileios Mastorodemos
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Marianna Bregianni
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Anastasios Bonakis
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Georgios Tsivgoulis
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Konstantinos Voumvourakis
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - Socrates Tzartos
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| | - John Tzartos
- From the Tzartos NeuroDiagnostics (K.K., M.D., S.T., J.T.), Athens; Department of Biochemistry and Biotechnology (K.K.), University of Thessaly, Larissa, Greece; Neuroimmunology and Neuromuscular Diseases Unit (R.M., F.A.), Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy; Department of Biomedical Sciences Humanitas University (R.F.), Milan, Italy; Department of Neuroscience (J.L.), Medical School, University of Pennsylvania, Philadelphia, PA; Department of Neurobiology (P.Z., S.T.), Hellenic Pasteur Institute, Athens, Greece; Department of Neurology (E.C.), School of Medicine, University of Patras; 1st Department of Neurology (P.K., E.A., D.T., M. Breza), School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens (NKUA), Athens; Department of Neurology (Z.K.), Hippokration Hospital, Thessaloniki; Neurology Department (G.A., V.M.), University Hospital of Crete, Heraklion, Crete; and 2nd Department of Neurology (M. Bregianni, A.B., G.T., K.V., J.T.), Attikon University Hospital, School of Medicine, NKUA, Athens, Greece
| |
Collapse
|
9
|
Ledneczki I, Horváth A, Tapolcsányi P, Éles J, Molnár KD, Vágó I, Visegrády A, Kiss L, Szigetvári Á, Kóti J, Krámos B, Mahó S, Holm P, Kolok S, Fodor L, Thán M, Kostyalik D, Balázs O, Vastag M, Greiner I, Lévay G, Lendvai B, Némethy Z. HTS-based discovery and optimization of novel positive allosteric modulators of the α7 nicotinic acetylcholine receptor. Eur J Med Chem 2021; 222:113560. [PMID: 34111828 DOI: 10.1016/j.ejmech.2021.113560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 12/01/2022]
Abstract
HTS campaign of the corporate compound collection resulted in a novel, oxalic acid diamide scaffold of α7 nACh receptor positive allosteric modulators. During the hit expansion, several derivatives, such as 4, 11, 17 demonstrated not only high in vitro potency, but also in vivo efficacy in the mouse place recognition test. The advanced hit molecule 11 was further optimized by the elimination of the putatively mutagenic aromatic-amine building block that resulted in a novel, aminomethylindole compound family. The most balanced physico-chemical and pharmacological profile was found in case of compound 55. Docking study revealed an intersubunit binding site to be the most probable for our compounds. 55 demonstrated favorable cognitive enhancing profile not only in scopolamine-induced amnesia (place recognition test in mice) but also in natural forgetting (novel object recognition test in rats). Compound 55 was, furthermore, active in a cognitive paradigm of high translational value, namely in the rat touch screen visual discrimination test. Therefore, 55 was selected as a lead compound for further optimization. Based on the obtained favorable results, the invented aminomethylindole cluster may provide a viable approach for cognitive enhancement through positive allosteric modulation of α7 nAChRs.
Collapse
Affiliation(s)
- István Ledneczki
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary.
| | - Anita Horváth
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | - Pál Tapolcsányi
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | - János Éles
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | | | - István Vágó
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | - András Visegrády
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - László Kiss
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Áron Szigetvári
- Spectroscopic Research Department, Gedeon Richter Plc., Budapest, Hungary
| | - János Kóti
- Spectroscopic Research Department, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Krámos
- Spectroscopic Research Department, Gedeon Richter Plc., Budapest, Hungary
| | - Sándor Mahó
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | | | - Sándor Kolok
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - László Fodor
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Márta Thán
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Diána Kostyalik
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Ottilia Balázs
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Mónika Vastag
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - István Greiner
- Research Management, Gedeon Richter Plc., Budapest, Hungary
| | - György Lévay
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Lendvai
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Zsolt Némethy
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| |
Collapse
|
10
|
GIPSON CD, BIMONTE-NELSON HA. Interactions between reproductive transitions during aging and addiction: promoting translational crosstalk between different fields of research. Behav Pharmacol 2021; 32:112-122. [PMID: 32960852 PMCID: PMC7965232 DOI: 10.1097/fbp.0000000000000591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Discovery of neural mechanisms underlying neuropsychiatric disorders within the aging and addiction fields has been a main focus of the National Institutes of Health. However, there is a dearth of knowledge regarding the biological interactions of aging and addiction, which may have important influences on progression of disease and treatment outcomes in aging individuals with a history of chronic drug use. Thus, there is a large gap in these fields of research, which has slowed progress in understanding and treating substance use disorders (SUDs) as well as age-related diseases, specifically in women who experience precipitous reproductive cycle transitions during aging. The goal of this review is to highlight overlap of SUDs and age-related processes with a specific focus on menopause and smoking, and identify critical gaps. We have narrowed the focus of the review to smoking, as the majority of findings on hormonal and aging influences on drug use have come from this area of research. Further, we highlight female-specific issues such as transitional menopause and exogenous estrogen use. These issues may impact drug use cessation as well as outcomes with aging and age-related neurodegenerative diseases in women. We first review clinical studies for smoking, normal aging, and pathological aging, and discuss the few aging-related studies taking smoking history into account. Conversely, we highlight the dearth of clinical smoking studies taking age as a biological variable into account. Preclinical and clinical literature show that aging, age-related pathological brain disease, and addiction engage overlapping neural mechanisms. We hypothesize that these putative drivers interact in meaningful ways that may exacerbate disease and hinder successful treatment outcomes in such comorbid populations. We highlight areas where preclinical studies are needed to uncover neural mechanisms in aging and addiction processes. Collectively, this review highlights the need for crosstalk between different fields of research to address medical complexities of older adults, and specifically women, who smoke.
Collapse
Affiliation(s)
- Cassandra D. GIPSON
- Department of Family and Community Medicine, University of Kentucky, Lexington, KY
- Arizona Alzheimer’s Consortium
| | | |
Collapse
|
11
|
Ledneczki I, Tapolcsányi P, Gábor E, Visegrády A, Vass M, Éles J, Holm P, Horváth A, Pocsai A, Mahó S, Greiner I, Krámos B, Béni Z, Kóti J, Káncz AE, Thán M, Kolok S, Laszy J, Balázs O, Bugovits G, Nagy J, Vastag M, Szájli Á, Bozó É, Lévay G, Lendvai B, Némethy Z. Discovery of novel positive allosteric modulators of the α7 nicotinic acetylcholine receptor: Scaffold hopping approach. Eur J Med Chem 2021; 214:113189. [PMID: 33540354 DOI: 10.1016/j.ejmech.2021.113189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 11/26/2022]
Abstract
The paper focuses on the scaffold hopping-based discovery and characterization of novel nicotinic alpha 7 receptor positive modulator (α7 nAChR PAM) ligands around the reference molecule (A-867744). First, substantial efforts were carried out to assess the importance of the various pharmacophoric elements on the in vitro potency (SAR evaluation) by chemical modifications. Subsequently, several new derivatives with versatile, heteroaromatic central cores were synthesized and characterized. A promising, pyrazole-containing new chemotype with good physicochemical and in vitro parameters was identified. Retrospective analysis based on homology modeling was also carried out. Besides its favorable in vitro characteristics, the most advanced derivative 69 also showed in vivo efficacy in a rodent model of cognition (scopolamine-induced amnesia in the mouse place recognition test) and acceptable pharmacokinetic properties. Based on the in vivo data, the resulting molecule with advanced drug-like characteristics has the possibility to improve cognitive performance in a biologically relevant dose range, further strengthening the view of the supportive role of α7 nACh receptors in the cognitive processes.
Collapse
Affiliation(s)
- István Ledneczki
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary.
| | - Pál Tapolcsányi
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | - Eszter Gábor
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | - András Visegrády
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary; Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Márton Vass
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | - János Éles
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | | | - Anita Horváth
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | - Anikó Pocsai
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | - Sándor Mahó
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | - István Greiner
- Research Management, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Krámos
- Spectroscopic Research Department, Gedeon Richter Plc., Budapest, Hungary
| | - Zoltán Béni
- Spectroscopic Research Department, Gedeon Richter Plc., Budapest, Hungary
| | - János Kóti
- Spectroscopic Research Department, Gedeon Richter Plc., Budapest, Hungary
| | - Anna E Káncz
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | - Márta Thán
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Sándor Kolok
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Judit Laszy
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Ottilia Balázs
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Gyula Bugovits
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - József Nagy
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Mónika Vastag
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Ágota Szájli
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | - Éva Bozó
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | - György Lévay
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Lendvai
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Zsolt Némethy
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| |
Collapse
|
12
|
Caridi F, Sabbatini A, Birarda G, Costanzi E, De Giudici G, Galeazzi R, Medas D, Mobbili G, Ricciutelli M, Ruello ML, Vaccari L, Negri A. Cigarette butts, a threat for marine environments: Lessons from benthic foraminifera (Protista). MARINE ENVIRONMENTAL RESEARCH 2020; 162:105150. [PMID: 32992223 DOI: 10.1016/j.marenvres.2020.105150] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Cigarette butts are the most common form of litter in the world and their environmental impact is related to both persistence and potential toxic effects for chemical composition. The objective of this study was to assess the acute toxicity (LC50-48 h) of human-smoked cigarette butts leachate on 3 cultured genera of benthic foraminifera: the calcareous perforate Rosalina globularis, the calcareous imperforate Quinqueloculina spp., and the agglutinated Textularia agglutinans. The specimens were exposed to 16, 8, 4, 2, and 1 cigarette butts/L concentrations that prove to be acutely toxic to all taxa. Starting from 4 cigarette butts/L, both calcareous genera showed shell decalcification, and death of almost all the individuals, except for the more resistant agglutinated species. These results suggest the potential harmfulness of cigarette butts leachate related to pH reduction and release of toxic substances, in particular nicotine, which leads to physiology alteration and in many cases cellular death.
Collapse
Affiliation(s)
- Francesca Caridi
- Department of Life and Environmental Science, Università Politecnica delle Marche, via Brecce Bianche, 60122, Ancona, Italy.
| | - Anna Sabbatini
- Department of Life and Environmental Science, Università Politecnica delle Marche, via Brecce Bianche, 60122, Ancona, Italy.
| | - Giovanni Birarda
- Elettra - Sincrotrone Trieste S.C.p.A. S.S. 14 km 163,5 in Area Science Park, 34149, Basovizza, Trieste, Italy.
| | - Elisa Costanzi
- Department of Life and Environmental Science, Università Politecnica delle Marche, via Brecce Bianche, 60122, Ancona, Italy.
| | - Giovanni De Giudici
- Department of Chemical and Geological Sciences, Università degli Studi di Cagliari, via Trentino 51, 09127, Cagliari, Italy.
| | - Roberta Galeazzi
- Department of Life and Environmental Science, Università Politecnica delle Marche, via Brecce Bianche, 60122, Ancona, Italy.
| | - Daniela Medas
- Department of Chemical and Geological Sciences, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato - Blocco A, S.S. 554 bivio per Sestu, 09042, Monserrato (CA), Italy.
| | - Giovanna Mobbili
- Department of Life and Environmental Science, Università Politecnica delle Marche, via Brecce Bianche, 60122, Ancona, Italy.
| | - Massimo Ricciutelli
- Department of Chemical Sciences, Università di Camerino, Via S. Agostino 1, 62032, Camerino (MC), Italy.
| | - Maria Letizia Ruello
- Department of Life and Environmental Science, Università Politecnica delle Marche, via Brecce Bianche, 60122, Ancona, Italy.
| | - Lisa Vaccari
- Elettra - Sincrotrone Trieste S.C.p.A. S.S. 14 km 163,5 in Area Science Park, 34149, Basovizza, Trieste, Italy.
| | - Alessandra Negri
- Department of Life and Environmental Science, Università Politecnica delle Marche, via Brecce Bianche, 60122, Ancona, Italy.
| |
Collapse
|
13
|
Tetrapeptide Ac-HAEE-NH 2 Protects α4β2 nAChR from Inhibition by Aβ. Int J Mol Sci 2020; 21:ijms21176272. [PMID: 32872553 PMCID: PMC7504039 DOI: 10.3390/ijms21176272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
The cholinergic deficit in Alzheimer’s disease (AD) may arise from selective loss of cholinergic neurons caused by the binding of Aβ peptide to nicotinic acetylcholine receptors (nAChRs). Thus, compounds preventing such an interaction are needed to address the cholinergic dysfunction. Recent findings suggest that the 11EVHH14 site in Aβ peptide mediates its interaction with α4β2 nAChR. This site contains several charged amino acid residues, hence we hypothesized that the formation of Aβ-α4β2 nAChR complex is based on the interaction of 11EVHH14 with its charge-complementary counterpart in α4β2 nAChR. Indeed, we discovered a 35HAEE38 site in α4β2 nAChR, which is charge-complementary to 11EVHH14, and molecular modeling showed that a stable Aβ42-α4β2 nAChR complex could be formed via the 11EVHH14:35HAEE38 interface. Using surface plasmon resonance and bioinformatics approaches, we further showed that a corresponding tetrapeptide Ac-HAEE-NH2 can bind to Aβ via 11EVHH14 site. Finally, using two-electrode voltage clamp in Xenopus laevis oocytes, we showed that Ac-HAEE-NH2 tetrapeptide completely abolishes the Aβ42-induced inhibition of α4β2 nAChR. Thus, we suggest that 35HAEE38 is a potential binding site for Aβ on α4β2 nAChR and Ac-HAEE-NH2 tetrapeptide corresponding to this site is a potential therapeutic for the treatment of α4β2 nAChR-dependent cholinergic dysfunction in AD.
Collapse
|
14
|
Fowler CD, Gipson CD, Kleykamp BA, Rupprecht LE, Harrell PT, Rees VW, Gould TJ, Oliver J, Bagdas D, Damaj MI, Schmidt HD, Duncan A, De Biasi M. Basic Science and Public Policy: Informed Regulation for Nicotine and Tobacco Products. Nicotine Tob Res 2019; 20:789-799. [PMID: 29065200 DOI: 10.1093/ntr/ntx175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 08/01/2017] [Indexed: 12/25/2022]
Abstract
Introduction Scientific discoveries over the past few decades have provided significant insight into the abuse liability and negative health consequences associated with tobacco and nicotine-containing products. While many of these advances have led to the development of policies and laws that regulate access to and formulations of these products, further research is critical to guide future regulatory efforts, especially as novel nicotine-containing products are introduced and selectively marketed to vulnerable populations. Discussion In this narrative review, we provide an overview of the scientific findings that have impacted regulatory policy and discuss considerations for further translation of science into policy decisions. We propose that open, bidirectional communication between scientists and policy makers is essential to develop transformative preventive- and intervention-focused policies and programs to reduce appeal, abuse liability, and toxicity of the products. Conclusions Through these types of interactions, collaborative efforts to inform and modify policy have the potential to significantly decrease the use of tobacco and alternative nicotine products and thus enhance health outcomes for individuals. Implications This work addresses current topics in the nicotine and tobacco research field to emphasize the importance of basic science research and provide examples of how it can be utilized to inform public policy. In addition to relaying current thoughts on the topic from experts in the field, the article encourages continued efforts and communication between basic scientists and policy officials.
Collapse
Affiliation(s)
- Christie D Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA
| | | | | | - Laura E Rupprecht
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA
| | - Paul T Harrell
- Division of Community Health & Research, Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA
| | - Vaughan W Rees
- Center for Global Tobacco Control, Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Thomas J Gould
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA
| | - Jason Oliver
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC
| | - Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA
| | - Alexander Duncan
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mariella De Biasi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
15
|
Hajiasgharzadeh K, Sadigh-Eteghad S, Mansoori B, Mokhtarzadeh A, Shanehbandi D, Doustvandi MA, Asadzadeh Z, Baradaran B. Alpha7 nicotinic acetylcholine receptors in lung inflammation and carcinogenesis: Friends or foes? J Cell Physiol 2019; 234:14666-14679. [PMID: 30701535 DOI: 10.1002/jcp.28220] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
The lung tissue expresses the cholinergic system including nicotinic acetylcholine receptors (nAChRs) which included in many physiologic and pathologic processes. Mounting evidence revealed that these receptors have important roles in lung carcinogenesis via modulating either stimulatory or inhibitory signaling pathways. Among different members of nicotinic receptors family, alpha7-subtype of nAChR (α7nAChR) is a critical mediator involved in both inflammatory responses and cancers. Several studies have shown that this receptor is the most powerful regulator of responses that stimulate lung cancer processes such as proliferation, angiogenesis, metastasis, and inhibition of apoptosis. Moreover, aside from its roles in the regulation of cancer pathways, there is growing evidence indicating that α7nAChR has profound impacts on lung inflammation through the cholinergic anti-inflammatory pathway. Regarding such diverse effects as well as the critical roles of nicotine as an activator of α7nAChR on lung cancer pathogenesis, its modulation has emerged as a promising target for drug developments. In this review, we aim to highlight the detrimental as well as the possible beneficial influences of α7nAChR downstream signaling cascades in the control of lung inflammation and cancer-associated properties. Consequently, by considering the significant global burden of lung cancer, delineating the complex influences of α7 receptors would be of great interest in designing novel anticancer and anti-inflammatory strategies for the patients suffering from lung cancer.
Collapse
Affiliation(s)
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Isomerization of Asp7 in Beta-Amyloid Enhances Inhibition of the α7 Nicotinic Receptor and Promotes Neurotoxicity. Cells 2019; 8:cells8080771. [PMID: 31349637 PMCID: PMC6721525 DOI: 10.3390/cells8080771] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 01/02/2023] Open
Abstract
Cholinergic dysfunction in Alzheimer’s disease (AD) can be mediated by the neuronal α7 nicotinic acetylcholine receptor (α7nAChR). Beta-amyloid peptide (Aβ) binds to the α7nAChR, disrupting the receptor’s function and causing neurotoxicity. In vivo not only Aβ but also its modified forms can drive AD pathogenesis. One of these forms, iso-Aβ (containing an isomerized Asp7 residue), shows an increased neurotoxicity in vitro and stimulates amyloidogenesis in vivo. We suggested that such effects of iso-Aβ are α7nAChR-dependent. Here, using calcium imaging and electrophysiology, we found that iso-Aβ is a more potent inhibitor of the α7nAChR-mediated calcium current than unmodified Aβ. However, Asp7 isomerization eliminated the ability of Aβ to decrease the α7nAChR levels. These data indicate differences in the interaction of the peptides with the α7nAChR, which we demonstrated using computer modeling. Neither Aβ nor iso-Aβ competed with 125I-α-bungarotoxin for binding to the orthosteric site of the receptor, suggesting the allosteric binging mode of the peptides. Further we found that increased neurotoxicity of iso-Aβ was mediated by the α7nAChR. Thus, the isomerization of Asp7 enhances the inhibitory effect of Aβ on the functional activity of the α7nAChR, which may be an important factor in the disruption of the cholinergic system in AD.
Collapse
|
17
|
Untangling Direct and Domain-Mediated Interactions Between Nicotinic Acetylcholine Receptors in DHA-Rich Membranes. J Membr Biol 2019; 252:385-396. [PMID: 31321460 DOI: 10.1007/s00232-019-00079-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/04/2019] [Indexed: 02/01/2023]
Abstract
At the neuromuscular junction (NMJ), the nicotinic acetylcholine receptor (nAChR) self-associates to give rise to rapid muscle movement. While lipid domains have maintained nAChR aggregates in vitro, their specific roles in nAChR clustering are currently unknown. In the present study, we carried out coarse-grained molecular dynamics simulations (CG-MD) of 1-4 nAChR molecules in two membrane environments: one mixture containing domain-forming, homoacidic lipids, and a second mixture consisting of heteroacidic lipids. Spontaneous dimerization of nAChRs was up to ten times more likely in domain-forming membranes; however, the effect was not significant in four-protein systems, suggesting that lipid domains are less critical to nAChR oligomerization when protein concentration is higher. With regard to lipid preferences, nAChRs consistently partitioned into liquid-disordered domains occupied by the omega-3 ([Formula: see text]-3) fatty acid, docosahexaenoic acid (DHA); enrichment of DHA boundary lipids increased with protein concentration, particularly in homoacidic membranes. This result suggests dimer formation blocks access of saturated chains and cholesterol, but not polyunsaturated chains, to boundary lipid sites.
Collapse
|
18
|
Newhouse PA. Therapeutic Applications of Nicotinic Stimulation: Successes, Failures, and Future Prospects. Nicotine Tob Res 2019; 21:345-348. [PMID: 30203054 DOI: 10.1093/ntr/nty189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Paul A Newhouse
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN.,US Department of Veterans Affairs, Tennessee Valley Health Systems, Geriatric Research Education and Clinical Center, Nashville, TN
| |
Collapse
|
19
|
Hoffmann C, Stevens J, Zong S, van Kruining D, Saxena A, Küçükali Cİ, Tüzün E, Yalçınkaya N, De Hert M, González-Vioque E, Arango C, Lindstrom J, De Baets MH, Rutten BPF, van Os J, Molenaar P, Losen M, Martinez-Martinez P. Alpha7 acetylcholine receptor autoantibodies are rare in sera of patients diagnosed with schizophrenia or bipolar disorder. PLoS One 2018; 13:e0208412. [PMID: 30521579 PMCID: PMC6283580 DOI: 10.1371/journal.pone.0208412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 11/16/2018] [Indexed: 11/28/2022] Open
Abstract
The α7 acetylcholine receptor (AChR) has been linked with the onset of psychotic symptoms and we hypothesized therefore that it might also be an autoimmune target. Here, we describe a new radioimmunoassay (RIA) using iodine 125-labelled α-bungarotoxin and membrane extract from transfected HEK293 cells expressing human α7 AChR. This RIA was used to analyze sera pertaining to a cohort of 711 subjects, comprising 368 patients diagnosed with schizophrenia spectrum disorders, 140 with bipolar disorder, 58 individuals diagnosed of other mental disorders, and 118 healthy comparison subjects. We identified one patient whose serum tested positive although with very low levels (0.2 nM) for α7 AChR-specific antibodies by RIA. Three out of 711 sera contained antibodies against iodine 125-labelled α-bungarotoxin, because they precipitated with it in the absence of α7 AChR. This first evidence suggests that autoantibodies against α7 AChR are absent or very rare in these clinical groups.
Collapse
Affiliation(s)
- Carolin Hoffmann
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jo Stevens
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Shenghua Zong
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Daan van Kruining
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Abhishek Saxena
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Cem İsmail Küçükali
- Department of Neuroscience, Institute for Experimental Medical Research (DETAE), Istanbul University, Istanbul, Turkey
| | - Erdem Tüzün
- Department of Neuroscience, Institute for Experimental Medical Research (DETAE), Istanbul University, Istanbul, Turkey
| | - Nazlı Yalçınkaya
- Department of Neuroscience, Institute for Experimental Medical Research (DETAE), Istanbul University, Istanbul, Turkey
| | - Marc De Hert
- University Psychiatric Centre Catholic University Leuven, Campus Kortenberg, Kortenberg, Belgium, Department of Neurosciences KU Leuven, Belgium
| | - Emiliano González-Vioque
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Jon Lindstrom
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Marc H. De Baets
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Bart P. F. Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Peter Molenaar
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
20
|
Kucukkal TG, Alsaiari F, Stuart SJ. Modeling ion permeation in wild-type and mutant human α7 nachr ion channels. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618500451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Molecular dynamics simulations of wild type and two mutant (T248F and L251T) human [Formula: see text]7 nicotinic acetylcholine receptors (nAChR) have been performed. The channel transmembrane domains were modeled from the closed channel structure from torpedo ray (PDB ID 2BG9) and embedded in DPPC lipid bilayers, surrounded by physiological saline solution. An external electric field was used to obtain stable open channel structures. The adaptive biasing force (ABF) method was used to obtain potential of mean force (PMF) profiles for Na[Formula: see text] ion translocation through the wild type and mutant receptors. Based on the geometry and PMF profiles, the channel gate was found to be at one of the two hydrophobic conserved regions (V249-L251) near the lower end of the channel. The L251T mutation reduced the energetic barrier by 1.9[Formula: see text]kcal/mol, consistent with a slight increase in the channel radius in the bottleneck region. On the other hand, the T248F mutation caused a significant decrease in the channel radius (0.4 Å) and a substantial increase of 3.9[Formula: see text]kcal/mol in the energetic barrier. Ion permeation in all three structures was compared and found to be consistent with barrier height values. Using an external field in an incrementally increasing manner was found to be an effective way to obtain stable open, conducting channel structures.
Collapse
Affiliation(s)
- Tugba G Kucukkal
- Department of Science, Technology and Mathematics, Gallaudet University, 800 Florida Ave North East Washington, District of Columbia 20002, USA
| | - Feras Alsaiari
- Park View High School, 400 West Laurel Avenue, Sterling, Virginia 20164, USA
| | - Steven J Stuart
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
| |
Collapse
|
21
|
Scheffel C, Niessen KV, Rappenglück S, Wanner KT, Thiermann H, Worek F, Seeger T. Electrophysiological investigation of the effect of structurally different bispyridinium non-oxime compounds on human α7-nicotinic acetylcholine receptor activity—An in vitro structure-activity analysis. Toxicol Lett 2018; 293:157-166. [DOI: 10.1016/j.toxlet.2017.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/11/2017] [Accepted: 11/22/2017] [Indexed: 02/01/2023]
|
22
|
Tiernan CT, Ginsberg SD, He B, Ward SM, Guillozet-Bongaarts AL, Kanaan NM, Mufson EJ, Counts SE. Pretangle pathology within cholinergic nucleus basalis neurons coincides with neurotrophic and neurotransmitter receptor gene dysregulation during the progression of Alzheimer's disease. Neurobiol Dis 2018; 117:125-136. [PMID: 29859871 PMCID: PMC6278831 DOI: 10.1016/j.nbd.2018.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/30/2018] [Indexed: 01/22/2023] Open
Abstract
Cholinergic basal forebrain neurons of the nucleus basalis of Meynert (nbM) regulate attentional and memory function and are exquisitely prone to tau pathology and neurofibrillary tangle (NFT) formation during the progression of Alzheimer's disease (AD). nbM neurons require the neurotrophin nerve growth factor (NGF), its cognate receptor TrkA, and the pan-neurotrophin receptor p75NTR for their maintenance and survival. Additionally, nbM neuronal activity and cholinergic tone are regulated by the expression of nicotinic (nAChR) and muscarinic (mAChR) acetylcholine receptors as well as receptors modulating glutamatergic and catecholaminergic afferent signaling. To date, the molecular and cellular relationships between the evolution of tau pathology and nbM neuronal survival remain unknown. To address this knowledge gap, we profiled cholinotrophic pathway genes within nbM neurons immunostained for pS422, a pretangle phosphorylation event preceding tau C-terminal truncation at D421, or dual-labeled for pS422 and TauC3, a later stage tau neo-epitope revealed by this same C-terminal truncation event, via single-population custom microarray analysis. nbM neurons were obtained from postmortem tissues from subjects who died with an antemortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or mild/moderate AD. Quantitative analysis revealed significant downregulation of mRNAs encoding TrkA as well as TrkB, TrkC, and the Trk-mediated downstream pro-survival kinase Akt in pS422+ compared to unlabeled, pS422-negative nbM neurons. In addition, pS422+ neurons displayed a downregulation of transcripts encoding NMDA receptor subunit 2B, metabotropic glutamate receptor 2, D2 dopamine receptor, and β1 adrenoceptor. By contrast, transcripts encoding p75NTR were downregulated in dual-labeled pS422+/TauC3+ neurons. Appearance of the TauC3 epitope was also associated with an upregulation of the α7 nAChR subunit and differential downregulation of the β2 nAChR subunit. Notably, we found that gene expression patterns for each cell phenotype did not differ with clinical diagnosis. However, linear regression revealed that global cognition and Braak stage were predictors of select transcript changes within both unlabeled and pS422+/TauC3- neurons. Taken together, these cell phenotype-specific gene expression profiling data suggest that dysregulation of neurotrophic and neurotransmitter signaling is an early pathogenic mechanism associated with NFT formation in vulnerable nbM neurons and cognitive decline in AD, which may be amenable to therapeutic intervention early in the disease process.
Collapse
Affiliation(s)
- Chelsea T Tiernan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA; Department of Physiology & Neuroscience, NYU Langone School of Medicine, New York, NY, USA; NYU Neuroscience Institute, NYU Langone School of Medicine, New York, NY, USA
| | - Bin He
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Sarah M Ward
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | | | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Hauenstein Neurosciences Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Hauenstein Neurosciences Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA; Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA; Michigan Alzheimer's Disease Core Center, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Withey SL, Doyle MR, Bergman J, Desai RI. Involvement of Nicotinic Receptor Subtypes in the Behavioral Effects of Nicotinic Drugs in Squirrel Monkeys. J Pharmacol Exp Ther 2018; 366:397-409. [PMID: 29784663 DOI: 10.1124/jpet.118.248070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/17/2018] [Indexed: 11/22/2022] Open
Abstract
Evidence suggests that the α4β2, but not the α7, subtype of the nicotinic acetylcholine receptor (nAChR) plays a key role in mediating the behavioral effects of nicotine and related drugs. However, the importance of other nAChR subtypes remains unclear. The present studies were conducted to examine the involvement of nAChR subtypes by determining the effects of selected nicotinic agonists and antagonists in squirrel monkeys either 1) responding for food reinforcement or 2) discriminating the nicotinic agonist (+)-epibatidine (0.001 mg/kg) from vehicle. In food-reinforcement studies, nicotine, (+)-epibatidine, varenicline and cytisine all produced dose-dependent decreases in rates of food-maintained responding. The rate-decreasing effects of nicotine were antagonized by mecamylamine (nonselective), not appreciably altered by dihydro-β-erythroidine (α4β2 selective), and exacerbated by the nicotinic partial agonists, varenicline and cytisine. Results from discrimination studies show that non-nicotinic drugs did not substitute for (+)-epibatidine, and that except for lobeline, the nicotinic agonists produced either full [(+)-epibatidine, (-)-epibatidine, and nicotine] or partial (varenicline, cytisine, anabaseine, and isoarecolone) substitution for (+)-epibatidine. In interaction studies with antagonists differing in selectivity, (+)-epibatidine discrimination was substantively antagonized by mecamylamine, slightly attenuated by hexamethonium (peripherally restricted) or dihydro-β-erythroidine, and not altered by methyllycaconitine (α7 selective). Varenicline and cytisine enhanced (+)-epibatidine's discriminative-stimulus effects. Correlational analysis revealed a close correspondence between relative behavioral potencies of nicotinic agonists in both studies and their published relative binding affinities at α4β2 and α3β4, but not α7 nAChR, subtypes. Collectively, these results are consistent with the idea that the α4β2 and α3β4, but not α7 nAChR subtypes play a role in the behavioral effects of nicotinic agonists.
Collapse
Affiliation(s)
- Sarah L Withey
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | - Michelle R Doyle
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | - Jack Bergman
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | - Rajeev I Desai
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| |
Collapse
|
24
|
Goschorska M, Baranowska-Bosiacka I, Gutowska I, Tarnowski M, Piotrowska K, Metryka E, Safranow K, Chlubek D. Effect of acetylcholinesterase inhibitors donepezil and rivastigmine on the activity and expression of cyclooxygenases in a model of the inflammatory action of fluoride on macrophages obtained from THP-1 monocytes. Toxicology 2018; 406-407:9-20. [PMID: 29777723 DOI: 10.1016/j.tox.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/31/2022]
Abstract
Inflammation is an important factor in the development of many diseases of the central nervous system, including Alzheimer's disease and other types of dementia. Given that acetylcholinesterase inhibitors are also currently believed to have anti-inflammatory properties, the purpose of this study was to investigate the effect of acetylcholinesterase inhibitors (rivastigmine, donepezil) on cyclooxygenase activity and expression using the proinflammatory action of fluoride (F-) on cultured macrophages obtained from THP-1 monocytes. COX-1 and COX-2 activity was determined through measurement of the products of prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) in cell culture supernatants. Expression of COX-1 and COX-2 proteins was examined immunocytochemically, and mRNA expression was determined by qRT PCR. Our study confirmed the inhibitory effects of donepezil and rivastigmine on the production of PGE2, TXB2, COX-1 and COX-2 mRNA and protein expression in macrophages. We also demonstrated that the pro-inflammatory effect of fluoride may be reduced by the use of both drugs. The additive effect of these drugs cannot be ruled out, and effects other than those observed in the use of one drug should also be taken into account.
Collapse
Affiliation(s)
- Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24, Szczecin 71-460, Poland.
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Emilia Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| |
Collapse
|
25
|
Colás L, Domercq M, Ramos-Cabrer P, Palma A, Gómez-Vallejo V, Padro D, Plaza-García S, Pulagam KR, Higuchi M, Matute C, Llop J, Martín A. In vivo imaging of Α7 nicotinic receptors as a novel method to monitor neuroinflammation after cerebral ischemia. Glia 2018. [PMID: 29528142 DOI: 10.1002/glia.23326] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In vivo positron emission tomography (PET) imaging of nicotinic acetylcholine receptors (nAChRs) is a promising tool for the imaging evaluation of neurologic and neurodegenerative diseases. However, the role of α7 nAChRs after brain diseases such as cerebral ischemia and its involvement in inflammatory reaction is still largely unknown. In vivo and ex vivo evaluation of α7 nAChRs expression after transient middle cerebral artery occlusion (MCAO) was carried out using PET imaging with [11 C]NS14492 and immunohistochemistry (IHC). Pharmacological activation of α7 receptors was evaluated with magnetic resonance imaging (MRI), [18 F]DPA-714 PET, IHC, real time polymerase chain reaction (qPCR) and neurofunctional studies. In the ischemic territory, [11 C]NS14492 signal and IHC showed an expression increase of α7 receptors in microglia and astrocytes after cerebral ischemia. The role played by α7 receptors on neuroinflammation was supported by the decrease of [18 F]DPA-714 binding in ischemic rats treated with the α7 agonist PHA 568487 at day 7 after MCAO. Moreover, compared with non-treated MCAO rats, PHA-treated ischemic rats showed a significant reduction of the cerebral infarct volumes and an improvement of the neurologic outcome. PHA treatment significantly reduced the expression of leukocyte infiltration molecules in MCAO rats and in endothelial cells after in vitro ischemia. Despite that, the activation of α7 nAChR had no influence to the blood brain barrier (BBB) permeability measured by MRI. Taken together, these results suggest that the nicotinic α7 nAChRs play a key role in the inflammatory reaction and the leukocyte recruitment following cerebral ischemia in rats.
Collapse
Affiliation(s)
- Lorena Colás
- Experimental Molecular Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Maria Domercq
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, 48940 Leioa, Spain, Achucarro Basque Center for Neuroscience-UPV/EHU, 48170 Zamudio, Spain and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, 48940, Spain
| | - Pedro Ramos-Cabrer
- Magnetic Resonance Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ana Palma
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, 48940 Leioa, Spain, Achucarro Basque Center for Neuroscience-UPV/EHU, 48170 Zamudio, Spain and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, 48940, Spain
| | - Vanessa Gómez-Vallejo
- Radiochemistry and Nuclear Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Daniel Padro
- Magnetic Resonance Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Sandra Plaza-García
- Magnetic Resonance Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Krishna R Pulagam
- Radiochemistry and Nuclear Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Makoto Higuchi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, 48940 Leioa, Spain, Achucarro Basque Center for Neuroscience-UPV/EHU, 48170 Zamudio, Spain and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, 48940, Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Abraham Martín
- Experimental Molecular Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| |
Collapse
|
26
|
Machaalani R, Chen H. Brain derived neurotrophic factor (BDNF), its tyrosine kinase receptor B (TrkB) and nicotine. Neurotoxicology 2018; 65:186-195. [DOI: 10.1016/j.neuro.2018.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 02/07/2023]
|
27
|
Arese M, Bussolino F, Pergolizzi M, Bizzozero L, Pascal D. Tumor progression: the neuronal input. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:89. [PMID: 29666812 DOI: 10.21037/atm.2018.01.01] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the challenges of cancer is its heterogeneity and rapid capacity to adapt. Notwithstanding significant progress in the last decades in genomics and precision medicine, new molecular targets and therapies appear highly necessary. One way to approach this complex problem is to consider cancer in the context of its cellular and molecular microenvironment, which includes nerves. The peripheral nerves, the topic of this review, modulate the biological behavior of the cancer cells and influence tumor progression, including the events related to the metastatic spread of the disease. This mechanism involves the release of neurotransmitters directly into the microenvironment and the activation of the corresponding membrane receptors. While this fact appears to complicate further the molecular landscape of cancer, the neurotransmitters are highly investigated molecules, and often are already targeted by well-developed drugs, a fact that can help finding new therapies at a fraction of the cost and time needed for new medicines (through the so-called drug repurposing). Moreover, the modulation of tumor progression by neurotransmitters can probably explain the long-recognized effects of psychological factors on the burden of cancer. We begin with an introduction on the tumor-nervous-connections and a description of the perineural invasion and neoneurogenesis, the two most important interaction patterns of cancer and nerves. Next, we discuss the most recent data that unequivocally demonstrate the necessity of the nervous system for tumor onset and growth. We introduce the molecular players of the tumor-nervous-connections by citing the role of three main families: neurotropic factors, axon guidance molecules, and neurotransmitters. Finally, we review the role the most important neurotransmitters in tumor biology and we conclude by analyzing the significance of the presented data for cancer therapy, with all the potential advantages and caveats.
Collapse
Affiliation(s)
- Marco Arese
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Margherita Pergolizzi
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Laura Bizzozero
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Davide Pascal
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| |
Collapse
|
28
|
Kuang G, Wang X, Halldin C, Nordberg A, Långström B, Ågren H, Tu Y. Theoretical study of the binding profile of an allosteric modulator NS-1738 with a chimera structure of the α7 nicotinic acetylcholine receptor. Phys Chem Chem Phys 2018; 18:28003-28009. [PMID: 27711412 DOI: 10.1039/c6cp02278b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potentiation of the function of the α7 nicotinic acetylcholine receptor (α7-nAChR) is believed to provide a possible way for the treatment of cholinergic system dysfunctions such as Alzheimer's disease and schizophrenia. Positive allosteric modulators (PAMs) are able to augment the peak current response of the endogenous agonist of α7-nAChR by binding to some allosteric sites. In this study, the binding profile of a potent type I PAM, NS-1738, with a chimera structure (termed α7-AChBP) constructed from the extracellular domain of α7-nAChR and an acetylcholine binding protein was investigated with molecular docking, molecular dynamics simulation, and free energy calculation methods. We found that NS-1738 could bind to three allosteric sites of α7-AChBP, namely, the top pocket, the vestibule pocket and the agonist sub-pocket. NS-1738 has moderate binding affinities (-6.76 to -9.15 kcal mol-1) at each allosteric site. The urea group is critical for binding and can form hydrogen-bond interactions with the protein. The bulky trifluoromethyl group also has a great impact on the binding modes and binding affinities. We believe that our study provides valuable insight into the binding profiles of type I PAMs with α7-nAChR and is helpful for the development of novel PAMs.
Collapse
Affiliation(s)
- Guanglin Kuang
- Division of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, S-106 91, Stockholm, Sweden.
| | - Xu Wang
- Division of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, S-106 91, Stockholm, Sweden.
| | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, 171 76, Stockholm, Sweden
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Center of Alzheimer Research, Translational Alzheimer Neurobiology, Karolinska University Hospital, Huddinge, S-141 86, Stockholm, Sweden
| | - Bengt Långström
- Department of Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, S-106 91, Stockholm, Sweden.
| | - Yaoquan Tu
- Division of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, S-106 91, Stockholm, Sweden.
| |
Collapse
|
29
|
Messi E, Pimpinelli F, Andrè V, Rigobello C, Gotti C, Maggi R. The alpha-7 nicotinic acetylcholine receptor is involved in a direct inhibitory effect of nicotine on GnRH release: In vitro studies. Mol Cell Endocrinol 2018; 460:209-218. [PMID: 28754351 DOI: 10.1016/j.mce.2017.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/04/2017] [Accepted: 07/24/2017] [Indexed: 12/28/2022]
Abstract
The activation of nicotinic cholinergic receptors (nAChR) inhibits the reproductive axis; however, it is not clear whether nicotine may directly modulate the release of hypothalamic gonadotropin-releasing hormone (GnRH). Experiments carried out in GT1-1 immortalized GnRH neurons reveal the presence of a single class of high affinity α4β2 and α7 nAchR subtypes. The exposure of GT1-1 cells to nicotine does not modify the basal accumulation of GnRH. However, nicotine was found to modify GnRH pulsatility in perifusion experiments and inhibits, the release of GnRH induced by prostaglandin E1 or by K+-induced cell depolarization; these effects were reversed by D-tubocurarine and α-bungarotoxin. In conclusion, the results reported here indicate that: functional nAChRs are present on GT1-1 cells, the activation of the α-bungarotoxin-sensitive subclass (α7) produces an inhibitory effect on the release of GnRH and that the direct action of nicotine on GnRH neurons may be involved in reducing fertility of smokers.
Collapse
Affiliation(s)
- Elio Messi
- Dept. of Pharmacological and Biomedical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Federica Pimpinelli
- Dept. of Pharmacological and Biomedical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Valentina Andrè
- Dept. of Pharmacological and Biomedical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Chiara Rigobello
- Dept. of Pharmacological and Biomedical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Cecilia Gotti
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Roberto Maggi
- Dept. of Pharmacological and Biomedical Sciences, Università Degli Studi di Milano, Milan, Italy.
| |
Collapse
|
30
|
Oyrer J, Maljevic S, Scheffer IE, Berkovic SF, Petrou S, Reid CA. Ion Channels in Genetic Epilepsy: From Genes and Mechanisms to Disease-Targeted Therapies. Pharmacol Rev 2018; 70:142-173. [PMID: 29263209 DOI: 10.1124/pr.117.014456] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
Epilepsy is a common and serious neurologic disease with a strong genetic component. Genetic studies have identified an increasing collection of disease-causing genes. The impact of these genetic discoveries is wide reaching-from precise diagnosis and classification of syndromes to the discovery and validation of new drug targets and the development of disease-targeted therapeutic strategies. About 25% of genes identified in epilepsy encode ion channels. Much of our understanding of disease mechanisms comes from work focused on this class of protein. In this study, we review the genetic, molecular, and physiologic evidence supporting the pathogenic role of a number of different voltage- and ligand-activated ion channels in genetic epilepsy. We also review proposed disease mechanisms for each ion channel and highlight targeted therapeutic strategies.
Collapse
Affiliation(s)
- Julia Oyrer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Ingrid E Scheffer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Samuel F Berkovic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| |
Collapse
|
31
|
Campion J, Checinski K, Nurse J, McNeill A. Smoking by people with mental illness and benefits of smoke-free
mental health services. ACTA ACUST UNITED AC 2018. [DOI: 10.1192/apt.bp.108.005710] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Smoking is the largest single cause of preventable illness in the UK. Those
with mental health problems smoke significantly more and are therefore at
greater risk. The new Health Act (2006) will require mental health
facilities in England to be completely smoke-free by 1st July 2008. This
article reviews the current literature regarding how smoking affects both
the physical and mental well-being of people with mental health problems. It
also considers the effects of smoke-free policy in mental health
settings.
Collapse
|
32
|
Maurer SV, Williams CL. The Cholinergic System Modulates Memory and Hippocampal Plasticity via Its Interactions with Non-Neuronal Cells. Front Immunol 2017; 8:1489. [PMID: 29167670 PMCID: PMC5682336 DOI: 10.3389/fimmu.2017.01489] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023] Open
Abstract
Degeneration of central cholinergic neurons impairs memory, and enhancement of cholinergic synapses improves cognitive processes. Cholinergic signaling is also anti-inflammatory, and neuroinflammation is increasingly linked to adverse memory, especially in Alzheimer's disease. Much of the evidence surrounding cholinergic impacts on the neuroimmune system focuses on the α7 nicotinic acetylcholine (ACh) receptor, as stimulation of this receptor prevents many of the effects of immune activation. Microglia and astrocytes both express this receptor, so it is possible that some cholinergic effects may be via these non-neuronal cells. Though the presence of microglia is required for memory, overactivated microglia due to an immune challenge overproduce inflammatory cytokines, which is adverse for memory. Blocking these exaggerated effects, specifically by decreasing the release of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6), has been shown to prevent inflammation-induced memory impairment. While there is considerable evidence that cholinergic signaling improves memory, fewer studies have linked the "cholinergic anti-inflammatory pathway" to memory processes. This review will summarize the current understanding of the cholinergic anti-inflammatory pathway as it relates to memory and will argue that one mechanism by which the cholinergic system modulates hippocampal memory processes is its influence on neuroimmune function via the α7 nicotinic ACh receptor.
Collapse
Affiliation(s)
- Sara V. Maurer
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Christina L. Williams
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
33
|
Gankhuyag N, Lee KH, Cho JY. The Role of Nitrosamine (NNK) in Breast Cancer Carcinogenesis. J Mammary Gland Biol Neoplasia 2017; 22:159-170. [PMID: 28664511 PMCID: PMC5579148 DOI: 10.1007/s10911-017-9381-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/01/2017] [Indexed: 12/15/2022] Open
Abstract
Smoking cigarettes is one of the most concerning issues that leads to tobacco-related cancers and can even result in death. Therefore, these issues should be addressed with a great sense of urgency with low-cost and simple approaches. Over the past several years, the scientific community has attempted to find solutions to overcome this issue. Thus, a large number of excellent studies have been reported in this field, and summarizing these results and providing important roadmaps for future studies is currently of great importance. Finding an outstanding solution to address aforementioned issue would be of great value to the community and to the social. Tobacco contains thousands of chemicals, and sixty-nine compounds have been established as human carcinogens; specifically, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the strongest carcinogen among the tobacco-specific nitrosamines. Tobacco carcinogens are also linked to mammary gland pathogenesis and increased risk of developing many cancers, including breast cancer, the most common cancer in women worldwide. This mini-review summarizes the role of NNK and the mechanisms of its receptor, nicotine acetylcholine receptor (nAChR), signaling in breast cancer based on publications identified using the keywords "secondhand smoke (SHS)", "Nitrosamines" and "breast cancer". Furthermore, this review considers the risk of NNK to the public in an effort to reduce exposure to SHS in women and their chances of developing breast cancer.
Collapse
Affiliation(s)
- Nomundelger Gankhuyag
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW As of the year 2016, an estimated 50% of the United States' HIV-Positive population is aged 50 years or older. Due to a combination of increased rates of infection in older adults, and successful anti-retroviral (ART) regimens allowing HIV-positive adults to survive for decades with the disease, we are now faced with a steadily graying HIV-positive population, with only limited knowledge of how the cognitive and physiological effects of aging intersect with those of chronic HIV-infection. RECENT FINDINGS Age-related changes to mood, cognition, and neurological health may be experienced differently in those living with HIV, and research concerning quality of life, mental health, and cognitive aging needs to account for and explore these factors more carefully in the coming years. SUMMARY This review will explore the topic of cognitive aging with HIV: 1. Central nervous system (CNS) infection of HIV and how the virus affects brain integrity and function; 2. Cognitive and behavioral symptoms of HIV-Associated Neurocognitive Disorders (HAND); 3. Neurobiological theories of Cognitive Aging and how these processes may be exacerbated by HIV-infection; 4: Clinical implications and complications of aging with HIV and factors that may result in poorer cognitive outcomes.
Collapse
Affiliation(s)
| | - Paul Newhouse
- Vanderbilt University Center for Cognitive Medicine.,Veterans Affairs Tennessee Valley Healthcare System Geriatric Research, Education, and Clinical Center (VA TVHS GRECC)
| |
Collapse
|
35
|
Foucault-Fruchard L, Antier D. Therapeutic potential of α7 nicotinic receptor agonists to regulate neuroinflammation in neurodegenerative diseases. Neural Regen Res 2017; 12:1418-1421. [PMID: 29089979 PMCID: PMC5649454 DOI: 10.4103/1673-5374.215244] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, are all characterized by a component of innate immunity called neuroinflammation. Neuronal loss and neuroinflammation are two phenomena closely linked. Hence, the neuroinflammation is a relevant target for the management of the neurodegenerative diseases given that, to date, there is no treatment to stop neuronal loss. Several studies have investigated the potential effects of activators of alpha 7 nicotinic acetylcholine receptors in animal models of neurodegenerative diseases. These receptors are widely distributed in the central nervous system. After activation, they seem to mediate the cholinergic anti-inflammatory pathway in the brain. This anti-inflammatory pathway, first described in periphery, regulates activation of microglial cells considered as the resident macrophage population of the central nervous system. In this article, we shortly review the agonists of the alpha 7 nicotinic acetylcholine receptors that have been evaluated in vivo and we focused on the selective positive allosteric modulators of these receptors. These compounds represent a key element to enhance receptor activity only in the presence of the endogenous agonist.
Collapse
Affiliation(s)
- Laura Foucault-Fruchard
- UMR INSERM U930, Université François Rabelais, Tours, France.,CHRU de Tours, Hôpital Bretonneau, Tours, France
| | - Daniel Antier
- UMR INSERM U930, Université François Rabelais, Tours, France.,CHRU de Tours, Hôpital Bretonneau, Tours, France
| |
Collapse
|
36
|
Artyushin OI, Vinogradova NM, Sharova EV, Genkina GK, Brel VK. Novel approach to the design of potential bioactive alkaloid anabasine conjugates using click chemistry methodology. HETEROATOM CHEMISTRY 2016. [DOI: 10.1002/hc.21322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oleg I. Artyushin
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Moscow Russia
| | - Natalya M. Vinogradova
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Moscow Russia
| | - Elena V. Sharova
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Moscow Russia
| | - Galina K. Genkina
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Moscow Russia
| | - Valery K. Brel
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Moscow Russia
| |
Collapse
|
37
|
How can we Improve on Modeling Nicotine Addiction to Develop Better Smoking Cessation Treatments? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:121-56. [PMID: 27055613 DOI: 10.1016/bs.irn.2016.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Clinically effective smoking cessation treatments are few in number, mainly varenicline, bupropion, and nicotine replacement therapy being prescribed by health organizations. Of the many compounds tested for smoking cessation, a good proportion fail in human trials despite positive findings in rodents. This chapter aims to cover the uses and some pit falls of current methodologies employed to discover clinical treatments in the laboratory. Complicating factors include the complex nature of genetics in tobacco smoking and the comorbidity associated with other psychiatric disorders, which has not been addressed fully in the rodent laboratory. This chapter reviews the evidence from intravenous nicotine self-administration studies and proposes modifications on how we can improve the validity of the animal models by incorporating clinically relevant factors considered to be critical in tobacco smoking. For example, choice procedures that incorporate alternative reinforcers, use of reinstatement models, and second-order schedules of reinforcement are proposed to have better scientific validity that may lead to better clinical outcomes. Furthermore, improved experimental methods will also improve our chances of discovering effective treatments that ultimately may mitigate the effects of tobacco smoking with regard to health worldwide.
Collapse
|
38
|
In vivo PET imaging of the α4β2 nicotinic acetylcholine receptor as a marker for brain inflammation after cerebral ischemia. J Neurosci 2015; 35:5998-6009. [PMID: 25878273 DOI: 10.1523/jneurosci.3670-14.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PET imaging of nicotinic acetylcholine receptors (nAChRs) could become an effective tool for the diagnosis and therapy evaluation of neurologic diseases. Despite this, the role of nAChRs α4β2 receptors after brain diseases such as cerebral ischemia and its involvement in inflammatory reaction is still largely unknown. To investigate this, we performed in parallel in vivo magnetic resonance imaging (MRI) and positron emission tomography (PET) with 2[(18)F]-fluoro-A85380 and [(11)C]PK11195 at 1, 3, 7, 14, 21, and 28 d after middle cerebral artery occlusion (MCAO) in rats. In the ischemic territory, PET with 2[(18)F]-fluoro-A85380 and [(11)C]PK11195 showed a progressive binding increase from days 3-7, followed by a progressive decrease from days 14-28 after cerebral ischemia onset. Ex vivo immunohistochemistry for the nicotinic α4β2 receptor and the mitochondrial translocator protein (18 kDa) (TSPO) confirmed the PET findings and demonstrated the overexpression of α4β2 receptors in both microglia/macrophages and astrocytes from days 7-28 after experimental ischemic stroke. Likewise, the role played by α4β2 receptors on neuroinflammation was supported by the increase of [(11)C]PK11195 binding in ischemic rats treated with the α4β2 antagonist dihydro-β-erythroidine hydrobromide (DHBE) at day 7 after MCAO. Finally, both functional and behavioral testing showed major impaired outcome at day 1 after ischemia onset, followed by a recovery of the sensorimotor function and dexterity from days 21-28 after experimental stroke. Together, these results suggest that the nicotinic α4β2 receptor could have a key role in the inflammatory reaction underlying cerebral ischemia in rats.
Collapse
|
39
|
Xue J, Yang S, Seng S. Mechanisms of Cancer Induction by Tobacco-Specific NNK and NNN. Cancers (Basel) 2014; 6:1138-56. [PMID: 24830349 PMCID: PMC4074821 DOI: 10.3390/cancers6021138] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/13/2014] [Accepted: 04/28/2014] [Indexed: 11/17/2022] Open
Abstract
Tobacco use is a major public health problem worldwide. Tobacco-related cancers cause millions of deaths annually. Although several tobacco agents play a role in the development of tumors, the potent effects of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are unique. Metabolically activated NNK and NNN induce deleterious mutations in oncogenes and tumor suppression genes by forming DNA adducts, which could be considered as tumor initiation. Meanwhile, the binding of NNK and NNN to the nicotinic acetylcholine receptor promotes tumor growth by enhancing and deregulating cell proliferation, survival, migration, and invasion, thereby creating a microenvironment for tumor growth. These two unique aspects of NNK and NNN synergistically induce cancers in tobacco-exposed individuals. This review will discuss various types of tobacco products and tobacco-related cancers, as well as the molecular mechanisms by which nitrosamines, such as NNK and NNN, induce cancer.
Collapse
Affiliation(s)
- Jiaping Xue
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Suping Yang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Seyha Seng
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
40
|
Lebbe EKM, Peigneur S, Maiti M, Devi P, Ravichandran S, Lescrinier E, Ulens C, Waelkens E, D'Souza L, Herdewijn P, Tytgat J. Structure-function elucidation of a new α-conotoxin, Lo1a, from Conus longurionis. J Biol Chem 2014; 289:9573-83. [PMID: 24567324 DOI: 10.1074/jbc.m114.556175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-Conotoxins are peptide toxins found in the venom of marine cone snails and potent antagonists of various subtypes of nicotinic acetylcholine receptors (nAChRs). nAChRs are cholinergic receptors forming ligand-gated ion channels in the plasma membranes of certain neurons and the neuromuscular junction. Because nAChRs have an important role in regulating transmitter release, cell excitability, and neuronal integration, nAChR dysfunctions have been implicated in a variety of severe pathologies such as epilepsy, myasthenic syndromes, schizophrenia, Parkinson disease, and Alzheimer disease. To expand the knowledge concerning cone snail toxins, we examined the venom of Conus longurionis. We isolated an 18-amino acid peptide named α-conotoxin Lo1a, which is active on nAChRs. To the best of our knowledge, this is the first characterization of a conotoxin from this species. The peptide was characterized by electrophysiological screening against several types of cloned nAChRs expressed in Xenopus laevis oocytes. The three-dimensional solution structure of the α-conotoxin Lo1a was determined by NMR spectroscopy. Lo1a, a member of the α4/7 family, blocks the response to acetylcholine in oocytes expressing α7 nAChRs with an IC50 of 3.24 ± 0.7 μM. Furthermore, Lo1a shows a high selectivity for neuronal versus muscle subtype nAChRs. Because Lo1a has an unusual C terminus, we designed two mutants, Lo1a-ΔD and Lo1a-RRR, to investigate the influence of the C-terminal residue. Lo1a-ΔD has a C-terminal Asp deletion, whereas in Lo1a-RRR, a triple-Arg tail replaces the Asp. They blocked the neuronal nAChR α7 with a lower IC50 value, but remarkably, both adopted affinity for the muscle subtype α1β1δε.
Collapse
Affiliation(s)
- Eline K M Lebbe
- From Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Scaffold ranking and positional scanning utilized in the discovery of nAChR-selective compounds suitable for optimization studies. J Med Chem 2013; 56:10103-17. [PMID: 24274400 DOI: 10.1021/jm401543h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nicotine binds to nicotinic acetylcholine receptors (nAChR), which can exist as many different subtypes. The α4β2 nAChR is the most prevalent subtype in the brain and possesses the most evidence linking it to nicotine seeking behavior. Herein we report the use of mixture based combinatorial libraries for the rapid discovery of a series of α4β2 nAChR selective compounds. Further chemistry optimization provided compound 301, which was characterized as a selective α4β2 nAChR antagonist. This compound displayed no agonist activity but blocked nicotine-induced depolarization of HEK cells with an IC50 of approximately 430 nM. 301 demonstrated nearly 500-fold selectivity for binding and 40-fold functional selectivity for α4β2 over α3β4 nAChR. In total over 5 million compounds were assessed through the use of just 170 samples in order to identify a series of structural analogues suitable for future optimization toward the goal of developing clinically relevant smoking cessation medications.
Collapse
|
42
|
Piccinotti S, Kirchhausen T, Whelan SPJ. Uptake of rabies virus into epithelial cells by clathrin-mediated endocytosis depends upon actin. J Virol 2013; 87:11637-47. [PMID: 23966407 PMCID: PMC3807345 DOI: 10.1128/jvi.01648-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/15/2013] [Indexed: 12/17/2022] Open
Abstract
Rabies virus (RABV) causes a fatal zoonotic encephalitis. Disease symptoms require replication and spread of the virus within neuronal cells; however, in infected animals as well as in cell culture the virus replicates in a broad range of cell types. Here we use a single-cycle RABV and a recombinant vesicular stomatitis virus (rVSV) in which the glycoprotein (G) was replaced with that of RABV (rVSV RABV G) to examine RABV uptake into the African green monkey kidney cell line BS-C-1. Combining biochemical studies and real-time spinning-disk confocal fluorescence microscopy, we show that the predominant entry pathway of RABV particles into BS-C-1 cells is clathrin dependent. Viral particles enter cells in pits with elongated structures and incomplete clathrin coats which depend upon actin to complete the internalization process. By measuring the time of internalization and the abundance of the clathrin adaptor protein AP2, we further show that the pits that internalize RABV particles are similar to those that internalize VSV particles. Pharmacological perturbations of dynamin or of actin polymerization inhibit productive infection, linking our observations on particle uptake with viral infectivity. This work extends to RABV particles the finding that clathrin-mediated endocytosis of rhabdoviruses proceeds through incompletely coated pits which depend upon actin.
Collapse
Affiliation(s)
| | - Tomas Kirchhausen
- Program in Virology
- Department of Cell Biology Harvard Medical School, Boston, Massachusetts, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
43
|
Wu J, Perry DC, Bupp JE, Jiang F, Polgar WE, Toll L, Zaveri NT. [¹²⁵I]AT-1012, a new high affinity radioligand for the α3β4 nicotinic acetylcholine receptors. Neuropharmacology 2013; 77:193-9. [PMID: 24095990 DOI: 10.1016/j.neuropharm.2013.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 09/20/2013] [Accepted: 09/22/2013] [Indexed: 11/29/2022]
Abstract
Recent genetic and pharmacological studies have implicated the α3, β4 and α5 subunits of the nicotinic acetylcholine receptor (nAChR) in dependence to nicotine and other abused drugs and nicotine withdrawal. The α3β4* nAChR subtype has been shown to co-assemble with the α5 or β3 nAChR subunits, and is found mainly in the autonomic ganglia and select brain regions. It has been difficult to study the α3β4 nAChR because there have been no selective nonpeptidic ligands available to independently examine its pharmacology. We recently reported the synthesis of a [(125)I]-radiolabeled analog of a high affinity, selective small-molecule α3β4 nAChR ligand, AT-1012. We report here the vitro characterization of this radioligand in receptor binding and in vitro autoradiographic studies targeting the α3β4* nAChR. Binding of [(125)I]AT-1012 was characterized at the rat α3β4 and α4β2 nAChR transfected into HEK cells, as well as at the human α3β4α5 nAChR in HEK cells. Binding affinity of [(125)I]AT-1012 at the rat α3β4 nAChR was 1.4 nM, with a B(max) of 10.3 pmol/mg protein, similar to what was determined for unlabeled AT-1012 using [(3)H]epibatidine. Saturation isotherms suggested that [(125)I]AT-1012 binds to a single site on the α3β4 nAChR. Similar high binding affinity was also observed for [(125)I]AT-1012 at the human α3β4α5 nAChR transfected into HEK cells. [(125)I]AT-1012 did not bind with high affinity to membranes from α4β2 nAChR-transfected HEK cells. Binding studies with [(3)H]epibatidine further confirmed that AT-1012 had over 100-fold binding selectivity for α3β4 over α4β2 nAChR. K(i) values determined for known nAChR compounds using [(125)I]AT-1012 as radioligand were comparable to those obtained with [(3)H]epibatidine. [(125)I]AT-1012 was also used to label α3β4 nAChR in rat brain slices in vitro using autoradiography, which showed highly localized binding of the radioligand in brain regions consistent with the discreet localization of the α3β4 nAChR. We demonstrate that [(125)I]AT-1012 is an excellent tool for labeling the α3β4 nAChR in the presence of other nAChR subtypes.
Collapse
Affiliation(s)
- Jinhua Wu
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - David C Perry
- Department of Pharmacology & Physiology, George Washington University, 2300 Eye St NW, Washington, DC 20037, USA
| | - James E Bupp
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Faming Jiang
- Astraea Therapeutics, 320 Logue Avenue, Suite 142, Mountain View, CA 94043, USA
| | - Willma E Polgar
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Lawrence Toll
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Nurulain T Zaveri
- Astraea Therapeutics, 320 Logue Avenue, Suite 142, Mountain View, CA 94043, USA.
| |
Collapse
|
44
|
Piao MH, Liu Y, Wang YS, Qiu JP, Feng CS. Volatile anesthetic isoflurane inhibits LTP induction of hippocampal CA1 neurons through α4β2 nAChR subtype-mediated mechanisms. ACTA ACUST UNITED AC 2013; 32:e135-41. [PMID: 24011619 DOI: 10.1016/j.annfar.2013.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 05/21/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE Volatile anesthetic isoflurane contributes to postoperative cognitive dysfunction and inhibition of long-term potentiation (LTP), a synaptic model of learning and memory, but the mechanisms are uncertain. Central neuronal α4β2 subtype nicotinic acetylcholine receptors (nAChRs) are involved in the induction of LTP in the hippocampus. Isoflurane inhibits α4β2 nAChRs at concentrations lower than those used for anesthesia. Therefore, we hypothesized that isoflurane-inhibited LTP induction of hippocampal CA1 neurons via α4β2 nAChRs subtype inhibition. METHODS Transverse hippocampal slices (400μm thick) were obtained from male rats (6-8 weeks old). Population spikes were evoked using extracellular electrodes by electrical stimulation of the Schaffer collateral-commissural pathway of rat hippocampal slices. LTP was induced using high frequency stimulation (HFS; 100Hz, 1s). Clinically relevant concentrations (0.125-0.5mM) of isoflurane with or without nicotine (nAChRs agonist), mecamylamine (nAChRs antagonist), 3-[2(S)-2-azetidinylmethoxy] pyridine (A85380) and epibatidine (α4β2 nAChRs agonist), dihydro β erythroidine (DHβE) (α4β2 nAChRs antagonist) were added to the perfusion solution 20min before HFS to test their effects on LTP by HFS respectively. RESULTS A brief HFS induced stable LTP in rat hippocampal slices, but LTP was significantly inhibited in the presence of isoflurane at concentrations of 0.125-0.5mM. The inhibitive effect of isoflurane on LTP was not only reversible and could be prevented by nAChRs agonist nicotine and α4β2 nAChRs agonist A85380 and epibatidine, but also mimicked and potentiated by nAChRs antagonist mecamylamine and α4β2 nAChRs antagonist DHβE. CONCLUSIONS Inhibition of α4β2 nAChRs subtype of hippocampus participates in isoflurane-mediated LTP inhibition.
Collapse
Affiliation(s)
- M-H Piao
- Department of anesthesiology, the first hospital of Jilin university, n(o) 71, Xinmin St, 130021 Changchun, China; School of public health, Jilin university, Changchun 130021, China
| | | | | | | | | |
Collapse
|
45
|
Inflammatory activation and cholinergic anti-inflammatory system in eating disorders. Brain Behav Immun 2013; 32:33-9. [PMID: 23624297 DOI: 10.1016/j.bbi.2013.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 11/21/2022] Open
Abstract
Dysfunctional serotoninergic regulation and hypothalamic-pituitary-adrenal (HPA) axis overreactivity have been consistently reported in research studies with eating disorders (ED). In addition, the links between stress response, serotonin function, HPA axis and inflammatory mechanisms in ED have also been suggested in a number of studies. In our study, inflammatory parameters in white blood cells were investigated in 26 female patients with ED and 25 healthy control subjects matched for sex, age and ethnicity. Patients were free of medication for at least two weeks at the time of the study. Results showed a significant increase in plasma levels of the proinflammatory cytokine IL1β and the protein expression of cyclooxygenase 2 (COX2) in peripheral mononuclear blood cells (PMBCs) in ED patients compared with controls. As well as a significant increase of the oxidative-nitrosative marker TBARS (Thiobarbituric Acid Reactive Substances) in plasma. These findings were associated with increased expression of the alpha7 subunit of the nicotinic receptor (α7nAChR) in PMBC in ED patients independent of plasma cotinine levels. These results suggest that a pro-inflammatory and oxidant phenotype might be present in ED patients. Further research on cellular inflammatory and anti-inflammatory pathways might be oriented to investigate differences between ED subtypes and to search for new potential targets for pharmacological treatment.
Collapse
|
46
|
Chatterjee S, Santos N, Holgate J, Haass-Koffler CL, Hopf FW, Kharazia V, Lester H, Bonci A, Bartlett SE. The α5 subunit regulates the expression and function of α4*-containing neuronal nicotinic acetylcholine receptors in the ventral-tegmental area. PLoS One 2013; 8:e68300. [PMID: 23869214 PMCID: PMC3712017 DOI: 10.1371/journal.pone.0068300] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/02/2013] [Indexed: 11/18/2022] Open
Abstract
Human genetic association studies have shown gene variants in the α5 subunit of the neuronal nicotinic receptor (nAChR) influence both ethanol and nicotine dependence. The α5 subunit is an accessory subunit that facilitates α4* nAChRs assembly in vitro. However, it is unknown whether this occurs in the brain, as there are few research tools to adequately address this question. As the α4*-containing nAChRs are highly expressed in the ventral tegmental area (VTA) we assessed the molecular, functional and pharmacological roles of α5 in α4*-containing nAChRs in the VTA. We utilized transgenic mice α5+/+(α4YFP) and α5-/-(α4YFP) that allow the direct visualization and measurement of α4-YFP expression and the effect of the presence (α5+/+) and absence of α5 (-/-) subunit, as the antibodies for detecting the α4* subunits of the nAChR are not specific. We performed voltage clamp electrophysiological experiments to study baseline nicotinic currents in VTA dopaminergic neurons. We show that in the presence of the α5 subunit, the overall expression of α4 subunit is increased significantly by 60% in the VTA. Furthermore, the α5 subunit strengthens baseline nAChR currents, suggesting the increased expression of α4* nAChRs to be likely on the cell surface. While the presence of the α5 subunit blunts the desensitization of nAChRs following nicotine exposure, it does not alter the amount of ethanol potentiation of VTA dopaminergic neurons. Our data demonstrates a major regulatory role for the α5 subunit in both the maintenance of α4*-containing nAChRs expression and in modulating nicotinic currents in VTA dopaminergic neurons. Additionally, the α5α4* nAChR in VTA dopaminergic neurons regulates the effect of nicotine but not ethanol on currents. Together, the data suggest that the α5 subunit is critical for controlling the expression and functional role of a population of α4*-containing nAChRs in the VTA.
Collapse
Affiliation(s)
- Susmita Chatterjee
- Ernest Gallo Clinic and Research Center at the University of California, San Francisco, Emeryville, California, United States of America
| | - Nathan Santos
- Ernest Gallo Clinic and Research Center at the University of California, San Francisco, Emeryville, California, United States of America
| | - Joan Holgate
- Translational Research Institute, Institute for Health and Biomedical Sciences, Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Carolina L. Haass-Koffler
- Ernest Gallo Clinic and Research Center at the University of California, San Francisco, Emeryville, California, United States of America
- Clinical Pharmacology and Experimental Therapeutics, School of Medicine, University of California, San Francisco, California, United States of America
| | - F. Woodward Hopf
- Ernest Gallo Clinic and Research Center at the University of California, San Francisco, Emeryville, California, United States of America
- Department of Neurology, University of California, San Francisco, California, United States of America
| | - Viktor Kharazia
- Ernest Gallo Clinic and Research Center at the University of California, San Francisco, Emeryville, California, United States of America
| | - Henry Lester
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, United States of America
- Department of Neurology, University of California, San Francisco, California, United States of America
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Selena E. Bartlett
- Translational Research Institute, Institute for Health and Biomedical Sciences, Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
- * E-mail :
| |
Collapse
|
47
|
Jadey S, Purohit P, Auerbach A. Action of nicotine and analogs on acetylcholine receptors having mutations of transmitter-binding site residue αG153. ACTA ACUST UNITED AC 2013; 141:95-104. [PMID: 23277476 PMCID: PMC3536520 DOI: 10.1085/jgp.201210896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A primary target for nicotine is the acetylcholine receptor channel (AChR). Some of the ability of nicotine to activate differentially AChR subtypes has been traced to a transmitter-binding site amino acid that is glycine in lower affinity and lysine in higher affinity AChRs. We studied the effects of mutations of this residue (αG153) in neuromuscular AChRs activated by nicotine and eight other agonists including nornicotine and anabasine. All of the mutations increased the unliganded gating equilibrium constant. The affinity of the resting receptor (Kd) and the net binding energy from the agonist for gating (ΔGB) were estimated by cross-concentration fitting of single-channel currents. In all but one of the agonist/mutant combinations there was a moderate decrease in Kd and essentially no change in ΔGB. The exceptional case was nicotine plus lysine, which showed a large, >8,000-fold decrease in Kd but no change in ΔGB. The extraordinary specificity of this combination leads us to speculate that AChRs with a lysine at position αG153 may be exposed to a nicotine-like compound in vivo.
Collapse
Affiliation(s)
- Snehal Jadey
- Department of Physiology and Biophysics, State University of New York, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
48
|
Swartz MM, Linn DM, Linn CL. Tropisetron as a neuroprotective agent against glutamate-induced excitotoxicity and mechanisms of action. Neuropharmacology 2013; 73:111-21. [PMID: 23727438 DOI: 10.1016/j.neuropharm.2013.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 04/23/2013] [Accepted: 05/07/2013] [Indexed: 11/30/2022]
Abstract
The objective of this study was to determine the neuroprotective role of tropisetron on retinal ganglion cells (RGCs) as well as to explore the possible mechanisms associated with alpha7 nAChR-induced neuroprotection. Adult pig RGCs were isolated from all other retinal tissue using a two-step panning technique. Once isolated, RGCs were cultured for 3 days under control untreated conditions, in the presence of 500 μM glutamate to induce excitotoxicity, and when tropisetron was applied before glutamate to induce neuroprotection. 500 μM glutamate decreased RGC survival by an average of 62% compared to control conditions. However, RGCs pretreated with 100 nM tropisetron before glutamate increased cell survival to an average of 105% compared to controls. Inhibition studies using the alpha7 nAChR antagonist, MLA (10 nM), support the hypothesis that tropisetron is an effective neuroprotective agent against glutamate-induced excitotoxicity; mediated by α7 nAChR activation. ELISA studies were performed to determine if signaling cascades normally associated with excitotoxicity and neuroprotection were up- or down-regulated after tropisetron treatment. Tropisetron had no discernible effects on pAkt levels but significantly decreased p38 MAPK levels associated with excitotoxicity from an average of 15 ng/ml to 6 ng/ml. Another mechanism shown to be associated with neuroprotection involves internalization of NMDA receptors. Double-labeled immunocytochemistry and electrophysiology studies provided further evidence that tropisetron caused internalization of NMDA receptor subunits. The findings of this study suggest that tropisetron could be an effective therapeutic agent for the treatment of degenerative disorders of the central nervous system that involves excitotoxicity.
Collapse
Affiliation(s)
- Michael M Swartz
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI 49008, USA
| | | | | |
Collapse
|
49
|
Tasso B, Novelli F, Sparatore F, Fasoli F, Gotti C. (+)-Laburnamine, a natural selective ligand and partial agonist for the α4β2 nicotinic receptor subtype. JOURNAL OF NATURAL PRODUCTS 2013; 76:727-731. [PMID: 23461628 DOI: 10.1021/np3007028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
(+)-Laburnamine (1), a rare alkaloid extracted from Laburnum anagyroides seeds (∼4 mg from 1 kg), was shown to bind with high affinity (Ki, 293 nM) to the α4β2 nicotinic receptor subtype, which is, respectively, 126 and 136 times higher than to the α3β4 (Ki 37 μM) and α7 subtypes (Ki 40 μM). When its ability to release [(3)H]-dopamine from striatal slices was tested in a functional assay, compound 1 behaved as a partial agonist with an EC50 of 5.8 μM and an Emax that was 43% that of nicotine. When incubated with nicotine in the same assay, 1 prevented a maximal effect from being reached.
Collapse
Affiliation(s)
- Bruno Tasso
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, I-16132 Genova, Italy.
| | | | | | | | | |
Collapse
|
50
|
Horti AG, Kuwabara H, Holt DP, Dannals RF, Wong DF. Recent PET radioligands with optimal brain kinetics for imaging nicotinic acetylcholine receptors. J Labelled Comp Radiopharm 2013; 56:159-66. [DOI: 10.1002/jlcr.3020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 11/27/2012] [Accepted: 12/07/2012] [Indexed: 01/28/2023]
Affiliation(s)
- Andrew G. Horti
- Division of Nuclear Medicine, Department of Radiology; Johns Hopkins University; Baltimore; MD; USA
| | - Hiroto Kuwabara
- Division of Nuclear Medicine, Department of Radiology; Johns Hopkins University; Baltimore; MD; USA
| | - Daniel P. Holt
- Division of Nuclear Medicine, Department of Radiology; Johns Hopkins University; Baltimore; MD; USA
| | - Robert F. Dannals
- Division of Nuclear Medicine, Department of Radiology; Johns Hopkins University; Baltimore; MD; USA
| | - Dean F. Wong
- Division of Nuclear Medicine, Department of Radiology; Johns Hopkins University; Baltimore; MD; USA
| |
Collapse
|