1
|
Sun Y, Tong H, Chu X, Li Y, Zhang J, Ding Y, Zhang S, Gui X, Chen C, Xu M, Li Z, Gardiner EE, Andrews RK, Zeng L, Xu K, Qiao J. Notch1 regulates hepatic thrombopoietin production. Blood 2024; 143:2778-2790. [PMID: 38603632 DOI: 10.1182/blood.2023023559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
ABSTRACT Notch signaling regulates cell-fate decisions in several developmental processes and cell functions. However, the role of Notch in hepatic thrombopoietin (TPO) production remains unclear. We noted thrombocytopenia in mice with hepatic Notch1 deficiency and so investigated TPO production and other features of platelets in these mice. We found that the liver ultrastructure and hepatocyte function were comparable between control and Notch1-deficient mice. However, the Notch1-deficient mice had significantly lower plasma TPO and hepatic TPO messenger RNA levels, concomitant with lower numbers of platelets and impaired megakaryocyte differentiation and maturation, which were rescued by addition of exogenous TPO. Additionally, JAK2/STAT3 phosphorylation was significantly inhibited in Notch1-deficient hepatocytes, consistent with the RNA-sequencing analysis. JAK2/STAT3 phosphorylation and TPO production was also impaired in cultured Notch1-deficient hepatocytes after treatment with desialylated platelets. Consistently, hepatocyte-specific Notch1 deletion inhibited JAK2/STAT3 phosphorylation and hepatic TPO production induced by administration of desialylated platelets in vivo. Interestingly, Notch1 deficiency downregulated the expression of HES5 but not HES1. Moreover, desialylated platelets promoted the binding of HES5 to JAK2/STAT3, leading to JAK2/STAT3 phosphorylation and pathway activation in hepatocytes. Hepatocyte Ashwell-Morell receptor (AMR), a heterodimer of asialoglycoprotein receptor 1 [ASGR1] and ASGR2, physically associates with Notch1, and inhibition of AMR impaired Notch1 signaling activation and hepatic TPO production. Furthermore, blockage of Delta-like 4 on desialylated platelets inhibited hepatocyte Notch1 activation and HES5 expression, JAK2/STAT3 phosphorylation, and subsequent TPO production. In conclusion, our study identifies a novel regulatory role of Notch1 in hepatic TPO production, indicating that it might be a target for modulating TPO level.
Collapse
Affiliation(s)
- Yueyue Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Huan Tong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Xiang Chu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yingying Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Jie Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yangyang Ding
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Sixuan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Xiang Gui
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Chong Chen
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Elizabeth E Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Robert K Andrews
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| |
Collapse
|
2
|
Kim H, Jarocha D, Johnson I, Ahn H, Hlinka N, French DL, Rauova L, Lee K, Poncz M. Studies of infused megakaryocytes into mice support a "catch-and-release" model of pulmonary-centric thrombopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597316. [PMID: 38895231 PMCID: PMC11185690 DOI: 10.1101/2024.06.04.597316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Many aspects of thrombopoiesis, the release of platelets from megakaryocytes (Mks), remain under debate, including where this process occurs. Murine lung in situ -microscopy studies suggested that a significant fraction of circulating platelets were released from lung-entrapped, marrow-derived Mks. We now confirm these in situ studies that endogenous mMks are entrapped in the lungs and show that intravenously infused in vitro -differentiated, mature murine (m) and human (h) Mks are similarly entrapped followed by shedding of their cytoplasm over ∼30 minutes with a peak number of released platelets occurring 1.5-4 hours later. However, while infused Mks from both species shed large intrapulmonary cytoplasmic fragments that underwent further processing into platelet-sized fragments, the two differed: many mMks escaped from and then recycled back to the lungs, while most hMks were enucleated upon first intrapulmonary passage. Infused immature hMks, inflammatory hMks, umbilical cord-blood-derived hMks and immortalized Mk progenitor cell (imMKCL)-derived hMks were also entrapped in the lung of recipient mice, and released their cytoplasm, but did so to different degrees. Intraarterial infused hMks resulted in few Mks being entrapped in tissues other than the lungs and was accompanied by a blunted and delayed rise in circulating human platelets. These studies demonstrate that the lung entraps and processes both circulating Mks and released large cytoplasmic fragments consistent with a recent lung/heart murine study and support a pulmonary-centric "catch-and-release" model of thrombopoiesis. Thus, thrombopoiesis is a drawn-out process with the majority of cytoplasmic processing derived from Mks occurring in the pulmonary bed. Key Points Infused in vitro -differentiated megakaryocytes synchronously release cytoplasmic fragments highly selectively in the pulmonary bed. Large, released megakaryocyte fragments recycle to the lungs, undergo further fission, terminally form platelets.
Collapse
|
3
|
Yang J, Xiao L, Zhang L, Luo G, Ma Y, Wang X, Zhang Y. Platelets: A Potential Factor that Offers Strategies for Promoting Bone Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38482796 DOI: 10.1089/ten.teb.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bone defects represent a prevalent category of clinical injuries, causing significant pain and escalating health care burdens. Effectively addressing bone defects is thus of paramount importance. Platelets, formed from megakaryocyte lysis, have emerged as pivotal players in bone tissue repair, inflammatory responses, and angiogenesis. Their intracellular storage of various growth factors, cytokines, and membrane protein receptors contributes to these crucial functions. This article provides a comprehensive overview of platelets' roles in hematoma structure, inflammatory responses, and angiogenesis throughout the process of fracture healing. Beyond their application in conjunction with artificial bone substitute materials for treating bone defects, we propose the potential future use of anticoagulants such as heparin in combination with these materials to regulate platelet number and function, thereby promoting bone healing. Ultimately, we contemplate whether manipulating platelet function to modulate bone healing could offer innovative ideas and directions for the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Jingjing Yang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
- Guizhou Provincial Key Laboratory of Medicinal Biotechnology in Colleges and Universities, Zunyi Medical University, Zunyi, China
| | - Lan Xiao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Medicine and Dentistry, Griffith University, Queensland, Australia
| | - Lijia Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| | - Guochen Luo
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Provincial Key Laboratory of Medicinal Biotechnology in Colleges and Universities, Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
García-Culebras A, Cuartero MI, Peña-Martínez C, Moraga A, Vázquez-Reyes S, de Castro-Millán FJ, Cortes-Canteli M, Lizasoain I, Moro MÁ. Myeloid cells in vascular dementia and Alzheimer's disease: Possible therapeutic targets? Br J Pharmacol 2024; 181:777-798. [PMID: 37282844 DOI: 10.1111/bph.16159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Growing evidence supports the suggestion that the peripheral immune system plays a role in different pathologies associated with cognitive impairment, such as vascular dementia (VD) or Alzheimer's disease (AD). The aim of this review is to summarize, within the peripheral immune system, the implications of different types of myeloid cells in AD and VD, with a special focus on post-stroke cognitive impairment and dementia (PSCID). We will review the contributions of the myeloid lineage, from peripheral cells (neutrophils, platelets, monocytes and monocyte-derived macrophages) to central nervous system (CNS)-associated cells (perivascular macrophages and microglia). Finally, we will evaluate different potential strategies for pharmacological modulation of pathological processes mediated by myeloid cell subsets, with an emphasis on neutrophils, their interaction with platelets and the process of immunothrombosis that triggers neutrophil-dependent capillary stall and hypoperfusion, as possible effector mechanisms that may pave the way to novel therapeutic avenues to stop dementia, the epidemic of our time. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Alicia García-Culebras
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, UCM, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - María Isabel Cuartero
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Carolina Peña-Martínez
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Ana Moraga
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, UCM, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Sandra Vázquez-Reyes
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Francisco Javier de Castro-Millán
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Marta Cortes-Canteli
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Ángeles Moro
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
5
|
Yang ML, Lin CL, Chen YC, Lu IA, Su BH, Chen YH, Liu KT, Wu CL, Shiau AL. Prothymosin α accelerates dengue virus-induced thrombocytopenia. iScience 2024; 27:108422. [PMID: 38213625 PMCID: PMC10783621 DOI: 10.1016/j.isci.2023.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024] Open
Abstract
Thrombocytopenia is the hallmark finding in dengue virus (DENV) infection. Prothymosin α (ProT) has both intracellular and extracellular functions involved in cell cycle progression, cell differentiation, gene regulation, oxidative stress response, and immunomodulation. In this study, we found that ProT levels were elevated in dengue patient sera as well as DENV-infected megakaryoblasts and their culture supernatants. ProT transgenic mice had reduced platelet counts with prolonged bleeding times. Upon treatment with DENV plus anti-CD41 antibody, they exhibited severe skin hemorrhage. Furthermore, overexpression of ProT suppressed megakaryocyte differentiation. Infection with DENV inhibited miR-126 expression, upregulated DNA (cytosine-5)-methyltransferase 1 (DNMT1), downregulated GATA-1, and increased ProT expression. Upregulation of ProT led to Nrf2 activation and reduced reactive oxygen species production, thereby suppressing megakaryopoiesis. We report the pathophysiological role of ProT in DENV infection and propose an involvement of the miR-126-DNMT1-GATA-1-ProT-Nrf2 signaling axis in DENV-induced thrombocytopenia.
Collapse
Affiliation(s)
- Mei-Lin Yang
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ling Lin
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Yi-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-An Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bing-Hua Su
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious Diseases, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kuan-Ting Liu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Li Shiau
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
An O, Deppermann C. Platelet lifespan and mechanisms for clearance. Curr Opin Hematol 2024; 31:6-15. [PMID: 37905750 DOI: 10.1097/moh.0000000000000792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
PURPOSE OF REVIEW Activated or aged platelets are removed from circulation under (patho)physiologic conditions, the exact mechanism of platelet clearance under such conditions remains unclear and are currently being investigated. This review focuses on recent findings and controversies regarding platelet clearance and the disruption of platelet life cycle. RECENT FINDINGS The platelet life span is determined by glycosylation of platelet surface receptors with sialic acid. Recently, it was shown that platelet activation and granule release leads to desialylation of glycans and accelerated clearance of platelets under pathological conditions. This phenomenon was demonstrated to be a main reason for thrombocytopenia being a complication in several infections and immune disorders. SUMMARY Although we have recently gained some insight into how aged platelets are cleared from circulation, we are still not seeing the full picture. Further investigations of the platelet clearance pathways under pathophysiologic conditions are needed as well as studies to unravel the connection between platelet clearance and platelet production.
Collapse
Affiliation(s)
- Olga An
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | |
Collapse
|
7
|
Thanasegaran S, Daimon E, Shibukawa Y, Yamazaki N, Okamoto N. Modelling Takenouchi-Kosaki syndrome using disease-specific iPSCs. Stem Cell Res 2023; 73:103221. [PMID: 37918315 DOI: 10.1016/j.scr.2023.103221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Takenouchi-Kosaki Syndrome (TKS) is a congenital multi-organ disorder caused by the de novo missense mutation c.191A > G p. Tyr64Cys (Y64C) in the CDC42 gene. We previously elucidated the functional abnormalities and thrombopoietic effects of Y64C using HEK293 and MEG01 cells. In the present study, we used iPSCs derived from TKS patients to model the disease and successfully recapitulated macrothrombocytopenia, a prominent TKS phenotype. The megakaryopoietic differentiation potential of TKS-iPSCs and platelet production capacity were examined using an efficient platelet production method redesigned from existing protocols. The results obtained showed that TKS-iPSCs produced fewer hematopoietic progenitor cells, exhibited defective megakaryopoiesis, and released platelets with an abnormally low count and giant morphology. We herein report the first analysis of TKS-iPSC-derived megakaryocytes and platelets, and currently utilize this model to perform drug evaluations for TKS. Therefore, our simple yet effective differentiation method, which mimics the disease in a dish, is a feasible strategy for studying hematopoiesis and related diseases.
Collapse
Affiliation(s)
- Suganya Thanasegaran
- Department of Molecular Medicine, Research Institute, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Etsuko Daimon
- Department of Molecular Medicine, Research Institute, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Yukinao Shibukawa
- Department of Molecular Medicine, Research Institute, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Natsuko Yamazaki
- Department of Molecular Medicine, Research Institute, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Nobuhiko Okamoto
- Department of Molecular Medicine, Research Institute, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan.
| |
Collapse
|
8
|
Towards a biomarker for acute arterial thrombosis using complete blood count and white blood cell differential parameters in mice. Sci Rep 2023; 13:4043. [PMID: 36899036 PMCID: PMC10006076 DOI: 10.1038/s41598-023-31122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
There is no blood biomarker diagnostic of arterial thrombosis. We investigated if arterial thrombosis per se was associated with alterations in complete blood count (CBC) and white blood cell (WBC) differential count in mice. Twelve-week-old C57Bl/6 mice were used for FeCl3-mediated carotid thrombosis (n = 72), sham-operation (n = 79), or non-operation (n = 26). Monocyte count (/µL) at 30-min after thrombosis (median 160 [interquartile range 140-280]) was ~ 1.3-fold higher than at 30-min after sham-operation (120 [77.5-170]), and twofold higher than in non-operated mice (80 [47.5-92.5]). At day-1 and -4 post-thrombosis, compared with 30-min, monocyte count decreased by about 6% and 28% to 150 [100-200] and 115 [100-127.5], which however were about 2.1-fold and 1.9-fold higher than in sham-operated mice (70 [50-100] and 60 [30-75], respectively). Lymphocyte counts (/µL) at 1- and 4-days after thrombosis (mean ± SD; 3513 ± 912 and 2590 ± 860) were ~ 38% and ~ 54% lower than those in the sham-operated mice (5630 ± 1602 and 5596 ± 1437, respectively), and ~ 39% and ~ 55% lower than those in non-operated mice (5791 ± 1344). Post-thrombosis monocyte-lymphocyte-ratio (MLR) was substantially higher at all three time-points (0.050 ± 0.02, 0.046 ± 0.025, and 0.050 ± 0.02) vs. sham (0.003 ± 0.021, 0.013 ± 0.004, and 0.010 ± 0.004). MLR was 0.013 ± 0.005 in non-operated mice. This is the first report on acute arterial thrombosis-related alterations in CBC and WBC differential parameters.
Collapse
|
9
|
Liberale L, Kraler S, Puspitasari YM, Bonetti NR, Akhmedov A, Ministrini S, Montecucco F, Marx N, Lehrke M, Hartmann NUK, Beer JH, Wenzl FA, Paneni F, Lüscher TF, Camici GG. SGLT-2 inhibition by empagliflozin has no effect on experimental arterial thrombosis in a murine model of low-grade inflammation. Cardiovasc Res 2022; 119:843-856. [PMID: 35993135 DOI: 10.1093/cvr/cvac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Low-grade inflammation couples dysmetabolic states to insulin resistance and atherosclerotic cardiovascular (CV) disease (ASCVD). Selective sodium-glucose co-transporter 2 (SGLT-2) inhibition by empagliflozin improves clinical outcomes in patients with ASCVD independently of its glucose lowering effects. Yet, its mechanism of action remains largely undetermined. Here, we aimed to test whether empagliflozin affects arterial thrombus formation in baseline (BSL) conditions or low-grade inflammatory states, a systemic milieu shared among patients with ASCVD. METHODS AND RESULTS Sixteen-week-old C57BL/6 mice were randomly assigned to acute administration of empagliflozin (25 mg/kg body weight) or vehicle, of which a subgroup was pre-treated biweekly over 4 weeks with super-low-dose lipopolysaccharide (LPS; 5 ng/kg body weight), before carotid thrombosis was induced by photochemical injury. The between-group difference in Doppler-flow probe detected time-to-occlusion remained within the predefined equivalence margin (Δ = |10.50|), irrespective of low-grade inflammation (95% confidence interval, -9.82 to 8.85 and -9.20 to 9.69), while glucose dropped by 1.64 and 4.84 mmoL/L, respectively. Ex vivo platelet aggregometry suggested similar activation status, corroborated by unchanged circulating platelet-factor 4 plasma levels. In concert, carotid PAI-1 expression and tissue factor (TF) activity remained unaltered upon SGLT-2 inhibition, and no difference in plasma d-dimer levels was detected, suggesting comparable coagulation cascade activation and fibrinolytic activity. In human aortic endothelial cells pre-treated with LPS, empagliflozin neither changed TF activity nor PAI-1 expression. Accordingly, among patients with established ASCVD or at high CV risk randomized to a daily dose of 10 mg empagliflozin signatures of thrombotic (i.e. TF) and fibrinolytic activity (i.e. PAI-1) remained unchanged, while plasma glucose declined significantly during 3 months of follow-up. CONCLUSION SGLT-2 inhibition by empagliflozin does not impact experimental arterial thrombus formation, neither under BSL conditions nor during sustained low-grade inflammation, and has no impact on proxies of thrombotic/fibrinolytic activity in patients with ASCVD. The beneficial pleiotropic effects of empagliflozin are likely independent of pathways mediating arterial thrombosis.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Yustina M Puspitasari
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Nicole R Bonetti
- University Heart Center, Department of Cardiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 16132 Genoa, Italy
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, RWTH, 52074 Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, RWTH, 52074 Aachen, Germany
| | - Niels Ulrik K Hartmann
- Department of Internal Medicine I, University Hospital Aachen, RWTH, 52074 Aachen, Germany
| | - Jürg H Beer
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Department of Internal Medicine, Cantonal Hospital of Baden, 5404 Baden, Switzerland
| | - Florian A Wenzl
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital Zurich, 8091 Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Royal Brompton and Harefield Hospitals and Imperial College, SW3 6NP London, UK
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital Zurich, 8091 Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
10
|
Görner S, Heim C, Weigmann B, von Silva-Tarouca B, Kuckhahn A, Ramsperger-Gleixner M, Zimmermann R, Weyand M, Ensminger SM. Direct Impact of Human Platelets on the Development of Transplant Arteriosclerosis. Transplantation 2022; 106:1180-1192. [PMID: 34468430 DOI: 10.1097/tp.0000000000003935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Platelets play an important role in the pathogenesis of inflammatory and proliferative vascular changes. The aim of this study was to investigate whether human platelets are able to induce transplant arteriosclerosis in a humanized C57/Bl6-Rag2-/-γc-/- mouse xenograft model. METHODS Nonactivated and in vitro-activated human platelets were analyzed and phenotyped for surface markers by flow cytometry. Side branches of human mammary arteries were implanted into the infrarenal aorta of recipients, followed by daily application of human platelets and histological analyzed on day 30 after transplantation. RESULTS Human platelets collected by apheresis had low levels of platelet activation markers. However, after in vitro activation, expression was markedly increased. Sixty minutes after injection in recipient mice, nonactivated human platelets become significantly activated. Increased adhesion of platelets to the vascular endothelium was detected by in vivo fluorescence microscopy. After intravenous injection of nonactivated or activated platelets, human xenografts showed pronounced intimal proliferation. Immunohistological analysis showed that the group treated with activated human platelets exhibited significantly increased intragraft protein expression of intracellular adhesion molecule-1 and platelet-derived growth factor receptor beta and smooth muscle cell migration into the neointima. CONCLUSIONS These data demonstrate that an isolated daily application of both in vivo- and in vitro-activated human platelets results in the development of transplant arteriosclerosis in a humanized mouse transplantation model.
Collapse
Affiliation(s)
- Susann Görner
- Department of Cardiac Surgery, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Christian Heim
- Department of Cardiac Surgery, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Benno Weigmann
- Department of Medicine 1, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | | | - Annika Kuckhahn
- Department of Cardiac Surgery, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | | | - Robert Zimmermann
- Department of Transfusion Medicine, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Michael Weyand
- Department of Cardiac Surgery, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Stephan M Ensminger
- Department of Cardiac Surgery, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
- Present address: Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck, University Hospital Schleswig Holstein, Lübeck, Germany
| |
Collapse
|
11
|
Aiolfi R, Sitia G, Iannacone M, Brunetta I, Guidotti LG, Ruggeri ZM. Arenaviral infection causes bleeding in mice due to reduced serotonin release from platelets. Sci Signal 2022; 15:eabb0384. [PMID: 35192415 DOI: 10.1126/scisignal.abb0384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bleeding correlates with disease severity in viral hemorrhagic fevers. We found that the increase in type I interferon (IFN-I) in mice caused by infection with the Armstrong strain of lymphocytic choriomeningitis virus (LCMV; an arenavirus) reduced the megakaryocytic expression of genes encoding enzymes involved in lipid biosynthesis (cyclooxygenase 1 and thromboxane A synthase 1) and a thrombopoietic transcription factor (Nf-e2). The decreased expression of these genes was associated with reduced numbers of circulating platelets and defects in the arachidonic acid synthetic pathway, thereby suppressing serotonin release from δ-granules in platelets. Bleeding resulted when severe thrombocytopenia and altered platelet function reduced the amount of platelet-derived serotonin below a critical threshold. Bleeding was facilitated by the absence of the activity of the kinase Lyn or the administration of aspirin, an inhibitor of arachidonic acid synthesis. Mouse platelets were not directly affected by IFN-I because they lack the receptor for the cytokine (IFNAR1), suggesting that transfusion of normal platelets into LCMV-infected mice could increase the amount of platelet-released serotonin and help to control hemorrhage.
Collapse
Affiliation(s)
- Roberto Aiolfi
- Department of Molecular Medicine, MERU-Roon Research Center for Vascular Biology, Scripps Research, La Jolla, CA 92037, USA.,Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Sitia
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ivan Brunetta
- Department of Molecular Medicine, MERU-Roon Research Center for Vascular Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Luca G Guidotti
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Zaverio M Ruggeri
- Department of Molecular Medicine, MERU-Roon Research Center for Vascular Biology, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Wang Y, Huo T, Tseng YJ, Dang L, Yu Z, Yu W, Foulks Z, Murdaugh RL, Ludtke SJ, Nakada D, Wang Z. Using Cryo-ET to distinguish platelets during pre-acute myeloid leukemia from steady state hematopoiesis. Commun Biol 2022; 5:72. [PMID: 35058565 PMCID: PMC8776871 DOI: 10.1038/s42003-022-03009-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
Early diagnosis of acute myeloid leukemia (AML) in the pre-leukemic stage remains a clinical challenge, as pre-leukemic patients show no symptoms, lacking any known morphological or numerical abnormalities in blood cells. Here, we demonstrate that platelets with structurally abnormal mitochondria emerge at the pre-leukemic phase of AML, preceding detectable changes in blood cell counts or detection of leukemic blasts in blood. We visualized frozen-hydrated platelets from mice at different time points during AML development in situ using electron cryo-tomography (cryo-ET) and identified intracellular organelles through an unbiased semi-automatic process followed by quantitative measurement. A large proportion of platelets exhibited changes in the overall shape and depletion of organelles in AML. Notably, 23% of platelets in pre-leukemic cells exhibit abnormal, round mitochondria with unfolded cristae, accompanied by a significant drop in ATP levels and altered expression of metabolism-related gene signatures. Our study demonstrates that detectable structural changes in pre-leukemic platelets may serve as a biomarker for the early diagnosis of AML.
Collapse
Affiliation(s)
- Yuewei Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Vascular Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tong Huo
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yu-Jung Tseng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Lan Dang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zhili Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Wenjuan Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zachary Foulks
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
- The summer undergraduate research program (SMART program), Baylor College of Medicine, Houston, TX, USA
| | - Rebecca L Murdaugh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Steven J Ludtke
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- CryoEM/ET core, Baylor College of Medicine, Houston, TX, USA
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Zhao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
- CryoEM/ET core, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
13
|
Effects of Nutrients on Platelet Function: A Modifiable Link between Metabolic Syndrome and Neurodegeneration? Biomolecules 2021; 11:biom11101455. [PMID: 34680088 PMCID: PMC8533544 DOI: 10.3390/biom11101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Metabolic syndrome increases the risk of vascular dementia and other neurodegenerative disorders. Recent studies underline that platelets play an important role in linking peripheral with central metabolic and inflammatory mechanisms. In this narrative review, we address the activation of platelets in metabolic syndrome, their effects on neuronal processes and the role of the mediators (e.g., serotonin, platelet-derived growth factor). Emerging evidence shows that nutritional compounds and their metabolites modulate these interactions-specifically, long chain fatty acids, endocannabinoids and phenolic compounds. We reviewed the role of activated platelets in neurovascular processes and nutritional compounds in platelet activation.
Collapse
|
14
|
Forstner D, Guettler J, Gauster M. Changes in Maternal Platelet Physiology during Gestation and Their Interaction with Trophoblasts. Int J Mol Sci 2021; 22:ijms221910732. [PMID: 34639070 PMCID: PMC8509324 DOI: 10.3390/ijms221910732] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/06/2023] Open
Abstract
Upon activation, maternal platelets provide a source of proinflammatory mediators in the intervillous space of the placenta. Therefore, platelet-derived factors may interfere with different trophoblast subtypes of the developing human placenta and might cause altered hormone secretion and placental dysfunction later on in pregnancy. Increased platelet activation, and the subsequent occurrence of placental fibrinoid deposition, are linked to placenta pathologies such as preeclampsia. The composition and release of platelet-derived factors change over gestation and provide a potential source of predicting biomarkers for the developing fetus and the mother. This review indicates possible mechanisms of platelet-trophoblast interactions and discusses the effect of increased platelet activation on placenta development.
Collapse
|
15
|
Igarashi K, Cabral H, Hong T, Anraku Y, Mpekris F, Stylianopoulos T, Khan T, Matsumoto A, Kataoka K, Matsumoto Y, Yamasoba T. Vascular Bursts Act as a Versatile Tumor Vessel Permeation Route for Blood-Borne Particles and Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103751. [PMID: 34528759 DOI: 10.1002/smll.202103751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Dynamic bursting in tumor vasculature has recently sparked interest as a novel particle transportation route for drug delivery. These bursts facilitate the transport of sub-100 nm nanoparticles into tumors, though their contribution on the access of other blood-borne particles remains unknown. To evaluate the versatility of this phenomenon, the in vivo kinetics of a variety of intravenously injected particles and their penetration in tumor xenografts and allografts are compared. Dextran, polymeric micelles, liposomes, and polymeric vesicles with diameters ranging from 32 to 302 nm are found to colocalize in virtually all vascular bursts. By mathematical modeling, the burst vent size is estimated to be 625 nm or larger, indicating the dynamic and stochastic formation of large permeation routes in tumor vasculature. Furthermore, some burst vents are found to be µm-sized, allowing the transport of 1 µm microspheres. Moreover, antibody drugs and platelets are capable of utilizing vascular burst transportation, demonstrating the application of this phenomenon to other types of therapeutics and cellular components. These findings indicate the vast potential of vascular bursts, extending the biological and therapeutic significance of this phenomenon to a wide range of blood-borne particles and cells.
Collapse
Affiliation(s)
- Kazunori Igarashi
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Taehun Hong
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678, Cyprus
| | - Thahomina Khan
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
- Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tono-machi, Kawasaki-ku, Kawasaki City, Kanagawa, 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tono-machi, Kawasaki-ku, Kawasaki City, Kanagawa, 210-0821, Japan
- Institute of Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| | - Yu Matsumoto
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuya Yamasoba
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
16
|
Marcinczyk N, Misztal T, Gromotowicz-Poplawska A, Zebrowska A, Rusak T, Radziwon P, Chabielska E. Utility of Platelet Endothelial Cell Adhesion Molecule 1 in the Platelet Activity Assessment in Mouse and Human Blood. Int J Mol Sci 2021; 22:ijms22179611. [PMID: 34502520 PMCID: PMC8431756 DOI: 10.3390/ijms22179611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
In our previous study, we introduced the platelet endothelial cell adhesion molecule 1 (PECAM-1)/thrombus ratio, which is a parameter indicating the proportion of PECAM-1 in laser-induced thrombi in mice. Because PECAM-1 is an antithrombotic molecule, the higher the PECAM-1/thrombus ratio, the less activated the platelets. In this study, we used an extracorporeal model of thrombosis (flow chamber model) to verify its usefulness in the assessment of the PECAM-1/thrombus ratio in animal and human studies. Using the lipopolysaccharide (LPS)-induced inflammation model, we also evaluated whether the PECAM-1/thrombus ratio determined in the flow chamber (without endothelium) differed from that calculated in laser-induced thrombosis (with endothelium). We observed that acetylsalicylic acid (ASA) decreased the area of the thrombus while increasing the PECAM-1/thrombus ratio in healthy mice and humans in a dose-dependent manner. In LPS-treated mice, the PECAM-1/thrombus ratio decreased as the dose of ASA increased in both thrombosis models, but the direction of change in the thrombus area was inconsistent. Our study demonstrates that the PECAM-1/thrombus ratio can more accurately describe the platelet activation status than commonly used parameters such as the thrombus area, and, hence, it can be used in both human and animal studies.
Collapse
Affiliation(s)
- Natalia Marcinczyk
- Department of Biopharmacy, Medical University of Bialystok, 15-222 Bialystok, Poland; (A.G.-P.); (E.C.)
- Correspondence: ; Tel.: +48-857-485-607
| | - Tomasz Misztal
- Department of Physical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland; (T.M.); (T.R.)
| | | | - Agnieszka Zebrowska
- Regional Centre for Transfusion Medicine, 15-950 Bialystok, Poland; (A.Z.); (P.R.)
| | - Tomasz Rusak
- Department of Physical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland; (T.M.); (T.R.)
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, 15-950 Bialystok, Poland; (A.Z.); (P.R.)
- Department of Haematology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Ewa Chabielska
- Department of Biopharmacy, Medical University of Bialystok, 15-222 Bialystok, Poland; (A.G.-P.); (E.C.)
| |
Collapse
|
17
|
Nations CC, Pavani G, French DL, Gadue P. Modeling genetic platelet disorders with human pluripotent stem cells: mega-progress but wanting more on our plate(let). Curr Opin Hematol 2021; 28:308-314. [PMID: 34397590 PMCID: PMC8371829 DOI: 10.1097/moh.0000000000000671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Megakaryocytes are rare hematopoietic cells that play an instrumental role in hemostasis, and other important biological processes such as immunity and wound healing. With the advent of cell reprogramming technologies and advances in differentiation protocols, it is now possible to obtain megakaryocytes from any pluripotent stem cell (PSC) via hematopoietic induction. Here, we review recent advances in PSC-derived megakaryocyte (iMK) technology, focusing on platform validation, disease modeling and current limitations. RECENT FINDINGS A comprehensive study confirmed that iMK can recapitulate many transcriptional and functional aspects of megakaryocyte and platelet biology, including variables associated with complex genetic traits such as sex and race. These findings were corroborated by several pathological models in which iMKs revealed molecular mechanisms behind inherited platelet disorders and assessed the efficacy of novel pharmacological interventions. However, current differentiation protocols generate primarily embryonic iMK, limiting the clinical and translational potential of this system. SUMMARY iMK are strong candidates to model pathologic mutations involved in platelet defects and develop innovative therapeutic strategies. Future efforts on generating definitive hematopoietic progenitors would improve current platelet generation protocols and expand our capacity to model neonatal and adult megakaryocyte disorders.
Collapse
Affiliation(s)
- Catriana C Nations
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia
| | - Giulia Pavani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Durán-Laforet V, Peña-Martínez C, García-Culebras A, Alzamora L, Moro MA, Lizasoain I. Pathophysiological and pharmacological relevance of TLR4 in peripheral immune cells after stroke. Pharmacol Ther 2021; 228:107933. [PMID: 34174279 DOI: 10.1016/j.pharmthera.2021.107933] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
Stroke is a very common disease being the leading cause of death and disability worldwide. The immune response subsequent to an ischemic stroke is a crucial factor in its physiopathology and outcome. This response is not limited to the injury site. In fact, the immune response to the ischemic process mobilizes mainly circulating cells which upon activation will be recruited to the injury site. When a stroke occurs, molecules that are usually retained inside the cell bodies are released into the extracellular space by uncontrolled cell death. These molecules can bind to the Toll-like receptor 4 (TLR4) in circulating immune cells which are then activated, eliciting, although not exclusively, the inflammatory response to the stroke. In this review, we present an up-to-date summary of the role of the different peripheral immune cells in stroke as well as the role of TLR4 in the function of each cell type in ischemia. Also, we summarize the different antagonists developed against TLR4 and their potential as a pharmacological tool for stroke treatment.
Collapse
Affiliation(s)
- V Durán-Laforet
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain.
| | - C Peña-Martínez
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain
| | - A García-Culebras
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - L Alzamora
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain
| | - M A Moro
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - I Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
19
|
Orive G, Anitua E. Platelet-rich therapies as an emerging platform for regenerative medicine. Expert Opin Biol Ther 2021; 21:1603-1608. [PMID: 34043484 DOI: 10.1080/14712598.2021.1936495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The combination of human plasma components with the multiple secretome from platelets has provided a new biological tool that is shaping a new future for its direct application in tissue regeneration as well as in cell culture and advanced therapy by means of its use as a clinical-grade supplement. AREAS COVERED Some relevant aspects related to the biology, growth factor delivery and molecular pathways driving the biological effects of platelet-rich therapies are summarized. Their use as clinical-grade cell supplements and advanced therapies is also carefully described. EXPERT OPINION Platelet-rich plasma therapies, and especially PRGF, contain an incredible number of biologically active agents that may exert regenerative and therapeutic potential. Here, we highlight the latest advances in this biological approach for the delivery of autologous growth factors with some of the recent new applications including the development of a clinical-grade supplement for advanced therapy.
Collapse
Affiliation(s)
- Gorka Orive
- BTI Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (Upv/ehu-fundación Eduardo Anitua), Vitoria, Spain.,Department of Pharmacy, NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo De La Universidad 7, Vitoria-Gasteiz, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (Upv/ehu-fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
20
|
Hamad MA, Schanze N, Schommer N, Nührenberg T, Duerschmied D. Reticulated Platelets-Which Functions Have Been Established by In Vivo and In Vitro Data? Cells 2021; 10:cells10051172. [PMID: 34065800 PMCID: PMC8150321 DOI: 10.3390/cells10051172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Reticulated platelets (RP) are the youngest platelet fraction released into the circulation. These immature platelets have increased RNA content, a larger cell volume, more dense granules, higher levels of surface activation markers and are thought to be more reactive compared to their mature counterparts. RP have been associated with cardiovascular disease, diabetes and increased mortality. Yet only a few animal studies investigating RP have been conducted so far and further investigations are warranted. Established methods to count RP are flow cytometry (staining with thiazole orange or SYTO13) or fully automated hematology analyzers (immature platelet fraction, IPF). IPF has been established as a diagnostic parameter in thrombocytopenia, cardiovascular disease and, in particular, the response to antiplatelet therapy. This review seeks to provide an overview of the key features of RP as well as preanalytical and analytical aspects that need to be considered when working with this platelet population.
Collapse
Affiliation(s)
- Muataz Ali Hamad
- Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany; (N.S.); (N.S.); (D.D.)
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Correspondence: ; Tel.: +49-761-270-70470
| | - Nancy Schanze
- Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany; (N.S.); (N.S.); (D.D.)
| | - Nicolas Schommer
- Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany; (N.S.); (N.S.); (D.D.)
| | - Thomas Nührenberg
- Department of Cardiology and Angiology II, Heart Center, Faculty of Medicine, University of Freiburg, 79189 Bad Krozingen, Germany;
| | - Daniel Duerschmied
- Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany; (N.S.); (N.S.); (D.D.)
| |
Collapse
|
21
|
Poventud-Fuentes I, Kwon KW, Seo J, Tomaiuolo M, Stalker TJ, Brass LF, Huh D. A Human Vascular Injury-on-a-Chip Model of Hemostasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004889. [PMID: 33150735 PMCID: PMC8049960 DOI: 10.1002/smll.202004889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Indexed: 05/02/2023]
Abstract
Hemostasis is an innate protective mechanism that plays a central role in maintaining the homeostasis of the vascular system during vascular injury. Studying this essential physiological process is often challenged by the difficulty of modeling and probing the complex dynamics of hemostatic responses in the native context of human blood vessels. To address this major challenge, this paper describes a microengineering approach for in vitro modeling of hemostasis. This microphysiological model replicates the living endothelium, multilayered microarchitecture, and procoagulant activity of human blood vessels, and is also equipped with a microneedle that is actuated with spatial precision to simulate penetrating vascular injuries. The system recapitulates key features of the hemostatic response to acute vascular injury as observed in vivo, including i) thrombin-driven accumulation of platelets and fibrin, ii) formation of a platelet- and fibrin-rich hemostatic plug that halts blood loss, and iii) matrix deformation driven by platelet contraction for wound closure. Moreover, the potential use of this model for drug testing applications is demonstrated by evaluating the effects of anticoagulants and antiplatelet agents that are in current clinical use. The vascular injury-on-a-chip may serve as an enabling platform for preclinical investigation of hematological disorders and emerging therapeutic approaches against them.
Collapse
Affiliation(s)
| | - Keon Woo Kwon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jeongyun Seo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maurizio Tomaiuolo
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Timothy J Stalker
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lawrence F Brass
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
22
|
Barrachina MN, Izquierdo I, Hermida-Nogueira L, Morán LA, Pérez A, Arroyo AB, García-Barberá N, González-Conejero R, Troitiño S, Eble JA, Rivera J, Martínez C, Loza MI, Domínguez E, García Á. The PI3Kδ Inhibitor Idelalisib Diminishes Platelet Function and Shows Antithrombotic Potential. Int J Mol Sci 2021; 22:ijms22073304. [PMID: 33804911 PMCID: PMC8037016 DOI: 10.3390/ijms22073304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Clinical management of ischemic events and prevention of vascular disease is based on antiplatelet drugs. Given the relevance of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) as a candidate target in thrombosis, the main goal of the present study was to identify novel antiplatelet agents within the existing inhibitors blocking PI3K isoforms. Methods: We performed a biological evaluation of the pharmacological activity of PI3K inhibitors in platelets. The effect of the inhibitors was evaluated in intracellular calcium release and platelet functional assays, the latter including aggregation, adhesion, and viability assays. The in vivo drug antithrombotic potential was assessed in mice undergoing chemically induced arterial occlusion, and the associated hemorrhagic risk evaluated by measuring the tail bleeding time. Results: We show that PI3K Class IA inhibitors potently block calcium mobilization in human platelets. The PI3K p110δ inhibitor Idelalisib inhibits platelet aggregation mediated by ITAM receptors GPVI and CLEC-2, preferentially by the former. Moreover, Idelalisib also inhibits platelet adhesion and aggregation under shear and adhesion to collagen. Interestingly, an antithrombotic effect was observed in mice treated with Idelalisib, with mild bleeding effects at high doses of the drug. Conclusion: Idelalisib may have antiplatelet effects with minor bleeding effects, which provides a rationale to evaluate its antithrombotic efficacy in humans.
Collapse
Affiliation(s)
- María N. Barrachina
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases, Universidade Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain; (M.N.B.); (I.I.); (L.H.-N.); (L.A.M.); (S.T.)
| | - Irene Izquierdo
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases, Universidade Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain; (M.N.B.); (I.I.); (L.H.-N.); (L.A.M.); (S.T.)
| | - Lidia Hermida-Nogueira
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases, Universidade Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain; (M.N.B.); (I.I.); (L.H.-N.); (L.A.M.); (S.T.)
| | - Luis A. Morán
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases, Universidade Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain; (M.N.B.); (I.I.); (L.H.-N.); (L.A.M.); (S.T.)
| | - Amparo Pérez
- Pharmacology Applied to Drug Discovery Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.P.); (M.I.L.); (E.D.)
- Grupo Biofarma, Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain
| | - Ana B. Arroyo
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER-U765, 30003 Murcia, Spain; (A.B.A.); (N.G.-B.); (R.G.-C.); (J.R.); (C.M.)
| | - Nuria García-Barberá
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER-U765, 30003 Murcia, Spain; (A.B.A.); (N.G.-B.); (R.G.-C.); (J.R.); (C.M.)
| | - Rocío González-Conejero
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER-U765, 30003 Murcia, Spain; (A.B.A.); (N.G.-B.); (R.G.-C.); (J.R.); (C.M.)
| | - Sara Troitiño
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases, Universidade Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain; (M.N.B.); (I.I.); (L.H.-N.); (L.A.M.); (S.T.)
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany;
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER-U765, 30003 Murcia, Spain; (A.B.A.); (N.G.-B.); (R.G.-C.); (J.R.); (C.M.)
| | - Constantino Martínez
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER-U765, 30003 Murcia, Spain; (A.B.A.); (N.G.-B.); (R.G.-C.); (J.R.); (C.M.)
| | - María I. Loza
- Pharmacology Applied to Drug Discovery Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.P.); (M.I.L.); (E.D.)
- Grupo Biofarma, Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain
| | - Eduardo Domínguez
- Pharmacology Applied to Drug Discovery Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.P.); (M.I.L.); (E.D.)
- Grupo Biofarma, Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases, Universidade Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain; (M.N.B.); (I.I.); (L.H.-N.); (L.A.M.); (S.T.)
- Correspondence: ; Tel.: +34-881-815429
| |
Collapse
|
23
|
Zhang N, Zuniga-Hertz JP, Zhang EY, Gopesh T, Fannon MJ, Wang J, Wen Y, Patel HH, Friend J. Microliter ultrafast centrifuge platform for size-based particle and cell separation and extraction using novel omnidirectional spiral surface acoustic waves. LAB ON A CHIP 2021; 21:904-915. [PMID: 33438699 DOI: 10.1039/d0lc01012j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Asymmetric surface acoustic waves have been shown useful in separating particles and cells in many microfluidics designs, mostly notably sessile microdroplets. However, no one has successfully extracted target particles or cells for later use from such samples. We present a novel omnidirectional spiral surface acoustic wave (OSSAW) design that exploits a new cut of lithium niobate, 152 Y-rotated, to rapidly rotate a microliter sessile drop to ∼10 g, producing efficient multi-size particle separation. We further extract the separated particles for the first time, demonstrating the ability to target specific particles, for example, platelets from mouse blood for further integrated point-of-care diagnostics. Within ∼5 s of surface acoustic wave actuation, particles with diameter of 5 μm and 1 μm can be separated into two portions with a purity of 83% and 97%, respectively. Red blood cells and platelets within mouse blood are further demonstrated to be separated with a purity of 93% and 84%, respectively. These advancements potentially provide an effective platform for whole blood separation and point-of-care diagnostics without need for micro or nanoscale fluidic enclosures.
Collapse
Affiliation(s)
- Naiqing Zhang
- Center for Medical Devices and Instrumentation, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, and Department of Surgery, School of Medicine, University of California San Diego, CA 92093, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hubbard WB, Banerjee M, Vekaria H, Prakhya KS, Joshi S, Wang QJ, Saatman KE, Whiteheart SW, Sullivan PG. Differential Leukocyte and Platelet Profiles in Distinct Models of Traumatic Brain Injury. Cells 2021; 10:cells10030500. [PMID: 33652745 PMCID: PMC7996744 DOI: 10.3390/cells10030500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) affects over 3 million individuals every year in the U.S. There is growing appreciation that TBI can produce systemic modifications, which are in part propagated through blood–brain barrier (BBB) dysfunction and blood–brain cell interactions. As such, platelets and leukocytes contribute to mechanisms of thromboinflammation after TBI. While these mechanisms have been investigated in experimental models of contusion brain injury, less is known regarding acute alterations following mild closed head injury. To investigate the role of platelet dynamics and bioenergetics after TBI, we employed two distinct, well-established models of TBI in mice: the controlled cortical impact (CCI) model of contusion brain injury and the closed head injury (CHI) model of mild diffuse brain injury. Hematology parameters, platelet-neutrophil aggregation, and platelet respirometry were assessed acutely after injury. CCI resulted in an early drop in blood leukocyte counts, while CHI increased blood leukocyte counts early after injury. Platelet-neutrophil aggregation was altered acutely after CCI compared to sham. Furthermore, platelet bioenergetic coupling efficiency was transiently reduced at 6 h and increased at 24 h post-CCI. After CHI, oxidative phosphorylation in intact platelets was reduced at 6 h and increased at 24 h compared to sham. Taken together, these data demonstrate that brain trauma initiates alterations in platelet-leukocyte dynamics and platelet metabolism, which may be time- and injury-dependent, providing evidence that platelets carry a peripheral signature of brain injury. The unique trend of platelet bioenergetics after two distinct types of TBI suggests the potential for utilization in prognosis.
Collapse
Affiliation(s)
- William Brad Hubbard
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (W.B.H.); (H.V.); (K.E.S.)
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA;
| | - Meenakshi Banerjee
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA; (M.B.); (K.S.P.); (S.J.)
| | - Hemendra Vekaria
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (W.B.H.); (H.V.); (K.E.S.)
| | | | - Smita Joshi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA; (M.B.); (K.S.P.); (S.J.)
| | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA;
| | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (W.B.H.); (H.V.); (K.E.S.)
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
| | - Sidney W. Whiteheart
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA;
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA; (M.B.); (K.S.P.); (S.J.)
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (W.B.H.); (H.V.); (K.E.S.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA;
- Correspondence: ; Tel.: +1-859-323-4684
| |
Collapse
|
25
|
Yeung AK, Villacorta-Martin C, Hon S, Rock JR, Murphy GJ. Lung megakaryocytes display distinct transcriptional and phenotypic properties. Blood Adv 2020; 4:6204-6217. [PMID: 33351116 PMCID: PMC7757004 DOI: 10.1182/bloodadvances.2020002843] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Megakaryocytes (MKs) are responsible for platelet biogenesis, which is believed to occur canonically in adult bone marrow (BM) and in the fetal liver during development. However, emerging evidence highlights the lung as a previously underappreciated residence for MKs that may contribute significantly to circulating platelet mass. Although a diversity of cells specific to the BM is known to promote the maturation and trafficking of MKs, little investigation into the impact of the lung niche on the development and function of MKs has been done. Here, we describe the application of single-cell RNA sequencing, coupled with histological, ploidy, and flow cytometric analyses, to profile primary MKs derived from syngeneic mouse lung and hematopoietic tissues. Transcriptional profiling demonstrated that lung MKs have a unique signature distinct from their hematopoietic counterparts, with lung MKs displaying enrichment for maturation markers, potentially indicating a propensity for more efficient platelet production. Reciprocally, fetal lung MKs also showed the robust expression of cytokines and growth factors that are known to promote lung development. Lastly, lung MKs possess an enrichment profile skewed toward roles in immunity and inflammation. These findings highlight the existence of a lung-specific MK phenotype and support the notion that the lung plays an independent role in the development and functional maturation of MKs. The immune phenotype displayed by lung MKs also introduces their potential role in microbial surveillance and antigen presentation.
Collapse
Affiliation(s)
- Anthony K Yeung
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA; and
- Section of Hematology and Medical Oncology and
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA; and
| | - Stephanie Hon
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA; and
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Jason R Rock
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA; and
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA
| | - George J Murphy
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA; and
- Section of Hematology and Medical Oncology and
| |
Collapse
|
26
|
Hubbard WB, Dong JF, Cruz MA, Rumbaut RE. Links between thrombosis and inflammation in traumatic brain injury. Thromb Res 2020; 198:62-71. [PMID: 33290884 DOI: 10.1016/j.thromres.2020.10.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) continues to be a major healthcare problem and there is much to be explored regarding the secondary pathobiology to identify early predictive markers and new therapeutic targets. While documented changes in thrombosis and inflammation in major trauma have been well described, growing evidence suggests that isolated TBI also results in systemic alterations in these mechanisms. Here, we review recent experimental and clinical findings that demonstrate how blood-brain barrier dysfunction, systemic immune response, inflammation, platelet activation, and thrombosis contribute significantly to the pathogenesis of TBI. Despite advances in the links between thrombosis and inflammation, there is a lack of treatment options aimed at both processes and this could be crucial to treating vascular injury, local and systemic inflammation, and secondary ischemic events following TBI. With emerging evidence of newly-identified roles for platelets, leukocytes, the coagulation system and extracellular vesicles in processes of inflammation and thrombosis, there is a growing need to characterize these mechanisms within the context of TBI and whether these changes persist into the chronic phase of injury. Importantly, this review defines areas in need of further research to advance the field and presents a roadmap to identify new diagnostic and treatment options for TBI.
Collapse
Affiliation(s)
- W Brad Hubbard
- Lexington VA Healthcare System, Lexington, KY, United States of America; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, United States of America.
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, WA, United States of America; Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Miguel A Cruz
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, United States of America; Baylor College of Medicine, Houston, TX, United States of America
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, United States of America; Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
27
|
Deppermann C, Kratofil RM, Peiseler M, David BA, Zindel J, Castanheira FVES, van der Wal F, Carestia A, Jenne CN, Marth JD, Kubes P. Macrophage galactose lectin is critical for Kupffer cells to clear aged platelets. J Exp Med 2020; 217:133651. [PMID: 31978220 PMCID: PMC7144524 DOI: 10.1084/jem.20190723] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/01/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Every day, megakaryocytes produce billions of platelets that circulate for several days and eventually are cleared by the liver. The exact removal mechanism, however, remains unclear. Loss of sialic acid residues is thought to feature in the aging and clearance of platelets. Using state-of-the-art spinning disk intravital microscopy to delineate the different compartments and cells of the mouse liver, we observed rapid accumulation of desialylated platelets predominantly on Kupffer cells, with only a few on endothelial cells and none on hepatocytes. Kupffer cell depletion prevented the removal of aged platelets from circulation. Ashwell-Morell receptor (AMR) deficiency alone had little effect on platelet uptake. Macrophage galactose lectin (MGL) together with AMR mediated clearance of desialylated or cold-stored platelets by Kupffer cells. Effective clearance is critical, as mice with an aged platelet population displayed a bleeding phenotype. Our data provide evidence that the MGL of Kupffer cells plays a significant role in the removal of desialylated platelets through a collaboration with the AMR, thereby maintaining a healthy and functional platelet compartment.
Collapse
Affiliation(s)
- Carsten Deppermann
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rachel M Kratofil
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Moritz Peiseler
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Bruna A David
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Joel Zindel
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Fernanda Vargas E Silva Castanheira
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Fardau van der Wal
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Agostina Carestia
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Craig N Jenne
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jamey D Marth
- Center for Nanomedicine, SBP Medical Discovery Institute, and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
28
|
Pokrovskaya I, Tobin M, Desai R, Aronova MA, Kamykowski JA, Zhang G, Joshi S, Whiteheart SW, Leapman RD, Storrie B. Structural analysis of resting mouse platelets by 3D-EM reveals an unexpected variation in α-granule shape. Platelets 2020; 32:608-617. [PMID: 32815431 DOI: 10.1080/09537104.2020.1799970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mice and mouse platelets are major experimental models for hemostasis and thrombosis; however, important physiological data from this model has received little to no quantitative, 3D ultrastructural analysis. We used state-of-the-art, serial block imaging scanning electron microscopy (SBF-SEM, nominal Z-step size was 35 nm) to image resting platelets from C57BL/6 mice. α-Granules were identified morphologically and rendered in 3D space. The quantitative analysis revealed that mouse α-granules typically had a variable, elongated, rod shape, different from the round/ovoid shape of human α-granules. This variation in length was confirmed qualitatively by higher-resolution, focused ion beam (FIB) SEM at a nominal 5 nm Z-step size. The unexpected α-granule shape raises novel questions regarding α-granule biogenesis and dynamics. Does the variation arise at the level of the megakaryocyte and α-granule biogenesis or from differences in α-granule dynamics and organelle fusion/fission events within circulating platelets? Further quantitative analysis revealed that the two major organelles in circulating platelets, α-granules and mitochondria, displayed a stronger linear relationship between organelle number/volume and platelet size, i.e., a scaling in number and volume to platelet size, than found in human platelets suggestive of a tighter mechanistic regulation of their inclusion during platelet biogenesis. In conclusion, the overall spatial arrangement of organelles within mouse platelets was similar to that of resting human platelets, with mouse α-granules clustered closely together with little space for interdigitation of other organelles.
Collapse
Affiliation(s)
- Irina Pokrovskaya
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael Tobin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, NIBIB, NIH, Bethesda, MD, USA
| | - Rohan Desai
- Laboratory of Cellular Imaging and Macromolecular Biophysics, NIBIB, NIH, Bethesda, MD, USA
| | - Maria A Aronova
- Laboratory of Cellular Imaging and Macromolecular Biophysics, NIBIB, NIH, Bethesda, MD, USA
| | - Jeffrey A Kamykowski
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Guofeng Zhang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, NIBIB, NIH, Bethesda, MD, USA
| | - Smita Joshi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Sidney W Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Richard D Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, NIBIB, NIH, Bethesda, MD, USA
| | - Brian Storrie
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
29
|
Chen X, Hughes R, Mullin N, Hawkins RJ, Holen I, Brown NJ, Hobbs JK. Mechanical Heterogeneity in the Bone Microenvironment as Characterized by Atomic Force Microscopy. Biophys J 2020; 119:502-513. [PMID: 32668233 PMCID: PMC7401034 DOI: 10.1016/j.bpj.2020.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 01/09/2023] Open
Abstract
Bones are structurally heterogeneous organs with diverse functions that undergo mechanical stimuli across multiple length scales. Mechanical characterization of the bone microenvironment is important for understanding how bones function in health and disease. Here, we describe the mechanical architecture of cortical bone, the growth plate, metaphysis, and marrow in fresh murine bones, probed using atomic force microscopy in physiological buffer. Both elastic and viscoelastic properties are found to be highly heterogeneous with moduli ranging over three to five orders of magnitude, both within and across regions. All regions include extremely compliant areas, with moduli of a few pascal and viscosities as low as tens of Pa·s. Aging impacts the viscoelasticity of the bone marrow strongly but has a limited effect on the other regions studied. Our approach provides the opportunity to explore the mechanical properties of complex tissues at the length scale relevant to cellular processes and how these impact aging and disease.
Collapse
Affiliation(s)
- Xinyue Chen
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom; Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom; The Krebs Institute, University of Sheffield, Sheffield, United Kingdom
| | - Russell Hughes
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Nic Mullin
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom; The Krebs Institute, University of Sheffield, Sheffield, United Kingdom
| | - Rhoda J Hawkins
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom; The Krebs Institute, University of Sheffield, Sheffield, United Kingdom
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Nicola J Brown
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom; The Krebs Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
30
|
Chen X, Zhao X, Cooper M, Ma P. The Roles of GRKs in Hemostasis and Thrombosis. Int J Mol Sci 2020; 21:ijms21155345. [PMID: 32731360 PMCID: PMC7432802 DOI: 10.3390/ijms21155345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Along with cancer, cardiovascular and cerebrovascular diseases remain by far the most common causes of death. Heart attacks and strokes are diseases in which platelets play a role, through activation on ruptured plaques and subsequent thrombus formation. Most platelet agonists activate platelets via G protein-coupled receptors (GPCRs), which make these receptors ideal targets for many antiplatelet drugs. However, little is known about the mechanisms that provide feedback regulation on GPCRs to limit platelet activation. Emerging evidence from our group and others strongly suggests that GPCR kinases (GRKs) are critical negative regulators during platelet activation and thrombus formation. In this review, we will summarize recent findings on the role of GRKs in platelet biology and how one specific GRK, GRK6, regulates the hemostatic response to vascular injury. Furthermore, we will discuss the potential role of GRKs in thrombotic disorders, such as thrombotic events in COVID-19 patients. Studies on the function of GRKs during platelet activation and thrombus formation have just recently begun, and a better understanding of the role of GRKs in hemostasis and thrombosis will provide a fruitful avenue for understanding the hemostatic response to injury. It may also lead to new therapeutic options for the treatment of thrombotic and cardiovascular disorders.
Collapse
Affiliation(s)
- Xi Chen
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Matthew Cooper
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Correspondence: ; Tel.: +1-215-955-3966
| |
Collapse
|
31
|
Paul DS, Bergmeier W. Novel Mouse Model for Studying Hemostatic Function of Human Platelets. Arterioscler Thromb Vasc Biol 2020; 40:1891-1904. [PMID: 32493172 DOI: 10.1161/atvbaha.120.314304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Platelets are critical to the formation of a hemostatic plug and the pathogenesis of atherothrombosis. Preclinical animal models, especially the mouse, provide an important platform to assess the efficacy and safety of antiplatelet drugs. However, these studies are limited by inherent differences between human and mouse platelets and the species-selectivity of many drugs. To circumvent these limitations, we developed a new protocol for the adoptive transfer of human platelets into thrombocytopenic nonobese diabetic/severe combined immune deficiency mice, that is, a model where all endogenous platelets are replaced by human platelets in mice accepting xenogeneic tissues. Approach and Results: To demonstrate the power of this new model, we visualized and quantified hemostatic plug formation and stability by intravital spinning disk confocal microscopy following laser ablation injury to the saphenous vein. Integrin αIIbβ3-dependent hemostatic platelet plug formation was achieved within ≈30 seconds after laser ablation injury in humanized platelet mice. Pretreatment of mice with standard dual antiplatelet therapy (Aspirin+Ticagrelor) or PAR1 inhibitor, L-003959712 (an analog of vorapaxar), mildly prolonged the bleeding time and significantly reduced platelet adhesion to the site of injury. Consistent with findings from clinical trials, inhibition of PAR1 in combination with dual antiplatelet therapy markedly prolonged bleeding time in humanized platelet mice. CONCLUSIONS We propose that this novel mouse model will provide a robust platform to test and predict the safety and efficacy of experimental antiplatelet drugs and to characterize the hemostatic function of synthetic, stored and patient platelets.
Collapse
Affiliation(s)
- David S Paul
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (D.S.P., W.B.).,UNC Blood Research Center, University of North Carolina, Chapel Hill (D.S.P., W.B.)
| | - Wolfgang Bergmeier
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (D.S.P., W.B.).,UNC Blood Research Center, University of North Carolina, Chapel Hill (D.S.P., W.B.)
| |
Collapse
|
32
|
Affiliation(s)
- Timothy J Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| |
Collapse
|
33
|
Xin G, Ming Y, Ji C, Wei Z, Li S, Morris-Natschke SL, Zhang X, Yu K, Li Y, Zhang B, Zhang J, Xing Z, He Y, Chen Z, Yang X, Niu H, Lee KH, Huang W. Novel potent antiplatelet thrombotic agent derived from biguanide for ischemic stroke. Eur J Med Chem 2020; 200:112462. [PMID: 32464472 DOI: 10.1016/j.ejmech.2020.112462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 02/08/2023]
Abstract
Platelet thrombosis is the main pathogeny resulting in the low curability of ischemic stroke, a leading cause of mortality and disability worldwide. Metformin, a biguanide derivative that is the first-line oral medicine for type 2 diabetes, alleviates the severity of ischemic stroke in diabetic patients and suppresses platelet activation in experimental animal model. However, the clinical implementation of commercial biguanide analogs for stroke related to platelet thrombosis remains challenging due to its weak potency, poor pharmacokinetic characteristics and possible hypoglycemia. Here, twenty-three biguanide derivatives were designed and synthesized based on the principles of bioisosteres. These derivatives were evaluated for the activity of antiplatelet thrombosis in vivo. We found that N-trifluoromethanesulfonyl biguanide derivative, compound b10, uniquely prevented cerebral infarction as well as neuronal function injury, and significantly decrease the mortality rate of ischemic stroke in the middle cerebral artery occlusion mice without significant side effects. We verified that b10 directly inhibited platelets thrombus formation and decreased the compactness of stroke thrombi. Particularly, b10 exhibited good potency to inhibit human platelet activation including platelet aggregation, adhesion, pseudopodia formation, integrin GPIIb/IIIa activation, CD62P expression and clot retraction. Meanwhile, the pharmacokinetics assessment showed that b10 had satisfying pharmacological characteristics including a longer duration and a higher oral absorption ratio than its parent compound. In addition, b10 remarkably ameliorated not only stroke related to platelet thrombosis but also carotid artery thrombus formation. It is concluded that the novel potent antiplatelet thrombotic agent derived from biguanide is a promising candidate for stroke treatment.
Collapse
Affiliation(s)
- Guang Xin
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Ming
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengjie Ji
- Clinical Laboratory, Hospital of University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zeliang Wei
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiyi Li
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xiaoyu Zhang
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kui Yu
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Youping Li
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Boli Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junhua Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yarong He
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Chen
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xijing Yang
- Animal Experiment Center, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Niu
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; College of Mathematics, Sichuan University, Chengdu, Sichuan, China.
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Wen Huang
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
34
|
Leiter O, Walker TL. Platelets in Neurodegenerative Conditions-Friend or Foe? Front Immunol 2020; 11:747. [PMID: 32431701 PMCID: PMC7214916 DOI: 10.3389/fimmu.2020.00747] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
It is now apparent that platelet function is more diverse than originally thought, shifting the view of platelets from blood cells involved in hemostasis and wound healing to major contributors to numerous regulatory processes across different tissues. Given their intriguing ability to store, produce and release distinct subsets of bioactive molecules, including intercellular signaling molecules and neurotransmitters, platelets may play an important role in orchestrating healthy brain function. Conversely, a number of neurodegenerative conditions have recently been associated with platelet dysfunction, further highlighting the tissue-independent role of these cells. In this review we summarize the requirements for platelet-neural cell communication with a focus on neurodegenerative diseases, and discuss the therapeutic potential of healthy platelets and the proteins which they release to counteract these conditions.
Collapse
Affiliation(s)
- Odette Leiter
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Tara L Walker
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
35
|
Cavaillon J, Singer M, Skirecki T. Sepsis therapies: learning from 30 years of failure of translational research to propose new leads. EMBO Mol Med 2020; 12:e10128. [PMID: 32176432 PMCID: PMC7136965 DOI: 10.15252/emmm.201810128] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Sepsis has been identified by the World Health Organization (WHO) as a global health priority. There has been a tremendous effort to decipher underlying mechanisms responsible for organ failure and death, and to develop new treatments. Despite saving thousands of animals over the last three decades in multiple preclinical studies, no new effective drug has emerged that has clearly improved patient outcomes. In the present review, we analyze the reasons for this failure, focusing on the inclusion of inappropriate patients and the use of irrelevant animal models. We advocate against repeating the same mistakes and propose changes to the research paradigm. We discuss the long-term consequences of surviving sepsis and, finally, list some putative approaches-both old and new-that could help save lives and improve survivorship.
Collapse
Affiliation(s)
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care MedicineUniversity College LondonLondonUK
| | - Tomasz Skirecki
- Laboratory of Flow Cytometry and Department of Anesthesiology and Intensive Care MedicineCentre of Postgraduate Medical EducationWarsawPoland
| |
Collapse
|
36
|
Abstract
Maternal alloimmunization to paternally inherited antigens on fetal/neonatal platelets can cause fetal/neonatal alloimmune thrombocytopenia (FNAIT) after antibody-mediated removal of platelets from the fetal circulation. The complications vary from mild bleeding symptoms to severe intracranial hemorrhage and subsequent neurological impairment or death. Studies on in vivo mechanisms are challenging to measure directly in pregnant women, rendering murine models as valuable and attractive alternatives, despite some critical differences between mice and men affecting the translational value. Here we present and discuss, the different murine models that substantially have increased our knowledge and understanding of FNAIT pathogenesis - as well as pre-clinical evaluation of therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Trude Victoria Rasmussen
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway; Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maria Therese Ahlen
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
37
|
New approaches for the assessment of platelet activation status in thrombus under flow condition using confocal microscopy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 393:727-738. [PMID: 31834466 DOI: 10.1007/s00210-019-01789-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
The goal of the study was the assessment of heterogeneous platelet activation status in thrombus. In a ferric(III) chloride (FeCl3) thrombosis (intravital) model of C57BL/6 J mice, the area of irreversibly activated (phosphatidylserine (PS)-positive) platelets was assessed after 1-s exposure of a vessel to FeCl3. In a laser-induced thrombosis (intravital) model of GFP mice, the area of the thrombus composed of PS-negative platelets was evaluated. The ratio of the area of PECAM-1 to the area of the thrombus was used as a marker to assess the activity of PS-negative platelets. In the in vitro flow chamber model, the thrombus area (PS-negative and PS-positive platelets) and the platelet activation index (ratio of the area of PS-positive platelets to the area of thrombus) were determined. To assess platelet activation status with these models, acetylsalicylic acid (ASA) and iloprost (Ilo) were used. In the FeCl3 thrombosis, ASA (10 mg/kg, 100 mg/kg) decreased the area of PS-positive platelets. In the laser thrombosis, ASA (10 mg/kg) decreased the thrombus area, but the decrease in platelet activity was evident even at 3 mg/kg by an increased PECAM-1/thrombus ratio. In the flow chamber, ASA (0.02 mg/ml, 0.2 mg/ml) equally decreased the platelet activation index, whereas only at 0.2 mg/ml, it decreased the thrombus area. Ilo (3.6 ng/ml, 36 ng/ml) decreased the thrombus area but at 36 ng/ml increased the platelet activation index. We showed that intravital models and flow chamber provide a detailed assessment of platelet activation status and the mechanism of drug action.
Collapse
|
38
|
Grill A, Kiouptsi K, Karwot C, Jurk K, Reinhardt C. Evaluation of blood collection methods and anticoagulants for platelet function analyses on C57BL/6J laboratory mice. Platelets 2019; 31:981-988. [PMID: 31814487 DOI: 10.1080/09537104.2019.1701185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The exploration of thrombotic mechanisms relies on the application of blood collection methods from laboratory mice with a minimal pre-activation of platelets and the clotting system. So far, very little is known on how the blood collection method and the anticoagulant used influence pre-activation of mouse platelets and coagulation. To determine the most suitable blood collection method, we systematically compared blood collection by heart puncture, Vena cava puncture, and puncture of the retro-orbital vein plexus and the use of citrate, heparin, and EDTA as frequently used anticoagulants with regard to platelet activation and whole blood clotting parameters. The activation of platelet-rich plasma diluted in Tyrode's buffer was analyzed by flow cytometry, analyzing the exposure of P-selectin and activated integrin αIIbβ3. Clotting of whole blood was profiled by thrombelastometry. Puncture of the retro-orbital vein plexus by plastic capillaries is not superior in terms of blood volume and platelet pre-activation, whereas heart puncture and Vena cava puncture resulted in similarly high blood volumes. Cardiac puncture and Vena cava puncture did not result in pre-activated platelets with citrate as an anticoagulant, but the use of EDTA resulted in increased levels of integrin αIIbβ3 activation. Puncture of the retro-orbital vein plexus by plastic capillaries resulted in increased platelet integrin αIIbβ3 activation, which could be prevented by soaking with citrate or coating with heparin. Further, activation of coagulation in citrated whole blood by puncture of the retro-orbital vein plexus using a blunt plastic capillary was observed by thromboelastometry. The use of citrate is the optimal anticoagulant in mouse platelet assays. Blood collections from the heart or Vena cava represent reliable alternatives to retro-orbital puncture of the vein plexus to avoid pre-activation of platelets and coagulation.
Collapse
Affiliation(s)
- Alexandra Grill
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz , Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain , Mainz, Germany
| | - Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz , Mainz, Germany
| | - Cornelia Karwot
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz , Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz , Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain , Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz , Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain , Mainz, Germany
| |
Collapse
|
39
|
Leiter O, Walker TL. Platelets: The missing link between the blood and brain? Prog Neurobiol 2019; 183:101695. [PMID: 31550515 DOI: 10.1016/j.pneurobio.2019.101695] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/19/2019] [Accepted: 09/09/2019] [Indexed: 02/08/2023]
Abstract
It is becoming increasingly clear that interactions between the peripheral immune system and the central nervous system are important in maintaining healthy brain function. Platelets are small blood cells traditionally known for their role in wound healing. However, platelets have recently been shown to exhibit many alternative functions. In this perspective, we summarize the repertoire of platelet functions, focusing on how these cells contribute to the maintenance of brain homeostasis and propose the mechanisms via which they could communicate with brain cells, including exosome and microparticle release and receptor interactions at local sites. In particular, we highlight the potential role that platelets play in maintaining brain plasticity via the modulation of new neuron generation from neural precursor cells, an interaction which could have important implications in the development of therapeutic interventions to promote cognitive function in aging and disease.
Collapse
Affiliation(s)
- Odette Leiter
- Queensland Brain Institute (QBI), The University of Queensland, Brisbane 4072, Australia.
| | - Tara L Walker
- Queensland Brain Institute (QBI), The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
40
|
Helgadóttir H, Ólafsson Í, Andersen K, Gizurarson S. Stability of thromboxane in blood samples. Vasc Health Risk Manag 2019; 15:143-147. [PMID: 31239692 PMCID: PMC6556106 DOI: 10.2147/vhrm.s204925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/01/2019] [Indexed: 11/23/2022] Open
Abstract
Introduction: Conventional venous blood collection requires a puncture with a needle through the endothelium of a vessel. The endothelial injury causes activation of circulating platelets and the release of thromboxane A2. The aim of the study was to investigate if platelets continue to form thromboxane A2 in the blood tube after sample collection, but such synthesis would give false information about the actual circulating thromboxane A2 value. Methods: Thromboxane B2 is a biologically inactive but stable metabolite of thromboxane A2 and can be measured in blood samples by a standard enzyme immunoassay. Thromboxane B2 measurements reflect thromboxane A2 concentration. Blood samples were collected in 3.2% sodium citrate vials and EDTA vials from ten individuals and centrifuged and frozen at different time points (0, 30, and 120 minutes). Plasma aliquots were transferred to and frozen in 1.8 mL polypropylene tubes and the citrate samples were also transferred to and frozen in propylene tubes containing indomethacin. Results: Concentrations of thromboxane B2 in plasma samples collected in citrate vials and stored in propylene tubes increased very rapidly as the samples were left for longer after sampling and allowed to stand at room temperature. After 120 minutes, the amount of thromboxane B2 was 400% higher than in the reference sample at time zero. In comparison, thromboxane B2 concentration was about 200% higher in the 120-minute samples compared to the reference in samples collected in citrate vials but stored in indomethacin tubes. In samples collected in EDTA vials, a 10% reduction in thromboxane B2 concentration in the 120-minute samples was observed. Conclusion: Storage conditions, type of sampling vial and time from sampling until sample processing (centrifuging) has a major impact on thromboxane B2 stability.
Collapse
Affiliation(s)
- Helga Helgadóttir
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland.,Department of Clinical Biochemistry, Landspitali University Hospital, Reykjavik, Iceland
| | - Ísleifur Ólafsson
- Department of Clinical Biochemistry, Landspitali University Hospital, Reykjavik, Iceland
| | - Karl Andersen
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | |
Collapse
|
41
|
Scully D, Sfyri P, Verpoorten S, Papadopoulos P, Muñoz‐Turrillas MC, Mitchell R, Aburima A, Patel K, Gutiérrez L, Naseem KM, Matsakas A. Platelet releasate promotes skeletal myogenesis by increasing muscle stem cell commitment to differentiation and accelerates muscle regeneration following acute injury. Acta Physiol (Oxf) 2019; 225:e13207. [PMID: 30339324 DOI: 10.1111/apha.13207] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/27/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
Abstract
AIM The use of platelets as biomaterials has gained intense research interest. However, the mechanisms regarding platelet-mediated skeletal myogenesis remain to be established. The aim of this study was to determine the role of platelet releasate in skeletal myogenesis and muscle stem cell fate in vitro and ex vivo respectively. METHODS We analysed the effect of platelet releasate on proliferation and differentiation of C2C12 myoblasts by means of cell proliferation assays, immunohistochemistry, gene expression and cell bioenergetics. We expanded in vitro findings on single muscle fibres by determining the effect of platelet releasate on murine skeletal muscle stem cells using protein expression profiles for key myogenic regulatory factors. RESULTS TRAP6 and collagen used for releasate preparation had a more pronounced effect on myoblast proliferation vs thrombin and sonicated platelets (P < 0.05). In addition, platelet concentration positively correlated with myoblast proliferation. Platelet releasate increased myoblast and muscle stem cell proliferation in a dose-dependent manner, which was mitigated by VEGFR and PDGFR inhibition. Inhibition of VEGFR and PDGFR ablated MyoD expression on proliferating muscle stem cells, compromising their commitment to differentiation in muscle fibres (P < 0.001). Platelet releasate was detrimental to myoblast fusion and affected differentiation of myoblasts in a temporal manner. Most importantly, we show that platelet releasate promotes skeletal myogenesis through the PDGF/VEGF-Cyclin D1-MyoD-Scrib-Myogenin axis and accelerates skeletal muscle regeneration after acute injury. CONCLUSION This study provides novel mechanistic insights on the role of platelet releasate in skeletal myogenesis and set the physiological basis for exploiting platelets as biomaterials in regenerative medicine.
Collapse
Affiliation(s)
- David Scully
- Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School University of Hull Hull UK
| | - Peggy Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School University of Hull Hull UK
| | - Sandrine Verpoorten
- Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School University of Hull Hull UK
| | - Petros Papadopoulos
- Department of Hematology, Instituto de Investigación Sanitaria San Carlos (IdISSC) Hospital Clínico San Carlos Madrid Spain
| | - María Carmen Muñoz‐Turrillas
- Centro Comunitario de Sangre y Tejidos de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo Spain
| | - Robert Mitchell
- School of Biological Sciences University of Reading Reading UK
| | - Ahmed Aburima
- Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School University of Hull Hull UK
| | - Ketan Patel
- School of Biological Sciences University of Reading Reading UK
| | - Laura Gutiérrez
- Department of Medicine Universidad de Oviedo and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo Spain
| | - Khalid M. Naseem
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds Leeds UK
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School University of Hull Hull UK
| |
Collapse
|
42
|
Gresele P, Bury L, Mezzasoma AM, Falcinelli E. Platelet function assays in diagnosis: an update. Expert Rev Hematol 2019; 12:29-46. [DOI: 10.1080/17474086.2019.1562333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Anna Maria Mezzasoma
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Emanuela Falcinelli
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
43
|
|
44
|
Deppermann C, Kubes P. Start a fire, kill the bug: The role of platelets in inflammation and infection. Innate Immun 2018; 24:335-348. [PMID: 30049243 PMCID: PMC6830908 DOI: 10.1177/1753425918789255] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/16/2018] [Accepted: 06/26/2018] [Indexed: 11/19/2022] Open
Abstract
Platelets are the main players in thrombosis and hemostasis; however they also play important roles during inflammation and infection. Through their surface receptors, platelets can directly interact with pathogens and immune cells. Platelets form complexes with neutrophils to modulate their capacities to produce reactive oxygen species or form neutrophil extracellular traps. Furthermore, they release microbicidal factors and cytokines that kill pathogens and influence the immune response, respectively. Platelets also maintain the vascular integrity during inflammation by a mechanism that is different from classical platelet activation. In this review we summarize the current knowledge about how platelets interact with the innate immune system during inflammation and infection and highlight recent advances in the field.
Collapse
Affiliation(s)
- Carsten Deppermann
- Calvin, Phoebe and Joan Snyder Institute for Chronic
Diseases, University of Calgary, Calgary, AB, Canada
| | - Paul Kubes
- Calvin, Phoebe and Joan Snyder Institute for Chronic
Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
45
|
He Q, Su G, Liu K, Zhang F, Jiang Y, Gao J, Liu L, Jiang Z, Jin M, Xie H. Sex-specific reference intervals of hematologic and biochemical analytes in Sprague-Dawley rats using the nonparametric rank percentile method. PLoS One 2017; 12:e0189837. [PMID: 29261747 PMCID: PMC5738108 DOI: 10.1371/journal.pone.0189837] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hematologic and biochemical analytes of Sprague-Dawley rats are commonly used to determine effects that were induced by treatment and to evaluate organ dysfunction in toxicological safety assessments, but reference intervals have not been well established for these analytes. Reference intervals as presently defined for these analytes in Sprague-Dawley rats have not used internationally recommended statistical method nor stratified by sex. Thus, we aimed to establish sex-specific reference intervals for hematologic and biochemical parameters in Sprague-Dawley rats according to Clinical and Laboratory Standards Institute C28-A3 and American Society for Veterinary Clinical Pathology guideline. METHODS Hematology and biochemistry blood samples were collected from 500 healthy Sprague-Dawley rats (250 males and 250 females) in the control groups. We measured 24 hematologic analytes with the Sysmex XT-2100i analyzer, 9 biochemical analytes with the Olympus AU400 analyzer. We then determined statistically relevant sex partitions and calculated reference intervals, including corresponding 90% confidence intervals, using nonparametric rank percentile method. RESULTS We observed that most hematologic and biochemical analytes of Sprague-Dawley rats were significantly influenced by sex. Males had higher hemoglobin, hematocrit, red blood cell count, red cell distribution width, mean corpuscular volume, mean corpuscular hemoglobin, white blood cell count, neutrophils, lymphocytes, monocytes, percentage of neutrophils, percentage of monocytes, alanine aminotransferase, aspartate aminotransferase, and triglycerides compared to females. Females had higher mean corpuscular hemoglobin concentration, plateletcrit, platelet count, eosinophils, percentage of lymphocytes, percentage of eosinophils, creatinine, glucose, total cholesterol and urea compared to males. Sex partition was required for most hematologic and biochemical analytes in Sprague-Dawley rats. We established sex-specific reference intervals, including corresponding 90% confidence intervals, for Sprague-Dawley rats. CONCLUSIONS Understanding the significant discrepancies in hematologic and biochemical analytes between male and female Sprague-Dawley rats provides important insight into physiological effects in test rats. Establishment of locally sex-specific reference intervals allows a more precise evaluation of animal quality and experimental results of Sprague-Dawley rats in our toxicology safety assessment.
Collapse
Affiliation(s)
- Qili He
- Institute of Toxicological Detection, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Guoming Su
- Department of Pharmacy and Laboratory, Sichuan Nursing Vocational College, Chengdu, Sichuan, China
| | - Keliang Liu
- Institute of Toxicological Detection, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
- * E-mail:
| | - Fangcheng Zhang
- Department of Ultrastructural Pathology Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yong Jiang
- Institute of Toxicological Detection, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Jun Gao
- Institute of Toxicological Detection, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Lida Liu
- Institute of Toxicological Detection, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Zhongren Jiang
- Institute of Toxicological Detection, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Minwu Jin
- Institute of Toxicological Detection, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Huiping Xie
- Institute of Toxicological Detection, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Fukuda T, Asou E, Nogi K, Goto K. Evaluation of mouse red blood cell and platelet counting with an automated hematology analyzer. J Vet Med Sci 2017; 79:1707-1711. [PMID: 28845024 PMCID: PMC5658564 DOI: 10.1292/jvms.17-0387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An evaluation of mouse red blood cell (RBC) and platelet (PLT) counting with an automated
hematology analyzer was performed with three strains of mice, C57BL/6 (B6), BALB/c (BALB)
and DBA/2 (D2). There were no significant differences in RBC and PLT counts between manual
and automated optical methods in any of the samples, except for D2 mice. For D2, RBC
counts obtained using the manual method were significantly lower than those obtained using
the automated optical method (P<0.05), and PLT counts obtained using
the manual method were higher than those obtained using the automated optical method
(P<0.05). An automated hematology analyzer can be used for RBC and
PLT counting; however, an appropriate method should be selected when D2 mice samples are
used.
Collapse
Affiliation(s)
- Teruko Fukuda
- Department of Clinical Laboratory Medicine, Teikyo University, 2-1-11 Kaga Itabashi, Tokyo 173-8605, Japan
| | - Eri Asou
- Teikyo University Hospital, 2-1-11 Kaga, Itabashi, Tokyo 173-0005, Japan
| | - Kimiko Nogi
- Teikyo University Hospital, 2-1-11 Kaga, Itabashi, Tokyo 173-0005, Japan
| | - Kazuo Goto
- Department of Clinical Laboratory Medicine, Teikyo University, 2-1-11 Kaga Itabashi, Tokyo 173-8605, Japan
| |
Collapse
|
47
|
Kirstein JM, Hague MN, McGowan PM, Tuck AB, Chambers AF. Primary melanoma tumor inhibits metastasis through alterations in systemic hemostasis. J Mol Med (Berl) 2016; 94:899-910. [PMID: 27048169 DOI: 10.1007/s00109-016-1415-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 02/07/2023]
Abstract
Progression from a primary tumor to distant metastases requires extensive interactions between tumor cells and their microenvironment. The primary tumor is not only the source of metastatic cells but also can also modulate host responses to these cells, leading to an enhancement or inhibition of metastasis. Tumor-mediated stimulation of bone marrow can result in pre-metastatic niche formation and increased metastasis. However, a primary tumor can also inhibit metastasis through concomitant tumor resistance-inhibition of metastatic growth by existing tumor mass. Here, we report that the presence of a B16F10 primary tumor significantly restricted numbers and sizes of experimental lung metastases through reduction of circulating platelets and reduced formation of metastatic tumor cell-associated thrombi. Tumor-bearing mice displayed splenomegaly, correlated with primary tumor size and platelet count. Reduction in platelet numbers in tumor-bearing animals was responsible for metastatic inhibition, as restoration of platelet numbers using isolated platelets re-established both tumor cell-associated thrombus formation and experimental metastasis. Consumption of platelets due to a B16F10 primary tumor is a form of concomitant tumor resistance and demonstrates the systemic impact of a growing tumor. Understanding the interplay between primary tumors and metastases is essential, as clarification of concomitant tumor resistance mechanisms may allow inhibition of metastatic growth following tumor resection. Key messages Mice with a primary B16F10 tumor had reduced metastasis vs. mice without a primary tumor. Tumor-bearing mice had splenomegaly and fewer platelets and tumor-associated thrombi. Restoring platelets restored tumor-associated thrombi and increased metastasis. This work shows the impact that a primary tumor can have on systemic metastasis. Understanding these interactions may lead to improved ways to inhibit metastasis.
Collapse
Affiliation(s)
- Jennifer M Kirstein
- London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, ON, N6A 4L6, Canada.,Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - M Nicole Hague
- London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, ON, N6A 4L6, Canada
| | - Patricia M McGowan
- London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, ON, N6A 4L6, Canada
| | - Alan B Tuck
- London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, ON, N6A 4L6, Canada.,Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, Canada.,Department of Oncology, University of Western Ontario, London, ON, Canada
| | - Ann F Chambers
- London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, ON, N6A 4L6, Canada. .,Department of Medical Biophysics, University of Western Ontario, London, ON, Canada. .,Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, Canada. .,Department of Oncology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
48
|
Tarantino E, Amadio P, Squellerio I, Porro B, Sandrini L, Turnu L, Cavalca V, Tremoli E, Barbieri SS. Role of thromboxane-dependent platelet activation in venous thrombosis: Aspirin effects in mouse model. Pharmacol Res 2016; 107:415-425. [PMID: 27063941 DOI: 10.1016/j.phrs.2016.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 12/30/2022]
Abstract
Recent trials suggest that Aspirin (ASA) reduces the incidence of venous thromboembolism in human. However, the molecular mechanisms underlying this effect are still unclear. In this study we assessed the effects of ASA in venous thrombosis mouse model induced by inferior vena cava (IVC) ligation and we investigated the mechanisms responsible for this effect. ASA (3mg/kg daily for 2 days) treatment decreased the thrombus size, the amounts of tissue factor activity in plasma microvesicles (TF-MP) and the levels of 2,3-dinor Thromboxane B2 (TXB-M) in urine compared to control mice. Interestingly, the thrombus size positively correlated with both TF-MP activity and TXB-M. In addition, positive correlation was observed between TF-MP activity and TXB-M. A reduced number of neutrophils and monocytes, and of TF-positive cells accompanied to a lower amount of fibrin and neutrophil extracellular traps (NETs) were also found in thrombi of ASA-treated mice. Similar results were obtained when mice were treated 24h before IVC ligation with SQ29548 (1mg/kg), a selective thromboxane receptor antagonist. In addition, transfusion of platelets in SQ29548 treated-mice excluded the likelihood of a redundant role of platelet-TP receptor in this context. Finally, incubation of macrophages and neutrophils with SQ29548 prevented TF activity and/or NETs formation induced by supernatant of activated platelets or by IBOP, a selective thromboxane analogue. In conclusion, ASA, suppressing TXA2, prevents macrophages and neutrophils activation and markedly reduces thrombus size with a mechanism most likely dependent of the inhibition of TF activity and NETs formation. These results provide a new link between platelet-produced thromboxane and the occurrence of venous thrombosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Linda Turnu
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Viviana Cavalca
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità, University of Milan, Milan, Italy
| | | | | |
Collapse
|
49
|
Wentz JM, Vainstein V, Oldson D, Gluzman-Poltorak Z, Basile LA, Stricklin D. Mathematical model of radiation effects on thrombopoiesis in rhesus macaques and humans. J Theor Biol 2015; 383:44-60. [PMID: 26232694 DOI: 10.1016/j.jtbi.2015.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/01/2015] [Accepted: 07/16/2015] [Indexed: 12/20/2022]
Abstract
A mathematical model that describes the effects of acute radiation exposure on thrombopoiesis in primates and humans is presented. Thrombopoiesis is a complex multistage dynamic process with potential differences between species. Due to known differences in cellular radiosensitivities, nadir times, and cytopenia durations, direct extrapolation from rhesus to human platelet dynamics is unrealistic. Developing mathematical models of thrombopoiesis for both humans and primates allows for the comparison of the system's response across species. Thus, data obtained in primate experiments can be extrapolated to predictions in humans. Parameter values for rhesus macaques and humans were obtained either from direct experimental measurements or through optimization procedures using dynamic data on platelet counts following radiation exposure. Model simulations accurately predict trends observed in platelet dynamics: at low radiation doses platelet counts decline after a time lag, and nadir depth is dose dependent. The models were validated using data that was not used during the parameterization process. In particular, additional experimental data was used for rhesus, and accident and platelet donor data was used for humans. The model aims to simulate the average response in rhesus and humans following irradiation. Variation in platelet dynamics due to individual variability can be modeled using Monte Carlo simulations in which parameter values are sampled from distributions. This model provides insight into the time course of the physiological effects of radiation exposure, information which could be valuable for disaster planning and survivability analysis and help in drug development of radiation medical countermeasures.
Collapse
Affiliation(s)
- J M Wentz
- Applied Research Associates, Inc., Arlington, VA, United States.
| | - V Vainstein
- Neumedicines, Inc., Pasadena, CA, United States
| | - D Oldson
- Applied Research Associates, Inc., Arlington, VA, United States
| | | | - L A Basile
- Neumedicines, Inc., Pasadena, CA, United States
| | - D Stricklin
- Applied Research Associates, Inc., Arlington, VA, United States
| |
Collapse
|
50
|
Kamat V, Muthard RW, Li R, Diamond SL. Microfluidic assessment of functional culture-derived platelets in human thrombi under flow. Exp Hematol 2015; 43:891-900.e4. [PMID: 26145051 DOI: 10.1016/j.exphem.2015.06.302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/12/2015] [Accepted: 06/25/2015] [Indexed: 11/30/2022]
Abstract
Despite their clinical significance, human platelets are not amenable to genetic manipulation, thus forcing a reliance on mouse models. Culture-derived platelets (CDPs) from human peripheral blood CD34(+) cells can be genetically altered and may eventually be used for transfusions. By use of microfluidics, the time-dependent incorporation of CD41(+)CD42(+) CDPs into clots was measured using only 54,000 CDPs doped into 27 μL of human whole blood perfused over collagen at a wall shear rate of 100 sec(-1). With the use of fluorescence-labeled human platelets (instead of CDPs) doped between 0.25% and 2% of total platelets, incorporation was highly quantitative and allowed monitoring of the anti-αIIbβ3 antagonism that occurred after collagen adhesion. CDPs were only 15% as efficient as human platelets in their incorporation into human thrombi under flow, although both cell types were equally antagonized by αIIbβ3 inhibition. Transient transfection allowed the monitoring of GFP(+) human CDP incorporation into clots. This assay quantifies genetically altered CDP function under flow.
Collapse
Affiliation(s)
- Viraj Kamat
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryan W Muthard
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ruizhi Li
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|