1
|
Sadowski K, Zając W, Milanowski Ł, Koziorowski D, Figura M. Exploring Fecal Microbiota Transplantation for Modulating Inflammation in Parkinson's Disease: A Review of Inflammatory Markers and Potential Effects. Int J Mol Sci 2024; 25:7741. [PMID: 39062985 PMCID: PMC11277532 DOI: 10.3390/ijms25147741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by numerous motor and non-motor symptoms. Recent data highlight a potential interplay between the gut microbiota and the pathophysiology of PD. The degeneration of dopaminergic neurons in PD leads to motor symptoms (tremor, rigidity, and bradykinesia), with antecedent gastrointestinal manifestations, most notably constipation. Consequently, the gut emerges as a plausible modulator in the neurodegenerative progression of PD. Key molecular changes in PD are discussed in the context of the gut-brain axis. Evidence suggests that the alterations in the gut microbiota composition may contribute to gastroenteric inflammation and influence PD symptoms. Disturbances in the levels of inflammatory markers, including tumor necrosis factor-α (TNF α), interleukin -1β (IL-1β), and interleukin-6 (IL-6), have been observed in PD patients. These implicate the involvement of systemic inflammation in disease pathology. Fecal microbiota transplantation emerges as a potential therapeutic strategy for PD. It may mitigate inflammation by restoring gut homeostasis. Preclinical studies in animal models and initial clinical trials have shown promising results. Overall, understanding the interplay between inflammation, the gut microbiota, and PD pathology provides valuable insights into potential therapeutic interventions. This review presents recent data about the bidirectional communication between the gut microbiome and the brain in PD, specifically focusing on the involvement of inflammatory biomarkers.
Collapse
Affiliation(s)
- Karol Sadowski
- Students Scientific Group NEKON by the Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (K.S.); (W.Z.)
| | - Weronika Zając
- Students Scientific Group NEKON by the Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (K.S.); (W.Z.)
| | - Łukasz Milanowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| | - Monika Figura
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| |
Collapse
|
2
|
Saadullah M, Arif S, Hussain L, Asif M, Khurshid U. Dose Dependent Effects of Breynia cernua Against the Paraquat Induced Parkinsonism like Symptoms in Animals' Model: In Vitro, In Vivo and Mechanistic Studies. Dose Response 2022; 20:15593258221125478. [PMID: 36106058 PMCID: PMC9465616 DOI: 10.1177/15593258221125478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The aims and objectives of the study were to evaluate the antiParkinson's (PD) potential of B cernua (BCE). B cernua (Poir.) Müll. Arg. (B cernua) is a member of the Phyllanthaceae family. HPLC revealed the presence of various phytochemicals. Study was conducted for 40 days. After PD induction by paraquat behavioural studies were carried out. Biochemical parameters such as DPPH, NO-scavenging, Ferrous reducing power, MDA, GSH, CAT, SOD, acetylcholinesterase (AChE), neurotransmitter estimation and TNF-α and IL-6 levels were determined. DPPH, NO-scavenging and Ferrous reducing power assays showed 78.02%, 48.05% and 71.45% inhibitions, respectively. There was significant improvement in motor functions and coordination in a dose-dependent manner (50 < 250 < 500 mg/kg) in PD rat model. Biochemical markers; SOD, CAT, GPx and GSH showed significant restoration (P < .001) while MDA showed significant decrease (P < .05). The AChE level was significantly reduced (P < .05) at 500 mg/kg while neurotransmitters were significantly improved (P < .001) in a dose-dependent fashion. The ELISA results showed significant (P < .001) down-regulation of IL-6 and TNF-α level. In conclusion, it is suggested that BCE has the potential to reduce the symptoms of PD.
Collapse
Affiliation(s)
- Malik Saadullah
- Department of Pharmaceutical
Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
- Malik Saadullah, Department of
Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College
University, Allama Iqbal Road, Faisalabad 38000, Pakistan.
| | - Sania Arif
- Department of Pharmaceutical
Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Liaqat Hussain
- Department of Pharmacology, Faculty
of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
- Liaqat Hussain, Department of Pharmacology,
Faculty of Pharmaceutical Sciences, Government College University, Allama Iqbal
Road, Faisalabad 38000, Pakistan.
| | - Muhammad Asif
- Department of Pharmacology, Faculty
of Pharmacy, The Islamia University of
Bahawalpur, Pakistan
| | - Umair Khurshid
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, The Islamia University of
Bahawalpur, Pakistan
| |
Collapse
|
3
|
Wang P, Luo M, Zhou W, Jin X, Xu Z, Yan S, Li Y, Xu C, Cheng R, Huang Y, Lin X, Yao L, Nie H, Jiang Q. Global Characterization of Peripheral B Cells in Parkinson's Disease by Single-Cell RNA and BCR Sequencing. Front Immunol 2022; 13:814239. [PMID: 35250991 PMCID: PMC8888848 DOI: 10.3389/fimmu.2022.814239] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
Immune system plays important roles in the pathogenesis of Parkinson’s disease (PD). However, the role of B cells in this complex disease are still not fully understood. B cells produce antibodies but can also regulate immune responses. In order to decode the relative contribution of peripheral B cell subtypes to the etiology of PD, we performed single cell RNA and BCR sequencing for 10,466 B cells from 8 PD patients and 6 age-matched healthy controls. We observed significant increased memory B cells and significant decreased naïve B cells in PD patients compared to healthy controls. Notably, we also discovered increased IgG and IgA isotypes and more frequent class switch recombination events in PD patients. Moreover, we identified preferential V and J gene segments of B cell receptors in PD patients as the evidence of convergent selection in PD. Finally, we found a marked clonal expanded memory B cell population in PD patients, up-regulating both MHC II genes (HLA-DRB5, HLA-DQA2 and HLA-DPB1) and transcription factor activator protein 1 (AP-1), suggesting that the antigen presentation capacity of B cells was enhanced and B cells were activated in PD patients. Overall, this study conducted a comprehensive analysis of peripheral B cell characteristics of PD patients, which provided novel insights into the humoral immune response in the pathogenesis of PD.
Collapse
Affiliation(s)
- Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shi Yan
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Rui Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yan Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiaoyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lifen Yao
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.,Key Laboratory of Biological Big Data (Harbin Institute of Technology), Ministry of Education, Harbin, China
| |
Collapse
|
4
|
Hsueh SC, Luo W, Tweedie D, Kim DS, Kim YK, Hwang I, Gil JE, Han BS, Chiang YH, Selman W, Hoffer BJ, Greig NH. N-Adamantyl Phthalimidine: A New Thalidomide-like Drug That Lacks Cereblon Binding and Mitigates Neuronal and Synaptic Loss, Neuroinflammation, and Behavioral Deficits in Traumatic Brain Injury and LPS Challenge. ACS Pharmacol Transl Sci 2021; 4:980-1000. [PMID: 33860215 DOI: 10.1021/acsptsci.1c00042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Neuroinflammation contributes to delayed secondary cell death following traumatic brain injury (TBI), has the potential to chronically exacerbate the initial insult, and represents a therapeutic target that has largely failed to translate into human efficacy. Thalidomide-like drugs have effectively mitigated neuroinflammation across cellular and animal models of TBI and neurodegeneration but are complicated by adverse actions in humans. We hence developed N-adamantyl phthalimidine (NAP) as a new thalidomide-like drug to mitigate inflammation without binding to cereblon, a key target associated with the antiproliferative, antiangiogenic, and teratogenic actions seen in this drug class. We utilized a phenotypic drug discovery approach that employed multiple cellular and animal models and ultimately examined immunohistochemical, biochemical, and behavioral measures following controlled cortical impact (CCI) TBI in mice. NAP mitigated LPS-induced inflammation across cellular and rodent models and reduced oligomeric α-synuclein and amyloid-β mediated inflammation. Following CCI TBI, NAP mitigated neuronal and synaptic loss, neuroinflammation, and behavioral deficits, and is unencumbered by cereblon binding, a key protein underpinning the teratogenic and adverse actions of thalidomide-like drugs in humans. In summary, NAP represents a new class of thalidomide-like drugs with anti-inflammatory actions for promising efficacy in the treatment of TBI and potentially longer-term neurodegenerative disorders.
Collapse
Affiliation(s)
- Shih Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, Maryland 21224, United States
| | - Weiming Luo
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, Maryland 21224, United States
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, Maryland 21224, United States
| | - Dong Seok Kim
- AevisBio, Inc., Gaithersburg Maryland 20878, United States.,Aevis Bio, Inc., Daejeon 34141, Republic of Korea
| | - Yu Kyung Kim
- Aevis Bio, Inc., Daejeon 34141, Republic of Korea
| | - Inho Hwang
- Aevis Bio, Inc., Daejeon 34141, Republic of Korea
| | - Jung-Eun Gil
- Aevis Bio, Inc., Daejeon 34141, Republic of Korea
| | - Baek-Soo Han
- Research Center for Biodefence, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan.,Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan.,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110, Taiwan
| | - Warren Selman
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Barry J Hoffer
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, Maryland 21224, United States
| |
Collapse
|
5
|
Policastro G, Brunelli M, Tinazzi M, Chiamulera C, Emerich DF, Paolone G. Cytokine-, Neurotrophin-, and Motor Rehabilitation-Induced Plasticity in Parkinson's Disease. Neural Plast 2020; 2020:8814028. [PMID: 33293946 PMCID: PMC7714573 DOI: 10.1155/2020/8814028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation and cytokine-dependent neurotoxicity appear to be major contributors to the neuropathology in Parkinson's disease (PD). While pharmacological advancements have been a mainstay in the treatment of PD for decades, it is becoming increasingly clear that nonpharmacological approaches including traditional and nontraditional forms of exercise and physical rehabilitation can be critical adjunctive or even primary treatment avenues. Here, we provide an overview of preclinical and clinical research detailing the biological role of proinflammatory molecules in PD and how motor rehabilitation can be used to therapeutically modulate neuroinflammation, restore neural plasticity, and improve motor function in PD.
Collapse
Affiliation(s)
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | | | | | - Giovanna Paolone
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Campos ACP, Kikuchi DS, Paschoa AFN, Kuroki MA, Fonoff ET, Hamani C, Pagano RL, Hernandes MS. Unraveling the Role of Astrocytes in Subthalamic Nucleus Deep Brain Stimulation in a Parkinson's Disease Rat Model. Cell Mol Neurobiol 2020; 40:939-954. [PMID: 31939008 PMCID: PMC7295825 DOI: 10.1007/s10571-019-00784-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapeutic strategy for motor symptoms of Parkinson's disease (PD) when L-DOPA therapy induces disabling side effects. Classical inflammatory activation of glial cells is well established in PD, contributing to the progressive neurodegenerative state; however, the role of DBS in regulating the inflammatory response remains largely unknown. To understand the involvement of astrocytes in the mechanisms of action of DBS, we evaluated the effect of STN-DBS in regulating motor symptoms, astrocyte reactivity, and cytokine expression in a 6-OHDA-induced PD rat model. To mimic in vivo DBS, we investigate the effect of high-frequency stimulation (HFS) in cultured astrocytes regulating cytokine induction and NF-κB activation. We found that STN-DBS improved motor impairment, induced astrocytic hyperplasia, and reversed increased IFN-γ and IL-10 levels in the globus pallidus (GP) of lesioned rats. Moreover, HFS activated astrocytes and prevented TNF-α-induced increase of monocyte chemoattractant protein-1 (MCP-1) and NF-κB activation in vitro. Our results indicate that DBS/HFS may act as a regulator of the inflammatory response in PD states, attenuating classical activation of astrocytes and cytokine induction, potentially through its ability to regulate NF-κB activation. These findings may help us understand the role of astrocyte signaling in HFS, highlighting its possible relationship with the effectiveness of DBS in neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Mayra Akemi Kuroki
- Division of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, 01308-060, Brazil
| | - Erich Talamoni Fonoff
- Division of Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, 01246-903, Brazil
| | - Clement Hamani
- Sunnybrook Health Research Institute, Harquail Centre for Neuromodulation, Toronto, ON, M4N 3M5, Canada
| | - Rosana Lima Pagano
- Division of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, 01308-060, Brazil.
| | | |
Collapse
|
7
|
Belova OV, Arefieva TI, Moskvina SN. [Immunological aspects of Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:110-119. [PMID: 32307420 DOI: 10.17116/jnevro2020120021110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The review summarizes information on immunological disorders in Parkinson's disease (PD). The data on neuroinflammation associated with degeneration of the medial substantia nigra cells are presented. It is pointed out that innate and adaptive immunity cells are involved in the process of neuroinflammation. The authors analyze the cytokine level in the brain, cerebrospinal fluid and peripheral blood as well as the relationship between neuroinflammation and neuron dysfunction and provide information on immunological disorders in people with PD and animal models of PD. Specific features of PD models and data on blood-brain barrier damage and evidence of autoimmune inflammation in PD are presented. Identification of PD preclinical markers, including cytokines, HLA-DR and HLA-DQ antigens, autoantibodies, etc, is discussed. Pre-symptomatic diagnosis of PD, prevention and treatment at the pre-symptomatic stage could lead to interruption or slowdown the neurons death.
Collapse
Affiliation(s)
- O V Belova
- NRC 'Kurchatov Institute', Moscow, Russia
| | - T I Arefieva
- NRC 'Kurchatov Institute', Moscow, Russia; National Medical Research Center for Cardiology, Moscow, Russia
| | | |
Collapse
|
8
|
Alemdar AY, Sadi D, McAlister VC, Mendez I. Liposomal Formulations of Tacrolimus and Rapamycin Increase Graft Survival and Fiber Outgrowth of Dopaminergic Grafts. Cell Transplant 2017; 13:263-71. [PMID: 15191164 DOI: 10.3727/000000004783983936] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The immunosuppressive drugs tacrolimus (TAC) and rapamycin (RAPA) have both been found to have neuroprotective effects on dopaminergic neurons. The purpose of the present study was to investigate whether liposomal formulations of these drugs administered directly into the brain improve cell survival and fiber outgrowth. Rats with unilateral 6-hydroxydopamine lesions were transplanted with 800,000 fetal rat ventral mesencephalic cells and randomly divided to one of four groups. Group 1 received a transplant containing cells only; group 2 received a cell suspension containing 0.68 μM liposomal RAPA (LRAPA); group 3 received a cell suspension containing 2.0 μM liposomal TAC (LTAC); and group 4 received a cell suspension containing a liposomal formulation of both 0.68 μM RAPA and 2.0 μM TAC (LRAPATAC). Rats were sacrificed after 6 weeks, and cell survival and fiber outgrowth were assessed using tyrosine hydroxylase (TH) immunohistochemistry. The animals receiving a cell suspension containing either LTAC or LRAPATAC were found to have significantly more surviving TH-immunoreactive (TH-ir) cells than the control group receiving cells only. The group receiving LTAC had significantly longer fibers, the group receiving LRAPA had significantly more fibers close to the graft, and the group receiving LRAPATAC had significantly more fibers at all distances. This study shows the feasibility of using liposomal formulations of neuroimmunophilins directly in the brain at the time of implantation to improve graft survival and fiber outgrowth. Furthermore, we have shown that the combination of LTAC and LRAPA has a synergistic effect. These compounds may play an important role in optimizing graft survival and host reinnervation in cellmediated brain repair strategies for the treatment of neurological conditions.
Collapse
Affiliation(s)
- Aylin Y Alemdar
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | | | |
Collapse
|
9
|
Mouton-Liger F, Jacoupy M, Corvol JC, Corti O. PINK1/Parkin-Dependent Mitochondrial Surveillance: From Pleiotropy to Parkinson's Disease. Front Mol Neurosci 2017; 10:120. [PMID: 28507507 PMCID: PMC5410576 DOI: 10.3389/fnmol.2017.00120] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is one of the most frequent neurodegenerative disease caused by the preferential, progressive degeneration of the dopaminergic (DA) neurons of the substantia nigra (SN) pars compacta. PD is characterized by a multifaceted pathological process involving protein misfolding, mitochondrial dysfunction, neuroinflammation and metabolism deregulation. The molecular mechanisms governing the complex interplay between the different facets of this process are still unknown. PARK2/Parkin and PARK6/PINK1, two genes responsible for familial forms of PD, act as a ubiquitous core signaling pathway, coupling mitochondrial stress to mitochondrial surveillance, by regulating mitochondrial dynamics, the removal of damaged mitochondrial components by mitochondria-derived vesicles, mitophagy, and mitochondrial biogenesis. Over the last decade, PINK1/Parkin-dependent mitochondrial quality control emerged as a pleiotropic regulatory pathway. Loss of its function impinges on a number of physiological processes suspected to contribute to PD pathogenesis. Its role in the regulation of innate immunity and inflammatory processes stands out, providing compelling support to the contribution of non-cell-autonomous immune mechanisms in PD. In this review, we illustrate the central role of this multifunctional pathway at the crossroads between mitochondrial stress, neuroinflammation and metabolism. We discuss how its dysfunction may contribute to PD pathogenesis and pinpoint major unresolved questions in the field.
Collapse
Affiliation(s)
- Francois Mouton-Liger
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France.,Centre National de la Recherche Scientifique, UMR 7225Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR S 1127Paris, France.,Institut du Cerveau et de la Moelle épinière, ICMParis, France
| | - Maxime Jacoupy
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France.,Centre National de la Recherche Scientifique, UMR 7225Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR S 1127Paris, France.,Institut du Cerveau et de la Moelle épinière, ICMParis, France
| | - Jean-Christophe Corvol
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France.,Centre National de la Recherche Scientifique, UMR 7225Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR S 1127Paris, France.,Institut du Cerveau et de la Moelle épinière, ICMParis, France.,Department of Neurology, Institut National de la Santé et de la Recherche Médicale, Assistance-Publique Hôpitaux de Paris, CIC-1422, Hôpital Pitié-SalpêtrièreParis, France
| | - Olga Corti
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France.,Centre National de la Recherche Scientifique, UMR 7225Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR S 1127Paris, France.,Institut du Cerveau et de la Moelle épinière, ICMParis, France
| |
Collapse
|
10
|
TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects. Neuroscience 2015; 302:2-22. [DOI: 10.1016/j.neuroscience.2015.06.038] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 12/15/2022]
|
11
|
Stojkovska I, Wagner BM, Morrison BE. Parkinson's disease and enhanced inflammatory response. Exp Biol Med (Maywood) 2015; 240:1387-95. [PMID: 25769314 DOI: 10.1177/1535370215576313] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/21/2015] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the first and second most prevalent motor and neurodegenerative disease, respectively. The clinical symptoms of PD result from a loss of midbrain dopaminergic (DA) neurons. However, the molecular cause of DA neuron loss remains elusive. Mounting evidence implicates enhanced inflammatory response in the development and progression of PD pathology. This review examines current research connecting PD and inflammatory response.
Collapse
Affiliation(s)
- Iva Stojkovska
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA
| | - Brandon M Wagner
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA
| | - Brad E Morrison
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA
| |
Collapse
|
12
|
Cebrián C, Loike JD, Sulzer D. Neuroinflammation in Parkinson's disease animal models: a cell stress response or a step in neurodegeneration? Curr Top Behav Neurosci 2015; 22:237-270. [PMID: 25293443 DOI: 10.1007/7854_2014_356] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The motor symptoms of Parkinson's disease are due to the progressive degeneration of dopaminergic neurons in the substantia nigra. Multiple neuroinflammatory processes are exacerbated in Parkinson's disease, including glial-mediated reactions, increased expression of proinflammatory substances, and lymphocytic infiltration, particularly in the substantia nigra. Neuroinflammation is also implicated in the neurodegeneration and consequent behavioral symptoms of many Parkinson's disease animal models, although it is not clear whether these features emulate pathogenic steps in the genuine disorder or if some inflammatory features provide protective stress responses. Here, we compare and summarize findings on neuroinflammatory responses and effects on behavior in a wide range of toxin-based, inflammatory and genetic Parkinson's disease animal models.
Collapse
Affiliation(s)
- Carolina Cebrián
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | | | | |
Collapse
|
13
|
Walsh S, Gavin A, Wyatt S, O'Connor C, Keeshan K, Nolan YM, O'Keeffe GW, Sullivan AM. Knockdown of interleukin-1 receptor 1 is not neuroprotective in the 6-hydroxydopamine striatal lesion rat model of Parkinson's disease. Int J Neurosci 2014; 125:70-7. [PMID: 24628580 DOI: 10.3109/00207454.2014.904304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is well established that neuroinflammation is associated with the progression of many neurodegenerative diseases, including Parkinson's disease (PD). Activated microglia and elevated levels of pro-inflammatory cytokines such as interleukin-1β (IL-1β) have been found in the brain and cerebrospinal fluid of PD patients, suggesting that IL-1β may be involved in the pathogenesis of this disease. This study aimed to knock down the expression of the interleukin-1 type 1 receptor (IL-1R1) to evaluate any potential therapeutic effect of limiting the action of IL-1β in the substantia nigra following a unilateral intrastriatal 6-hydroxydopamine (6-OHDA) lesion in rats. Adult Sprague-Dawley rats received intranigral injections of shRNA specific for IL-1R1, followed 2 weeks later by intrastriatal 6-OHDA. Injection of IL-1R1 shRNA did not prevent 6-OHDA-induced loss of motor function or loss of nigral dopamine neurons. IL-1R1 expression was increased in the midbrain following 6-OHDA injection; this effect was attenuated in 6-OHDA-treated animals that had received IL-1R1 shRNA. These data suggest that while IL-1R1 was increased in 6-OHDA-treated animals and reduced following shRNA injection, the neurodegeneration induced by 6-OHDA was not mediated through IL-1R1.
Collapse
Affiliation(s)
- Sinéad Walsh
- 1Department of Anatomy and Neuroscience, Biosciences Institute, University College Cork , Cork , Ireland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
The systemic administration of oleoylethanolamide exerts neuroprotection of the nigrostriatal system in experimental Parkinsonism. Int J Neuropsychopharmacol 2014; 17:455-68. [PMID: 24169105 DOI: 10.1017/s1461145713001259] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oleoylethanolamide (OEA) is an agonist of the peroxisome proliferator-activated receptor α (PPARα) and has been described to exhibit neuroprotective properties when administered locally in animal models of several neurological disorder models, including stroke and Parkinson's disease. However, there is little information regarding the effectiveness of systemic administration of OEA on Parkinson's disease. In the present study, OEA-mediated neuroprotection has been tested on in vivo and in vitro models of 6-hydroxydopamine (6-OH-DA)-induced degeneration. The in vivo model was based on the intrastriatal infusion of the neurotoxin 6-OH-DA, which generates Parkinsonian symptoms. Rats were treated 2 h before and after the 6-OH-DA treatment with systemic OEA (0.5, 1, and 5 mg/kg). The Parkinsonian symptoms were evaluated at 1 and 4 wk after the development of lesions. The functional status of the nigrostriatal system was studied through tyrosine-hydroxylase (TH) and hemeoxygenase-1 (HO-1, oxidation marker) immunostaining as well as by monitoring the synaptophysin content. In vitro cell cultures were also treated with OEA and 6-OH-DA. As expected, our results revealed 6-OH-DA induced neurotoxicity and behavioural deficits; however, these alterations were less severe in the animals treated with the highest dose of OEA (5 mg/kg). 6-OH-DA administration significantly reduced the striatal TH-immunoreactivity (ir) density, synaptophysin expression, and the number of nigral TH-ir neurons. Moreover, 6-OH-DA enhanced striatal HO-1 content, which was blocked by OEA (5 mg/kg). In vitro, 0.5 and 1 μM of OEA exerted significant neuroprotection on cultured nigral neurons. These effects were abolished after blocking PPARα with the selective antagonist GW6471. In conclusion, systemic OEA protects the nigrostriatal circuit from 6-OH-DA-induced neurotoxicity through a PPARα-dependent mechanism.
Collapse
|
15
|
Gołembiowska K, Wardas J, Noworyta-Sokołowska K, Kamińska K, Górska A. Effects of adenosine receptor antagonists on the in vivo LPS-induced inflammation model of Parkinson's disease. Neurotox Res 2013; 24:29-40. [PMID: 23296550 PMCID: PMC3666128 DOI: 10.1007/s12640-012-9372-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 12/20/2022]
Abstract
The study shows effects of the nonselective adenosine A1/A2A receptor antagonist caffeine and the selective A2A receptor antagonist KW6002 on LPS-induced changes in the extracellular levels of dopamine (DA), glutamate, adenosine, hydroxyl radical, and A2A receptor density in the rat striatum. Intrastriatal LPS (10 μg) injection decreased extracellular level of DA and increased the level of adenosine, glutamate, and hydroxyl radical on the ipsilateral side 24 h after LPS administration. Caffeine (10 and 20 mg/kg i.p.) and KW6002 (1.5 and 3 mg/kg i.p.) given once daily for 6 days and on the 7th day 2 h before and 4 h after LPS injection reversed the LPS-induced changes in extracellular levels of DA, adenosine, glutamate, and hydroxyl radical production. Moreover, LPS-induced decrease in the striatal A2A receptor density was increased by caffeine and KW6002. In order to show the late LPS effect on oxidative damage of DA neurons, the contents of DA, DOPAC, HVA, and hydroxyl radical were determined 72 h after LPS (10 μg) administration into both striata. LPS decreased striatal and substantia nigra content of DA, DOPAC, and HVA while increased striatal but not nigral content of hydroxyl radical. Caffeine (20 mg/kg) and KW60002 (3 mg/kg) given once daily for 6 days and on the 7th day 2 h before and 4 h after intrastriatal injection of LPS normalized the content of DA and its metabolites in both brain regions as well as decreased LPS-induced increase in the striatal level of hydroxyl radical. In conclusion, our data demonstrated antioxidant effects of caffeine and KW6002 in the inflammatory model of PD.
Collapse
Affiliation(s)
- Krystyna Gołembiowska
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, 31-343, Kraków, Poland.
| | | | | | | | | |
Collapse
|
16
|
Leal MC, Casabona JC, Puntel M, Pitossi FJ. Interleukin-1β and tumor necrosis factor-α: reliable targets for protective therapies in Parkinson's Disease? Front Cell Neurosci 2013; 7:53. [PMID: 23641196 PMCID: PMC3638129 DOI: 10.3389/fncel.2013.00053] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/10/2013] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation has received increased attention as a target for putative neuroprotective therapies in Parkinson’s Disease (PD). Two prototypic pro-inflammatory cytokines interleukin-1β (IL-1) and tumor necrosis factor-α (TNF) have been implicated as main effectors of the functional consequences of neuroinflammation on neurodegeneration in PD models. In this review, we describe that the functional interaction between these cytokines in the brain differs from the periphery (e.g., their expression is not induced by each other) and present data showing predominantly a toxic effect of these cytokines when expressed at high doses and for a sustained period of time in the substantia nigra pars compacta (SN). In addition, we highlight opposite evidence showing protective effects of these two main cytokines when conditions of duration, amount of expression or state of activation of the target or neighboring cells are changed. Furthermore, we discuss these results in the frame of previous disappointing results from anti-TNF-α clinical trials against Multiple Sclerosis, another neurodegenerative disease with a clear neuroinflammatory component. In conclusion, we hypothesize that the available evidence suggests that the duration and dose of IL-1β or TNF-α expression is crucial to predict their functional effect on the SN. Since these parameters are not amenable for measurement in the SN of PD patients, we call for an in-depth analysis to identify downstream mediators that could be common to the toxic (and not the protective) effects of these cytokines in the SN. This strategy could spare the possible neuroprotective effect of these cytokines operative in the patient at the time of treatment, increasing the probability of efficacy in a clinical setting. Alternatively, receptor-specific agonists or antagonists could also provide a way to circumvent undesired effects of general anti-inflammatory or specific anti-IL-1β or TNF-α therapies against PD.
Collapse
Affiliation(s)
- María C Leal
- Institute Leloir Fundation - IIBBA-CONICET Buenos Aires, Argentina
| | | | | | | |
Collapse
|
17
|
Taylor JM, Main BS, Crack PJ. Neuroinflammation and oxidative stress: Co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 2013; 62:803-19. [DOI: 10.1016/j.neuint.2012.12.016] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 12/21/2022]
|
18
|
Kannarkat GT, Boss JM, Tansey MG. The role of innate and adaptive immunity in Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2013; 3:493-514. [PMID: 24275605 PMCID: PMC4102262 DOI: 10.3233/jpd-130250] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, inflammation has become implicated as a major pathogenic factor in the onset and progression of Parkinson's disease. Understanding the precise role for inflammation in PD will likely lead to understanding of how sporadic disease arises. In vivo evidence for inflammation in PD includes microglial activation, increased expression of inflammatory genes in the periphery and in the central nervous system (CNS), infiltration of peripheral immune cells into the CNS, and altered composition and phenotype of peripheral immune cells. These findings are recapitulated in various animal models of PD and are reviewed herein. Furthermore, we examine the potential relevance of PD-linked genetic mutations to altered immune function and the extent to which environmental exposures that recapitulate these phenotypes, which may lead to sporadic PD through similar mechanisms. Given the implications of immune system involvement on disease progression, we conclude by reviewing the evidence supporting the potential efficacy of immunomodulatory therapies in PD prevention or treatment. There is a clear need for additional research to clarify the role of immunity and inflammation in this chronic, neurodegenerative disease.
Collapse
Affiliation(s)
- George T Kannarkat
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
19
|
Betts MJ, O'Neill MJ, Duty S. Allosteric modulation of the group III mGlu4 receptor provides functional neuroprotection in the 6-hydroxydopamine rat model of Parkinson's disease. Br J Pharmacol 2012; 166:2317-30. [PMID: 22404342 DOI: 10.1111/j.1476-5381.2012.01943.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE We recently reported that broad spectrum agonist-induced activation of presynaptic group III metabotropic glutamate (mGlu) receptors within the substantia nigra pars compacta using L-2-amino-4-phosphonobutyrate provided functional neuroprotection in the 6-hydroxydopamine lesion rat model of Parkinson's disease. The aim of this study was to establish whether selective activation of the mGlu(4) receptor alone could afford similar functional neuroprotection. EXPERIMENTAL APPROACH The neuroprotective effects of 8 days of supranigral treatment with a positive allosteric modulator of mGlu(4) receptors, (+/-)-cis-2-(3,5-dichlorphenylcarbamoyl)cyclohexanecarboxylic acid (VU0155041), were investigated in rats with unilateral 6-hydroxydopamine lesions. The effects of VU0155041 treatment on motor function were assessed using both habitual (cylinder test) and forced (adjusted stepping, amphetamine-induced rotations) behavioural tests. Nigrostriatal tract integrity was examined by analysis of tyrosine hydroxylase, dopa decarboxylase or dopamine levels in the striatum and tyrosine hydroxylase-positive cell counts in the substantia nigra pars compacta. KEY RESULTS VU0155041 provided around 40% histological protection against a unilateral 6-hydroxydopamine lesion as well as significant preservation of motor function. These effects were inhibited by pre-treatment with (RS)-α-cyclopropyl-4-phosphonophenylglycine, confirming a receptor-mediated response. Reduced levels of inflammatory markers were also evident in the brains of VU0155041-treated animals. CONCLUSIONS AND IMPLICATIONS Allosteric potentiation of mGlu(4) receptors in the substantia nigra pars compacta provided neuroprotective effects in the 6-hydroxydopamine rat model A reduced inflammatory response may contribute, in part, to this action. In addition to the reported symptomatic effects, activation of mGlu(4) receptors may also offer a novel approach for slowing the progressive degeneration observed in Parkinson's disease.
Collapse
Affiliation(s)
- Matthew J Betts
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, UK
| | | | | |
Collapse
|
20
|
Duty S, Jenner P. Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 2012; 164:1357-91. [PMID: 21486284 DOI: 10.1111/j.1476-5381.2011.01426.x] [Citation(s) in RCA: 510] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Animal models of Parkinson's disease (PD) have proved highly effective in the discovery of novel treatments for motor symptoms of PD and in the search for clues to the underlying cause of the illness. Models based on specific pathogenic mechanisms may subsequently lead to the development of neuroprotective agents for PD that stop or slow disease progression. The array of available rodent models is large and ranges from acute pharmacological models, such as the reserpine- or haloperidol-treated rats that display one or more parkinsonian signs, to models exhibiting destruction of the dopaminergic nigro-striatal pathway, such as the classical 6-hydroxydopamine (6-OHDA) rat and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse models. All of these have provided test beds in which new molecules for treating the motor symptoms of PD can be assessed. In addition, the emergence of abnormal involuntary movements (AIMs) with repeated treatment of 6-OHDA-lesioned rats with L-DOPA has allowed for examination of the mechanisms responsible for treatment-related dyskinesia in PD, and the detection of molecules able to prevent or reverse their appearance. Other toxin-based models of nigro-striatal tract degeneration include the systemic administration of the pesticides rotenone and paraquat, but whilst providing clues to disease pathogenesis, these are not so commonly used for drug development. The MPTP-treated primate model of PD, which closely mimics the clinical features of PD and in which all currently used anti-parkinsonian medications have been shown to be effective, is undoubtedly the most clinically-relevant of all available models. The MPTP-treated primate develops clear dyskinesia when repeatedly exposed to L-DOPA, and these parkinsonian animals have shown responses to novel dopaminergic agents that are highly predictive of their effect in man. Whether non-dopaminergic drugs show the same degree of predictability of response is a matter of debate. As our understanding of the pathogenesis of PD has improved, so new rodent models produced by agents mimicking these mechanisms, including proteasome inhibitors such as PSI, lactacystin and epoximycin or inflammogens like lipopolysaccharide (LPS) have been developed. A further generation of models aimed at mimicking the genetic causes of PD has also sprung up. Whilst these newer models have provided further clues to the disease pathology, they have so far been less commonly used for drug development. There is little doubt that the availability of experimental animal models of PD has dramatically altered dopaminergic drug treatment of the illness and the prevention and reversal of drug-related side effects that emerge with disease progression and chronic medication. However, so far, we have made little progress in moving into other pharmacological areas for the treatment of PD, and we have not developed models that reflect the progressive nature of the illness and its complexity in terms of the extent of pathology and biochemical change. Only when this occurs are we likely to make progress in developing agents to stop or slow the disease progression. The overarching question that draws all of these models together in the quest for better drug treatments for PD is how well do they recapitulate the human condition and how predictive are they of successful translation of drugs into the clinic? This article aims to clarify the current position and highlight the strengths and weaknesses of available models.
Collapse
Affiliation(s)
- Susan Duty
- King's College London, Wolfson Centre for Age-Related Disease, London, UK.
| | | |
Collapse
|
21
|
Iravani MM, Sadeghian M, Leung CCM, Jenner P, Rose S. Lipopolysaccharide-induced nigral inflammation leads to increased IL-1β tissue content and expression of astrocytic glial cell line-derived neurotrophic factor. Neurosci Lett 2012; 510:138-42. [PMID: 22281445 DOI: 10.1016/j.neulet.2012.01.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/27/2011] [Accepted: 01/08/2012] [Indexed: 10/14/2022]
Abstract
Reactive gliosis and inflammatory change is a key component of nigral dopaminergic cell death in Parkinson's disease (PD). Astrocyte derived glial cell line-derived neurotrophic factor (GDNF) promotes the survival and growth of dopaminergic neurones and it protects against or reverses nigral degeneration induced by 6-OHDA and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in rodents and primates. But the effect of increased levels of pro-inflammatory cytokines on the release of GDNF is unknown. This study examined the relationship between release of tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and the expression of GDNF in rats following nigral lipopolysaccharide (LPS) administration. Acute nigral administration of LPS led to marked elevation of IL-1β but insignificant TNF-α tissue content and to a prominent expression of GDNF immunoreactivity in astrocytes but not microglia. The results suggest that inflammation is not only involved in neuronal loss but could promote neuronal survival through increased release of GDNF following up-regulation of IL-1β.
Collapse
Affiliation(s)
- Mahmoud M Iravani
- Neurodegenerative Disease Research Centre, Institute of Pharmaceutical Sciences, School of Biomedical Sciences, King's College London, SE1 1UL London, UK.
| | | | | | | | | |
Collapse
|
22
|
Neuroprotective and neurodegenerative effects of the chronic expression of tumor necrosis factor α in the nigrostriatal dopaminergic circuit of adult mice. Exp Neurol 2010; 227:237-51. [PMID: 21093436 DOI: 10.1016/j.expneurol.2010.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 09/20/2010] [Accepted: 11/09/2010] [Indexed: 12/19/2022]
Abstract
Tumor necrosis factor (TNF)-α, a pro-inflammatory cytokine, has been implicated in both neuronal death and survival in Parkinson's disease (PD). The substantia nigra (SN), a CNS region affected in PD, is particularly susceptible to inflammatory insults and possesses the highest density of microglial cells, but the effects of inflammation and in particular TNF-α on neuronal survival in this region remains controversial. Using adenoviral vectors, the CRE/loxP system and hypomorphic mice, we achieved chronic expression of two levels of TNF-α in the SN of adult mice. Chronic low expression of TNF-α levels reduced the nigrostriatal neurodegeneration mediated by intrastriatal 6-hydroxydopamine administration. Protective effects of low TNF-α level could be mediated by TNF-R1, GDNF, and IGF-1 in the SN and SOD activity in the striatum (ST). On the contrary, chronic expression of high levels of TNF-α induced progressive neuronal loss (63% at 20 days and 75% at 100 days). This effect was accompanied by gliosis and an inflammatory infiltrate composed almost exclusively by monocytes/macrophages. The finding that chronic high TNF-α had a slow and progressive neurodegenerative effect in the SN provides an animal model of PD mediated by the chronic expression of a single cytokine. In addition, it supports the view that cytokines are not detrimental or beneficial by themselves, i.e., their level and time of expression among other factors can determine its final effect on CNS damage or protection. These data support the view that new anti-parkinsonian treatments based on anti-inflammatory therapies should consider these dual effects of cytokines on their design.
Collapse
|
23
|
Kumar P, Kalonia H, Kumar A. Possible nitric oxide modulation in protective effect of FK-506 against 3-nitropropionic acid-induced behavioral, oxidative, neurochemical, and mitochondrial alterations in rat brain. Drug Chem Toxicol 2010; 33:377-92. [DOI: 10.3109/01480541003642050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS. Neuroprotective effects of hydrogen sulfide on Parkinson's disease rat models. Aging Cell 2010; 9:135-46. [PMID: 20041858 DOI: 10.1111/j.1474-9726.2009.00543.x] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra (SN). The present study was designed to examine the therapeutic effect of hydrogen sulfide (H(2)S, a novel biological gas) on PD. The endogenous H(2)S level was markedly reduced in the SN in a 6-hydroxydopamine (6-OHDA)-induced PD rat model. Systemic administration of NaHS (an H(2)S donor) dramatically reversed the progression of movement dysfunction, loss of tyrosine-hydroxylase positive neurons in the SN and the elevated malondialdehyde level in injured striatum in the 6-OHDA-induced PD model. H(2)S specifically inhibited 6-OHDA evoked NADPH oxidase activation and oxygen consumption. Similarly, administration of NaHS also prevented the development of PD induced by rotenone. NaHS treatment inhibited microglial activation in the SN and accumulation of pro-inflammatory factors (e.g. TNF-alpha and nitric oxide) in the striatum via NF-kappaB pathway. Moreover, significantly less neurotoxicity was found in neurons treated with the conditioned medium from microglia incubated with both NaHS and rotenone compared to that with rotenone only, suggesting that the therapeutic effect of NaHS was, at least partially, secondary to its suppression of microglial activation. In summary, we demonstrate for the first time that H(2)S may serve as a neuroprotectant to treat and prevent neurotoxin-induced neurodegeneration via multiple mechanisms including anti-oxidative stress, anti-inflammation and metabolic inhibition and therefore has potential therapeutic value for treatment of PD.
Collapse
Affiliation(s)
- Li-Fang Hu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
25
|
Tansey MG, Goldberg MS. Neuroinflammation in Parkinson's disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 2010; 37:510-8. [PMID: 19913097 PMCID: PMC2823829 DOI: 10.1016/j.nbd.2009.11.004] [Citation(s) in RCA: 771] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, after Alzheimer's disease. The potential causes of PD remain uncertain, but recent studies suggest neuroinflammation and microglia activation play important roles in PD pathogenesis. Major unanswered questions include whether protein aggregates cause the selective loss of dopaminergic neurons in the substantia nigra that underlies the clinical symptoms and whether neuroinflammation is a consequence or a cause of nigral cell loss. Within the microenvironment of the brain, glial cells play a critical role in homeostatic mechanisms that promote neuronal survival. Microglia have a specialized immune surveillance role and mediate innate immune responses to invading pathogens by secreting a myriad of factors that include, cytokines, chemokines, prostaglandins, reactive oxygen and nitrogen species, and growth factors. Some of these factors have neuroprotective and trophic activities and aid in brain repair processes; while others enhance oxidative stress and trigger apoptotic cascades in neurons. Therefore, pro- and anti-inflammatory responses must be in balance to prevent the potential detrimental effects of prolonged or unregulated inflammation-induced oxidative stress on vulnerable neuronal populations. In this review, we discuss potential triggers of neuroinflammation and review the strongest direct evidence that chronic neuroinflammation may have a more important role to play in PD versus other neurodegenerative diseases. Alternatively, we propose that genetic deficiency is not the only way to reduce protective factors in the brain which may function to keep microglial responses in check or regulate the sensitivity of DA neurons. If chronic inflammation can be shown to decrease the levels of neuroprotective factors in the midbrain, in essence genetic haploinsufficiency of protective factors such as Parkin or RGS10 may result from purely environmental triggers (aging, chronic systemic disease, etc.), increasing the vulnerability to inflammation-induced nigral DA neuron death and predisposing an individual to development of PD. Lastly, we review the latest epidemiological and experimental evidence supporting the potential use of anti-inflammatory and immunomodulatory drugs as neuroprotective agents to delay the progressive nigrostriatal degeneration that leads to motor dysfunction in PD.
Collapse
Affiliation(s)
- Malú G Tansey
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30324, USA.
| | | |
Collapse
|
26
|
Ashley AK, Hanneman WH, Katoh T, Moreno JA, Pollack A, Tjalkens RB, Legare ME. Analysis of targeted mutation in DJ-1 on cellular function in primary astrocytes. Toxicol Lett 2009; 184:186-91. [PMID: 19063952 PMCID: PMC4632527 DOI: 10.1016/j.toxlet.2008.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 11/13/2008] [Accepted: 11/13/2008] [Indexed: 12/21/2022]
Abstract
DJ-1 mutation induces early-onset Parkinson's disease, and conversely over-expression of DJ-1 is associated with cancer in numerous tissues. A gene-trap screening library conducted in embryonic stem cells was utilized for generation of a DJ-1 mutant mouse. Real-time PCR and immunoblotting were utilized to confirm functional mutation of the DJ-1 gene. Normal DJ-1 protein expression in adult mouse tissue was characterized and demonstrates high expression in brain tissue with wide systemic distribution. Primary astrocytes isolated from DJ-1(-/-) mice reveal a decreased nuclear localization of DJ-1 protein in response to rotenone or LPS, with a concomitant increase in mitochondrial localization of DJ-1 found only in the rotenone exposure. Resting mitochondrial membrane potential was significantly lower in DJ-1(-/-) astrocytes, as compared to controls. Our DJ-1 knockout mouse provides an exciting tool for exploring the molecular and physiological roles of DJ-1 to further explicate its functions in neurodegeneration.
Collapse
Affiliation(s)
- Amanda K. Ashley
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, United States
| | - William H. Hanneman
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Takeshi Katoh
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Julie A. Moreno
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, United States
| | - Ashley Pollack
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Ronald B. Tjalkens
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Marie E. Legare
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
27
|
Galan-Rodriguez B, Suarez J, Gonzalez-Aparicio R, Bermudez-Silva FJ, Maldonado R, Robledo P, Rodriguez de Fonseca F, Fernandez-Espejo E. Oleoylethanolamide exerts partial and dose-dependent neuroprotection of substantia nigra dopamine neurons. Neuropharmacology 2008; 56:653-64. [PMID: 19070629 DOI: 10.1016/j.neuropharm.2008.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 10/28/2008] [Accepted: 11/25/2008] [Indexed: 01/23/2023]
Abstract
Oleoylethanolamide (OEA), agonist of nuclear PPAR-alpha receptors and antagonist of vanilloid TRPV1 receptors, has been reported to show cytoprotective properties. In this study, OEA-induced neuroprotection has been tested in vitro and in vivo models of 6-OHDA-induced degeneration of substantia nigra dopamine neurons. First, PPAR-alpha receptors were confirmed to be located in the nigrostriatal circuit, these receptors being expressed by dopamine neurons of the substantia nigra, and intrinsic neurons and fibers bundles of the dorsal striatum. In the substantia nigra, their location was confined to the ventral tier. The in vitro study showed that 1 microM OEA exerted a significantly neuroprotective effect on cultured nigral dopamine neurons, effects following U-shaped dose-response curves. Regarding the in vivo study, rats were locally injected with OEA into the right striatum and vehicle into the left striatum 30 min before 6-OHDA-induced striatal lesion. In the short term, signals of heme oxygenase-1 (oxidation marker, 24 and 48 h post-lesion) and OX6 (reactive microglia marker, 96 h post-lesion) were found to be significantly less intense in the striatum pretreated with 5 microM OEA. In the long term (1 month), reduction in striatal TH and synaptophysin was less intense whether the right striatum was pretreated with 5 microM OEA, and nigral TH+ neuron death was significantly reduced after pretreatment with 1 and 5 microM OEA. In vivo effects also followed U-shaped dose-response curves. In conclusion, OEA shows U-shaped partial and dose-dependent neuroprotective properties both in vitro and in vivo models of substantia nigra dopamine neuron degeneration. The occurrence of U-shaped dose-response relationships normally suggests toxicity due to high drug concentration or that opposing intracellular pathways are activated by different OEA doses.
Collapse
Affiliation(s)
- B Galan-Rodriguez
- Departamento de Fisiologia Medica y Biofisica, Universidad de Sevilla, Av. Sanchez Pizjuan 4, E-41009 Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Tansey MG, McCoy MK, Frank-Cannon TC. Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 2007; 208:1-25. [PMID: 17720159 PMCID: PMC3707134 DOI: 10.1016/j.expneurol.2007.07.004] [Citation(s) in RCA: 420] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 07/02/2007] [Accepted: 07/05/2007] [Indexed: 12/11/2022]
Abstract
Most acute and chronic neurodegenerative conditions are accompanied by neuroinflammation; yet the exact nature of the inflammatory processes and whether they modify disease progression is not well understood. In this review, we discuss the key epidemiological, clinical, and experimental evidence implicating inflammatory processes in the progressive degeneration of the dopaminergic (DA) nigrostriatal pathway and their potential contribution to the pathophysiology of Parkinson's disease (PD). Given that interplay between genetics and environment are likely to contribute to risk for development of idiopathic PD, recent data showing interactions between products of genes linked to heritable PD that function to protect DA neurons against oxidative or proteolytic stress and inflammation pathways will be discussed. Cellular mechanisms activated or enhanced by inflammatory processes that may contribute to mitochondrial dysfunction, oxidative stress, or apoptosis of dopaminergic (DA) neurons will be reviewed, with special emphasis on tumor necrosis factor (TNF) and interleukin-1-beta (IL-1beta) signaling pathways. Epigenetic factors which have the potential to trigger neuroinflammation, including environmental exposures and age-associated chronic inflammatory conditions, will be discussed as possible 'second-hit' triggers that may affect disease onset or progression of idiopathic PD. If inflammatory processes have an active role in nigrostriatal pathway degeneration, then evidence should exist to indicate that such processes begin in the early stages of disease and that they contribute to neuronal dysfunction and/or hasten neurodegeneration of the nigrostriatal pathway. Therapeutically, if anti-inflammatory interventions can be shown to rescue nigral DA neurons from degeneration and lower PD risk, then timely use of anti-inflammatory therapies should be investigated further in well-designed clinical trials for their ability to prevent or delay the progressive loss of nigral DA neurons in genetically susceptible populations.
Collapse
Affiliation(s)
- Malú G Tansey
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| | | | | |
Collapse
|
29
|
Nagatsu T, Sawada M. Biochemistry of postmortem brains in Parkinson's disease: historical overview and future prospects. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2007:113-20. [PMID: 17982884 DOI: 10.1007/978-3-211-73574-9_14] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biochemical studies on postmortem brains of patients with Parkinson's disease (PD) have greatly contributed to our understanding of the molecular pathogenesis of this disease. The discovery by 1960 of a dopamine deficiency in the nigro-striatal dopamine region of the PD brain was a landmark in research on PD. At that time we collaborated with Hirotaro Narabayashi and his colleagues in Japan and with Peter Riederer in Germany on the biochemistry of PD by using postmortem brain samples in their brain banks. We found that the activity, mRNA level, and protein content of tyrosine hydroxylase (TH), as well as the levels of the tetrahydrobiopterin (BH4) cofactor of TH and the activity of the BH4-synthesizing enzyme, GTP cyclohydrolase I (GCHI), were markedly decreased in the substantia nigra and striatum in the PD brain. In contrast, the molecular activity (enzyme activity/enzyme protein) of TH was increased, suggesting a compensatory increase in the enzyme activity. The mRNA levels of all four isoforms of human TH (hTH1-hTH4), produced by alternative mRNA splicing, were also markedly decreased. This finding is in contrast to a completely parallel decrease in the activity and protein content of dopamine beta-hydroxylase (DBH) without changes in its molecular activity in cerebrospinal fluid (CSF) in PD. We also found that the activities and/or the levels of the mRNA and protein of aromatic L-amino acid decarboxylase (AADC, DOPA decarboxylase), DBH, phenylethanolamine N-methyltransferase (PNMT), which synthesize dopamine, noradrenaline, and adrenaline, respectively, were also decreased in PD brains, indicating that all catecholamine systems were widely impaired in PD brains. Programmed cell death of the nigro-striatal dopamine neurons in PD has been suggested from the following findings on postmortem brains: (1) increased levels of pro-inflammatory cytokines such as TNF-alpha and IL-6; (2) increased levels of apoptosis-related factors such as TNF-alpha receptor R1 (p 55), soluble Fas and bcl-2, and increased activities of caspases 1 and 3; and (3) decreased levels of neurotrophins such as brain-derived nerve growth factor (BDNF). Immunohistochemical data and the mRNA levels of the above molecules in PD brains supported these biochemical data. We confirmed by double immunofluorescence staining the production of TNF-alpha and IL-6 in activated microglia in the putamen of PD patients. Owing to the recent development of highly sensitive and wide-range analytical methods for quantifying mRNAs and proteins, future assays of the levels of various mRNAs and proteins not only in micro-dissected brain tissues containing neurons and glial cells, but also in single cells from frozen brain slices isolated by laser capture micro-dissection, coupled with toluidine blue, Nissl staining or immunohistochemical staining, should further contribute to the elucidation of the molecular pathogenesis of PD and other neurodegenerative or neuropsychiatric diseases.
Collapse
Affiliation(s)
- T Nagatsu
- Department of Brain Life Science, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan.
| | | |
Collapse
|
30
|
Liu B. Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson's disease. AAPS JOURNAL 2006; 8:E606-21. [PMID: 17025278 PMCID: PMC2668934 DOI: 10.1208/aapsj080369] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a debilitating movement disorder resulting from a progressive degeneration of the nigrostriatal dopaminergic pathway and depletion of neurotransmitter dopamine in the striatum. Molecular cloning studies have identified nearly a dozen genes or loci that are associated with small clusters of mostly early onset and genetic forms of PD. The etiology of the vast majority of PD cases remains unknown, and the precise molecular and biochemical processes governing the selective and progressive degeneration of the nigrostriatal dopaminergic pathway are poorly understood. Current drug therapies for PD are symptomatic and appear to bear little effect on the progressive neurodegenerative process. Studies of postmortem PD brains and various cellular and animal models of PD in the last 2 decades strongly suggest that the generation of pro-inflammatory and neurotoxic factors by the resident brain immune cells, microglia, plays a prominent role in mediating the progressive neurodegenerative process. This review discusses literature supporting the possibility of modulating the activity of microglia as a neuroprotective strategy for the treatment of PD.
Collapse
Affiliation(s)
- Bin Liu
- Department of Pharmacodynamics, College of Pharmacy, the McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
31
|
Waldmeier P, Bozyczko-Coyne D, Williams M, Vaught JL. Recent clinical failures in Parkinson's disease with apoptosis inhibitors underline the need for a paradigm shift in drug discovery for neurodegenerative diseases. Biochem Pharmacol 2006; 72:1197-206. [PMID: 16901468 DOI: 10.1016/j.bcp.2006.06.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 06/21/2006] [Accepted: 06/21/2006] [Indexed: 12/21/2022]
Abstract
Understanding the mechanisms of neuronal death in concert with the identification of drugable molecular targets key to this process has held great promise for the development of novel chemical entities (NCEs) to halt neurodegenerative disease progression. Two key targets involved in the apoptotic process identified over the past decade include the mixed lineage kinase (MLK) family and glyceraldehyde phosphate dehydrogenase (GAPDH). Two NCEs, CEP-1347 and TCH346, directed against these respective targets have progressed to the clinic. For each, robust neuroprotective activity was demonstrated in multiple in vitro and in vivo models of neuronal cell death, but neither NCE proved effective Parkinson's disease (PD) patients. These recent clinical failures require a reassessment of both the relevance of apoptosis to neurodegenerative disease etiology and the available animal models used to prioritize NCEs for advancement to the clinic in this area.
Collapse
|
32
|
Edlich F, Weiwad M, Wildemann D, Jarczowski F, Kilka S, Moutty MC, Jahreis G, Lücke C, Schmidt W, Striggow F, Fischer G. The Specific FKBP38 Inhibitor N-(N′,N′-Dimethylcarboxamidomethyl)cycloheximide Has Potent Neuroprotective and Neurotrophic Properties in Brain Ischemia. J Biol Chem 2006; 281:14961-70. [PMID: 16547004 DOI: 10.1074/jbc.m600452200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FK506 and FK506-derived inhibitors of the FK506-binding protein (FKBP)-type peptidylprolyl cis/trans-isomerases (PPIase) display potent neuroprotective and neuroregenerative properties in various neurodegeneration models, showing the importance of neuroimmunophilins as targets for the treatment of acute and chronic neurodegenerative diseases. However, the PPIase activity targeted by active site-directed ligands remains unknown so far. Here we show that neurotrophic FKBP ligands, such as GPI1046 and N-[methyl(ethoxycarbonyl)]cycloheximide, inhibit the calmodulin/Ca(2+) (CaM/Ca(2+))-regulated FKBP38 with up to 80-fold higher affinity than FKBP12. In contrast, the non-neurotrophic rapamycin inhibits FKBP38.CaM/Ca(2+) 500-fold less affine than other neuroimmunophillins. In the context of the high expression of FKBP38 in neuroblastoma cells, these data suggest that FKBP38.CaM/Ca(2+) inhibition can mediate neurotrophic properties of FKBP ligands. The FKBP38-specific cycloheximide derivative, N-(N',N'-dimethylcarboxamidomethyl)cycloheximide (DM-CHX) was synthesized and used in a rat model of transient focal cerebral ischemia. Accordingly, DM-CHX caused neuronal protection as well as neural stem cell proliferation and neuronal differentiation at a dosage of 27.2 mug/kg. These effects were still dominant, if DM-CHX was applied 2-6 h post-insult. In parallel, sustained motor behavior deficits of diseased animals were improved by drug administration, revealing a potential therapeutic relevance. Thus, our results demonstrate that FKBP38 inhibition by DM-CHX regulates neuronal cell death and proliferation, providing a promising strategy for the treatment of acute and/or chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Frank Edlich
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle/Saale, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tunçel N, Sener E, Cerit C, Karasu U, Gürer F, Sahintürk V, Bayçu C, Ak D, Filiz Z. Brain mast cells and therapeutic potential of vasoactive intestinal peptide in a Parkinson's disease model in rats: brain microdialysis, behavior, and microscopy. Peptides 2005; 26:827-36. [PMID: 15808913 DOI: 10.1016/j.peptides.2004.12.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 12/22/2004] [Accepted: 12/22/2004] [Indexed: 12/31/2022]
Abstract
In the present study, the effect of systemically administered vasoactive intestinal peptide (VIP) (25 ng/kg i.p.) was investigated on drug-induced rotational behavior, extra-cellular dopamine levels and histology of corpus striatum in a 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson's disease. After 15 days of 6-OHDA lesion, apomorphine-induced (0.05 mg/kg s.c.) rotational behavior of the animals significantly increased and extra-cellular dopamine levels of corpus striatum were significantly reduced. VIP reversed the rotational deficits but did not alter the decrease in striatal dopamine levels. On the other hand, histological data indicate that VIP significantly reduced neuronal death and demyelination. Electron microscopic appearance of mast cells showed ultra-structural variety between VIP-treated and 6-OHDA lesioned groups. VIP activates mast cells without any evidence of typical exocytosis, and possibly mast cells could participate in neuroprotection. Our results suggest that systemically administered VIP can attenuate the motor response changes, neuronal cell death, and myelin sheet loss characteristically associated with 12 microg 6-OHDA administration into the rat striatum. Brain mast cells seem to participate in neuronal protection. Possibly, protective cues could be produced by brain mast cells.
Collapse
Affiliation(s)
- Neşe Tunçel
- Osmangazi University, Medical Faculty, Physiology Department, 26480 Eskişehir, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Manáková S, Singh A, Kääriäinen T, Taari H, Kulkarni SK, Männistö PT. Failure of FK506 (tacrolimus) to alleviate apomorphine-induced circling in rat Parkinson model in spite of some cytoprotective effects in SH-SY5Y dopaminergic cells. Brain Res 2005; 1038:83-91. [PMID: 15748876 DOI: 10.1016/j.brainres.2005.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 01/03/2005] [Accepted: 01/04/2005] [Indexed: 01/26/2023]
Abstract
The mechanism of action of the neurotoxin 6-hydroxydopamine (6-OHDA) is thought to involve the generation of free radicals and subsequent apoptotic processes. We have demonstrated in vitro that the neuroimmunophilin, FK506 (10-100 nM), dose dependently and significantly restored the ROS production to the control level, increased the Bcl-2 protein level, partly inhibited the cytochrome C release from mitochondria and reduced the caspase-3 activation in SH-SY5Y cells. On the other hand, there was no significant restoration of the ATP level by FK506 and the toxin activated proteins, p53 and Bax, were not normalized by FK506. In support of these latter results, daily administration of FK506 for 7 days to rats (0.5, 1 and 3 mg/kg i.p.) did not significantly prevent the apomorphine-induced contralateral circling, measured 2 weeks after unilateral nigral lesioning. Moreover, FK506 pretreatment did not significantly lower the toxin elevated lipid peroxidation levels, indicating that oxidative stress was present even after the FK506 treatment in the lesioned striatum. Taken together, our results with FK506 are inconsistent. We confirm the antioxidant nature of FK506, that is, it blocks ROS production in SH-SY5Y cells. However, there were no significant protective effects in any apoptotic analyses in SH-SY5Y cells and in animal studies, a 7-day FK506 pre-treatment was not able to reverse the toxic effect of 6-OHDA in a rat model of Parkinson's disease.
Collapse
Affiliation(s)
- Sárka Manáková
- Department of Pharmacology and Toxicology, University of Kuopio, Harjulantie 1A, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
35
|
Xu L, Sheng J, Tang Z, Wu X, Yu Y, Guo H, Shen Y, Zhou C, Paraoan L, Zhou J. Cystatin C prevents degeneration of rat nigral dopaminergic neurons: in vitro and in vivo studies. Neurobiol Dis 2005; 18:152-65. [PMID: 15649706 DOI: 10.1016/j.nbd.2004.08.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2003] [Revised: 06/11/2004] [Accepted: 08/24/2004] [Indexed: 10/26/2022] Open
Abstract
Destruction of nigrostriatal dopaminergic (DA) pathway triggers various persistent responses, such as inflammation and increased synthesis of neural growth factors, both in striatum and in substantia nigra. The pathological processes involved in such responses are poorly characterized and could contribute to secondary damage and/or regeneration in the central nervous system (CNS). Cystatin C was previously implicated in the process of neurodegeneration. However, its biological role during neurodegeneration is not understood and remains controversial. The present study identified an increased cystatin C mRNA level in the DA-depleted rat striatum, starting from the second week following a 6-OHDA-induced lesion. Immunohistochemical analysis confirmed the increase in cystatin C protein level in the striatum following DA depletion. Double-labeled fluorescence immunohistochemistry revealed that nigrostriatal neurons, astrocytes, and microglia contributed to the elevated level of cystatin C. Exposure to 6-hydroxydopamine, a DA-specific neurotoxin, resulted in DA neurons loss in the fetal mesencephalic cultures, an effect which could be partially reversed by treatment with cystatin C. Moreover, in vivo DA neurons survival study showed that administration of cystatin C in rats with 6-OHDA-induced lesion partially rescued the nigral DA neurons. The results indicate that the 6-OHDA lesioning induced a relatively slow but sustained up-regulation of cystatin C expression and suggest that the inhibitor may exert a neuroprotective action on DA neurons. The findings raise the possibility that cysteine proteinase inhibitors may be new candidates for neuroprotective treatment of Parkinson's disease. Cystatin C may be useful therapeutically in limiting neuropathy in Parkinson's disease.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghi Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ling Z, Chang QA, Tong CW, Leurgans SE, Lipton JW, Carvey PM. Rotenone potentiates dopamine neuron loss in animals exposed to lipopolysaccharide prenatally. Exp Neurol 2004; 190:373-83. [PMID: 15530876 DOI: 10.1016/j.expneurol.2004.08.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 07/26/2004] [Accepted: 08/12/2004] [Indexed: 12/21/2022]
Abstract
We previously demonstrated that treating gravid female rats with the bacteriotoxin lipopolysaccharide (LPS) led to the birth of offspring with fewer than normal dopamine (DA) neurons. This DA neuron loss was long-lived and associated with permanent increases in the pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha). Because of this pro-inflammatory state, we hypothesized that these animals would be more susceptible to subsequent exposure of DA neurotoxins. We tested this hypothesis by treating female Sprague-Dawley rats exposed to LPS or saline prenatally with a subtoxic dose of the DA neurotoxin rotenone (1.25 mg/kg per day) or vehicle for 14 days when they were 16 months old. After another 14 days, the animals were sacrificed. Tyrosine hydroxylase-immunoreactive (THir) cell counts were used as an index of DA neuron survival. Animals exposed to LPS prenatally or rotenone postnatally exhibited a 22% and 3%, respectively, decrease in THir cell counts relative to controls. The combined effects of prenatal LPS and postnatal rotenone exposure produced a synergistic 39% THir cell loss relative to controls. This loss was associated with decreased striatal DA and increased striatal DA activity ([HVA]/[DA]) and TNFalpha. Animals exposed to LPS prenatally exhibited a marked increase in the number of reactive microglia that was further increased by rotenone exposure. Prenatal LPS exposure also led to increased levels of oxidized proteins and the formation of alpha-Synuclein and eosin positive inclusions resembling Lewy bodies. These results suggest that exposure to low doses of an environmental neurotoxin like rotenone can produce synergistic DA neuron losses in animals with a preexisting pro-inflammatory state. This supports the notion that Parkinson's disease (PD) may be caused by multiple factors and the result of "multiple hits" from environmental toxins.
Collapse
Affiliation(s)
- Zaodung Ling
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Ling ZD, Chang Q, Lipton JW, Tong CW, Landers TM, Carvey PM. Combined toxicity of prenatal bacterial endotoxin exposure and postnatal 6-hydroxydopamine in the adult rat midbrain. Neuroscience 2004; 124:619-28. [PMID: 14980732 DOI: 10.1016/j.neuroscience.2003.12.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2003] [Indexed: 12/21/2022]
Abstract
We previously reported that injection of the Gram (-) bacteriotoxin, lipopolysaccharide (LPS), into gravid females at embryonic day 10.5 led to the birth of animals with fewer than normal dopamine (DA) neurons when assessed at postnatal days (P) 10 and 21. To determine if these changes continued into adulthood, we have now assessed animals at P120. As part of the previous studies, we also observed that the pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha) was elevated in the striatum, suggesting that these animals would be more susceptible to subsequent DA neurotoxin exposure. In order to test this hypothesis, we injected (at P99) 6-hydroxydopamine (6OHDA) or saline into animals exposed to LPS or saline prenatally. The results showed that animals exposed to prenatal LPS or postnatal 6OHDA alone had 33% and 46%, respectively, fewer DA neurons than controls, while the two toxins combined produced a less than additive 62% loss. Alterations in striatal DA were similar to, and significantly correlated with (r(2)=0.833) the DA cell losses. Prenatal LPS produced a 31% increase in striatal TNFalpha, and combined exposure with 6OHDA led to an 82% increase. We conclude that prenatal exposure to LPS produces a long-lived THir cell loss that is accompanied by an inflammatory state that leads to further DA neuron loss following subsequent neurotoxin exposure. The results suggest that individuals exposed to LPS prenatally, as might occur had their mother had bacterial vaginosis, would be at increased risk for Parkinson's disease.
Collapse
Affiliation(s)
- Z D Ling
- Department of Pharmacology, 1735 West Harrison Street, Room 410, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Li FQ, Cheng XX, Liang XB, Wang XH, Xue B, He QH, Wang XM, Han JS. Neurotrophic and neuroprotective effects of tripchlorolide, an extract of Chinese herb Tripterygium wilfordii Hook F, on dopaminergic neurons. Exp Neurol 2003; 179:28-37. [PMID: 12504865 DOI: 10.1006/exnr.2002.8049] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been reported recently that the immunosuppressant FK506 produced neurotrophic and neuroprotective effects on dopaminergic neurons in vitro and in vivo. We investigated whether tripchlorolide, an immunosuppressive extract of Chinese herb Tripterygium wilfordii Hook F, could exert similar neurotrophic and neuroprotective effects similar to those of FK506. It was found that tripchlorolide promoted axonal elongation and protected dopaminergic neurons from a neurotoxic lesion induced by 1-methyl-4-phenylpyridinium ion (MPP+) at concentrations of as low as 10(-12) to 10(-8) M. In situ hybridization study revealed that tripchlorolide stimulated brain-derived neurotrophic factor (BDNF) mRNA expression. In vivo administration of tripchlorolide (1 microg/kg, ip) for 28 days effectively attenuated the rotational behavior challenged by D-amphetamine in the model rats by transection of the medial forebrain bundle. In addition, tripchlorolide treatment (0.5 or 1 microg/kg/day for 28 days) increased the survival of dopaminergic neurons in substantia nigra pars compacta by 50 and 67%, respectively. Moreover, tripchlorolide markedly prevented the decrease in amount of dopamine in the striatum of model rats. Taken together, our data provide the first evidence that tripchlorolide acts as a neuroprotective molecule that rescues MPP+ or axotomy-induced degeneration of dopaminergic neurons, which may imply its therapeutic potential for Parkinson's disease. The underlying mechanism may be relevant to its neurotrophic effect and its efficacy in stimulating the expression of BDNF.
Collapse
Affiliation(s)
- Feng-Qiao Li
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100083, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zuber M, Donnerer J. Effect of FK506 on neurotransmitter content and expression of GAP-43 in neurotoxin-lesioned peripheral sensory and sympathetic neurons. Pharmacology 2002; 66:44-50. [PMID: 12169765 DOI: 10.1159/000063254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has previously been shown that the capsaicin-lesioned peptidergic sensory neurons and the 6-hydroxydopamine (6-OHDA)-lesioned sympathetic noradrenergic neurons represent a useful model to study neurotrophin-induced nerve regeneration in the adult rat. The present study was aimed at investigating if the immunosuppressant drug FK506 (tacrolimus) has neuroregeneratory properties in these capsaicin- or 6-OHDA-lesioned peripheral nerves. FK506 was injected in a dose of 0.5 mg/kg/day for 10 days or in a dose of 1.5 mg/kg/day for 7 days. One day after the last FK506 injection neurotransmitter content was investigated in selected tissues. The content of the sensory neuron marker peptide calcitonin gene-related peptide (CGRP) was reduced after the capsaicin treatment in the hind paw skin by 35-40% and in the dorsal lumbar spinal cord by 48%. The treatment with FK506 did not induce a recovery of the CGRP content. Following the 6-OHDA treatment the noradrenaline content was reduced by 50-62% in the hind paw skin and by 73% in the heart atrium. FK506 alone did not increase the noradrenaline levels, whereas an additional local intraplantar treatment with nerve growth factor recovered noradrenaline levels almost completely. The expression of a marker protein for growth processes in cells of sympathetic or sensory ganglia, growth-associated protein-43, was significantly increased by the FK506 treatment. This study demonstrated that despite a stimulatory effect of FK506 on the expression of a growth-associated protein a recovery of the transmitter content is not evident in peripheral small diameter sensory or postganglionic sympathetic neurons of the adult rat.
Collapse
Affiliation(s)
- Martina Zuber
- Institute of Experimental and Clinical Pharmacology, University of Graz, Austria
| | | |
Collapse
|
40
|
Mastronardi CA, Yu WH, McCann S. Lipopolysaccharide-induced tumor necrosis factor-alpha release is controlled by the central nervous system. Neuroimmunomodulation 2001; 9:148-56. [PMID: 11752888 DOI: 10.1159/000049019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Lipopolysaccharide (LPS) injection in mammals orchestrates the release of many proinflammatory and anti-inflammatory cytokines. Intravenous administration of 0.2 mg/kg of LPS into unanesthetized rats with indwelling jugular catheters provoked a rapid, 50-fold increase in plasma tumor necrosis factor (TNF)-alpha within 30 min, which declined by 60% by 120 min. To test our hypothesis that such a rapid increase of TNF-alpha would be either neurally or hormonally controlled, the effect on TNF-alpha release of anesthesia (ketamine/acepromazine/xylazine) and catecholaminergic agonists and antagonists, either alone or in the presence of LPS, was determined. METHODS Rats bearing indwelling external jugular catheters were injected with the test drug or saline after removal of 0.6 ml of blood (-10 min). At time zero, LPS or saline was administered. Thereafter, blood samples were drawn at 15, 30, 120, 240 and 360 min. TNF-alpha was measured by immunoassay. RESULTS Among all the drugs tested, only propranolol increased plasma TNF-alpha. Anesthesia significantly blunted the LPS-induced TNF-alpha peak by 50%. Isoproterenol, a beta-adrenergic agonist, also blocked LPS-induced TNF-alpha release by 70% at 30 min and 90% at 120 min. On the contrary, propranolol, a beta-receptor blocker, induced a highly significant 3-fold increase in plasma TNF-alpha concentrations at 30 min and augmented the response to LPS 2-fold after endotoxin injection. Phentolamine, an alpha-receptor blocker, decreased the LPS-induced TNF-alpha release by 57% at 30 min. Similarly, alpha-bromoergocryptine, a dopamine D2 receptor agonist, decreased the LPS-induced TNF-alpha peak by 70% at 30 min and 50% at 120 min. CONCLUSIONS We conclude that TNF-alpha is at least in part neurally controlled since the anesthetic blocked its response to LPS. The fact that isoproterenol decreased the LPS-induced TNF-alpha release, whereas propranolol augmented basal and LPS-induced release suggests that the sympathetic nervous system inhibits basal and LPS-stimulated TNF-alpha release via beta-adrenergic receptors. Since phentolamine blocked LPS-induced release, this release may be induced, in part at least, by LPS-stimulated adrenergic drive acting on alpha-adrenergic receptors. The suppressive action of bromoergocryptine, a dopamine D2 receptor agonist, on LPS-induced TNF-alpha release may be mediated in part by suppression of prolactin release, which triggers TNF-alpha release.
Collapse
Affiliation(s)
- C A Mastronardi
- Pennington Biomedical Research Center, Lousiana State University, Baton Rouge, LA 70808-4124, USA
| | | | | |
Collapse
|