1
|
Collin G, Goldenberg JE, Chang X, Qi Z, Whitfield-Gabrieli S, Cahn W, Wang J, Stone WS, Keshavan MS, Shenton ME. Brain Markers of Resilience to Psychosis in High-Risk Individuals: A Systematic Review and Label-Based Meta-Analysis of Multimodal MRI Studies. Brain Sci 2025; 15:314. [PMID: 40149835 PMCID: PMC11939873 DOI: 10.3390/brainsci15030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Most individuals who have a familial or clinical risk of developing psychosis remain free from psychopathology. Identifying neural markers of resilience in these at-risk individuals may help clarify underlying mechanisms and yield novel targets for early intervention. However, in contrast to studies on risk biomarkers, studies on neural markers of resilience to psychosis are scarce. The current study aimed to identify potential brain markers of resilience to psychosis. Methods: A systematic review of the literature yielded a total of 43 MRI studies that reported resilience-associated brain changes in individuals with an elevated risk for psychosis. Label-based meta-analysis was used to synthesize findings across MRI modalities. Results: Resilience-associated brain changes were significantly overreported in the default mode and language network, and among highly connected and central brain regions. Conclusions: These findings suggest that the DMN and language-associated areas and central brain hubs may be hotspots for resilience-associated brain changes. These neural systems are thus of key interest as targets of inquiry and, possibly, intervention in at-risk populations.
Collapse
Affiliation(s)
- Guusje Collin
- Department of Psychiatry, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua E. Goldenberg
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiao Chang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China
| | - Zhenghan Qi
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Psychology, Northeastern University, Boston, MA 02115, USA;
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA 02115, USA
| | - Susan Whitfield-Gabrieli
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
- Altrecht Mental Health Institute, 3512 PG Utrecht, The Netherlands
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - William S. Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Machado-Vieira R, Courtes AC, Zarate CA, Henter ID, Manji HK. Non-canonical pathways in the pathophysiology and therapeutics of bipolar disorder. Front Neurosci 2023; 17:1228455. [PMID: 37592949 PMCID: PMC10427509 DOI: 10.3389/fnins.2023.1228455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Bipolar disorder (BD) is characterized by extreme mood swings ranging from manic/hypomanic to depressive episodes. The severity, duration, and frequency of these episodes can vary widely between individuals, significantly impacting quality of life. Individuals with BD spend almost half their lives experiencing mood symptoms, especially depression, as well as associated clinical dimensions such as anhedonia, fatigue, suicidality, anxiety, and neurovegetative symptoms. Persistent mood symptoms have been associated with premature mortality, accelerated aging, and elevated prevalence of treatment-resistant depression. Recent efforts have expanded our understanding of the neurobiology of BD and the downstream targets that may help track clinical outcomes and drug development. However, as a polygenic disorder, the neurobiology of BD is complex and involves biological changes in several organelles and downstream targets (pre-, post-, and extra-synaptic), including mitochondrial dysfunction, oxidative stress, altered monoaminergic and glutamatergic systems, lower neurotrophic factor levels, and changes in immune-inflammatory systems. The field has thus moved toward identifying more precise neurobiological targets that, in turn, may help develop personalized approaches and more reliable biomarkers for treatment prediction. Diverse pharmacological and non-pharmacological approaches targeting neurobiological pathways other than neurotransmission have also been tested in mood disorders. This article reviews different neurobiological targets and pathophysiological findings in non-canonical pathways in BD that may offer opportunities to support drug development and identify new, clinically relevant biological mechanisms. These include: neuroinflammation; mitochondrial function; calcium channels; oxidative stress; the glycogen synthase kinase-3 (GSK3) pathway; protein kinase C (PKC); brain-derived neurotrophic factor (BDNF); histone deacetylase (HDAC); and the purinergic signaling pathway.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, United States
| | - Alan C. Courtes
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, United States
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Ioline D. Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Husseini K. Manji
- Deparment of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Mahal P, Deep R, Kumaran SS, Khandelwal SK. Elevated choline in dorsolateral prefrontal cortex of lithium responders with bipolar I disorder. Asian J Psychiatr 2023; 79:103318. [PMID: 36402079 DOI: 10.1016/j.ajp.2022.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Response to lithium maintenance varies widely across patients with bipolar disorder (BD). The studies on neurochemical correlates of long-term lithium response in BD remain scant. AIM To assess the neurochemical profile in DLPFC based on lithium response status among subjects with bipolar I disorder (BD-I) using in vivo MRS. MATERIALS AND METHOD This was an observational study of 40 right-handed, euthymic adult participants with DSM-5 BD-I on long-term lithium maintenance with no psychiatric comorbidities (MINI 7.0). Using Alda Lithium Response Scale (LRS), a cut-off ≥ 7 for excellent lithium response, the sample was grouped into study group I for responders and group II for non-responders. All participants were assessed using NIMH Life Chart Method and IGSLI typical/atypical features scale. 1H-MRS was carried out on a 3 T MR scanner (Achieva, Phillips) using a 32-channel head coil, with a voxel placed at the left DLPFC. LC model was used to measure absolute concentrations of neurochemicals and their ratios in relation to creatine. RESULTS Group I (n = 20) was comparable to Group II (n = 20) with respect to demographic and illness profile. The GPC/Cr+PCr ratio was significantly higher (p = 0.028) among excellent lithium responders (0.32 ± 0.20 mmol/l) compared to sub-optimal responders (0.25 ± 0.05 mmol/l). Choline-containing compounds reflect alterations in cell membrane synthesis or myelin turnover, and are a marker of overall cell density. No significant alterations were detected in NAA, glutamate, glutamine, myo-inositol and creatine. CONCLUSION The lithium responders exhibited elevated choline (GPC) in the left DLPFC compared to non-responders.
Collapse
Affiliation(s)
- Pankaj Mahal
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Raman Deep
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - S Senthil Kumaran
- Department of Nuclear Magnetic Resonance (NMR), All India Institute of Medical Sciences, New Delhi 110029, India.
| | - S K Khandelwal
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
4
|
Choi KW, Han KM, Kim A, Kang W, Kang Y, Tae WS, Ham BJ. Decreased cortical gyrification in patients with bipolar disorder. Psychol Med 2022; 52:2232-2244. [PMID: 33190651 DOI: 10.1017/s0033291720004079] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND An aberrant neural connectivity has been known to be associated with bipolar disorder (BD). Local gyrification may reflect the early neural development of cortical connectivity and has been studied as a possible endophenotype of psychiatric disorders. This study aimed to investigate differences in the local gyrification index (LGI) in each cortical region between patients with BD and healthy controls (HCs). METHODS LGI values, as measured using FreeSurfer software, were compared between 61 patients with BD and 183 HCs. The values were also compared between patients with BD type I and type II as a sub-group analysis. Furthermore, we evaluated whether there was a correlation between LGI values and illness duration or depressive symptom severity in patients with BD. RESULTS Patients with BD showed significant hypogyria in various cortical regions, including the left inferior frontal gyrus (pars opercularis), precentral gyrus, postcentral gyrus, superior temporal cortex, insula, right entorhinal cortex, and both transverse temporal cortices, compared to HCs after the Bonferroni correction (p < 0.05/66, 0.000758). LGI was not associated with clinical factors such as illness duration, depressive symptom severity, and lithium treatment. No significant differences in cortical gyrification according to the BD subtype were found. CONCLUSIONS BD appears to be characterized by a significant regionally localized hypogyria, in various cortical areas. This abnormality may be a structural and developmental endophenotype marking the risk for BD, and it might help to clarify the etiology of BD.
Collapse
Affiliation(s)
- Kwan Woo Choi
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|
5
|
Damme KSF, Alloy LB, Kelley NJ, Carroll A, Young CB, Chein J, Ng TH, Titone MK, Bart CP, Nusslock R. Bipolar spectrum disorders are associated with increased gray matter volume in the medial orbitofrontal cortex and nucleus accumbens. JCPP ADVANCES 2022; 2:e12068. [PMID: 36714682 PMCID: PMC9879263 DOI: 10.1002/jcv2.12068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/07/2022] [Indexed: 02/02/2023] Open
Abstract
Objective Elevated sensitivity to rewards prospectively predicts Bipolar Spectrum Disorder (BSD) onset; however, it is unclear whether volumetric abnormalities also reflect BSD risk. BSDs emerge when critical neurodevelopment in frontal and striatal regions occurs in sex-specific ways. The current paper examined the volume of frontal and striatal brain regions in both individuals with and at risk for a BSD with exploratory analyses examining sex-specificity. Methods One hundred fourteen medication-free individuals ages 18-27 at low-risk for BSD (moderate-reward sensitivity; N = 37), at high-risk without a BSD (high-reward sensitivity; N = 47), or with a BSD (N = 30) completed a structural MRI scan of the brain. We examined group differences in gray matter volume in a priori medial orbitofrontal cortex (mOFC) and nucleus accumbens (NAcc) regions-of-interest. Results The BSD group had enlarged frontostriatal volumes (mOFC, NAcc) compared to low individuals (d = 1.01). The mOFC volume in BSD was larger than low-risk (d = 1.01) and the high-risk groups (d = 0.74). This effect was driven by males with a BSD, who showed an enlarged mOFC compared to low (d = 1.01) and high-risk males (d = 0.74). Males with a BSD also showed a greater NAcc volume compared to males at low-risk (d = 0.49), but not high-risk males. Conclusions An enlarged frontostriatal volume (averaged mOFC, NAcc) is associated with the presence of a BSD, while subvolumes (mOFC vs. NAcc) showed unique patterning in relation to risk. We report preliminary evidence that sex moderates frontostriatal volume in BSD, highlighting the need for larger longitudinal risk studies examining the role of sex-specific neurodevelopmental trajectories in emerging BSDs.
Collapse
Affiliation(s)
| | - Lauren B. Alloy
- Department of PsychologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Ann Carroll
- Department of PsychologyNorthwestern UniversityEvanstonIllinoisUSA
| | | | - Jason Chein
- Department of PsychologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Tommy H. Ng
- Department of PsychologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Madison K. Titone
- Department of PsychologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Corinne P. Bart
- Department of PsychologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Robin Nusslock
- Department of PsychologyNorthwestern UniversityEvanstonIllinoisUSA
| |
Collapse
|
6
|
Khayachi A, Schorova L, Alda M, Rouleau GA, Milnerwood AJ. Posttranslational modifications & lithium's therapeutic effect-Potential biomarkers for clinical responses in psychiatric & neurodegenerative disorders. Neurosci Biobehav Rev 2021; 127:424-445. [PMID: 33971223 DOI: 10.1016/j.neubiorev.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/14/2021] [Accepted: 05/03/2021] [Indexed: 01/03/2023]
Abstract
Several neurodegenerative diseases and neuropsychiatric disorders display aberrant posttranslational modifications (PTMs) of one, or many, proteins. Lithium treatment has been used for mood stabilization for many decades, and is highly effective for large subsets of patients with diverse neurological conditions. However, the differential effectiveness and mode of action are not fully understood. In recent years, studies have shown that lithium alters several protein PTMs, altering their function, and consequently neuronal physiology. The impetus for this review is to outline the links between lithium's therapeutic mode of action and PTM homeostasis. We first provide an overview of the principal PTMs affected by lithium. We then describe several neuropsychiatric disorders in which PTMs have been implicated as pathogenic. For each of these conditions, we discuss lithium's clinical use and explore the putative mechanism of how it restores PTM homeostasis, and thereby cellular physiology. Evidence suggests that determining specific PTM patterns could be a promising strategy to develop biomarkers for disease and lithium responsiveness.
Collapse
Affiliation(s)
- A Khayachi
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| | - L Schorova
- McGill University Health Center Research Institute, Montréal, Quebec, Canada
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G A Rouleau
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada.
| | - A J Milnerwood
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
7
|
Rai S, Griffiths K, Breukelaar IA, Barreiros AR, Chen W, Boyce P, Hazell P, Foster S, Malhi GS, Bryant RA, Harris AWF, Korgaonkar MS. Investigating neural circuits of emotion regulation to distinguish euthymic patients with bipolar disorder and major depressive disorder. Bipolar Disord 2021; 23:284-294. [PMID: 33369067 DOI: 10.1111/bdi.13042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/20/2020] [Accepted: 12/20/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Up to 40% of patients with bipolar disorder (BD) are initially diagnosed as having major depressive disorder (MDD), and emotional lability is a key aspect of both sets of mood disorders. However, it remains unknown whether differences in the regulation of emotions through cognitive reappraisal may serve to distinguish BD and MDD. Therefore, we examined this question in euthymic BD and MDD patients. METHODS Thirty-eight euthymic BD, 33 euthymic MDD and 37 healthy control (HC) participants, matched for age, gender and depression severity, engaged in an emotion regulation (ER) cognitive reappraisal task during an fMRI scan were examined. Participants either reappraised (Think condition) or passively watched negative (Watch condition) or neutral (Neutral condition) pictures and rated their affect. Activation and connectivity analyses were used to examine group differences in reappraisal (Think vs Watch) and reactivity (Watch vs Neutral) conditions in ER-specific neural circuits. RESULTS Irrespective of group, participants rated most negatively the images during the Watch condition relative to Think and Neutral conditions, and more negatively to Think relative to Neutral. Notably, BD participants exhibited reduced subgenual anterior cingulate activation (sgACC) relative to MDD during reappraisal, but exhibited greater sgACC activation relative to MDD during reactivity, whereas MDD participants elicited greater activation in right amygdala relative to BD during reactivity. We found no group differences in task-related connectivity. CONCLUSIONS Euthymic BD and MDD patients engage differential brain regions to process and regulate emotional information. These differences could serve to distinguish the clinical groups and provide novel insights into the underlying pathophysiology of BD.
Collapse
Affiliation(s)
- Sabina Rai
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Kristi Griffiths
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Isabella A Breukelaar
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ana R Barreiros
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Wenting Chen
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Philip Boyce
- Discipline of Psychiatry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Philip Hazell
- Discipline of Psychiatry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sheryl Foster
- Department of Radiology, Westmead Hospital, Westmead, NSW, Australia.,Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gin S Malhi
- Discipline of Psychiatry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,CADE Clinic, Department of Psychiatry, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Richard A Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Anthony W F Harris
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Discipline of Psychiatry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Discipline of Psychiatry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Cyrino LAR, Delwing-de Lima D, Ullmann OM, Maia TP. Concepts of Neuroinflammation and Their Relationship With Impaired Mitochondrial Functions in Bipolar Disorder. Front Behav Neurosci 2021; 15:609487. [PMID: 33732117 PMCID: PMC7959852 DOI: 10.3389/fnbeh.2021.609487] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Bipolar disorder (BD) is a chronic psychiatric disease, characterized by frequent behavioral episodes of depression and mania, and neurologically by dysregulated neurotransmission, neuroplasticity, growth factor signaling, and metabolism, as well as oxidative stress, and neuronal apoptosis, contributing to chronic neuroinflammation. These abnormalities result from complex interactions between multiple susceptibility genes and environmental factors such as stress. The neurocellular abnormalities of BD can result in gross morphological changes, such as reduced prefrontal and hippocampal volume, and circuit reorganization resulting in cognitive and emotional deficits. The term "neuroprogression" is used to denote the progressive changes from early to late stages, as BD severity and loss of treatment response correlate with the number of past episodes. In addition to circuit and cellular abnormalities, BD is associated with dysfunctional mitochondria, leading to severe metabolic disruption in high energy-demanding neurons and glia. Indeed, mitochondrial dysfunction involving electron transport chain (ETC) disruption is considered the primary cause of chronic oxidative stress in BD. The ensuing damage to membrane lipids, proteins, and DNA further perpetuates oxidative stress and neuroinflammation, creating a perpetuating pathogenic cycle. A deeper understanding of BD pathophysiology and identification of associated biomarkers of neuroinflammation are needed to facilitate early diagnosis and treatment of this debilitating disorder.
Collapse
Affiliation(s)
- Luiz Arthur Rangel Cyrino
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Laboratório de Práticas Farmacêuticas of Department of Pharmacy, University of Joinville Region—UNIVILLE, Joinville, Brazil
- Department of Psychology, University of Joinville—UNIVILLE, Joinville, Brazil
- Department of Pharmacy, University of Joinville—UNIVILLE, Joinville, Brazil
| | - Daniela Delwing-de Lima
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Laboratório de Práticas Farmacêuticas of Department of Pharmacy, University of Joinville Region—UNIVILLE, Joinville, Brazil
- Department of Pharmacy, University of Joinville—UNIVILLE, Joinville, Brazil
- Department of Medicine, University of Joinville—UNIVILLE, Joinville, Brazil
| | | | | |
Collapse
|
9
|
Neuroprogression as an Illness Trajectory in Bipolar Disorder: A Selective Review of the Current Literature. Brain Sci 2021; 11:brainsci11020276. [PMID: 33672401 PMCID: PMC7926350 DOI: 10.3390/brainsci11020276] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 01/29/2023] Open
Abstract
Bipolar disorder (BD) is a chronic and disabling psychiatric condition that is linked to significant disability and psychosocial impairment. Although current neuropsychological, molecular, and neuroimaging evidence support the existence of neuroprogression and its effects on the course and outcome of this condition, whether and to what extent neuroprogressive changes may impact the illness trajectory is still poorly understood. Thus, this selective review was aimed toward comprehensively and critically investigating the link between BD and neurodegeneration based on the currently available evidence. According to the most relevant findings of the present review, most of the existing neuropsychological, neuroimaging, and molecular evidence demonstrates the existence of neuroprogression, at least in a subgroup of BD patients. These studies mainly focused on the most relevant effects of neuroprogression on the course and outcome of BD. The main implications of this assumption are discussed in light of specific shortcomings/limitations, such as the inability to carry out a meta-analysis, the inclusion of studies with small sample sizes, retrospective study designs, and different longitudinal investigations at various time points.
Collapse
|
10
|
Volman I, Pringle A, Verhagen L, Browning M, Cowen PJ, Harmer CJ. Lithium modulates striatal reward anticipation and prediction error coding in healthy volunteers. Neuropsychopharmacology 2021; 46:386-393. [PMID: 33127993 PMCID: PMC7853118 DOI: 10.1038/s41386-020-00895-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/09/2022]
Abstract
Lithium is one of the most effective mood-stabilizing medications in bipolar disorder. This study was designed to test whether lithium administration may stabilize mood via effects on reward processing. It was hypothesized that lithium administration would modulate reward processing in the striatum and affect both anticipation and outcome computations. Thirty-seven healthy human participants (18 males, 33 with suitable fMRI data) received 11 (±1) days of lithium carbonate or placebo intervention (double-blind), after which they completed the monetary incentive delay task while fMRI data were collected. The monetary incentive delay task is a robust task with excellent test-retest reliability and is well suited to investigate different phases of reward processing within the caudate and nucleus accumbens. To test for correlations with prediction error signals a Rescorla-Wagner reinforcement-learning model was applied. Lithium administration enhanced activity in the caudate during reward anticipation compared to placebo. In contrast, lithium administration reduced caudate and nucleus accumbens activity during reward outcome. This latter effect seems related to learning as reward prediction errors showed a positive correlation with caudate and nucleus accumbens activity during placebo, which was absent after lithium administration. Lithium differentially modulates the anticipation relative to the learning of rewards. This suggests that lithium might reverse dampened reward anticipation while reducing overactive reward updating in patients with bipolar disorder. This specific effect of lithium suggests that a targeted modulation of reward learning may be a viable approach for novel interventions in bipolar disorder.
Collapse
Affiliation(s)
- Inge Volman
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Abbie Pringle
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Michael Browning
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Phil J Cowen
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Catherine J Harmer
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Drug Repurposing in Medulloblastoma: Challenges and Recommendations. Curr Treat Options Oncol 2020; 22:6. [PMID: 33245404 DOI: 10.1007/s11864-020-00805-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT Medulloblastoma is the most frequently diagnosed primary malignant brain tumor among children. Currently available therapeutic strategies are based on surgical resection, chemotherapy, and/or radiotherapy. However, majority of patients quickly develop therapeutic resistance and are often left with long-term therapy-related side effects and sequelae. Therefore, there remains a dire need to develop more effective therapeutics to overcome the acquired resistance to currently available therapies. Unfortunately, the process of developing novel anti-neoplastic drugs from bench to bedside is highly time-consuming and very expensive. A wide range of drugs that are already in clinical use for treating non-cancerous diseases might commonly target tumor-associated signaling pathways as well and hence be of interest in treating different cancers. This is referred to as drug repurposing or repositioning. In medulloblastoma, drug repurposing has recently gained a remarkable interest as an alternative therapy to overcome therapy resistance, wherein existing non-tumor drugs are being tested for their potential anti-neoplastic effects outside the scope of their original use.
Collapse
|
12
|
Mancuso L, Fornito A, Costa T, Ficco L, Liloia D, Manuello J, Duca S, Cauda F. A meta-analytic approach to mapping co-occurrent grey matter volume increases and decreases in psychiatric disorders. Neuroimage 2020; 222:117220. [PMID: 32777357 DOI: 10.1016/j.neuroimage.2020.117220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous studies have investigated grey matter (GM) volume changes in diverse patient groups. Reports of disorder-related GM reductions are common in such work, but many studies also report evidence for GM volume increases in patients. It is unclear whether these GM increases and decreases are independent or related in some way. Here, we address this question using a novel meta-analytic network mapping approach. We used a coordinate-based meta-analysis of 64 voxel-based morphometry studies of psychiatric disorders to calculate the probability of finding a GM increase or decrease in one region given an observed change in the opposite direction in another region. Estimating this co-occurrence probability for every pair of brain regions allowed us to build a network of concurrent GM changes of opposing polarity. Our analysis revealed that disorder-related GM increases and decreases are not independent; instead, a GM change in one area is often statistically related to a change of opposite polarity in other areas, highlighting distributed yet coordinated changes in GM volume as a function of brain pathology. Most regions showing GM changes linked to an opposite change in a distal area were located in salience, executive-control and default mode networks, as well as the thalamus and basal ganglia. Moreover, pairs of regions showing coupled changes of opposite polarity were more likely to belong to different canonical networks than to the same one. Our results suggest that regional GM alterations in psychiatric disorders are often accompanied by opposing changes in distal regions that belong to distinct functional networks.
Collapse
Affiliation(s)
- Lorenzo Mancuso
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University,Victoria, Australia; Monash Biomedical Imaging, Monash University,Victoria, Australia
| | - Tommaso Costa
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
| | - Linda Ficco
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Rinker JR, Meador WR, King P. Randomized feasibility trial to assess tolerance and clinical effects of lithium in progressive multiple sclerosis. Heliyon 2020; 6:e04528. [PMID: 32760832 PMCID: PMC7393418 DOI: 10.1016/j.heliyon.2020.e04528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Disability accumulation in progressive multiple sclerosis (MS) results from inflammatory and neurodegenerative mechanisms. In animal models of MS, lithium acts to reduce inflammatory demyelination, and in models of neurodegenerative diseases, lithium also slows neuronal death. Prospective studies of lithium in MS patients have not been previously undertaken. OBJECTIVE To determine the tolerance and feasibility of using low-dose (150-300 mg/daily) lithium as a pharmaceutical intervention in a cohort of subjects with progressive MS, and to gauge preliminary effects of lithium on change in brain volume over time. METHODS Patients with primary or secondary progressive MS were recruited into a 2-year, single-blind crossover trial in which subjects were randomly assigned to take lithium in year 1 or 2. The primary outcomes of interest were tolerance of lithium and percentage brain volume change (PBVC) on vs. off lithium. Secondary outcomes included relapse rates, disability changes, and self-report scales assessing fatigue, mood, and quality of life (QOL). RESULTS Of 24 screened patients, 23 were randomized to take lithium during year 1 (n = 11) or 2 (n = 12). Two subjects discontinued the trial due to lithium side effects. Other reasons for discontinuation included personal reasons (n = 2), worsening MS (n = 1), and development of multiple myeloma (n = 1). For the 17 who completed the trial, change in PBVC on lithium (+0.107) did not significantly differ from the observation period (-0.355, p = 0.346). Disability measured by Expanded Disability Status Scale and MS Functional Composite did not differ by lithium treatment status. On patient reported measures of mental well-being, subjects reported fewer depressive symptoms on the Beck Depression Inventory (12.3 vs. 15.8, p = 0.016) and more favorably on the mental domains of the MSQOL inventory (56.7 vs. 52.4, p = 0.028). CONCLUSIONS Low-dose lithium is well tolerated in persons with MS. Taking lithium did not result in differences in PBVC, relapses, or disability, but conclusions were limited by study design and sample size. Despite concern for lithium-associated neurological side effects, subjects taking lithium did not report worsened fatigue or physical well-being. On measures of mood and mental health QOL, subjects scored more favorably while taking lithium. CLINICALTRIALSGOV IDENTIFIER NCT01259388.
Collapse
Affiliation(s)
- John R. Rinker
- Department of Neurology, University of Alabama at Birmingham, 1720 7 Avenue South, Birmingham, AL, 35294, USA
- Birmingham VA Medical Center, 700 19 Street South, Birmingham, AL, 35233, USA
| | - William R. Meador
- Department of Neurology, University of Alabama at Birmingham, 1720 7 Avenue South, Birmingham, AL, 35294, USA
| | - Peter King
- Birmingham VA Medical Center, 700 19 Street South, Birmingham, AL, 35233, USA
| |
Collapse
|
14
|
Biological Targets Underlying the Antisuicidal Effects of Lithium. Curr Behav Neurosci Rep 2020. [DOI: 10.1007/s40473-020-00208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
15
|
Cho IYK, Goghari VM. The relationship between maintenance and manipulation components of working memory and prefrontal and parietal brain regions in bipolar disorder. J Affect Disord 2020; 264:519-526. [PMID: 31780133 DOI: 10.1016/j.jad.2019.11.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/07/2019] [Accepted: 11/12/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND A domain of cognition that has been found to be impaired in bipolar disorder across mood states is working memory. Working memory can be separated into two components, maintenance and manipulation. Bipolar patients also demonstrate structural brain abnormalities in prefrontal and parietal regions, which are regions associated with working memory processes. Despite the understanding that working memory consists of multiple separable cognitive processes, no study to date has differentiated maintenance and manipulation, and associated them with underlying structural brain regions in bipolar disorder. METHODS Twenty-six bipolar patients and 24 controls completed a visuospatial working memory task and structural neuroimaging. Prefrontal and parietal gray matter volume, surface area, and cortical thickness were obtained using FreeSurfer. The relationship between working memory performance, structural integrity, symptoms, and functioning were investigated. RESULTS Bipolar patients were less accurate on the working memory task compared to controls, without a greater deficit in the manipulation condition. Controls had thicker prefrontal and parietal cortices than bipolar patients. In bipolar patients, thicker prefrontal cortices had a small association with greater accuracy on the maintenance condition, as well as greater depression. LIMITATIONS This study could have benefitted from a larger sample size. CONCLUSIONS Bipolar patients demonstrated both poorer accuracy on the visuospatial working memory task compared to controls and thinner cortices in areas associated with working memory, namely the prefrontal and parietal cortices. This demonstrates an underlying relationship between brain and behavior in bipolar disorder.
Collapse
Affiliation(s)
- Ivy Y K Cho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada; Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, ON, Canada.
| | - Vina M Goghari
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada; Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Kim S, Kim YW, Shim M, Jin MJ, Im CH, Lee SH. Altered Cortical Functional Networks in Patients With Schizophrenia and Bipolar Disorder: A Resting-State Electroencephalographic Study. Front Psychiatry 2020; 11:661. [PMID: 32774308 PMCID: PMC7388793 DOI: 10.3389/fpsyt.2020.00661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/25/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Pathologies of schizophrenia and bipolar disorder have been poorly understood. Brain network analysis could help understand brain mechanisms of schizophrenia and bipolar disorder. This study investigates the source-level brain cortical networks using resting-state electroencephalography (EEG) in patients with schizophrenia and bipolar disorder. METHODS Resting-state EEG was measured in 38 patients with schizophrenia, 34 patients with bipolar disorder type I, and 30 healthy controls. Graph theory based source-level weighted functional networks were evaluated: strength, clustering coefficient (CC), path length (PL), and efficiency in six frequency bands. RESULTS At the global level, patients with schizophrenia or bipolar disorder showed higher strength, CC, and efficiency, and lower PL in the theta band, compared to healthy controls. At the nodal level, patients with schizophrenia or bipolar disorder showed higher CCs, mostly in the frontal lobe for the theta band. Particularly, patients with schizophrenia showed higher nodal CCs in the left inferior frontal cortex and the left ascending ramus of the lateral sulcus compared to patients with bipolar disorder. In addition, the nodal-level theta band CC of the superior frontal gyrus and sulcus (cognition-related region) correlated with positive symptoms and social and occupational functioning scale (SOFAS) scores in the schizophrenia group, while that of the middle frontal gyrus (emotion-related region) correlated with SOFAS scores in the bipolar disorder group. CONCLUSIONS Altered cortical networks were revealed and these alterations were significantly correlated with core pathological symptoms of schizophrenia and bipolar disorder. These source-level cortical network indices could be promising biomarkers to evaluate patients with schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Sungkean Kim
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Yong-Wook Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea.,Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Miseon Shim
- Institute of Industrial Technology, Korea University, Sejong, South Korea
| | - Min Jin Jin
- Department of Psychiatry, Wonkwang University Hospital, Iksan, South Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea.,Department of Psychiatry, Inje University Ilsan Paik Hospital, Ilsan, South Korea
| |
Collapse
|
17
|
Van Gestel H, Franke K, Petite J, Slaney C, Garnham J, Helmick C, Johnson K, Uher R, Alda M, Hajek T. Brain age in bipolar disorders: Effects of lithium treatment. Aust N Z J Psychiatry 2019; 53:1179-1188. [PMID: 31244332 DOI: 10.1177/0004867419857814] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Bipolar disorders increase the risk of dementia and show biological and brain alterations, which resemble accelerated aging. Lithium may counter some of these processes and lower the risk of dementia. However, until now no study has specifically investigated the effects of Li on brain age. METHODS We acquired structural magnetic resonance imaging scans from 84 participants with bipolar disorders (41 with and 43 without Li treatment) and 45 controls. We used a machine learning model trained on an independent sample of 504 controls to estimate the individual brain ages of study participants, and calculated BrainAGE by subtracting chronological from the estimated brain age. RESULTS BrainAGE was significantly greater in non-Li relative to Li or control participants, F(2, 125) = 10.22, p < 0.001, with no differences between the Li treated and control groups. The estimated brain age was significantly higher than the chronological age in the non-Li (4.28 ± 6.33 years, matched t(42) = 4.43, p < 0.001), but not the Li-treated group (0.48 ± 7.60 years, not significant). Even Li-treated participants with partial prophylactic treatment response showed lower BrainAGE than the non-Li group, F(1, 64) = 4.80, p = 0.03. CONCLUSIONS Bipolar disorders were associated with greater, whereas Li treatment with lower discrepancy between brain and chronological age. These findings support the neuroprotective effects of Li, which were sufficiently pronounced to affect a complex, multivariate measure of brain structure. The association between Li treatment and BrainAGE was independent of long-term thymoprophylactic response and thus may generalize beyond bipolar disorders, to neurodegenerative disorders.
Collapse
Affiliation(s)
- Holly Van Gestel
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Katja Franke
- Structural Brain Mapping Group, Department of Psychiatry, Jena University Hospital, Jena, Germany
| | - Joanne Petite
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Claire Slaney
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Julie Garnham
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Carl Helmick
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Kyle Johnson
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,National Institute of Mental Health, Klecany, Czech Republic
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
18
|
Kim S, Jeon H, Jang KI, Kim YW, Im CH, Lee SH. Mismatch Negativity and Cortical Thickness in Patients With Schizophrenia and Bipolar Disorder. Schizophr Bull 2019; 45:425-435. [PMID: 29684224 PMCID: PMC6403065 DOI: 10.1093/schbul/sby041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Mismatch negativity (MMN) is a measure of automatic neurophysiological brain processes for detecting unexpected sensory stimuli. This study investigated MMN reduction in patients with schizophrenia and bipolar disorder and examined whether cortical thickness is associated with MMN, for exploratory purposes. METHODS Electroencephalograms were recorded in 38 patients with schizophrenia, 37 patients with bipolar disorder, and 32 healthy controls (HCs) performing a passive auditory oddball paradigm. All participants underwent T1 structural magnetic resonance imaging scanning to investigate the cortical thickness of MMN-generating regions. Average MMN amplitudes from the frontocentral electrodes were analyzed. RESULTS Patients with schizophrenia and bipolar disorder exhibited significantly reduced MMN amplitude compared with HCs. In bipolar disorder, we found intermediate MMN amplitude among the groups. Average MMN and cortical thickness of the right superior temporal gyrus (STG) were significantly negatively correlated in patients with schizophrenia. In patients with bipolar disorder, average MMN was significantly correlated with cortical thickness of the left anterior cingulate cortex and the right STG. MMN showed negative correlations with social and occupational functioning in schizophrenia, and with the Korean auditory verbal learning test for delayed recall in bipolar disorder. CONCLUSIONS MMN reduction was associated with cortical thinning in frontal and temporal areas in patients, particularly with an auditory verbal hallucination-related region in schizophrenia and emotion-related regions in bipolar disorder. MMN was associated with functional outcomes in schizophrenia, whereas it was associated with neurocognition in bipolar disorder.
Collapse
Affiliation(s)
- Sungkean Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea,Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyeonjin Jeon
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
| | - Kuk-In Jang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea,Department of Biomedicine & Health Sciences, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Yong-Wook Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea,Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea,Department of Psychiatry, Inje University, Ilsan-Paik Hospital, Goyang, Republic of Korea,To whom correspondence should be addressed; Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Juhwa-ro 170, Ilsanseo-Gu, Goyang 411-706, Republic of Korea; tel: +82-31-910-7260, fax: +82-31-910-7268, e-mail:
| |
Collapse
|
19
|
Toma S, Islam AH, Metcalfe AWS, Mitchell RHB, Fiksenbaum L, MacIntosh BJ, Goldstein BI. Cortical Volume and Thickness Across Bipolar Disorder Subtypes in Adolescents: A Preliminary Study. J Child Adolesc Psychopharmacol 2019; 29:141-151. [PMID: 30359542 DOI: 10.1089/cap.2017.0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Neuroimaging studies of adults with bipolar disorder (BD) have identified several BD subtype distinctions, including greater deficits in prefrontal gray matter volumes in BD-I (bipolar I disorder) compared to BD-II (bipolar II disorder). We sought to investigate BD subtype differences in brain structure among adolescents and young adults. METHODS Forty-four youth with BD (14 BD-I, 16 BD-II, and 14 BD-not otherwise specified [NOS], mean age 17) underwent 3T-MRI and images were analyzed using FreeSurfer software. Cortical volume and thickness were analyzed for region of interest (ROI): ventrolateral prefrontal cortex, ventromedial prefrontal cortex, anterior cingulate cortex (ACC), subgenual cingulate cortex, and amygdala, controlling for age, sex, and total intracranial volume. ROIs were selected as found to be implicated in BD in prior studies. A whole brain vertex-wise exploratory analysis was also performed. Uncorrected results are presented. RESULTS There were group differences in ACC thickness (F = 3.88, p = 0.03, η2 = 0.173 uncorrected), which was reduced in BD-II in comparison to BD-I (p = 0.027 uncorrected) and BD-NOS (p = 0.019 uncorrected). These results did not survive correction for multiple comparisons and no other group differences were observed. The exploratory vertex-wise analysis found a similar pattern of lower cortical thickness in BD-II in the left and right superior frontal gyrus and left caudal middle frontal gyrus. CONCLUSIONS This study found reduced cortical thickness for youth with BD-II, relative to BD-I, in regions associated with cognitive control. Further neurostructural differences between subtypes may emerge later during the course of illness.
Collapse
Affiliation(s)
- Simina Toma
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,2 Department of Psychiatry, University of Toronto , Toronto, Canada
| | - Alvi H Islam
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,2 Department of Psychiatry, University of Toronto , Toronto, Canada
| | - Arron W S Metcalfe
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,3 Brain Sciences , Sunnybrook Health Sciences Centre, Toronto, Canada .,4 Heart and Stroke Foundation Canadian Partnership for Stroke Recovery , Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Rachel H B Mitchell
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,2 Department of Psychiatry, University of Toronto , Toronto, Canada
| | - Lisa Fiksenbaum
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Bradley J MacIntosh
- 3 Brain Sciences , Sunnybrook Health Sciences Centre, Toronto, Canada .,4 Heart and Stroke Foundation Canadian Partnership for Stroke Recovery , Sunnybrook Health Sciences Centre, Toronto, Canada .,5 Department of Medical Biophysics, University of Toronto , Toronto, Canada .,6 Department of Physical Sciences, Sunnybrook Health Sciences Centre , Toronto, Canada
| | - Benjamin I Goldstein
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,2 Department of Psychiatry, University of Toronto , Toronto, Canada .,4 Heart and Stroke Foundation Canadian Partnership for Stroke Recovery , Sunnybrook Health Sciences Centre, Toronto, Canada .,7 Department of Pharmacology, University of Toronto , Toronto, Canada
| |
Collapse
|
20
|
Chen ST, Volle D, Jalil J, Wu P, Small GW. Health-Promoting Strategies for the Aging Brain. Am J Geriatr Psychiatry 2019; 27:213-236. [PMID: 30686664 DOI: 10.1016/j.jagp.2018.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/31/2022]
Abstract
As the world's population ages and people live longer, the changes in the aging brain present substantial challenges to our health and society. With greater longevity come age-related diseases, many of which have direct and indirect influences on the health of the brain. Although there is some degree of predictable decline in brain functioning with aging, meaningful cognitive decline is not inevitable and is perhaps preventable. In this review, we present the case that the course of aging-related brain disease and dysfunction can be modified. We present the evidence for conditions and risk factors that may contribute to cognitive decline and dementia and for interventions that may mitigate their impact on cognitive functioning later in life, or even prevent them and their cognitive sequelae from developing. Although much work remains to be done to meet the challenges of the aging brain, strategies to promote its health have been demonstrated and offer much promise, which can only be realized if we mount a vigorous public health effort to implement these strategies.
Collapse
Affiliation(s)
- Stephen T Chen
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles; the University of California, Los Angeles, Longevity Center, Los Angeles; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles.
| | - Dax Volle
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles; the University of California, Los Angeles, Longevity Center, Los Angeles; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles
| | - Jason Jalil
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles; the University of California, Los Angeles, Longevity Center, Los Angeles; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles
| | - Pauline Wu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles; the University of California, Los Angeles, Longevity Center, Los Angeles; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles
| | - Gary W Small
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles; the University of California, Los Angeles, Longevity Center, Los Angeles; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles
| |
Collapse
|
21
|
Ng J, Sjöstrand M, Eyal N. Adding Lithium to Drinking Water for Suicide Prevention—The Ethics. Public Health Ethics 2019. [DOI: 10.1093/phe/phz002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Recent observations associate naturally occurring trace levels of Lithium in ground water with significantly lower suicide rates. It has been suggested that adding trace Lithium to drinking water could be a safe and effective way to reduce suicide. This article discusses the many ethical implications of such population-wide Lithium medication. It compares this policy to more targeted solutions that introduce trace amounts of Lithium to groups at higher risk of suicide or lower risk of adverse effects. The question of mass treatment with Lithium recalls other choices in public health between population-wide and more targeted interventions. The framework we propose could be relevant to some of these other dilemmas.
Collapse
Affiliation(s)
- Jared Ng
- Department of Developmental Psychiatry, Institute of Mental Health
| | - Manne Sjöstrand
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet
| | - Nir Eyal
- Department of Global Health and Population, Harvard TH Chan School of Public Health
| |
Collapse
|
22
|
Hannoun S, Tutunji R, El Homsi M, Saaybi S, Hourani R. Automatic Thalamus Segmentation on Unenhanced 3D T1 Weighted Images: Comparison of Publicly Available Segmentation Methods in a Pediatric Population. Neuroinformatics 2018; 17:443-450. [DOI: 10.1007/s12021-018-9408-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Soeiro-de-Souza MG, Otaduy MCG, Machado-Vieira R, Moreno RA, Nery FG, Leite C, Lafer B. Lithium-associated anterior cingulate neurometabolic profile in euthymic Bipolar I disorder: A 1H-MRS study. J Affect Disord 2018; 241:192-199. [PMID: 30130684 DOI: 10.1016/j.jad.2018.08.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 01/28/2023]
Abstract
OBJECTIVE In the treatment of Bipolar disorder (BD), achieving euthymia is highly complex and usually requires a combination of mood stabilizers. The mechanism of action in stabilizing mood has not been fully elucidated, but alterations in N-Acetylaspartate (NAA), Myo-Inositol (mI) and Choline (Cho) have been implicated. Proton magnetic resonance spectroscopy (1H-MRS) is the gold standard technique for measuring brain NAA, Cho and mI in vivo. The objective of this study was to investigate the association of lithium use in BD type I and brain levels of NAA, mI and Cho in the (anterior cingulate cortex) ACC. METHODS 129 BD type I subjects and 79 healthy controls (HC) were submitted to a 3-Tesla brain magnetic resonance imaging scan (1H-MRS) using a PRESS ACC single voxel (8cm3) sequence. RESULTS BD patients exhibited higher NAA and Cho levels compared to HC. Lithium prescription was associated with lower mI (combination + monotherapy) and higher NAA levels (monotherapy). CONCLUSION The results observed add to the knowledge about the mechanisms of action of mood stabilizers on brain metabolites during euthymia. Additionally, the observed decrease in mI levels associated with lithium monotherapy is an in vivo finding that supports the inositol-depletion hypothesis of lithium pharmacodynamics.
Collapse
Affiliation(s)
- Marcio Gerhardt Soeiro-de-Souza
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, University of Sao Paulo, Brazil; Genetics and Pharmacogenetics Unit (PROGENE), Department and Institute of Psychiatry, University of Sao Paulo, Brazil.
| | - Maria Concepcion Garcia Otaduy
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), Brazil
| | | | - Ricardo Alberto Moreno
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, University of Sao Paulo, Brazil
| | - Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, USA
| | - Claudia Leite
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), Brazil
| | - Beny Lafer
- Bipolar Disorders Program (PROMAN), Department and Institute of Psychiatry, University of São Paulo, Brazil
| |
Collapse
|
24
|
Cabeen RP, Laidlaw DH, Ruggieri A, Dickstein DP. Preliminary mapping of the structural effects of age in pediatric bipolar disorder with multimodal MR imaging. Psychiatry Res 2018; 273:54-62. [PMID: 29361347 PMCID: PMC5815932 DOI: 10.1016/j.pscychresns.2017.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/31/2017] [Accepted: 12/31/2017] [Indexed: 10/18/2022]
Abstract
This study investigates multimodal structural MR imaging biomarkers of development trajectories in pediatric bipolar disorder. T1-weighted and diffusion-weighted MR imaging was conducted to investigate cross-sectional group differences with age between typically developing controls (N = 26) and youths diagnosed with bipolar disorder (N = 26). Region-based analysis was used to examine cortical thickness of gray matter and diffusion tensor parameters in superficial white matter, and tractography-based analysis was used to examine deep white matter fiber bundles. Patients and controls showed significantly different maturation trajectories across brain areas; however, the magnitude of differences varied by region. The rate of cortical thinning with age was greater in patients than controls in the left frontal pole. While controls showed increasing fractional anisotropy (FA) and axial diffusivity (AD) with age, patients showed an opposite trend of decreasing FA and AD with age in fronto-temporal-striatal regions located in both superficial and deep white matter. The findings support fronto-temporal-striatal alterations in the developmental trajectories of youths diagnosed with bipolar disorder, and further, show the value of multimodal computational techniques in the assessment of neuropsychiatric disorders. These preliminary results warrant further investigation into longitudinal changes and the effects of treatment in the brain areas identified in this study.
Collapse
Affiliation(s)
- Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
| | - David H Laidlaw
- Department of Computer Science, Brown University, Providence, RI, USA
| | - Amanda Ruggieri
- Pediatric Mood, Imaging & NeuroDevelopment Program, Bradley Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Daniel P Dickstein
- Pediatric Mood, Imaging & NeuroDevelopment Program, Bradley Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
25
|
Global grey matter volume in adult bipolar patients with and without lithium treatment: A meta-analysis. J Affect Disord 2018; 225:599-606. [PMID: 28886501 DOI: 10.1016/j.jad.2017.08.078] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/20/2017] [Accepted: 08/27/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The goal of this meta-analysis was to quantitatively summarize the evidence available on the differences in grey matter volume between lithium-treated and lithium-free bipolar patients. METHODS A systematic search was conducted in Cochrane Central, Embase, MEDLINE, and PsycINFO databases for original peer-reviewed journal articles that reported on global grey matter volume in lithium-medicated and lithium-free bipolar patients. Standard mean difference and Hedges' g were used to calculate effect size in a random-effects model. Risk of publication bias was assessed using Egger's test and quality of evidence was assessed using standard criteria. RESULTS There were 15 studies with a total of 854 patients (368 lithium-medicated, 486 lithium-free) included in the meta-analysis. Global grey matter volume was significantly larger in lithium-treated bipolar patients compared to lithium-free patients (SMD: 0.17, 95% CI: 0.01-0.33; z = 2.11, p = 0.035). Additionally, there was a difference in global grey matter volume between groups in studies that employed semi-automated segmentation methods (SMD: 0.66, 95% CI: 0.01-1.31; z = 1.99, p = 0.047), but no significant difference in studies that used fully-automated segmentation. No publication bias was detected (bias coefficient = - 0.65, p = 0.46). LIMITATIONS Variability in imaging methods and lack of high-quality evidence limits the interpretation of the findings. CONCLUSIONS Results suggest that lithium-treated patients have a greater global grey matter volume than those who were lithium-free. Further study of the relationship between lithium and grey matter volume may elucidate the therapeutic potential of lithium in conditions characterized by abnormal changes in brain structure.
Collapse
|
26
|
Duarte DGG, Neves MDCL, Albuquerque MR, Turecki G, Ding Y, de Souza-Duran FL, Busatto G, Correa H. Structural brain abnormalities in patients with type I bipolar disorder and suicidal behavior. Psychiatry Res Neuroimaging 2017; 265:9-17. [PMID: 28494347 DOI: 10.1016/j.pscychresns.2017.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 12/20/2022]
Abstract
Some studies have identified brain morphological changes in the frontolimbic network (FLN) in bipolar subjects who attempt suicide (SA). The present study investigated neuroanatomical abnormalities in the FLN to find a possible neural signature for suicidal behavior in patients with bipolar disorder type I (BD-I). We used voxel-based morphometry to compare euthymic patients with BD-I who had attempted suicide (n=20), who had not attempted suicide (n=19) and healthy controls (HCs) (n=20). We also assessed the highest medical lethality of their previous SA. Compared to the participants who had not attempted suicide, the patients with BD-I who had attempted suicide exhibited significantly increased gray matter volume (GMV) in the right rostral anterior cingulate cortex (ACC), which was more pronounced and extended further to the left ACC in the high-lethality subgroup (p<0.05, with family-wise error (FWE) correction for multiple comparisons using small-volume correction). GMV in the insula and orbitofrontal cortex was also related to suicide lethality (p<0.05, FWE-corrected). The current findings suggest that morphological changes in the FLN could be a signature of previous etiopathogenic processes affecting regions related to suicidality and its severity in BD-I patients.
Collapse
Affiliation(s)
- Dante G G Duarte
- Mental Health Department, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| | - Maila de Castro L Neves
- Mental Health Department, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| | | | - Gustavo Turecki
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Montreal, Canada.
| | - Yang Ding
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Montreal, Canada.
| | - Fabio Luis de Souza-Duran
- Laboratory of Neuroimaging in Psychiatry (LIM-21), Research in Applied Neuroscience, Support Care of the University of São Paulo (NAPNA-USP), São Paulo, Brazil.
| | - Geraldo Busatto
- Laboratory of Neuroimaging in Psychiatry (LIM-21), Research in Applied Neuroscience, Support Care of the University of São Paulo (NAPNA-USP), São Paulo, Brazil.
| | - Humberto Correa
- Mental Health Department, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| |
Collapse
|
27
|
Wang C, Fu KK, Dai J, Lacey SD, Yao Y, Pastel G, Xu L, Zhang J, Hu L. Inverted battery design as ion generator for interfacing with biosystems. Nat Commun 2017; 8:15609. [PMID: 28737174 PMCID: PMC5527283 DOI: 10.1038/ncomms15609] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/12/2017] [Indexed: 11/09/2022] Open
Abstract
In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an 'electron battery' configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As a proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications.
Collapse
Affiliation(s)
- Chengwei Wang
- Department of Materials Science and Engineering, University of Maryland College Park, College Park, Maryland 20742, USA
| | - Kun Kelvin Fu
- Department of Materials Science and Engineering, University of Maryland College Park, College Park, Maryland 20742, USA
| | - Jiaqi Dai
- Department of Materials Science and Engineering, University of Maryland College Park, College Park, Maryland 20742, USA
| | - Steven D Lacey
- Department of Materials Science and Engineering, University of Maryland College Park, College Park, Maryland 20742, USA
| | - Yonggang Yao
- Department of Materials Science and Engineering, University of Maryland College Park, College Park, Maryland 20742, USA
| | - Glenn Pastel
- Department of Materials Science and Engineering, University of Maryland College Park, College Park, Maryland 20742, USA
| | - Lisha Xu
- Department of Materials Science and Engineering, University of Maryland College Park, College Park, Maryland 20742, USA
| | - Jianhua Zhang
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland College Park, College Park, Maryland 20742, USA
| |
Collapse
|
28
|
The CACNA1C risk allele rs1006737 is associated with age-related prefrontal cortical thinning in bipolar I disorder. Transl Psychiatry 2017; 7:e1086. [PMID: 28398341 PMCID: PMC5416698 DOI: 10.1038/tp.2017.57] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/02/2017] [Accepted: 02/18/2017] [Indexed: 12/20/2022] Open
Abstract
Calcium channels control the inflow of calcium ions into cells and are involved in diverse cellular functions. The CACNA1C gene polymorphism rs1006737 A allele has been strongly associated with increased risk for bipolar disorder (BD) and with modulation of brain morphology. The medial prefrontal cortex (mPFC) has been widely associated with mood regulation in BD, but the role of this CACNA1C polymorphism in mPFC morphology and brain aging has yet to be elucidated. One hundred seventeen euthymic BD type I subjects were genotyped for CACNA1C rs1006737 and underwent 3 T three-dimensional structural magnetic resonance imaging scans to determine cortical thickness of mPFC components (superior frontal cortex (sFC), medial orbitofrontal cortex (mOFC), caudal anterior cingulate cortex (cACC) and rostral anterior cingulate cortex (rACC)). Carriers of the CACNA1C allele A exhibited greater left mOFC thickness compared to non-carriers. Moreover, CACNA1C A carriers showed age-related cortical thinning of the left cACC, whereas among A non-carriers there was not an effect of age on left cACC cortical thinning. In the sFC, mOFC and rACC (left or right), a negative correlation was observed between age and cortical thickness, regardless of CACNA1C rs1006737 A status. Further studies investigating the direct link between cortical thickness, calcium channel function, apoptosis mechanism and their underlying relationship with aging-associated cognitive decline in BD are warranted.
Collapse
|
29
|
Pronin AV, Gromova OA, Sardaryan IS, Torshin IY, Stel'mashuk EV, Ostrenko KS, Aleksandrova OP, Genrikhs EE, Khaspekov LG. [Adaptogenic and neuroprotective effects of lithium ascorbate]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 116:86-91. [PMID: 28139631 DOI: 10.17116/jnevro201611612186-91] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Investigation of the neuroprotective properties of lithium ascorbate on the stress models in vivo and in vitro. MATERIAL AND METHODS Neurocytological and behavioral studies on nerve cell culture and animal stress models. RESULTS Significant neuroprotective effect of lithium ascorbate in neuronal cultures exposed to glutamate toxicity and adaptogenic effect of this drug in stress model in rats were shown. CONCLUSION The results suggest lithium ascorbate has a high neuroprotective potential in stress models in vivo and in vitro.
Collapse
Affiliation(s)
- A V Pronin
- Ivanovo State Medical Academy, Ivanovo, Russia
| | - O A Gromova
- Ivanovo State Medical Academy, Ivanovo, Russia
| | | | | | - E V Stel'mashuk
- All-Russian Research Institute of Physiology, Biochemistry and Food of Animals, Kaluga Region, Borovsk, Russia
| | - K S Ostrenko
- St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - O P Aleksandrova
- All-Russian Research Institute of Physiology, Biochemistry and Food of Animals, Kaluga Region, Borovsk, Russia
| | - E E Genrikhs
- All-Russian Research Institute of Physiology, Biochemistry and Food of Animals, Kaluga Region, Borovsk, Russia
| | - L G Khaspekov
- All-Russian Research Institute of Physiology, Biochemistry and Food of Animals, Kaluga Region, Borovsk, Russia
| |
Collapse
|
30
|
Abstract
Bipolar disorder is associated with subtle neuroanatomical deficits including lateral
ventricular enlargement, grey matter deficits incorporating limbic system structures, and distributed
white matter pathophysiology. Substantial heterogeneity has been identified by structural neuroimaging
studies to date and differential psychotropic medication use is potentially a substantial contributor to
this. This selective review of structural neuroimaging and diffusion tensor imaging studies considers
evidence that lithium, mood stabilisers, antipsychotic medication and antidepressant medications are
associated with neuroanatomical variation. Most studies are negative and suffer from methodological
weaknesses in terms of directly assessing medication effects on neuroanatomy, since they commonly
comprise posthoc assessments of medication associations with neuroimaging metrics in small heterogenous patient
groups. However the studies which report positive findings tend to form a relatively consistent picture whereby lithium
and antiepileptic mood stabiliser use is associated with increased regional grey matter volume, especially in limbic
structures. These findings are further supported by the more methodologically robust studies which include large numbers of
patients or repeated intra-individual scanning in longitudinal designs. Some similar findings of an apparently ameliorative
effect of lithium on white matter microstructure are also emerging. There is less support for an effect of antipsychotic or
antidepressant medication on brain structure in bipolar disorder, but these studies are further limited by methodological
difficulties. In general the literature to date supports a normalising effect of lithium and mood stabilisers on brain structure
in bipolar disorder, which is consistent with the neuroprotective characteristics of these medications identified by
preclinical studies.
Collapse
Affiliation(s)
- Colm McDonald
- National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
31
|
Inal-Emiroglu FN, Resmi H, Karabay N, Guleryuz H, Baykara B, Cevher N, Akay A. Decreased right hippocampal volumes and neuroprogression markers in adolescents with bipolar disorder. Neuropsychobiology 2016; 71:140-8. [PMID: 25925781 DOI: 10.1159/000375311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The aim of the present study was to assess differences and correlations between the hippocampal volumes (HCVs), serum nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF) levels in adolescents with bipolar disorder (BP) compared to healthy controls. METHODS Using structural magnetic resonance imaging, we compared HCVs of 30 patients with euthymic BP who were already enrolled in a naturalistic clinical follow-up. For comparison, we enrolled 23 healthy controls between the ages of 13 and 19. The boundaries of the hippocampus were outlined manually. The BDNF and NGF serum levels were measured with the sandwich ELISA. RESULTS The groups did not differ in the right or left HCVs or in the NGF or BDNF serum levels. However, negative correlations were found between the right HCVs and the duration of the disorder and medication and positive correlations were found between the duration of the medications and the NGF and BDNF levels in the patient group. Additionally, positive correlations were found between the follow-up period and left normalized HCVs in both the BP and lithium-treated groups. CONCLUSIONS The right HCVs may vary with illness duration and the medication used to treat BP; NGF and BDNF levels may be affected by long-term usage. Further research is needed to determine whether these variables and their structural correlates are associated with clinical or functional differences between adolescents with BP and healthy controls.
Collapse
Affiliation(s)
- F Neslihan Inal-Emiroglu
- Child and Adolescent Psychiatry Department, Dokuz Eylül University Medical School, Izmir, Turkey
| | | | | | | | | | | | | |
Collapse
|
32
|
Rajkowska G, Clarke G, Mahajan G, Licht C, van de Werd HM, Yuan P, Stockmeier C, Manji H, Uylings H. Differential effect of lithium on cell number in the hippocampus and prefrontal cortex in adult mice: a stereological study. Bipolar Disord 2016; 18:41-51. [PMID: 26842627 PMCID: PMC4836867 DOI: 10.1111/bdi.12364] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/19/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Neuroimaging studies have revealed lithium-related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human studies have reported alterations in neuronal and glial cell density and size in the PFC of lithium-treated subjects. Rodents treated with lithium exhibit cell proliferation in the dentate gyrus (DG) of the hippocampus. However, it is not known whether hippocampal and PFC volume are also increased in these animals or whether cell number in the PFC is altered. METHODS Using stereological methods, this study estimated the total numbers of neurons and glia, and the packing density of astrocytes in the DG and PFC of normal adult mice treated with lithium, and evaluated the total volume of these regions and the entire neocortex. RESULTS Lithium treatment increased the total numbers of neurons and glia in the DG (by 25% and 21%, respectively) and the density of astrocytes but did not alter total numbers in the PFC. However, the volumes of the hippocampus and its subfields, the PFC and its subareas, and the entire neocortex were not altered by lithium. CONCLUSIONS Both neuronal and glial cells accounted for lithium-induced cell proliferation in the DG. That the numbers of neurons and glia were unchanged in the PFC is consistent with the view that this region is not a neurogenic zone. Further studies are required to clarify the impact of lithium treatment on the PFC under pathological conditions and to investigate the dissociation between increased cell proliferation and unchanged volume in the hippocampus.
Collapse
Affiliation(s)
- G. Rajkowska
- Dept. Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - G. Clarke
- Dept. Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA,Department of Psychiatry and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - G. Mahajan
- Dept. Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - C.M.M. Licht
- Dept. Anatomy & Neuroscience, VU University Medical Center, Amsterdam, the Netherlands,Dept. Epidemiology & Biostatistics, VU University Medical Center, Amsterdam, the Netherlands
| | - H.J.J. M. van de Werd
- Dept. Anatomy & Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - P. Yuan
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, NIMH, NIH, Bethesda, MD, USA
| | - C.A. Stockmeier
- Dept. Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - H.K. Manji
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, NIMH, NIH, Bethesda, MD, USA,Janssen Research and Development LLC of Johnson & Johnson, Titusville, NJ, USA
| | - H.B.M. Uylings
- Dept. Anatomy & Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Sabater A, García-Blanco AC, Verdet HM, Sierra P, Ribes J, Villar I, Lara MJ, Arnal P, Rojo L, Livianos L. Comparative neurocognitive effects of lithium and anticonvulsants in long-term stable bipolar patients. J Affect Disord 2016; 190:34-40. [PMID: 26480209 DOI: 10.1016/j.jad.2015.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/20/2015] [Accepted: 10/02/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of choosing a mood-stabilizing drug (lithium or anticonvulsants) or a combination of them with minimal neurocognitive effects is to stimulate the development of criteria for a therapeutic adequacy, particularly in Bipolar Disorder (BD) patients who are clinically stabilized. METHOD Three groups of BD patients were established according to their treatment: (i) lithium monotherapy (n=29); (ii) lithium together with one or more anticonvulsants (n=28); and (iii) one or more anticonvulsants (n=16). A group of healthy controls served as the control (n=25). The following tests were applied: Wechsler Adult Intelligence Scale, Trail Making Test, Wechsler Memory Scale, Rey Complex Figure Test, Stroop color-word test, Wisconsin Card Sorting Test, Tower of Hanoi, Frontal Assessment Battery, and Reading the Mind in the Eyes Test. RESULTS Relative to healthy controls, BD patients showed the following: (i) those on lithium monotherapy, but not other BD groups, had preserved short-term auditory memory, long-term memory, and attention; (ii) those who took only anticonvulsants showed worse findings in short-term visual memory, working memory, and several executive functions; and (iii) all BD patients showed worse performance in processing speed, resistance to interference, and emotion recognition. LIMITATIONS Medication alone cannot explain why all BD patients showed common cognitive deficits despite different pharmacological treatment. CONCLUSION The impairment on some executive functions and emotion recognition is an inherent trait in BD patients, regardless of their pharmacological treatment. However, while memory, attention, and most of the executive functions are preserved in long-term stable BD patients, these cognitive functions are impaired in those who take anticonvulsants.
Collapse
Affiliation(s)
- Ana Sabater
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Ana C García-Blanco
- Health Research Institute La Fe, Valencia, Spain; University of Valencia, Spain.
| | - Hélade M Verdet
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Pilar Sierra
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain; University of Valencia, Spain; CIBERESP, Spain
| | - Josep Ribes
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Irene Villar
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Mª José Lara
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Pilar Arnal
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Luis Rojo
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain; University of Valencia, Spain; CIBERESP, Spain
| | - Lorenzo Livianos
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain; University of Valencia, Spain; CIBERESP, Spain
| |
Collapse
|
34
|
Bersani G, Quartini A, Zullo D, Iannitelli A. Potential neuroprotective effect of lithium in bipolar patients evaluated by neuropsychological assessment: preliminary results. Hum Psychopharmacol 2016; 31:19-28. [PMID: 26563456 DOI: 10.1002/hup.2510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/20/2015] [Accepted: 10/03/2015] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Accumulating evidence is delineating a neuroprotective/neurotrophic role for lithium. However, its primary effects on cognition remain ambiguous. We sought to investigate the profile of cognitive impairment in patients with bipolar disorder and to determine whether continued treatment with lithium preserves cognitive functioning. METHODS In this cross-sectional study, we tested 15 euthymic patients with bipolar I disorder undergoing long-term clinical maintenance treatment with lithium (for at least 12 months), 15 matched patients treated with other mood-stabilizing drugs and who had never received lithium, and 15 matched healthy subjects on the Cambridge Neuropsychological Test Automated Battery. Investigated cognitive domains were visual memory, executive functions, attention, decision-making/impulsivity, and response inhibition. We controlled for age, gender, intelligence, and residual psychiatric symptomatology. RESULTS Taken together, bipolar patients demonstrated robust deficits in visual memory and executive functions. Once subdivided in treatment subgroups, only non-lithium bipolar patients demonstrated impairments in visual memory. Attention, decision-making, and response inhibition were preserved in both groups. No correlation emerged between neuropsychological tests performance, clinical, and psychological variables. CONCLUSIONS This study is the first to our knowledge to have demonstrated, by means of a highly sensitive test of visual memory, a potential hippocampus neuroprotective effect of lithium in patients with bipolar disorder. Besides, it confirms prior findings of cognitive deficits in euthymic bipolar patients.
Collapse
Affiliation(s)
- Giuseppe Bersani
- Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, "Sapienza" University of Rome, DSM ASL/LT-Unit of Psychiatry, "A. Fiorini" Hospital, Via Firenze, Terracina (LT), Italy
| | - Adele Quartini
- Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, "Sapienza" University of Rome, DSM ASL/LT-Unit of Psychiatry, "A. Fiorini" Hospital, Via Firenze, Terracina (LT), Italy
| | - Daiana Zullo
- Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, "Sapienza" University of Rome, DSM ASL/LT-Unit of Psychiatry, "A. Fiorini" Hospital, Via Firenze, Terracina (LT), Italy
| | - Angela Iannitelli
- Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, "Sapienza" University of Rome, DSM ASL/LT-Unit of Psychiatry, "A. Fiorini" Hospital, Via Firenze, Terracina (LT), Italy.,Department of Health Sciences, University of L'Aquila, Italy
| |
Collapse
|
35
|
O'Shea KS, McInnis MG. Neurodevelopmental origins of bipolar disorder: iPSC models. Mol Cell Neurosci 2015; 73:63-83. [PMID: 26608002 DOI: 10.1016/j.mcn.2015.11.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/14/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022] Open
Abstract
Bipolar disorder (BP) is a chronic neuropsychiatric condition characterized by pathological fluctuations in mood from mania to depression. Adoption, twin and family studies have consistently identified a significant hereditary component to BP, yet there is no clear genetic event or consistent neuropathology. BP has been suggested to have a developmental origin, although this hypothesis has been difficult to test since there are no viable neurons or glial cells to analyze, and research has relied largely on postmortem brain, behavioral and imaging studies, or has examined proxy tissues including saliva, olfactory epithelium and blood cells. Neurodevelopmental factors, particularly pathways related to nervous system development, cell migration, extracellular matrix, H3K4 methylation, and calcium signaling have been identified in large gene expression and GWAS studies as altered in BP. Recent advances in stem cell biology, particularly the ability to reprogram adult somatic tissues to a pluripotent state, now make it possible to interrogate these pathways in viable cell models. A number of induced pluripotent stem cell (iPSC) lines from BP patient and healthy control (C) individuals have been derived in several laboratories, and their ability to form cortical neurons examined. Early studies suggest differences in activity, calcium signaling, blocks to neuronal differentiation, and changes in neuronal, and possibly glial, lineage specification. Initial observations suggest that differentiation of BP patient-derived neurons to dorsal telencephalic derivatives may be impaired, possibly due to alterations in WNT, Hedgehog or Nodal pathway signaling. These investigations strongly support a developmental contribution to BP and identify novel pathways, mechanisms and opportunities for improved treatments.
Collapse
Affiliation(s)
- K Sue O'Shea
- Department of Cell and Developmental Biology, University of Michigan, 3051 BSRB, 109 Zina Pitcher PL, Ann Arbor, MI 48109-2200, United States; Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109-5765, United States.
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109-5765, United States
| |
Collapse
|
36
|
Lan CC, Liu CC, Lin CH, Lan TY, McInnis MG, Chan CH, Lan TH. A reduced risk of stroke with lithium exposure in bipolar disorder: a population-based retrospective cohort study. Bipolar Disord 2015; 17:705-14. [PMID: 26394555 DOI: 10.1111/bdi.12336] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 08/21/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The risk of stroke is increased in patients with bipolar disorder. Lithium exhibits neuroprotective effects but the association between lithium use and the risk of stroke is unknown. METHODS A population-based retrospective cohort study was conducted by utilizing the National Health Insurance Research Database in Taiwan. Subjects who had first been diagnosed with bipolar disorder between 2001 and 2006 were identified. A propensity score (PS) for receiving lithium was calculated with variables of age, gender, and comorbidities. The patients with bipolar disorder receiving lithium within the period from diagnosis through to December 2011 were designated as the lithium group (n = 635). A 1:2 ratio was used to select PS-matched subjects with bipolar disorder without lithium use (n = 1,250). Multivariate Cox proportional hazards regression models were used to explore the association, rather than causal inference, of lithium exposure and the risk of stroke. RESULTS Of the 1,885 subjects, 86 (4.6%) experienced stroke, including 2.8% of the lithium group and 5.4% of the non-lithium group. Lithium use was associated with a significantly reduced risk of stroke [hazard ratio (HR) = 0.39, 95% confidence interval (CI): 0.22-0.68]. Reduced risks of stroke were also associated with the highest cumulative lithium dose [≥720 defined daily dose (DDD), HR = 0.25, 95% CI: 0.10-0.59], the longest cumulative exposure period (≥720 days, HR = 0.20, 95% CI: 0.06-0.64), and the highest exposure rate (≥2 DDD/day, HR = 0.39, 95% CI: 0.21-0.70). CONCLUSIONS Lithium use was significantly related to a reduced risk of stroke in patients with bipolar disorder.
Collapse
Affiliation(s)
- Chen-Chia Lan
- Division of Psychiatry, Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Chien Liu
- Department of Psychiatry, National Yang-Ming University Hospital, Yilan, Taiwan.,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tzuo-Yun Lan
- Institute of Hospital Management, National Yang-Ming University, Taipei, Taiwan
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Chin-Hong Chan
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tsuo-Hung Lan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Psychiatry, National Yang-Ming University, Taipei, Taiwan.,Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
37
|
Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway. Biochem Biophys Res Commun 2015; 465:368-73. [PMID: 26271595 DOI: 10.1016/j.bbrc.2015.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 01/10/2023]
Abstract
Methamphetamine (MA) is neurotoxic, especially in dopaminergic neurons. Long-lasting exposure to MA causes psychosis and increases the risk of Parkinson's disease. Lithium (Li) is a known mood stabilizer and has neuroprotective effects. Previous studies suggest that MA exposure decreases the phosphorylation of Akt/GSK3β pathway in vivo, whereas Li facilitates the phosphorylation of Akt/GSK3β pathway. Moreover, GSK3β and mTOR are implicated in the locomotor sensitization induced by psychostimulants and mTOR plays a critical role in MA induced toxicity. However, the effect of MA on Akt/GSK3β/mTOR pathway has not been fully investigated in vitro. Here, we found that MA exposure significantly dephosphorylated Akt/GSK3β/mTOR pathway in PC12 cells. In addition, Li remarkably attenuated the dephosphorylation effect of MA exposure on Akt/GSK3β/mTOR pathway. Furthermore, Li showed obvious protective effects against MA toxicity and LY294002 (Akt inhibitor) suppressed the protective effects of Li. Together, MA exposure dephosphorylates Akt/GSK3β/mTOR pathway in vitro, while lithium protects against MA-induced neurotoxicity via phosphorylation of Akt/GSK3β/mTOR pathway.
Collapse
|
38
|
Normal Metabolic Levels in Prefrontal Cortex in Euthymic Bipolar I Patients with and without Suicide Attempts. Neural Plast 2015; 2015:165180. [PMID: 26075096 PMCID: PMC4444600 DOI: 10.1155/2015/165180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction/Objective. Evidence suggests that the prefrontal cortex has been implicated in the pathophysiology of bipolar disorder (BD), but few neurochemical studies have evaluated this region in bipolar patients and there is no information from BD suicide attempters using Proton Magnetic Resonance Spectroscopy (H+MRS). The objective was to evaluate the metabolic function of the medial orbital frontal cortex in euthymic BD type I suicide and nonsuicide attempters compared to healthy subjects by H+MRS. Methods. 40 euthymic bipolar I outpatients, 19 without and 21 with history of suicide attempt, and 22 healthy subjects were interviewed using the Structured Clinical Interview with the DSM-IV axis I, the Hamilton Depression Rating Scale, the Young Mania Rating Scale, and the Barratt Impulsiveness Scale-11 and underwent H+MRS. Results. We did not find any metabolic abnormality in medial orbital frontal regions of suicide and nonsuicide BD patients and BD patients as a group compared to healthy subjects. Conclusions. The combined chronic use of psychotropic drugs with neuroprotective or neurotrophic effects leading to a euthymic state for longer periods of time may improve neurometabolic function, at least measured by H+MRS, even in suicide attempters. Besides, these results may implicate mood dependent alterations in brain metabolic activity. However, more studies with larger sample sizes of this heterogeneous disorder are warranted to clarify these data.
Collapse
|
39
|
Park SW, Lee JG, Seo MK, Cho HY, Lee CH, Lee JH, Lee BJ, Baek JH, Seol W, Kim YH. Effects of mood-stabilizing drugs on dendritic outgrowth and synaptic protein levels in primary hippocampal neurons. Bipolar Disord 2015; 17:278-90. [PMID: 25307211 DOI: 10.1111/bdi.12262] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/23/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Mood-stabilizing drugs, such as lithium (Li) and valproate (VPA), are widely used for the treatment of bipolar disorder, a disease marked by recurrent episodes of mania and depression. Growing evidence suggests that Li exerts neurotrophic and neuroprotective effects, leading to an increase in neural plasticity. The present study investigated whether other mood-stabilizing drugs produce similar effects in primary hippocampal neurons. METHODS The effects of the mood-stabilizing drugs Li, VPA, carbamazepine (CBZ), and lamotrigine (LTG) on hippocampal dendritic outgrowth were examined. Western blotting analysis was used to measure the expression of synaptic proteins - that is, brain-derived neurotrophic factor (BDNF), postsynaptic density protein-95 (PSD-95), neuroligin 1 (NLG1), β-neurexin, and synaptophysin (SYP). To determine neuroprotective effects, we used a B27-deprivation cytotoxicity model which causes hippocampal cell death upon removal of B27 from the culture medium. RESULTS Li (0.5-2.0 mM), VPA (0.5-2.0 mM), CBZ (0.01-0.10 mM), and LTG (0.01-0.10 mM) significantly increased dendritic outgrowth. The neurotrophic effect of Li and VPA was blocked by inhibition of phosphatidylinositol 3-kinase, extracellular signal-regulated kinase, and protein kinase A signaling; the effects of CBZ and LTG were not affected by inhibition of these signaling pathways. Li, VPA, and CBZ prevented B27 deprivation-induced decreases in BDNF, PSD-95, NLG1, β-neurexin, and SYP levels, whereas LTG did not. CONCLUSIONS These results suggest that Li, VPA, CBZ, and LTG exert neurotrophic effects by promoting dendritic outgrowth; however, the mechanism of action differs. Furthermore, certain mood-stabilizing drugs may exert neuroprotective effects by enhancing synaptic protein levels against cytotoxicity in hippocampal cultures.
Collapse
Affiliation(s)
- Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan, Korea; Department of Health Science and Technology, Graduate School of Inje University, Busan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Effects of lithium on cortical thickness and hippocampal subfield volumes in psychotic bipolar disorder. J Psychiatr Res 2015; 61:180-7. [PMID: 25563516 PMCID: PMC4859940 DOI: 10.1016/j.jpsychires.2014.12.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/19/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022]
Abstract
Relative to healthy controls, lithium free bipolar patients exhibit significant gray matter abnormalities. Lithium, the long-time reference standard medication treatment for bipolar disorder, has been proposed to be neuro-protective against these abnormalities. However, its effects on cortical thickness and hippocampal subfield (HSF) volumes remain unstudied and unclear, respectively, in bipolar disorder. This study included 342 healthy controls (HC), 51 lithium free PBD patients (NoLi), and 51 PBD patients taking lithium (Li). Regional gray matter thickness and HSF volume values were extracted from 3T MRI images. After matching NoLi and Li samples, regions where HC differed from either Li or NoLi were identified. In regions of significant or trending HC-NoLi difference, Li-NoLi comparisons were made. No significant HC-Li thickness or HSF volume differences were found. Significantly thinner occipital cortices were observed in NoLi compared to HC. In these regions, Li consistently exhibited non-significant trends for greater cortical thickness relative to NoLi. Significantly less volume was observed in NoLi compared to both HC and Li in right HSFs. Our results suggest that PBD in patients not treated with Li is associated with thinner occipital cortices and reduced HSF volumes compared with HC. Patients treated with Li exhibited significantly larger HSF volumes than NoLi, and those treated with Li were no different from HC in cortical thickness or hippocampal volumes. This evidence directly supports the hypothesis that Li may counteract the locally thinner and smaller gray matter structure found in PBD.
Collapse
|
41
|
Abstract
Three theories of regeneration dominate neuroscience today, all purporting to explain why the adult central nervous system (CNS) cannot regenerate. One theory proposes that Nogo, a molecule expressed by myelin, prevents axonal growth. The second theory emphasizes the role of glial scars. The third theory proposes that chondroitin sulfate proteoglycans (CSPGs) prevent axon growth. Blockade of Nogo, CSPG, and their receptors indeed can stop axon growth in vitro and improve functional recovery in animal spinal cord injury (SCI) models. These therapies also increase sprouting of surviving axons and plasticity. However, many investigators have reported regenerating spinal tracts without eliminating Nogo, glial scar, or CSPG. For example, many motor and sensory axons grow spontaneously in contused spinal cords, crossing gliotic tissue and white matter surrounding the injury site. Sensory axons grow long distances in injured dorsal columns after peripheral nerve lesions. Cell transplants and treatments that increase cAMP and neurotrophins stimulate motor and sensory axons to cross glial scars and to grow long distances in white matter. Genetic studies deleting all members of the Nogo family and even the Nogo receptor do not always improve regeneration in mice. A recent study reported that suppressing the phosphatase and tensin homolog (PTEN) gene promotes prolific corticospinal tract regeneration. These findings cannot be explained by the current theories proposing that Nogo and glial scars prevent regeneration. Spinal axons clearly can and will grow through glial scars and Nogo-expressing tissue under some circumstances. The observation that deleting PTEN allows corticospinal tract regeneration indicates that the PTEN/AKT/mTOR pathway regulates axonal growth. Finally, many other factors stimulate spinal axonal growth, including conditioning lesions, cAMP, glycogen synthetase kinase inhibition, and neurotrophins. To explain these disparate regenerative phenomena, I propose that the spinal cord has evolved regenerative mechanisms that are normally suppressed by multiple extrinsic and intrinsic factors but can be activated by injury, mediated by the PTEN/AKT/mTOR, cAMP, and GSK3b pathways, to stimulate neural growth and proliferation.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
42
|
Nanda P, Tandon N, Mathew IT, Giakoumatos CI, Abhishekh HA, Clementz B, Pearlson G, Sweeney J, Tamminga C, Keshavan MS. Local gyrification index in probands with psychotic disorders and their first-degree relatives. Biol Psychiatry 2014; 76:447-55. [PMID: 24369266 PMCID: PMC4032376 DOI: 10.1016/j.biopsych.2013.11.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Psychotic disorders are characterized by aberrant neural connectivity. Alterations in gyrification, the pattern and degree of cortical folding, may be related to the early development of connectivity. Past gyrification studies have relatively small sample sizes, yield mixed results for schizophrenia, and are scant for psychotic bipolar and schizoaffective (SZA) disorders and for relatives of these conditions. Here, we examine gyrification in psychotic disorder patients and their first-degree relatives as a possible endophenotype. METHODS Regional local gyrification index (LGI) values, as measured by FreeSurfer software, were compared between 243 control subjects, 388 psychotic disorder probands, and 300 of their first-degree relatives. For patients, LGI values were examined grouped across psychotic diagnoses and then separately for schizophrenia, SZA, and bipolar disorder. Familiality (heritability) values and correlations with clinical measures were also calculated for regional LGI values. RESULTS Probands exhibited significant hypogyria compared with control subjects in three brain regions and relatives with Axis II cluster A disorders showed nearly significant hypogyria in these same regions. Local gyrification index values in these locations were significantly heritable and uncorrelated with any clinical measure. Observations of significant hypogyria were most widespread in SZA. CONCLUSIONS Psychotic disorders appear to be characterized by significant regionally localized hypogyria, particularly in cingulate cortex. This abnormality may be a structural endophenotype marking risk for psychotic illness and it may help elucidate etiological underpinnings of psychotic disorders.
Collapse
Affiliation(s)
- Pranav Nanda
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, Columbia University College of Physicians & Surgeons, New York, NY
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, Baylor College ofMedicine, Houston, TX
| | - Ian T Mathew
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA
| | | | | | - Brett Clementz
- Department of Psychology, BioImaging Research Center, University of Georgia, Athens, Georgia, Department of Neuroscience, BioImaging Research Center, University of Georgia, Athens, Georgia
| | - Godfrey Pearlson
- Olin Neuropsychiatry Research Center, Institute ofLiving, Hartford, Connecticut, Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Connecticut
| | - John Sweeney
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carol Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
43
|
Abstract
The high rate of non-responders to initial treatment with antidepressants requires subsequent treatment strategies such as augmentation of antidepressants. Clinical guidelines recommend lithium augmentation as a first-line treatment strategy for non-responding depressed patients. The objectives of this review were to discuss the current place of lithium augmentation in the management of treatment-resistant depression and to review novel findings concerning lithium's mechanisms of action. We conducted a comprehensive and critical review of randomized, placebo-controlled trials, controlled and naturalistic comparator studies, and continuation-phase and discontinuation studies of lithium augmentation in major depression. The outcomes of interest were efficacy, factors allowing outcome prediction and results from preclinical studies investigating molecular mechanisms of lithium action. Substantial efficacy of lithium augmentation in the acute treatment of major depression has been demonstrated in more than 30 open-label studies and 10 placebo-controlled trials. In a meta-analysis addressing the efficacy of lithium in 10 randomized, controlled trials, it had a significant positive effect versus placebo, with an odds ratio of 3.11 corresponding to a number-needed-to-treat (NNT) of 5 and a mean response rate of 41.2% (versus 14.4% in the placebo group). The main limitations of these studies were the relatively small numbers of study participants and the fact that most studies included augmentation of tricyclic antidepressants, which are not in widespread use anymore. Evidence from continuation-phase studies is sparse but suggests that lithium augmentation should be maintained in the lithium-antidepressant combination for at least 1 year to prevent early relapses. Concerning outcome prediction, single studies have reported associations of better outcome rates with more severe depressive symptomatology, significant weight loss, psychomotor retardation, a history of more than three major depressive episodes and a family history of major depression. Additionally, one study suggested a predictive role of the -50T/C single nucleotide polymorphism of the glycogen synthase kinase 3 beta (GSK3B) gene in the probability of response to lithium augmentation. With regard to novel mechanisms of action, GABAergic, neurotrophic and genetic effects might explain the effects of lithium augmentation. In conclusion, augmentation of antidepressants with lithium remains a first-line, evidence-based management option for patients with major depression who have not responded adequately to antidepressants. While the mechanisms of action are currently widely studied, further clinical research on the role of lithium potentiation of the current generation of antidepressants is warranted to reinforce its role as a gold-standard treatment for patients who respond inadequately to antidepressants.
Collapse
|
44
|
Marlinge E, Bellivier F, Houenou J. White matter alterations in bipolar disorder: potential for drug discovery and development. Bipolar Disord 2014; 16:97-112. [PMID: 24571279 DOI: 10.1111/bdi.12135] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 05/24/2013] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Brain white matter (WM) alterations have recently emerged as potentially relevant in bipolar disorder. New techniques such as diffusion tensor imaging allow precise exploration of these WM microstructural alterations in bipolar disorder. Our objective was to critically review WM alterations in bipolar disorder, using neuroimaging and neuropathological studies, in the context of neural models and the potential for drug discovery and development. METHODS We conducted a systematic PubMed and Google Scholar search of the WM and bipolar disorder literature up to and including January 2013. RESULTS Findings relating to WM alterations are consistent in neuroimaging and neuropathology studies of bipolar disorder, especially in regions involved in emotional processing such as the anterior frontal lobe, corpus callosum, cingulate cortex, and in fronto-limbic connections. Some of the structural alterations are related to genetic risk factors for bipolar disorder and may underlie the dysfunctional emotional processing described in recent neurobiological models of bipolar disorder. Medication effects in bipolar disorder, from lithium and other mood stabilizers, might impact myelinating processes, particularly by inhibition of glycogen synthase kinase-3 beta. CONCLUSIONS Pathways leading to WM alterations in bipolar disorder represent potential targets for the development and discovery of new drugs. Myelin damage in bipolar disorder suggests that the effects of existing pro-myelinating drugs should also be evaluated to improve our understanding and treatment of this disease.
Collapse
Affiliation(s)
- Emeline Marlinge
- AP-HP, Groupe Henri Mondor-Albert Chenevier, Pôle de Psychiatrie, Paris, France; Inserm, U955, Equipe 15 (Psychiatrie Génétique), Paris, France; Fondation Fondamental, Créteil, France; Neurospin, I2BM, CEA, Gif-Sur-Yvette, France
| | | | | |
Collapse
|
45
|
Kapczinski F, Frey BN, Kauer-Sant’Anna M, Grassi-Oliveira R. Brain-derived neurotrophic factor and neuroplasticity in bipolar disorder. Expert Rev Neurother 2014; 8:1101-13. [DOI: 10.1586/14737175.8.7.1101] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Nery FG, Monkul ES, Lafer B. Gray matter abnormalities as brain structural vulnerability factors for bipolar disorder: A review of neuroimaging studies of individuals at high genetic risk for bipolar disorder. Aust N Z J Psychiatry 2013; 47:1124-35. [PMID: 23864160 DOI: 10.1177/0004867413496482] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Cortical and subcortical gray matter abnormalities have been reported in individuals at high genetic risk for bipolar disorder, but the findings are inconsistent. The aim of this study was to review the available literature to identify common findings that could represent brain structural vulnerability factors for bipolar disorder and to discuss challenges for the advancement of the field. METHOD A systematic search was conducted using the PubMed database to identify all original articles investigating cortical or subcortical gray matter abnormalities in first-degree relatives of bipolar disorder patients. RESULTS Very few findings were replicated, with the exception of larger insular cortex volumes in adult first-degree relatives and larger right inferior frontal gyrus in offspring of probands with bipolar disorder, both when compared with healthy controls. Isolated findings included decreased gray matter density in the left thalamus, decreased gray matter volumes in the left hippocampus and parahippocampal gyrus, and thicker right hippocampus in unaffected first-degree relatives. Genetic liability for bipolar disorder was associated with gray matter volumes in regions of the anterior cingulate cortex, ventral striatum, medial frontal gyrus, right precentral gyrus, right insular cortex, and medial orbital gyrus. Some studies found no evidence for gray matter abnormalities in first-degree relatives of bipolar disorder patients. CONCLUSIONS Possible reasons for the discrepancies of findings across studies include small samples sizes, small effect size of susceptibility genes, the phenotypic heterogeneity of bipolar disorder, and the possible confounding effect of other Axis I psychopathologies among the relatives of patients. Future multisite, prospective, large studies with more homogeneous samples would be a key strategy to advance the field. The ultimate benefit would be an understanding of how to use brain imaging tools to identify individuals at increased risk for bipolar disorder and develop preventive strategies for that population.
Collapse
Affiliation(s)
- Fabiano G Nery
- 1Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of São Paulo Medical School, Brazil
| | | | | |
Collapse
|
47
|
Kim D, Cho HB, Dager SR, Yurgelun-Todd DA, Yoon S, Lee JH, Lee SH, Lee S, Renshaw PF, Lyoo IK. Posterior cerebellar vermal deficits in bipolar disorder. J Affect Disord 2013; 150:499-506. [PMID: 23769608 PMCID: PMC5510461 DOI: 10.1016/j.jad.2013.04.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/28/2013] [Accepted: 04/29/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Based on growing evidence of the crucial role of the cerebellum in emotional regulation, we sought to identify cerebellar structural deficits in a large sample of patients with bipolar disorder (BD). METHODS Cerebellar gray matter density was examined in 49 BD patients (24 medication-naive and 25 medication-treated) and 50 carefully matched healthy individuals, using voxel-based morphometry with a high-resolution spatially unbiased atlas template of the human cerebellum. This recently developed methodology is specifically optimized for the assessment of cerebellar structures. We further explored whether antimanic treatment could attenuate cerebellar structural deficits. RESULTS BD patients showed a greater reduction in gray matter density of the posterior cerebellar regions, including the bilateral vermi and the right crus relative to healthy individuals (corrected p<.05). A stepwise linear reduction in gray matter density was observed in bilateral vermal regions between healthy individuals, medication-treated, and medication-naive BD patients. Furthermore, positive correlations of longer duration of illness with bilateral vermal gray matter deficits were observed only in medication-naive BD patients, but not in patients with medication history. LIMITATIONS This study adopted a cross-sectional design. The automatic intensity-normalization method for the measurement of cerebellar gray matter density may have a limitation in providing detailed anatomical information at a cerebellar folia level. CONCLUSIONS The current findings suggest that BD-related deficits in the posterior cerebellar regions, which appear to progress over the course of illness, could potentially be ameliorated by proper treatment with mood stabilizers.
Collapse
Affiliation(s)
- Dajung Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, South Korea
| | - Han Byul Cho
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, South Korea
| | - Stephen R. Dager
- Department of Radiology, University of Washington, Seattle, WA, USA
| | | | - Sujung Yoon
- Department of Psychiatry and The Brain Institute, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Junghyun H. Lee
- Ewha Brain Institute & College of Pharmacy/Graduate School of Pharmaceutical Sciences, Ewha University, Seoul, South Korea
| | - Sun Hea Lee
- Ewha Brain Institute & College of Pharmacy/Graduate School of Pharmaceutical Sciences, Ewha University, Seoul, South Korea
| | - Sunho Lee
- Ewha Brain Institute & College of Pharmacy/Graduate School of Pharmaceutical Sciences, Ewha University, Seoul, South Korea
| | - Perry F. Renshaw
- Department of Psychiatry and The Brain Institute, University of Utah, Salt Lake City, UT, USA
| | - In Kyoon Lyoo
- Ewha Brain Institute & College of Pharmacy/Graduate School of Pharmaceutical Sciences, Ewha University, Seoul, South Korea
| |
Collapse
|
48
|
Qiu A, Gan SC, Wang Y, Sim K. Amygdala-hippocampal shape and cortical thickness abnormalities in first-episode schizophrenia and mania. Psychol Med 2013; 43:1353-1363. [PMID: 23186886 DOI: 10.1017/s0033291712002218] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Abnormalities in cortical thickness and subcortical structures have been studied in schizophrenia but little is known about corresponding changes in mania and brain structural differences between these two psychiatric conditions, especially early in the stage of the illness. In this study we aimed to compare cortical thickness and shape of the amygdala-hippocampal complex in first-episode schizophrenia (FES) and mania (FEM). Method Structural magnetic resonance imaging (MRI) was performed on 28 FES patients, 28 FEM patients and 28 healthy control subjects who were matched for age, gender and handedness. RESULTS Overall, the shape of the amygdala was deformed in both patient groups, relative to controls. Compared to FEM patients, FES patients had significant inward shape deformation in the left hippocampal tail, right hippocampal body and a small region in the right amygdala. Cortical thinning was more widespread in FES patients, with significant differences found in the temporal brain regions when compared with FEM and controls. CONCLUSIONS Significant differences were observed between the two groups of patients with FES and FEM in terms of the hippocampal shape and cortical thickness in the temporal region, highlighting that distinguishable brain structural changes are present early in the course of schizophrenia and mania.
Collapse
Affiliation(s)
- A Qiu
- Department of Bioengineering, National University of Singapore, Singapore.
| | | | | | | |
Collapse
|
49
|
Emsell L, Langan C, Van Hecke W, Barker GJ, Leemans A, Sunaert S, McCarthy P, Nolan R, Cannon DM, McDonald C. White matter differences in euthymic bipolar I disorder: a combined magnetic resonance imaging and diffusion tensor imaging voxel-based study. Bipolar Disord 2013; 15:365-76. [PMID: 23621705 DOI: 10.1111/bdi.12073] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/18/2013] [Indexed: 12/15/2022]
Abstract
OBJECTIVES A broad range of subtle and markedly heterogenous neuroanatomical abnormalities of grey matter and white matter have been reported in bipolar disorder. Euthymic bipolar disorder patients represent a clinically homogenous group in which to identify trait-based biomarkers of bipolar disorder. In this study, we sought to clarify the nature and extent of neuroanatomical differences in a large, clinically homogeneous group of euthymic bipolar disorder patients. METHODS Structural magnetic resonance imaging (sMRI) was obtained for 60 patients with prospectively confirmed euthymic bipolar I disorder and 60 individually age- and gender-matched healthy volunteers. High angular resolution diffusion tensor imaging (DTI) scans were obtained for a subset of this sample comprising 35 patients and 43 controls. Voxel-based analysis of both sMRI and DTI data sets was performed. RESULTS Bipolar disorder patients displayed global reductions in white matter volume and fractional anisotropy reductions in the corpus callosum, posterior cingulum, and prefrontal white matter compared with controls. There were corresponding increases in radial diffusivity in the callosal splenium in patients compared with controls. No significant group differences were detected in grey matter. In patients, lithium was associated with a bilateral increase in grey matter volume in the temporal lobes, but not with any DTI parameter. CONCLUSIONS Euthymic bipolar I disorder is characterized by both diffuse global white matter deficits and potential regional disorganization in interhemispheric and longitudinal tracts, while grey matter appears to be preserved.
Collapse
Affiliation(s)
- Louise Emsell
- Clinical Neuroimaging Laboratory, National University of Ireland Galway, Galway, Ireland; Translational MRI, Department of Imaging and Pathology, KU Leuven and Radiology, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Lithium has been used for the treatment of mood disorders for over 60 years, yet the exact mechanisms by which it exerts its therapeutic effects remain unclear. Two enzymatic chains or pathways emerge as targets for lithium: inositol monophosphatase within the phosphatidylinositol signalling pathway and the protein kinase glycogen synthase kinase 3. Lithium inhibits these enzymes through displacing the normal cofactor magnesium, a vital regulator of numerous signalling pathways. Here we provide an overview of evidence, supporting a role for the inhibition of glycogen synthase kinase 3 and inositol monophosphatase in the pharmacodynamic actions of lithium. We also explore how inhibition of these enzymes by lithium can lead to downstream effects of clinical relevance, both for mood disorders and neurodegenerative diseases. Establishing a better understanding of lithium's mechanisms of action may allow the development of more effective and more tolerable pharmacological agents for the treatment of a range of mental illnesses, and provide clearer insight into the pathophysiology of such disorders.
Collapse
Affiliation(s)
- Kayleigh M Brown
- Institute of Psychiatry, King's College London, PO Box 63, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | | |
Collapse
|