1
|
Guedes M, Vieira de Castro J, Lima AC, M F Gonçalves V, Tiritan ME, L Reis R, Ferreira H, M Neves N. Fishroesomes show intrinsic anti-inflammatory bioactivity and ability as celecoxib carriers in vivo. Eur J Pharm Biopharm 2025; 207:114587. [PMID: 39645203 DOI: 10.1016/j.ejpb.2024.114587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
According to the World Health Organization (WHO), chronic inflammatory-related diseases represent the greatest threat to human health. Indeed, failure in the resolution of inflammation leads to serious pathological conditions, such as cardiovascular diseases, arthritis, cancer, diabetes, autoimmune diseases, and neurodegenerative disorders that are often associated with extremely high human suffering and societal and economic burdens. Despite the number and efficacy of available therapeutic agents have been increased, the serious side effects associated with some of them often create a very high risk/benefit ratio for patients. Therefore, herein, a drug delivery system was engineered to overcome important drawbacks of conventional therapies and to have a synergistic action with the incorporated drug. Indeed, it will have an added beneficial role in controlling inflammation. For that, sardine (Sardina pilchardus) roe was used as the lipidic source to produce bioactive liposomes, namely fishroesomes. These spherical vesicles with ≈326 nm in size and a significant negative surface charge (≈-31 mV) were able to encapsulate and control the release of the anti-inflammatory drug celecoxib. Moreover, fishroesomes were cytocompatible for different cell types (chondrocytes and macrophages), at concentrations in which they present anti-inflammatory properties. Importantly, fishroesomes were more effective in reducing pro-inflammatory mediators than the free drug. We also demonstrated that a single intra-articular injection of the fishroesomes encapsulating or not celecoxib in an experimental rat model of inflammatory arthritis was safe and more effective in controlling the pain and reducing the synovial inflammation compared to the free drug. Notably, as the celecoxib concentration in the sardine roe-derived liposomes was less than half of the amount of free drug, this study demonstrates the value of fishroesomes in counteracting inflammation. Therefore, the developed formulations may be considered a promising therapeutic option for inflammatory conditions.
Collapse
Affiliation(s)
- Marta Guedes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Vieira de Castro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Cláudia Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Virgínia M F Gonçalves
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Maria Elizabeth Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Yamamoto T, Yoshida M, Koyama Y, Mulpuri Y, Imado E, Oue K, Doi M, Shimizu Y, Kishimoto N, Hanamoto H, Seo K. Early prevention of carrageenan-induced peripheral/spinal inflammation suppresses microglial hyperreactivity in the trigeminal spinal subnucleus caudalis and alleviates chronic facial nociception. Heliyon 2025; 11:e41602. [PMID: 39897904 PMCID: PMC11782953 DOI: 10.1016/j.heliyon.2024.e41602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
In this study, we investigated the mechanisms underlying carrageenan-induced chronic pain and the therapeutic effect of the anti-inflammatory drug meloxicam. Rats were injected with 3 % carrageenan into the masseter muscle. These rats exhibited acute and chronic hypersensitivity to mechanical stimuli for 6 weeks after injection. Pre-treatment with meloxicam prevented carrageenan-induced chronic hypersensitivity. Furthermore, minocycline and dexamethasone, but not acetaminophen, suppressed carrageenan-induced hypersensitivity in the chronic phase. Microglial reactivity in the trigeminal spinal subnucleus caudalis (Vc) was assessed by immunohistochemistry 3 days after treatment. The reactivity of microglial cells in the Vc was increased in carrageenan-treated rats compared with vehicle-injected rats. Meloxicam and dexamethasone, but not acetaminophen, prevented carrageenan-induced microglial hyperreactivity in the Vc. These results suggest that early prevention of peripheral/spinal inflammation suppresses microglial reactivity in the Vc and inhibits the development of orofacial chronic pain.
Collapse
Affiliation(s)
- Toru Yamamoto
- Division of Dental Anesthesiology, Faculty of Dentistry & Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Mitsuhiro Yoshida
- Department of Dental Anesthesiology, Division of Oral and Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuhei Koyama
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Yatendra Mulpuri
- Translational Research Center, New York University College of Dentistry, New York, USA
| | - Eiji Imado
- Department of Dental Anesthesiology, Division of Oral and Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Kana Oue
- Department of Dental Anesthesiology, Division of Oral and Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Mitsuru Doi
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshitaka Shimizu
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naotaka Kishimoto
- Division of Dental Anesthesiology, Faculty of Dentistry & Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroshi Hanamoto
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenji Seo
- Division of Dental Anesthesiology, Faculty of Dentistry & Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Buzza AS, Cousins H, Tapas KE, Anders JJ, Lewis SJ, Jenkins MW, Moffitt MA. Direct Photobiomodulation Therapy on the Sciatic Nerve Significantly Attenuates Acute Nociceptive Sensitivity Without Affecting Motor Output. Neuromodulation 2024; 27:1338-1346. [PMID: 38958630 PMCID: PMC11625009 DOI: 10.1016/j.neurom.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVES Pharmacologic pain treatments lack specific targeting and often produce unwanted side effects (eg, addiction, additional hyperalgesia). We previously established that the direct application of laser irradiation (direct photobiomodulation [PBM]) of the sural nerve reduces thermal hypersensitivity in a rodent model of chronic pain, but not mechanical hypersensitivity. These observations were consistent with a selective reduction in the small-diameter fiber contribution to electrophysiologically measured evoked response after direct PBM of a sensory nerve (saphenous). However, to our knowledge, direct application of laser irradiation has never been performed in an animal model of acute nociceptive pain or on a mixed nerve in which sensory and motor outcomes can be observed. MATERIALS AND METHODS In this study, we describe the effects of direct application of laser irradiation (808 nm, 60 mW, 4 minutes) on a mixed nerve (sciatic nerve) in an acute nociceptive pain model (intradermal capsaicin injection) in rats over the course of two weeks. To investigate whether laser irradiation of a mixed nerve alters motor function, in separate experiments, we applied laser irradiation to the sciatic nerve (using the same parameters as in the chronic pain experiments), and force generation of the gastrocnemius was measured. RESULTS Capsaicin-induced hypersensitivities to mechanical (pin prick) and thermal (Hargreaves) noxious stimuli, associated with Aδ- and C-fibers, showed a maximal reduction of 70% and 56.2%, respectively, by direct PBM, when compared with a control group (vehicle injection, no PBM) on the same day. This reduction was determined to be significant using a mixed-design analysis of variance with a p value < 0.05. Force generation remained unchanged for up to 120 minutes after laser irradiation. In summary, direct PBM selectively inhibits C- and Aδ-fiber transmission while leaving Aɑ-, Aβ-, and motor-fiber activity intact. CONCLUSIONS These results, in conjunction with our previous analyses of laser irradiation effects on the sural nerve in a chronic spared nerve injury pain model, suggest that direct PBM is a promising candidate for treating pain induced by small-diameter fiber activity.
Collapse
Affiliation(s)
- Andrew S Buzza
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Hannah Cousins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Kalista E Tapas
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Juanita J Anders
- Department of Anatomy, Physiology, and Genetics, Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Stephen J Lewis
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Michael A Moffitt
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
4
|
Basu P, Taylor BK. Neuropeptide Y Y2 receptors in acute and chronic pain and itch. Neuropeptides 2024; 108:102478. [PMID: 39461244 DOI: 10.1016/j.npep.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Pain and itch are regulated by a diverse array of neuropeptides and their receptors in superficial laminae of the spinal cord dorsal horn (DH). Neuropeptide Y (NPY) is normally expressed on DH neurons but not sensory neurons. By contrast, the Npy2r receptor (Y2) is expressed on the central and peripheral terminals of sensory neurons but not on DH neurons. Neurophysiological slice recordings indicate that Y2-selective agonists inhibits spinal neurotransmitter release from sensory neurons. However, behavioral pharmacology studies indicate that Y2 agonists exert minimal changes in nociception, even after injury. Additional discrepancies in the behavioral actions of the Y2-antagonist BIIE0246 - reports of either pronociception or antinociception - have now been resolved. In the normal state, spinally-directed (intrathecal) administration of BIIE0246 elicits ongoing nociception, hypersensitivity to sensory stimulation, and aversion. Conversely, in the setting of nerve injury and inflammation, intrathecal BIIE024 reduced not only mechanical and thermal hypersensitivity, but also a measure of the affective dimension of pain (conditioned place preference). When administered in chronic pain models of latent sensitization, BIIE0246 produced a profound reinstatement of pain-like behaviors. We propose that tissue or nerve injury induces a G protein switch in the action of NPY-Y2 signaling from antinociception in the naïve state to the inhibition of mechanical and heat hyperalgesia in the injured state, and then a switch back to antinociception to keep LS in a state of remission. This model clarifies the pharmacotherapeutic potential of Y2 research, pointing to the development of a new non-opioid pharmacotherapy for chronic pain using Y2 antagonists in patients who do not develop LS.
Collapse
Affiliation(s)
- Paramita Basu
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, United States of America
| | - Bradley K Taylor
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, United States of America; Department of Pharmacology and Chemical Biology, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
5
|
Kedir G, Ayele AG, Shibeshi W. In-vivo evaluation of analgesic and anti-inflammatory activities of the 80% methanol extract of Acacia seyal stem bark in rodent models. J Pharm Health Care Sci 2024; 10:75. [PMID: 39558415 PMCID: PMC11575448 DOI: 10.1186/s40780-024-00387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Pain and inflammation are the major medical condition commonly addressed with traditional remedies. Acacia seyal is a traditional herb widely used in Ethiopian folk medicine for pain management. However, its effectiveness has yet to be validated through scientific or experimental research. Therefore, the current study aims at evaluating the in vivo analgesic and anti-inflammatory effects of 80% methanolic stem bark extract of Acacia seyal in rodent models. METHODS After successful extractions of the stem barks of Acacia seyal with 80% methanol, the pain relieving effects of 100, 200 and 400 mg/kg extract were evaluated using acetic acid-induced writhing test and hot plate method whereas the anti-inflammatory profile was determined by carrageenan induced paw-edema model and cotton pellet induced granuloma technique. RESULTS The 80% methanol Acacia seyal stem bark extract exhibited substantial (p < 0.001) analgesic effect in acetic acid induced writing test (p < 0.001). The plant extract also witnessed significant central analgesic effect in hot plate method beginning at 30 min with maximum % elongation time occurred at 120 min. Furthermore, the acacia stem bark extract produced anti-inflammatory effect against carrageenan induced paw-edema model. In cotton pellet induced granuloma model, the 200 and 400 mg/kg doses of the current plant material appeared to inhibit granuloma mass formation and exudate reduction significantly (p < 0.001). CONCLUSION The collective findings of the current study revealed that 80% methanol extracts of Acacia seyal exhibited considerable analgesic and anti-inflammatory activities, supporting the plant's traditional use for management of pain and inflammatory disorders.
Collapse
Affiliation(s)
- Gena Kedir
- Department of Pharmacy, College of Health Sciences, Mettu University, Mettu, Ethiopia
| | - Akeberegn Gorems Ayele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University Addis Ababa, PO. Box: 1176, Emial, Ethiopia.
| | - Workineh Shibeshi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University Addis Ababa, PO. Box: 1176, Emial, Ethiopia.
| |
Collapse
|
6
|
Drinovac Vlah V, Bach-Rojecky L. Mirror-Image Pain Update: Complex Interactions Between Central and Peripheral Mechanisms. Mol Neurobiol 2024; 61:1-18. [PMID: 38602655 DOI: 10.1007/s12035-024-04102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
The appearance of contralateral effects after unilateral injury has been shown in various experimental pain models, as well as in clinics. They consist of a diversity of phenomena in contralateral peripheral nerves, sensory ganglia, or spinal cord: from structural changes and altered gene or protein expression to functional consequences such as the development of mirror-image pain (MP). Although MP is a well-documented phenomenon, the exact molecular mechanism underlying the induction and maintenance of mirror-like spread of pain is still an unresolved challenge. MP has generally been explained by central sensitization mechanisms leading to facilitation of pain impulse transfer through neural connections between the two sides of the central nervous system. On the contrary, the peripheral nervous system (PNS) was usually regarded unlikely to evoke such a symmetrical phenomenon. However, recent findings provided evidence that events in the PNS could play a significant role in MP induction. This manuscript provides an updated and comprehensive synthesis of the MP phenomenon and summarizes the available data on the mechanisms. A more detailed focus is placed on reported evidence for peripheral mechanisms behind the MP phenomenon, which were not reviewed up to now.
Collapse
Affiliation(s)
- Višnja Drinovac Vlah
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Domagojeva 2, 10000, Zagreb, Croatia
| | - Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Domagojeva 2, 10000, Zagreb, Croatia.
| |
Collapse
|
7
|
Zahran EM, Mohamad SA, Elsayed MM, Hisham M, Maher SA, Abdelmohsen UR, Elrehany M, Desoukey SY, Kamel MS. Ursolic acid inhibits NF-κB signaling and attenuates MMP-9/TIMP-1 in progressive osteoarthritis: a network pharmacology-based analysis. RSC Adv 2024; 14:18296-18310. [PMID: 38863821 PMCID: PMC11165403 DOI: 10.1039/d4ra02780a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease, characterized by infiltration of monocytes into the synovial joint which promotes inflammation, stiffness, joint swelling, cartilage degradation and further bone destruction. The leaves of Ocimum forskolei have been used for inflammation-related disease management in traditional medicine. Additionally, the downregulation of NF-κB and the MMP/TIMP-1 ratio has been shown to protect against OA. The LC-HR-MS metabolic analysis of Ocimum yielded 19 putative compounds, among which ursolic acid (UA) was detected. Ursolic acid possesses significant anti-inflammatory effects and has been reported to downregulate oxidative stress and inflammatory biomarkers. It was tested on rats in a model of intra-articular carrageenan injection to investigate its efficacy on osteoarthritis progression. The UA emulgel exerted chondroprotective, analgesic and local anaesthetic efficacies confirmed via histopathological investigation and radiographical imaging. A network pharmacology followed by molecular docking highlighted TNF-α, TGF-β and NF-κB as the top filtered genes. Quantitative real-time PCR analysis showed that UA significantly attenuated serum levels of TNF-α, IL-1β, NF-κB, MMP-9/TIMP-1 and elevated levels of TGF-β. Taken together, these results suggest that UA could serve as a functional food-derived phytochemical with a multi-targeted efficacy on progression of OA, regulating the immune and inflammatory responses, particularly, attenuating chondrocytes degeneration via suppression of NF-κB and MMP-9/TIMP-1. Accordingly, UA might be a promising alternative to conventional therapy for safe, easily applicable and effective management of OA.
Collapse
Affiliation(s)
- Eman Maher Zahran
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Soad A Mohamad
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Mohamed M Elsayed
- Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Mohamed Hisham
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Sherif A Maher
- Department of Biochemistry, Faculty of Pharmacy, New Valley University New Valley Elkharga 71511 Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Mahmoud Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Samar Yehia Desoukey
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| |
Collapse
|
8
|
Wahnou H, Ndayambaje M, Ouadghiri Z, Benayad S, Elattar H, Chgari O, Naya A, Zaid Y, Oudghiri M. Artemisia herba-alba: antioxidant capacity and efficacy in preventing chronic arthritis in vivo. Inflammopharmacology 2024; 32:1855-1870. [PMID: 38607503 DOI: 10.1007/s10787-024-01463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Arthritis is a debilitating condition impacting the quality of life for millions worldwide, characterized by pain and inflammation. Understanding the mechanisms of arthritis and developing effective treatments are crucial. This study investigated the hydroethanolic extract of Artemisia herba-alba for its protective potential against arthritis hallmarks, oxidative stress, and lipid peroxidation in vitro. It also assessed its in vivo anti-arthritic activity. The phytochemical analysis identified various compounds within the extract, with high concentrations of polyphenols and flavonoids. These compounds are associated with numerous health benefits, making A. herba-alba a potential source of valuable phytochemicals. A. herba-alba demonstrated a notable effect in body weight loss, paw edema, and arthritic severity. Histopathological examination revealed structural improvements in bone and muscle tissues, emphasizing its therapeutic potential in managing chronic arthritis. Furthermore, while these findings are promising, further studies are necessary to delve deeper into the mechanisms underlying the observed hematological changes and to gain a more comprehensive understanding of the in vivo results. This research sets the stage for continued exploration, ultimately aiming to unlock the full potential of A. herba-alba in addressing chronic arthritis and enhancing the lives of those affected by this condition.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Maarif, B.P2693, Casablanca, Morocco
| | - Martin Ndayambaje
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Maarif, B.P2693, Casablanca, Morocco
| | - Zaynab Ouadghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Maarif, B.P2693, Casablanca, Morocco
| | - Salma Benayad
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Maarif, B.P2693, Casablanca, Morocco
| | | | - Oumaima Chgari
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Maarif, B.P2693, Casablanca, Morocco
| | - Abdallah Naya
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Maarif, B.P2693, Casablanca, Morocco
| | - Younes Zaid
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Maarif, B.P2693, Casablanca, Morocco
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Maarif, B.P2693, Casablanca, Morocco.
| |
Collapse
|
9
|
de Souza KBR, Almeida Guerra LRD, da Silva Guerreiro ML, Casais-E-Silva LL, Aguiar MC. Nociceptive and histomorphometric evaluation of the effects of ozone therapy on the rat masseter muscle in a carrageenan model of myofascial pain. Arch Oral Biol 2024; 160:105893. [PMID: 38271891 DOI: 10.1016/j.archoralbio.2024.105893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
OBJECTIVE This study evaluated the effects of intramuscular ozone therapy on nociception, inflammation, and tissue damage caused by the injection of carrageenan in the masseter muscle of rats. DESIGN Rat masseter muscles were injected with saline or carrageenan. Seventy-seven adult male rats were divided into six groups: Sal, saline; Car, carrageenan; Ibup + Sal, ibuprofen and saline; Ibup + Car, ibuprofen and carrageenan; O3 + Sal, ozone and saline; and O3 + Car, ozone and carrageenan. The mixture of 5% ozone and 95% oxygen (20 µg/mL) was administered three times in the course of a week. Nociceptive responses in the masseter muscles were measured using a head withdrawal threshold, determined by an electronic von Frey anesthesiometer. The animals were euthanized one or eight days after the carrageenan injection, and the masseters were submitted to histological and histomorphometric analyses. RESULTS Mechanical allodynia and inflammation levels were reduced in the Ibup + Car group compared to the other groups. Myonecrosis was similar among carrageenan-treated groups. Picrosirius red stained sections showed more collagen fibers and more regenerating myofibers in the O3 + Car group compared to the other groups. Eight days after carrageenan injection, the O3 + Car group showed neutrophils close to the regenerating myofibers. CONCLUSIONS Intramuscular ozone therapy did not alleviate mechanical allodynia, and it did not protect the masseter muscle against the deleterious effects produced by carrageenan, probably due to the mode of administration of this therapeutic agent.
Collapse
Affiliation(s)
- Kelvin Borges Rocha de Souza
- Laboratory of Orofacial Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | | | - Marcos Lázaro da Silva Guerreiro
- Laboratory of Venomous Animals and Herpetology, Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, BA, Brazil
| | - Luciana Lyra Casais-E-Silva
- Department of Bioregulation, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Marcio Cajazeira Aguiar
- Laboratory of Orofacial Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
10
|
Laranjeira IM, Apolinário E, Amorim D, da Silva Filho AA, Dias ACP, Pinto-Ribeiro F. Baccharis dracunculifolia DC Consumption Improves Nociceptive and Depressive-like Behavior in Rats with Experimental Osteoarthritis. Foods 2024; 13:535. [PMID: 38397516 PMCID: PMC10887954 DOI: 10.3390/foods13040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Osteoarthritis (OA) persistently activates nociceptors, leading to chronic pain, which is often accompanied by the comorbid development of emotional impairments (anxiety and depression), an effect associated with microgliosis. Baccharis dracunculifolia DC (Asteraceae), a Brazilian edible plant, is an important source of active compounds with anti-inflammatory abilities. Thus, we evaluated its ability to reverse OA-induced nociceptive and emotional-like impairments in osteoarthritic ovariectomized female rats using the kaolin/carrageenan (K/C) model. Four weeks after OA induction, mechanical hyperalgesia was confirmed, and the treatment started. Control animals (SHAMs) were treated with phosphate-buffered saline (PBS), while arthritic animals (ARTHs) either received PBS or B. dracunculifolia 50 mg/kg (Bd50) and 100 mg/kg (Bd100), via gavage, daily for five weeks. At the end of the treatment, anxiety-like behavior was assessed using the Open Field Test (OFT), anhedonia was assessed using the Sucrose Preference Test (SPT), and learned helplessness was assessed using the Forced Swimming Test (FST). After occision, microglia were stained with IBA-1 and quantified in brain sections of target areas (prefrontal cortex, amygdala, and periaqueductal grey matter). Treatment with B. dracunculifolia extract reversed OA-induced mechanical hyperalgesia and partly improved depressive-like behavior in OA animals' concomitant to a decrease in the number of M1 microglia. Our findings suggest that B. dracunculifolia extracts can potentially be used in the food industry and for the development of nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Inês Martins Laranjeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (I.M.L.); (E.A.); (D.A.)
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal;
| | - Elisabete Apolinário
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (I.M.L.); (E.A.); (D.A.)
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal;
| | - Diana Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (I.M.L.); (E.A.); (D.A.)
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Ademar Alves da Silva Filho
- Identificação e Pesquisa em Princípios Ativos Naturais—NIPPAN, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n—Campus Universitário, Bairro São Pedro, Juiz de Fora 36036-900, Brazil;
| | - Alberto Carlos Pires Dias
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal;
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (I.M.L.); (E.A.); (D.A.)
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| |
Collapse
|
11
|
Wu M, Song W, Zhang M, Teng L, Tang Q, Zhu L. Potential mechanisms of exercise for relieving inflammatory pain: a literature review of animal studies. Front Aging Neurosci 2024; 16:1359455. [PMID: 38389561 PMCID: PMC10881774 DOI: 10.3389/fnagi.2024.1359455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Inflammatory pain (IP) is one of the most prevalent and intractable human conditions, and it leads to progressive dysfunction and reduced quality of life. Additionally, IP is incredibly challenging to treat successfully with drugs or surgery. The development of IP is complex and multifactorial, and peripheral and central sensitization may influence chronicity and treatment resistance in IP. Understanding the mechanisms underlying IP is vital for developing novel therapies. Strong evidence suggests that exercise can be a first-line relief for patients with IP during rehabilitation. However, the mechanisms through which exercise improves IP remain unclear. Here, we reviewed the current animal experimental evidence for an exercise intervention in IP and proposed biological mechanisms for the effects of synaptic plasticity in the anterior cingulate cortex, endocannabinoids, spinal dorsal horn excitability balance, immune cell polarization balance, cytokines, and glial cells. This information will contribute to basic science and strengthen the scientific basis for exercise therapy prescriptions for IP in clinical practice.
Collapse
Affiliation(s)
- Minmin Wu
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenjing Song
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhang
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lili Teng
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Luwen Zhu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
12
|
Ward CK, Gill RG, Liddell RS, Davies JE. Umbilical Cord Stem Cell Lysate: A New Biologic Injectate for the Putative Treatment of Acute Temporomandibular Joint Inflammation. J Inflamm Res 2023; 16:4287-4300. [PMID: 37791119 PMCID: PMC10544118 DOI: 10.2147/jir.s420741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/04/2023] [Indexed: 10/05/2023] Open
Abstract
Objective To compare in vivo, the acute anti-inflammatory effects of a lysate derived from human umbilical perivascular mesenchymal cells with the cells themselves in both an established hind-paw model of carrageenan-induced inflammation and also in the inflamed temporomandibular joint. Study Design Human umbilical cord perivascular cells were harvested and cultured in xeno- and serum-free conditions to P3. In addition, P3 cells were used to prepare a proprietary 0.22 micron filtered lysate. First, CD1 immunocompetent mice underwent unilateral hind-paw injections of carrageenan for induction of inflammation, followed immediately by treatment with saline (negative control), 1% cell lysate, or viable cells. The contralateral paw remained un-injected with carrageenan. Paw circumference was measured prior to injections and 48 hr later and myeloperoxidase and TNF-alpha concentrations were measured post-sacrifice in excised tissue. Second, immunocompetent Male Wistar rats underwent unilateral intra-articular temporomandibular (TMJ) injections from the same treatment groups and were sacrificed at 4 and 48 hr post-injection. The contralateral TMJ remained un-injected with carrageenan. Articular tissue and synovial aspirates, from the treated TMJ were obtained for histologic and leukocyte infiltration analyses. Results The lysate and cell-treated hind-paw demonstrated reduced tissue edema, and significantly lower concentrations of myeloperoxidase and TNF-alpha at 48 hr compared to untreated controls. Treated TMJs demonstrated lower concentrations of leukocytes in the synovium compared to controls and histologic evidence, in the peri-articular tissue, of reduced inflammation. Conclusion In this preliminary study, both the human umbilical perivascular cells and a highly diluted lysate produced therefrom were anti-inflammatory.
Collapse
Affiliation(s)
| | - Rita G Gill
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, Ontario, Canada
| | - Robert S Liddell
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, Ontario, Canada
| | - John E Davies
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Caxaria S, Bharde S, Fuller AM, Evans R, Thomas B, Celik P, Dell’Accio F, Yona S, Gilroy D, Voisin MB, Wood JN, Sikandar S. Neutrophils infiltrate sensory ganglia and mediate chronic widespread pain in fibromyalgia. Proc Natl Acad Sci U S A 2023; 120:e2211631120. [PMID: 37071676 PMCID: PMC10151464 DOI: 10.1073/pnas.2211631120] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/05/2023] [Indexed: 04/19/2023] Open
Abstract
Fibromyalgia is a debilitating widespread chronic pain syndrome that occurs in 2 to 4% of the population. The prevailing view that fibromyalgia results from central nervous system dysfunction has recently been challenged with data showing changes in peripheral nervous system activity. Using a mouse model of chronic widespread pain through hyperalgesic priming of muscle, we show that neutrophils invade sensory ganglia and confer mechanical hypersensitivity on recipient mice, while adoptive transfer of immunoglobulin, serum, lymphocytes, or monocytes has no effect on pain behavior. Neutrophil depletion abolishes the establishment of chronic widespread pain in mice. Neutrophils from patients with fibromyalgia also confer pain on mice. A link between neutrophil-derived mediators and peripheral nerve sensitization is already established. Our observations suggest approaches for targeting fibromyalgia pain via mechanisms that cause altered neutrophil activity and interactions with sensory neurons.
Collapse
Affiliation(s)
- Sara Caxaria
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Sabah Bharde
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Alice M. Fuller
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Romy Evans
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Bethan Thomas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Petek Celik
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Francesco Dell’Accio
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Simon Yona
- Institute of Biomedical and Oral Research, Hebrew University, 9112102Jerusalem, Israel
| | - Derek Gilroy
- Division of Medicine, Molecular Nociception Group, Wolfson Institute of Biomedical Research, University College London, WC1E 6BTLondon, United Kingdom
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - John N. Wood
- Division of Medicine, Molecular Nociception Group, Wolfson Institute of Biomedical Research, University College London, WC1E 6BTLondon, United Kingdom
| | - Shafaq Sikandar
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| |
Collapse
|
14
|
Jeon HJ, Byun JK, Lee SB, Son KH, Lim JY, Lee DS, Kim KS, Park JW, Shin GR, Kim YJ, Jin J, Kim D, Kim DH, Yu JH, Choi YK, Park KG, Jeon YH. N-methyl-d-aspartate receptors induce M1 polarization of macrophages: Feasibility of targeted imaging in inflammatory response in vivo. Cell Biosci 2023; 13:69. [PMID: 36998073 PMCID: PMC10064586 DOI: 10.1186/s13578-023-01007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/06/2023] [Indexed: 04/01/2023] Open
Abstract
Abstract
Background
N-methyl-d-aspartate receptors (NMDARs) are considered to be involved in several physiological and pathophysiological processes in addition to the progression of neurological disorders. However, how NMDARs are involved in the glycolytic phenotype of M1 macrophage polarization and the possibility of using them as a bio-imaging probe for macrophage-mediated inflammation remain unclear.
Methods
We analyzed cellular responses to NMDAR antagonism and small interfering RNAs using mouse bone marrow-derived macrophages (BMDMs) treated with lipopolysaccharide (LPS). An NMDAR targeting imaging probe, N-TIP, was produced via the introduction of NMDAR antibody and the infrared fluorescent dye FSD Fluor™ 647. N-TIP binding efficiency was tested in intact and LPS-stimulated BMDMs. N-TIP was intravenously administered to mice with carrageenan (CG)- and LPS-induced paw edema, and in vivo fluorescence imaging was conducted. The anti-inflammatory effects of dexamethasone were evaluated using the N-TIP-mediated macrophage imaging technique.
Results
NMDARs were overexpressed in LPS-treated macrophages, subsequently inducing M1 macrophage polarization. Mechanistically, NMDAR-mediated Ca2+ accumulation resulted in LPS-stimulated glycolysis via upregulation of PI3K/AKT/mTORC1 signaling. In vivo fluorescence imaging with N-TIP showed LPS- and CG-induced inflamed lesions at 5 h post-inflammation, and the inflamed lesions could be detected until 24 h. Furthermore, our N-TIP-mediated macrophage imaging technique helped successfully visualize the anti-inflammatory effects of dexamethasone in mice with inflammation.
Conclusion
This study demonstrates that NMDAR-mediated glycolysis plays a critical role in M1 macrophage-related inflammation. Moreover, our results suggest that NMDAR targeting imaging probe may be useful in research on inflammatory response in vivo.
Collapse
|
15
|
Xueliankoufuye Suppresses Microglial Activation with Inflammatory Pain by Blocking NF- κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:1508098. [PMID: 36865744 PMCID: PMC9974264 DOI: 10.1155/2023/1508098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023]
Abstract
Xuelian, as a traditional Chinese ethnodrug, plays an important role in anti-inflammation, immunoregulation, promoting blood circulation, and other physiological functions. It has been prepared into different traditional Chinese medicine preparations for clinical use, with xuelian koufuye (XL) being widely used to treat rheumatoid arthritis. However, whether XL can relieve inflammatory pain and its analgesic molecular mechanism are still unknown. The present study explored the palliative effect of XL on inflammatory pain and its analgesic molecular mechanism. In complete Freund's adjuvant (CFA)-induced inflammatory joint pain, oral XL dose-dependently improved the mechanical withdrawal threshold of inflammatory pain from an average value of 17.8 g to 26.6 g (P < 0.05) and high doses of XL significantly reduced inflammation-induced ankle swelling from an average value of 3.1 cm to 2.3 cm compared to the model group (P < 0.05). In addition, in carrageenan-induced inflammatory muscle pain rat models, oral XL dose-dependently improved the mechanical withdrawal threshold of inflammatory pain from an average value of 34.3 g to 40.8 g (P < 0.05). The phosphorylated p65 was inhibited in LPS-induced BV-2 microglia and spinal cord of mice in CFA-induced inflammatory joint pain within a value of 75% (P < 0.001) and 52% reduction (P < 0.05) on average, respectively. In addition, the results showed that XL could effectively inhibit the expression and secretion of IL-6 from an average value of 2.5 ng/ml to 0.5 ng/ml (P < 0.001) and TNF-α from 3.6 mg/ml to 1.8 ng/ml with IC50 value of 20.15 μg/mL and 112 μg/mL respectively, by activating the NF-κB signaling pathway in BV-2 microglia (P < 0.001). The above-given results provide a clear understanding of the analgesic activity and mechanism of action not found in XL. Considering the significant effects of XL, it can be evaluated as a novel drug candidate for inflammatory pain, which establishes a new experimental basis for expanding the indications of XL in clinical treatment and suggests a feasible strategy to develop natural analgesic drugs.
Collapse
|
16
|
Okita S, Sasaki R, Kondo Y, Sakamoto J, Honda Y, Okita M. Effects of low-level laser therapy on inflammatory symptoms in an arthritis rat model. J Phys Ther Sci 2023; 35:55-59. [PMID: 36628144 PMCID: PMC9822828 DOI: 10.1589/jpts.35.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/19/2022] [Indexed: 01/01/2023] Open
Abstract
[Purpose] This study evaluated the effect of low-level laser therapy on inflammatory signs in an arthritis rat model as a foundation for elucidating the mechanism of the anti-inflammatory effect. [Materials and Methods] Eigteen Wistar rats were divided into three groups: group I (arthritis without low-level laser therapy), group II (arthritis with low-level laser therapy), and the control group (sham arthritis control). Arthritis was induced in the right knee by injecting a mixture of kaolin and carrageenan. Low-level laser therapy was continued for seven days after the onset of arthritis by 60 times of repeated irradiation for 10 seconds in the right knee joint area. The joint transverse diameter, pressure pain threshold in the affected knee joint, and mechanical paw withdrawal threshold at the distant site were evaluated the day before the injection and one, three, and seven days after the injection. Pathological changes were observed. [Results] Group II showed better improvement in swelling and pain in the affected knee joint and secondary hyperalgesia at the distance site when compared to group I. In group II, there was only mild infiltration of synovial cells, and the progression of arthritis was suppressed compared with that of group I. [Conclusion] Low-level laser therapy can mitigate swelling and inflammatory pain in the affected knee joint and prevent secondary hyperalgesia.
Collapse
Affiliation(s)
- Seima Okita
- Department of Rehabilitation, The Japanese Red Cross
Nagasaki Genbaku Hospital, Japan, Laboratory of Locomotive Rehabilitation Science, Nagasaki
University Graduate School of Biomedical Sciences: 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki
852-8520, Japan
| | - Ryo Sasaki
- Laboratory of Locomotive Rehabilitation Science, Nagasaki
University Graduate School of Biomedical Sciences: 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki
852-8520, Japan, Department of Rehabilitation, Juzenkai Hospital,
Japan
| | - Yasutaka Kondo
- Department of Rehabilitation, The Japanese Red Cross
Nagasaki Genbaku Hospital, Japan, Laboratory of Locomotive Rehabilitation Science, Nagasaki
University Graduate School of Biomedical Sciences: 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki
852-8520, Japan
| | - Junya Sakamoto
- Laboratory of Locomotive Rehabilitation Science, Nagasaki
University Graduate School of Biomedical Sciences: 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki
852-8520, Japan, Institute of Biomedical Sciences, Health Sciences, Nagasaki
University, Japan
| | - Yuichiro Honda
- Laboratory of Locomotive Rehabilitation Science, Nagasaki
University Graduate School of Biomedical Sciences: 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki
852-8520, Japan, Institute of Biomedical Sciences, Health Sciences, Nagasaki
University, Japan
| | - Minoru Okita
- Laboratory of Locomotive Rehabilitation Science, Nagasaki
University Graduate School of Biomedical Sciences: 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki
852-8520, Japan, Institute of Biomedical Sciences, Health Sciences, Nagasaki
University, Japan,Corresponding author. Minoru Okita (E-mail: )
| |
Collapse
|
17
|
Hsu CC, Tsai CC, Ko PY, Kwan TH, Liu MY, Wu PT, Jou IM. Triptolide Attenuates Muscular Inflammation and Oxidative Stress in a Delayed-Onset Muscle Soreness Animal Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16685. [PMID: 36554566 PMCID: PMC9778903 DOI: 10.3390/ijerph192416685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Delayed-onset muscle soreness (DOMS) is associated with exercise-induced muscle damage and inflammation, which is mainly caused by prolonged eccentric exercise in humans. Triptolide, an extract from the Chinese herb Tripterygium wilfordii Hook F, has been used for treating autoimmune and inflammatory diseases in clinical practice. However, whether triptolide attenuates acute muscle damage is still unclear. Here, we examined the effect of triptolide on carrageenan-induced DOMS in rats. Rats were injected with 3% of carrageenan into their muscles to induce acute left gastrocnemius muscular damage, and triptolide treatment attenuated carrageenan-induced acute muscular damage without affecting hepatic function. Triptolide can significantly decrease lipid hydroperoxide and nitric oxide (NO) levels, proinflammatory cytokine production, and the activation of nuclear factor (NF)-ĸB, as well as increase a reduced form of glutathione levels in carrageenan-treated rat muscles. At the enzyme levels, triptolide reduced the inducible nitric oxide synthase (iNOS) expression and muscular myeloperoxidase (MPO) activity in carrageenan-treated DOMS rats. In conclusion, we show that triptolide can attenuate muscular damage by inhibiting muscular oxidative stress and inflammation in a carrageenan-induced rat DOMS model.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Chin-Chuan Tsai
- Department of Traditional Chinese Medicine, E-Da Dachang Hospital, Kaohsiung 82445, Taiwan
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Po-Yen Ko
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Ting-Hsien Kwan
- Department of Orthopaedics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Po-Ting Wu
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 70428, Taiwan
- Department of Orthopaedics, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70428, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - I-Ming Jou
- Department of Orthopaedics, E-Da Hospital, Kaohsiung 82445, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- GEG Orthopedic Clinic, Tainan 74543, Taiwan
| |
Collapse
|
18
|
da Rosa LC, Scales HE, Makhija S, Sutherland K, Benson RA, Brewer JM, Garside P. Revealing stromal and lymphoid sources of Col3a1-expression during inflammation using a novel reporter mouse. DISCOVERY IMMUNOLOGY 2022; 1:kyac008. [PMID: 38566907 PMCID: PMC10917174 DOI: 10.1093/discim/kyac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/04/2022] [Accepted: 11/07/2022] [Indexed: 04/04/2024]
Abstract
One of the earliest signs of dysregulation of the homeostatic process of fibrosis, associated with pathology in chronic conditions such as rheumatoid arthritis, is the overexpression of collagen type III (COL-3). Critically, there is still relatively little known regarding the identity of the cell types expressing the gene encoding COL-3 (Col3a1). Identifying and characterizing Col3a1-expressing cells during the development of fibrosis could reveal new targets for the diagnosis and treatment of fibrosis-related pathologies. As such, a reporter mouse expressing concomitantly Col3a1 and mKate-2, a fluorescent protein, was generated. Using models of footpad inflammation, we demonstrated its effectiveness as a tool to measure the expression of COL-3 during the repair process and provided an initial characterization of some of the stromal and immune cells responsible for Col3a1 expression.
Collapse
Affiliation(s)
- Larissa C da Rosa
- School of Infection and Immunity, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Hannah E Scales
- School of Infection and Immunity, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Sangeet Makhija
- School of Infection and Immunity, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Katie Sutherland
- School of Infection and Immunity, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Robert A Benson
- School of Infection and Immunity, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - James M Brewer
- School of Infection and Immunity, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Paul Garside
- School of Infection and Immunity, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
19
|
Zhu Z, Gao R, Ye T, Feng K, Zhang J, Chen Y, Xie Z, Wang Y. The Therapeutic Effect of iMSC-Derived Small Extracellular Vesicles on Tendinopathy Related Pain Through Alleviating Inflammation: An in vivo and in vitro Study. J Inflamm Res 2022; 15:1421-1436. [PMID: 35256850 PMCID: PMC8898180 DOI: 10.2147/jir.s345517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Background Tendinopathy is a common cause of tendon pain. However, there is a lack of effective therapies for managing tendinopathy pain, despite the pain being the most common complaint of patients. This study aimed to evaluate the therapeutic effect of small extracellular vesicles released from induced pluripotent stem cell-derived mesenchymal stem cells (iMSC-sEVs) on tendinopathy pain and explore the underlying mechanisms. Methods Rat tendinopathy model was established and underwent the injection of iMSC-sEVs to the quadriceps tendon one week after modeling. Pain-related behaviors were measured for the following four weeks. Tendon histology was assessed four weeks after the injection. To further investigate the potential mechanism, tenocytes were stimulated with IL-1β to mimic tendinopathy in vitro. The effect of iMSC-sEVs on tenocyte proliferation and the expression of proinflammatory cytokines were measured by CCK-8, RT-qPCR, and ELISA. RNA-seq was further performed to systematically analyze the related global changes and underlying mechanisms. Results Local injection of iMSC-sEVs was effective in alleviating pain in the tendinopathy rats compared with the vehicle group. Tendon histology showed ameliorated tendinopathy characteristics. Upon iMSC-sEVs treatment, significantly increased tenocyte proliferation and less expression of proinflammatory cytokines were observed. Transcriptome analysis revealed that iMSC-sEVs treatment upregulated the expression of genes involved in cell proliferation and downregulated the expression of genes involved in inflammation and collagen degeneration. Conclusion Collectively, this study demonstrated iMSC-sEVs protect tenocytes from inflammatory stimulation and promote cell proliferation as well as collagen synthesis, thereby relieving pain derived from tendinopathy. As a cell-free regenerative treatment, iMSC-sEVs might be a promising therapeutic candidate for tendinopathy.
Collapse
Affiliation(s)
- Zhaochen Zhu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Renzhi Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Teng Ye
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Kai Feng
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Juntao Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Yu Chen
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Zongping Xie
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Correspondence: Zongping Xie, Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600# Yishan Road, Shanghai, 200233, People’s Republic of China Email
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| |
Collapse
|
20
|
Veloso C, Videira RA, Andrade PB, Cardoso C, Vitorino C. In vivo methodologies to assist preclinical development of topical fixed-dose combinations for pain management. Int J Pharm 2022; 616:121530. [PMID: 35121043 DOI: 10.1016/j.ijpharm.2022.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/24/2022]
Abstract
The combination in a fixed dose of two or more active pharmaceutical ingredients in the same pharmaceutical dosage form is an approach that has been used successfully in the treatment of several pathologies, including pain. In the preclinical development of a topical fixed-dose combination product with analgesic and anti-inflammatory activities for pain management, the main objective is to establish the nature of the interaction between the different active pharmaceutical ingredients while obtaining data on the medicinal product safety and efficacy. Despite the improvement of in vitro assays, animal models remain a fundamental strategy to characterise the interaction, efficacy and safety of active pharmaceutical ingredients at the physiological level, which cannot be reached by in vitro assays. Thus, the main goal of this review is to systematise the available animal models to evaluate the efficacy and safety of a new fixed-dose combination product for topical administration indicated for pain management. Particular emphasis is given to animal models that are accepted for regulatory purposes.
Collapse
Affiliation(s)
- Cláudia Veloso
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Romeu A Videira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Catarina Cardoso
- Laboratórios Basi, Parque Industrial Manuel Lourenço Ferreira, lote 15, 3450-232 Mortágua, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|
21
|
Sadler KE, Mogil JS, Stucky CL. Innovations and advances in modelling and measuring pain in animals. Nat Rev Neurosci 2022; 23:70-85. [PMID: 34837072 PMCID: PMC9098196 DOI: 10.1038/s41583-021-00536-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
Best practices in preclinical algesiometry (pain behaviour testing) have shifted over the past decade as a result of technological advancements, the continued dearth of translational progress and the emphasis that funding institutions and journals have placed on rigour and reproducibility. Here we describe the changing trends in research methods by analysing the methods reported in preclinical pain publications from the past 40 years, with a focus on the last 5 years. We also discuss how the status quo may be hampering translational success. This discussion is centred on four fundamental decisions that apply to every pain behaviour experiment: choice of subject (model organism), choice of assay (pain-inducing injury), laboratory environment and choice of outcome measures. Finally, we discuss how human tissues, which are increasingly accessible, can be used to validate the translatability of targets and mechanisms identified in animal pain models.
Collapse
Affiliation(s)
- Katelyn E Sadler
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeffrey S Mogil
- Department of Psychology, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
22
|
Ahmad H, Ali Chohan T, Mudassir J, Mehta P, Yousef B, Zaman A, Ali A, Qutachi O, Chang MW, Fatouros D, Sohail Arshad M, Ahmad Z. Evaluation of sustained-release in-situ injectable gels, containing naproxen sodium, using in vitro, in silico and in vivo analysis. Int J Pharm 2022; 616:121512. [PMID: 35085730 DOI: 10.1016/j.ijpharm.2022.121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 11/15/2022]
Abstract
The study aimed to fabricate naproxen sodium loaded in-situ gels of sodium alginate. Different in-situ gel forming solutions of naproxen sodium and sodium alginate were prepared and gel formation was studied in different physiological ions i.e., CaCl2 and Ca-gluconate. The prepared gel formulations were evaluated for different physical attributes such as gelation time, sol-gel fraction, ATR-FTIR spectroscopy and in silico molecular dynamics (MD) simulations. Drug release studies were carried out in a dialysis membrane using USP dissolution basket apparatus-I. In vivo anti-inflammatory studies were performed in Sprague-Dawley rats having carrageenan-induced hind paw inflammation. Higher polymer concentration in formulations resulted in decreased gelation time and an increased gel fraction. The ATR-FTIR and MD simulation revealed H-bonding between the alginate and naproxen sodium at 3500-3200 cm-1 with a RMSD of ∼2.8 Å and binding free energy ΔGpred (GB) = -10.93 kcal/mol. In vitro drug release studies from F8CAG suggested a sustained release of naproxen sodium. In vivo studies revealed a continuous decrease in swelling degree (≈-5.28± 0.210 mm) in inflamed hind paw of Sprague-Dawley rats over 96 h. The in-situ gel forming injectable preparation (F8CAG) offers a sustained release of naproxen sodium in the articular cavity which promises the treatment of chronic inflammatory conditions such as arthritis.
Collapse
Affiliation(s)
- Hassan Ahmad
- Department of Pharmaceutics, Bahauddin Zakariya University, Multan, Pakistan; Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Jahanzeb Mudassir
- Department of Pharmaceutics, Bahauddin Zakariya University, Multan, Pakistan
| | - Prina Mehta
- School of Pharmacy, De Montfort University, Leicester, UK
| | - Bushra Yousef
- School of Pharmacy, De Montfort University, Leicester, UK
| | - Aliyah Zaman
- School of Pharmacy, De Montfort University, Leicester, UK
| | - Amna Ali
- School of Pharmacy, De Montfort University, Leicester, UK
| | - Omar Qutachi
- School of Pharmacy, De Montfort University, Leicester, UK
| | - Ming-Wei Chang
- School of Engineering, Ulster University, Co. Antrim, UK
| | | | | | - Zeeshan Ahmad
- School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
23
|
Gurram S, Anchi P, Panda B, Tekalkar SS, Mahajan RB, Godugu C. Amelioration of experimentally induced inflammatory arthritis by intra-articular injection of visnagin. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100114. [PMID: 35992378 PMCID: PMC9389203 DOI: 10.1016/j.crphar.2022.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
| | | | | | | | | | - Chandraiah Godugu
- Corresponding author. Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad Balanagar, Hyderabad, Telangana State, India.
| |
Collapse
|
24
|
Rodrigues G, Moraes T, Elisei L, Malta I, Dos Santos R, Novaes R, Lollo P, Galdino G. Resistance Exercise and Whey Protein Supplementation Reduce Mechanical Allodynia and Spinal Microglia Activation After Acute Muscle Trauma in Rats. Front Pharmacol 2021; 12:726423. [PMID: 34858171 PMCID: PMC8631966 DOI: 10.3389/fphar.2021.726423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022] Open
Abstract
Muscle injury caused by direct trauma to the skeletal muscle is among the main musculoskeletal disorders. Non-pharmacological treatments have been effective in controlling muscle injury–induced pain; however, there are just a few studies in the literature investigating this response. Thus, the present study aimed to evaluate the effect of a resistance exercise training protocol combined or not with whey protein supplementation on mechanical allodynia induced by muscle injury. In addition, we also investigated the involvement of spinal glial cells in this process. For this purpose, male Wistar rats underwent a muscle injury model induced by direct trauma to the gastrocnemius muscle. Mechanical allodynia was measured by a digital von Frey algesimeter test. To evaluate the effect of exercise and/or supplementation on mechanical allodynia, the animals practiced exercises three times a week for 14 days and received supplementation daily for 14 days, respectively. Moreover, the effect of both the participation of spinal glial cells in the muscle injury and the resistance exercise training and/or whey protein supplementation on these cells was also investigated by the Western blot assay. The results demonstrated that resistance exercise training and whey protein supplementation, combined or alone, reduced mechanical allodynia. These treatments also reduced the number of interstitial cells and pro-inflammatory cytokine IL-6 levels in the injured muscle. It was also found that spinal microglia and astrocytes are involved in muscle injury, and that resistance exercise training combined with whey protein supplementation inhibits spinal microglia activation. The results suggest that both resistance exercise training and whey protein supplementation may be effective non-pharmacological treatments to control pain in the muscle after injury induced by acute trauma.
Collapse
Affiliation(s)
- Gusthavo Rodrigues
- Laboratory of Experimental Physical Therapy, Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, Brazil.,Federal Institute of Education, Science and Technology of South of Minas Gerais, Advanced Campus Carmo de Minas, Carmo de Minas, Brazil
| | - Thamyris Moraes
- Laboratory of Experimental Physical Therapy, Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Lívia Elisei
- Laboratory of Experimental Physical Therapy, Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Iago Malta
- Laboratory of Experimental Physical Therapy, Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Rafaela Dos Santos
- Laboratory of Experimental Physical Therapy, Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Rômulo Novaes
- Laboratory of Experimental Physical Therapy, Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Pablo Lollo
- School of Physical Education, Federal University of Grande Dourados, Dourados, Brazil
| | - Giovane Galdino
- Laboratory of Experimental Physical Therapy, Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, Brazil
| |
Collapse
|
25
|
Morgan M, Thai J, Trinh P, Habib M, Effendi KN, Ivanusic JJ. ASIC3 inhibition modulates inflammation-induced changes in the activity and sensitivity of Aδ and C fiber sensory neurons that innervate bone. Mol Pain 2021; 16:1744806920975950. [PMID: 33280501 PMCID: PMC7724402 DOI: 10.1177/1744806920975950] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Acid Sensing Ion Channel 3 (ASIC3) is a non-selective cation channel that is
activated by acidification, and is known to have a role in regulating
inflammatory pain. It has pro-algesic roles in a range of conditions that
present with bone pain, but the mechanism for this has not yet been
demonstrated. We aimed to determine if ASIC3 is expressed in Aδ and/or C fiber
bone afferent neurons, and to explore its role in the activation and
sensitization of bone afferent neurons after acute inflammation. A combination
of retrograde tracing and immunohistochemistry was used to determine expression
of ASIC3 in the soma of bone afferent neurons. A novel, in
vivo, electrophysiological bone-nerve preparation was used to make
recordings of the activity and sensitivity of bone afferent neurons in the
presence of carrageenan-induced inflammation, with and without the selective
ASIC3 inhibitor APET×2. A substantial proportion of bone afferent neurons
express ASIC3, including unmyelinated (neurofilament poor) and small diameter
myelinated (neurofilament rich) neurons that are likely to be C and Aδ nerve
fibers respectively. Electrophysiological recordings revealed that application
of APET×2 to the marrow cavity inhibited carrageenan-induced spontaneous
activity of C and Aδ fiber bone afferent neurons. APET×2 also inhibited
carrageenan-induced sensitization of Aδ and C fiber bone afferent neurons to
mechanical stimulation, but had no effect on the sensitivity of bone afferent
neurons in the absence of inflammation. This evidence supports a role for ASIC3
in the pathogenesis of pain associated with inflammation of the bone.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Jenny Thai
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Phu Trinh
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Mohamed Habib
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Kelly N Effendi
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Henneh IT, Armah FA, Ameyaw EO, Biney RP, Obese E, Boakye-Gyasi E, Adakudugu EA, Ekor M. Analgesic Effect of Ziziphus abyssinica Involves Inhibition of Inflammatory Mediators and Modulation of K ATP Channels, Opioidergic and Nitrergic Pathways. Front Pharmacol 2021; 12:714722. [PMID: 34354595 PMCID: PMC8329242 DOI: 10.3389/fphar.2021.714722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
The diversity offered by natural products has timelessly positioned them as a good source for novel therapeutics for the management of diverse medical conditions, including pain. This study evaluated hydro-ethanolic root bark extract of Ziziphus abyssinica (ZAE) as well as β-amyrin and polpunonic acid isolated from the plant for analgesic property. The study also investigated the mechanism responsible for this action in the extract. The antinociceptive potential of ZAE (30, 100, and 300 mg/kg, p. o.) was assessed using the tail-immersion test (TIT), acetic acid-induced writhing test (AAT), and formalin test (FT). The extract’s effect on acute and chronic musculoskeletal pain was also assessed by administering carrageenan unilaterally into the rat gastrocnemius muscles and measuring pain at 12 h and 10 days for acute and chronic pain respectively. The involvement of pro-inflammatory mediators (prostaglandin E2, bradykinin, TNF-α, and IL-1β) was assessed. The possible pathways mediating the observed analgesic effect of ZAE were further assessed using the antagonists: naloxone, glibenclamide, NG-L-nitro-arginine methyl ester (L-NAME), atropine, nifedipine, and yohimbine in the FT. Also the analgesic effect of two triterpenoid compounds, β-amyrin and polpunonic acid, previously isolated from the plant was assessed using the TIT. The anti-nociceptive activity of ZAE was demonstrated in the TIT by the significant (p < 0.05) increase in tail withdrawal threshold in ZAE-treated mice. ZAE also markedly reduced writhing and paw licking responses in both AAT and FT and significantly (p < 0.05) attenuated both acute and chronic musculoskeletal pain. ZAE also significantly reversed hyperalgesia induced by intraplantar injection of PGE2, bradykinin, TNF-α, and IL-1β. Furthermore, data revealed the involvement of opioidergic, ATP-sensitive K+ channels and NO-cGMP pathways in the analgesic effect of ZAE. Both β-amyrin and polpunonic acid exhibited analgesic activity in the tail suspension test. Our study demonstrates ZAE as an important source of new therapeutic agents for pain management.
Collapse
Affiliation(s)
- Isaac Tabiri Henneh
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Francis Ackah Armah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Elvis Ofori Ameyaw
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Robert Peter Biney
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ernest Obese
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Eric Boakye-Gyasi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Martins Ekor
- Department of Pharmacology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
27
|
Reyes-Pérez VI, Granados-Soto V, Rangel-Grimaldo M, Déciga-Campos M, Mata R. Pharmacological Analysis of the Anti-inflammatory and Antiallodynic Effects of Zinagrandinolide E from Zinnia grandiflora in Mice. JOURNAL OF NATURAL PRODUCTS 2021; 84:713-723. [PMID: 32870011 DOI: 10.1021/acs.jnatprod.0c00793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zinagrandinolide E (1, ZGE) is an elemanolide with antinociceptive action isolated from Zinnia grandiflora (Asteraceae), valued in North México and southwestern United States for pain relief. Herein, we report the anti-inflammatory and antiallodynic action of ZGE (1) in carrageenan-induced inflammation and tactile allodynia in mice and in a neuropathic pain model in hyperglycemic mice. Local peripheral administration of ZGE (1-30 μg/paw) induced dose-dependent acute anti-inflammatory and antiallodynic effects. The anti-inflammatory effect was comparable to diclofenac (30 μg/paw). Intrathecal (i.t.) administration of ZGE (30 μg) in acute experiments did not affect carrageenan-induced inflammation but significantly reduced tactile allodynia in a dose-dependent fashion. In long-term experiments (15 or 6 days), using two different scheme treatments (pretreatment or post-treatment), ZGE (3-30 μg/paw) showed antiallodynic but not anti-inflammatory action. Local peripheral (3-30 μg/paw) or intrathecal (3-30 μg) administration of ZGE partially reversed tactile allodynia in hyperglycemic mice, better or comparable, respectively, with those of pregabalin (30 μg/paw or 30 μg i.t.). The effects were dose-dependent. According to the pharmacological tools employed, the anti-inflammatory and antiallodynic activities of ZGE are multitarget; these involve the opioidergic, serotoninergic, and GABAergic systems, as well as the NO-cGMP-ATP-sensitive K+ channel signaling pathway.
Collapse
Affiliation(s)
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City 14330, Mexico
| | | | - Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Rachel Mata
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
28
|
Moreno AM, Alemán F, Catroli GF, Hunt M, Hu M, Dailamy A, Pla A, Woller SA, Palmer N, Parekh U, McDonald D, Roberts AJ, Goodwill V, Dryden I, Hevner RF, Delay L, Gonçalves Dos Santos G, Yaksh TL, Mali P. Long-lasting analgesia via targeted in situ repression of Na V1.7 in mice. Sci Transl Med 2021; 13:eaay9056. [PMID: 33692134 PMCID: PMC8830379 DOI: 10.1126/scitranslmed.aay9056] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/14/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Current treatments for chronic pain rely largely on opioids despite their substantial side effects and risk of addiction. Genetic studies have identified in humans key targets pivotal to nociceptive processing. In particular, a hereditary loss-of-function mutation in NaV1.7, a sodium channel protein associated with signaling in nociceptive sensory afferents, leads to insensitivity to pain without other neurodevelopmental alterations. However, the high sequence and structural similarity between NaV subtypes has frustrated efforts to develop selective inhibitors. Here, we investigated targeted epigenetic repression of NaV1.7 in primary afferents via epigenome engineering approaches based on clustered regularly interspaced short palindromic repeats (CRISPR)-dCas9 and zinc finger proteins at the spinal level as a potential treatment for chronic pain. Toward this end, we first optimized the efficiency of NaV1.7 repression in vitro in Neuro2A cells and then, by the lumbar intrathecal route, delivered both epigenome engineering platforms via adeno-associated viruses (AAVs) to assess their effects in three mouse models of pain: carrageenan-induced inflammatory pain, paclitaxel-induced neuropathic pain, and BzATP-induced pain. Our results show effective repression of NaV1.7 in lumbar dorsal root ganglia, reduced thermal hyperalgesia in the inflammatory state, decreased tactile allodynia in the neuropathic state, and no changes in normal motor function in mice. We anticipate that this long-lasting analgesia via targeted in vivo epigenetic repression of NaV1.7 methodology we dub pain LATER, might have therapeutic potential in management of persistent pain states.
Collapse
Affiliation(s)
- Ana M Moreno
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA
| | - Fernando Alemán
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA
| | - Glaucilene F Catroli
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA
| | - Matthew Hunt
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA
| | - Michael Hu
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA
| | - Amir Dailamy
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA
| | - Andrew Pla
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA
| | - Sarah A Woller
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA
| | - Nathan Palmer
- Division of Biological Sciences, University of California San Diego , San Diego, CA 92093, USA
| | - Udit Parekh
- Department of Electrical Engineering, University of California San Diego , San Diego, CA 92093, USA
| | - Daniella McDonald
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California San Diego, San Diego, San Diego, CA 92093, USA
| | - Amanda J Roberts
- Animal Models Core, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vanessa Goodwill
- Department of Neuropathology, University of California San Diego, San Diego, CA 92093, USA
| | - Ian Dryden
- Department of Neuropathology, University of California San Diego, San Diego, CA 92093, USA
| | - Robert F Hevner
- Department of Neuropathology, University of California San Diego, San Diego, CA 92093, USA
| | - Lauriane Delay
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA
| | | | - Tony L Yaksh
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA.
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
29
|
Lima AC, Amorim D, Laranjeira I, Almeida A, Reis RL, Ferreira H, Pinto-Ribeiro F, Neves NM. Modulating inflammation through the neutralization of Interleukin-6 and tumor necrosis factor-α by biofunctionalized nanoparticles. J Control Release 2021; 331:491-502. [PMID: 33561482 DOI: 10.1016/j.jconrel.2021.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/30/2022]
Abstract
Biological agents that neutralize the activity of pro-inflammatory cytokines are revolutionizing the treatment of inflammatory conditions. However, the antibodies (Abs) short half-life and off-target distribution critically limit their efficacy and safety. Therefore, this work proposes the immobilization of anti-TNF-α and anti-IL-6 Abs at the surface of polymeric nanoparticles (NPs) in order to extend and increase the Abs therapeutic efficacy, owing to the protection from degradation that the NPs provide, and to avoid off-target side effects through local administration. In an in vitro model of inflammation, biofunctionalized NPs were able to reduce the harmful effects on human chondrocytes provided by inflammatory macrophages, being demonstrated the additive effects of the dual neutralization. Significantly, biofunctionalized NPs ameliorated inflammation more efficiently than soluble Abs in an in vivo experimental model of inflammation, exhibiting a safe profile, a prolonged action, and a stronger efficacy. Hence, as this strategy is able to increase the therapeutic efficacy of the currently available treatments, it is a promising potential therapeutic option for inflammatory conditions.
Collapse
Affiliation(s)
- Ana Cláudia Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Amorim
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Inês Laranjeira
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Armando Almeida
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
30
|
Sasaki R, Sakamoto J, Kondo Y, Oga S, Takeshita I, Honda Y, Kataoka H, Origuchi T, Okita M. Effects of Cryotherapy Applied at Different Temperatures on Inflammatory Pain During the Acute Phase of Arthritis in Rats. Phys Ther 2021; 101:6039322. [PMID: 33351944 DOI: 10.1093/ptj/pzaa211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/21/2020] [Accepted: 11/03/2020] [Indexed: 11/14/2022]
Abstract
OBJECTIVE The biological mechanisms of cryotherapy for managing acute pain remain unclear. Additionally, it is unknown whether the effectiveness of cryotherapy depends on the applied temperature. This study aimed to clarify the biological effects of cryotherapy and to examine the therapeutic effects of cryotherapy applied at different temperatures in rats. METHODS This was an experimental study using a rat knee joint arthritis model. Thirty-five Wistar rats were randomly divided into arthritis (AR), arthritis with 5°C cryotherapy (CR-5), arthritis with 10°C cryotherapy (CR-10), and sham-arthritis control (CON) groups. Arthritis was induced by injecting a mixture of kaolin/carrageenan into the right knee joint. Cryotherapy was applied for 7 days starting the day after injection by immersing the right knee joint in 5°C or 10°C water. Joint transverse diameter, pressure pain threshold, and pain-related behaviors were assessed for 7 days. The number of CD68-positive cells in the knee joint and the expression of calcitonin gene-related peptide in the spinal dorsal horn 8 days after injection were analyzed by immunohistochemical staining. RESULTS Improvements in transverse diameter, pressure pain threshold, and pain-related behaviors were observed in the CR-5 and CR-10 groups on the 3rd day compared with the AR group. The number of CD68-positive cells and the expression of calcitonin gene-related peptide in the CR-5 and CR-10 groups were significantly decreased compared with the AR group. There were no significant differences in all results between the CR-5 and CR-10 groups. CONCLUSIONS Cryotherapy can ameliorate inflammatory pain through reduction of synovium and central sensitization. Additionally, the effects of cryotherapy lower than 10°C are observed independent of applied temperature. IMPACT Cryotherapy may be beneficial as a physical therapy modality for pain and swelling management in the acute phase of inflammation. Translational human study is needed to determine the effective cryotherapy temperature for the inflammatory pain.
Collapse
Affiliation(s)
- Ryo Sasaki
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation, Juzenkai Hospital, Nagasaki, Japan
| | - Junya Sakamoto
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasutaka Kondo
- Department of Rehabilitation, Japan Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Satoshi Oga
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation, Japan Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Idumi Takeshita
- Department of Rehabilitation, Faculty of Medicine, University of Miyazaki Hospital, Miyazaki, Japan
| | - Yuichiro Honda
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Kataoka
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation, Nagasaki Memorial Hospital, Nagasaki, Japan
| | - Tomoki Origuchi
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Minoru Okita
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
31
|
Tong Y, Ishikawa K, Sasaki R, Takeshita I, Sakamoto J, Okita M. The effects of wheel-running using the upper limbs following immobilization after inducing arthritis in the knees of rats. Physiol Res 2021; 70:79-87. [PMID: 33453715 DOI: 10.33549/physiolres.934469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study investigated the effects of wheel-running using the upper limbs following immobilization after inducing arthritis in the knees of rats. Forty male Wistar rats (aged 8 weeks) divided into four groups randomly: arthritis (AR), immobilization after arthritis (Im), wheel-running exercise with the upper limbs following immobilization after arthritis induction (Im+Ex) and sham arthritis induction (Con). The knee joints of the Im and Im+Ex groups were immobilized with a cast for 4 weeks. In the Im+Ex group, wheel-running exercise was administered for 60 min/day (5 times/week). The swelling and the pressure pain threshold (PPT) of the knee joint were evaluated for observing the condition of inflammatory symptoms in affected area, and the paw withdraw response (PWR) was evaluated for observing the condition of secondary hyperalgesia in distant area. Especially, in order to evaluate histological inflammation in the knee joint, the number of macrophage (CD68-positive cells) in the synovium was examined. The expression of calcitonin gene-related peptide (CGRP) in the spinal dorsal horn (L2-3 and L4-5) was examined to evaluate central sensitization. The Im+Ex group showed a significantly better recovery than the Im group in the swelling, PPTs, and PWRs. Additionally, CGRP expression of the spinal dorsal horn (L2-3 and L4-5) in the Im+Ex group was significantly decreased compared with the Im group. According to the results, upper limb exercise can decrease pain in the affected area, reduce hyperalgesia in distant areas, and suppress the central sensitization in the spinal dorsal horn by triggering exercise-induced hypoalgesia (EIH).
Collapse
Affiliation(s)
- Y Tong
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Abboud C, Duveau A, Bouali-Benazzouz R, Massé K, Mattar J, Brochoire L, Fossat P, Boué-Grabot E, Hleihel W, Landry M. Animal models of pain: Diversity and benefits. J Neurosci Methods 2020; 348:108997. [PMID: 33188801 DOI: 10.1016/j.jneumeth.2020.108997] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022]
Abstract
Chronic pain is a maladaptive neurological disease that remains a major health problem. A deepening of our knowledge on mechanisms that cause pain is a prerequisite to developing novel treatments. A large variety of animal models of pain has been developed that recapitulate the diverse symptoms of different pain pathologies. These models reproduce different pain phenotypes and remain necessary to examine the multidimensional aspects of pain and understand the cellular and molecular basis underlying pain conditions. In this review, we propose an overview of animal models, from simple organisms to rodents and non-human primates and the specific traits of pain pathologies they model. We present the main behavioral tests for assessing pain and investing the underpinning mechanisms of chronic pathological pain. The validity of animal models is analysed based on their ability to mimic human clinical diseases and to predict treatment outcomes. Refine characterization of pathological phenotypes also requires to consider pain globally using specific procedures dedicated to study emotional comorbidities of pain. We discuss the limitations of pain models when research findings fail to be translated from animal models to human clinics. But we also point to some recent successes in analgesic drug development that highlight strategies for improving the predictive validity of animal models of pain. Finally, we emphasize the importance of using assortments of preclinical pain models to identify pain subtype mechanisms, and to foster the development of better analgesics.
Collapse
Affiliation(s)
- Cynthia Abboud
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France; Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France; Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Alexia Duveau
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Karine Massé
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Joseph Mattar
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Louison Brochoire
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Pascal Fossat
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Eric Boué-Grabot
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Walid Hleihel
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Lebanon; Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Marc Landry
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
33
|
Drinovac Vlah V, Bach-Rojecky L. What have we learned about antinociceptive effect of botulinum toxin type A from mirror-image pain models? Toxicon 2020; 185:164-173. [DOI: 10.1016/j.toxicon.2020.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022]
|
34
|
Μaione F, Colucci M, Raucci F, Mangano G, Marzoli F, Mascolo N, Crocetti L, Giovannoni MP, Di Giannuario A, Pieretti S. New insights on the arylpiperazinylalkyl pyridazinone ET1 as potent antinociceptive and anti-inflammatory agent. Eur J Pharmacol 2020; 888:173572. [PMID: 32946866 DOI: 10.1016/j.ejphar.2020.173572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
Abstract
Pyridazine derivatives, such as arylpiperazinylalkyl pyridazinones, display antinociceptive effects to thermal and chemical stimuli. Here, we extended our previous knowledge on the pharmacological profile of 4-amino-6-methyl-2-(3-(4-(4-methylcyclohexa-1,3-dien-1-yl)piperazin-1-yl)propyl)-5-vinylpyridazin-3(2H)-one, here referred as ET1, paving the way for the comprehension of its complete mechanism of action. To this aim, we have evaluated the mouse behavioural responses in several animal models of pain, the effect of ET1 in the murine model of zymosan-induced paw oedema and air-pouch, assessing the cytokines and the cellular phenotype and finally, an in vitro radioligand binding study was performed on a panel of 30 different receptors. In the formalin test, ET1 reduced both neurogenic and inflammatory phase of nociception induced by the aldehyde. Similarly, ET1 strongly reduced paw licking response in the capsaicin test, the abdominal stretching in the writhing test and the carrageenan-induced thermal hyperalgesia. ET1 also evoked a long-lasting reduction of thermal hyperalgesia. Furthermore, ET1 produced a long-lasting anti-inflammatory effect in the zymosan-induced mouse paw oedema and air-pouch through the selective inhibition of inflammatory monocytes recruitment and the modulation of IL-1β, IL-6, TNF-α and MCP-1. Binding experiments confirmed an inhibitory effect on adrenergic α1A, α1B and α2A receptors subtypes and, for the first time, a moderate affinity was observed for the following receptors: histamine H1, imidazoline I2, sigma non-opioid intracellular receptor 1 and σ2. These results prompt ET1 as a potent analgesic and anti-inflammatory agent, and support the possibility that it may be suitable for clinical applications in a wide-range of inflammatory-based diseases.
Collapse
Affiliation(s)
- Francesco Μaione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Mariantonella Colucci
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Federica Raucci
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Giorgina Mangano
- Angelini RR&D (Regulatory, Research & Development), Angelini Pharma S.p.A., Piazzale della Stazione SNC, S. Palomba-Pomezia, Rome, 00071, Italy
| | - Francesca Marzoli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Nicola Mascolo
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Letizia Crocetti
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Maria Paola Giovannoni
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Amalia Di Giannuario
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Pieretti
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
35
|
Jiang BC, Liu T, Gao YJ. Chemokines in chronic pain: cellular and molecular mechanisms and therapeutic potential. Pharmacol Ther 2020; 212:107581. [DOI: 10.1016/j.pharmthera.2020.107581] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
|
36
|
Establishment of a Novel Porcine Model to Study the Impact of Active Stretching on a Local Carrageenan-Induced Inflammation. Am J Phys Med Rehabil 2020; 99:1012-1019. [PMID: 32427602 DOI: 10.1097/phm.0000000000001465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Active stretching of the body is integral to complementary mind-body therapies such as yoga, as well as physical therapy, yet the biologic mechanisms underlying its therapeutic effects remain largely unknown. A previous study showed the impact of active stretching on inflammatory processes in rats. The present study tested the feasibility of using a porcine model, with a closer resemblance to human anatomy, to study the effects of active stretching in the resolution of localized inflammation. DESIGN A total of 12 pigs were trained to stretch before subcutaneous bilateral Carrageenan injection in the back at the L3 vertebrae, 2 cm from the midline. Animals were randomized to no-stretch or stretch, twice a day for 5 mins over 48 hrs. Animals were euthanized for tissue collection 48 hrs postinjection. RESULTS The procedure was well tolerated by the pigs. On average, lesion area was significantly smaller by 36% in the stretch group compared with the no-stretch group (P = 0.03). CONCLUSION This porcine model shows promise for studying the impact of active stretching on inflammation-resolution mechanisms. These results are relevant to understanding the stretching-related therapeutic mechanisms of mind-body therapies. Future studies with larger samples are warranted.
Collapse
|
37
|
Sato KL, Sanada LS, Silva MDD, Okubo R, Sluka KA. Transcutaneous electrical nerve stimulation, acupuncture, and spinal cord stimulation on neuropathic, inflammatory and, non-inflammatory pain in rat models. Korean J Pain 2020; 33:121-130. [PMID: 32235012 PMCID: PMC7136295 DOI: 10.3344/kjp.2020.33.2.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/01/2019] [Accepted: 12/15/2019] [Indexed: 01/05/2023] Open
Abstract
Background Transcutaneous electrical nerve stimulation (TENS), manual acupuncture (MA), and spinal cord stimulation (SCS) are used to treat a variety of pain conditions. These non-pharmacological treatments are often thought to work through similar mechanisms, and thus should have similar effects for different types of pain. However, it is unclear if each of these treatments work equally well on each type of pain condition. The purpose of this study was to compared the effects of TENS, MA, and SCS on neuropathic, inflammatory, and non-inflammatory pain models. Methods TENS 60 Hz, 200 μs, 90% motor threshold (MT), SCS was applied at 60 Hz, an intensity of 90% MT, and a 0.25 ms pulse width. MA was performed by inserting a stainless-steel needle to a depth of about 4-5 mm at the Sanyinjiao (SP6) and Zusanli (ST36) acupoints on a spared nerve injury (SNI), knee joint inflammation (3% carrageenan), and non-inflammatory muscle pain (intramuscular pH 4.0 injections) in rats. Mechanical withdrawal thresholds of the paw, muscle, and/or joint were assessed before and after induction of the pain model, and daily before and after treatment. Results The reduced withdrawal thresholds were significantly reversed by application of either TENS or SCS (P < 0.05). MA, on the other hand, increased the withdrawal threshold in animals with SNI and joint inflammation, but not chronic muscle pain. Conclusions TENS and SCS produce similar effects in neuropathic, inflammatory and non-inflammatory muscle pain models while MA is only effective in inflammatory and neuropathic pain models.
Collapse
Affiliation(s)
- Karina Laurenti Sato
- Department of Physical Therapy, Federal University of Sergipe, Sao Cristovao, Brazil
| | - Luciana Sayuri Sanada
- Department of Physical Therapy, Physiotherapy Postgraduate Program, Santa Catarina State University, Florianopolis, Brazil
| | | | - Rodrigo Okubo
- Department of Physical Therapy, Physiotherapy Postgraduate Program, Santa Catarina State University, Florianopolis, Brazil
| | - Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
38
|
Phua WWT, Tan WR, Yip YS, Hew ID, Wee JWK, Cheng HS, Leow MKS, Wahli W, Tan NS. PPARβ/δ Agonism Upregulates Forkhead Box A2 to Reduce Inflammation in C2C12 Myoblasts and in Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21051747. [PMID: 32143325 PMCID: PMC7084392 DOI: 10.3390/ijms21051747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 01/10/2023] Open
Abstract
Daily activities expose muscles to innumerable impacts, causing accumulated tissue damage and inflammation that impairs muscle recovery and function, yet the mechanism modulating the inflammatory response in muscles remains unclear. Our study suggests that Forkhead box A2 (FoxA2), a pioneer transcription factor, has a predominant role in the inflammatory response during skeletal muscle injury. FoxA2 expression in skeletal muscle is upregulated by fatty acids and peroxisome proliferator-activated receptors (PPARs) but is refractory to insulin and glucocorticoids. Using PPARβ/δ agonist GW501516 upregulates FoxA2, which in turn, attenuates the production of proinflammatory cytokines and reduces the infiltration of CD45+ immune cells in two mouse models of muscle inflammation, systemic LPS and intramuscular injection of carrageenan, which mimic localized exercise-induced inflammation. This reduced local inflammatory response limits tissue damage and restores muscle tetanic contraction. In line with these results, a deficiency in either PPARβ/δ or FoxA2 diminishes the action of the PPARβ/δ agonist GW501516 to suppress an aggravated inflammatory response. Our study suggests that FoxA2 in skeletal muscle helps maintain homeostasis, acting as a gatekeeper to maintain key inflammation parameters at the desired level upon injury. Therefore, it is conceivable that certain myositis disorders or other forms of painful musculoskeletal diseases may benefit from approaches that increase FoxA2 activity in skeletal muscle.
Collapse
Affiliation(s)
- Wendy Wen Ting Phua
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (W.R.T.); (M.K.S.L.); (W.W.)
| | - Yun Sheng Yip
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
| | - Ivan Dongzheng Hew
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
| | - Jonathan Wei Kiat Wee
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
| | - Hong Sheng Cheng
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
| | - Melvin Khee Shing Leow
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (W.R.T.); (M.K.S.L.); (W.W.)
- Department of Endocrinology, Division of Medicine, Endocrine and Diabetes Clinic, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (W.R.T.); (M.K.S.L.); (W.W.)
- INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, 31300 Toulouse, France
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (W.R.T.); (M.K.S.L.); (W.W.)
- Correspondence: ; Tel.: +65-6904-1295; Fax: +65-6339-2889
| |
Collapse
|
39
|
Differential Macrophage Subsets in Muscle Damage Induced by a K49-PLA 2 from Bothrops jararacussu Venom Modulate the Time Course of the Regeneration Process. Inflammation 2020; 42:1542-1554. [PMID: 31123944 DOI: 10.1007/s10753-019-01016-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bothrops snakes cause around 80% of snakebites in Brazil, with muscle tissue damage as an important consequence, which may cause dysfunction on the affected limb. Bothropstoxin-I (BthTX-I) from Bothrops jararacussu is a K49-phospholipase A2, involved in the injury and envenomation's inflammatory response. Immune system components act in the resolution of tissue damage and regeneration. Thus, macrophages exert a crucial role in the elimination of dead tissue and muscle repair. Here, we studied the cellular influx and presence of classical and alternative macrophages (M1 and M2) during muscle injury induced by BthTX-I and the regeneration process. BthTX-I elicited intense inflammatory response characterized by neutrophil migration, then increased influx of M1 macrophages followed by M2 population that declined, resulting in tissue regeneration. The high expressions of TNF-α and IL6 were changed by increased TGF-β expression after BthTX-I injection, coinciding with the iNOs and arginase expression and the peaks of M1 and M2 macrophages in muscle tissue. A coordinated sequence of PAX7, MyoD, and myogenin expression involved in muscle regenerative process appeared after BthTX-I injection. Together, these results demonstrate a direct correlation between the macrophage subsets, cytokine microenvironment, and the myogenesis process. This information may be useful for new envenomation and muscular dysfunction therapies.
Collapse
|
40
|
Kremer M, Becker LJ, Barrot M, Yalcin I. How to study anxiety and depression in rodent models of chronic pain? Eur J Neurosci 2020; 53:236-270. [DOI: 10.1111/ejn.14686] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Mélanie Kremer
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Léa J. Becker
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Michel Barrot
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| |
Collapse
|
41
|
Nishimura H, Kawasaki M, Matsuura T, Suzuki H, Motojima Y, Baba K, Ohnishi H, Yamanaka Y, Fujitani T, Yoshimura M, Maruyama T, Ueno H, Sonoda S, Nishimura K, Tanaka K, Sanada K, Onaka T, Ueta Y, Sakai A. Acute Mono-Arthritis Activates the Neurohypophysial System and Hypothalamo-Pituitary Adrenal Axis in Rats. Front Endocrinol (Lausanne) 2020; 11:43. [PMID: 32117068 PMCID: PMC7026388 DOI: 10.3389/fendo.2020.00043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/23/2020] [Indexed: 01/04/2023] Open
Abstract
Various types of acute/chronic nociceptive stimuli cause neuroendocrine responses such as activation of the hypothalamo-neurohypophysial [oxytocin (OXT) and arginine vasopressin (AVP)] system and hypothalamo-pituitary adrenal (HPA) axis. Chronic multiple-arthritis activates the OXT/AVP system, but the effects of acute mono-arthritis on the OXT/AVP system in the same animals has not been simultaneously evaluated. Further, AVP, not corticotropin-releasing hormone (CRH), predominantly activates the HPA axis in chronic multiple-arthritis, but the participation of AVP in HPA axis activation in acute mono-arthritis remains unknown. Therefore, we aimed to simultaneously evaluate the effects of acute mono-arthritis on the activity of the OXT/AVP system and the HPA axis. In the present study, we used an acute mono-arthritic model induced by intra-articular injection of carrageenan in a single knee joint of adult male Wistar rats. Acute mono-arthritis was confirmed by a significant increase in knee diameter in the carrageenan-injected knee and a significant decrease in the mechanical nociceptive threshold in the ipsilateral hind paw. Immunohistochemical analysis revealed that the number of Fos-immunoreactive (ir) cells in the ipsilateral lamina I-II of the dorsal horn was significantly increased, and the percentage of OXT-ir and AVP-ir neurons expressing Fos-ir in both sides of the supraoptic (SON) and paraventricular nuclei (PVN) was increased in acute mono-arthritic rats. in situ hybridization histochemistry revealed that levels of OXT mRNA and AVP hnRNA in the SON and PVN, CRH mRNA in the PVN, and proopiomelanocortin mRNA in the anterior pituitary were also significantly increased in acute mono-arthritic rats. Further, plasma OXT, AVP, and corticosterone levels were significantly increased in acute mono-arthritic rats. These results suggest that acute mono-arthritis activates ipsilateral nociceptive afferent pathways at the spinal level and causes simultaneous and integrative activation of the OXT/AVP system. In addition, the HPA axis is activated by both AVP and CRH in acute mono-arthritis with a distinct pattern compared to that in chronic multiple-arthritis.
Collapse
Affiliation(s)
- Haruki Nishimura
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makoto Kawasaki
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- *Correspondence: Makoto Kawasaki
| | - Takanori Matsuura
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuhito Motojima
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiko Baba
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideo Ohnishi
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Teruaki Fujitani
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kentarou Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akinori Sakai
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
42
|
Abstract
This chapter is focused on analgesic mechanism of action of botulinum toxin type A (BoNT-A) including the action beyond peripheral nerve endings. With the exception of the meninges and possibly urinary bladder, the presence of BoNT-A activity in the periphery, cleaving SNAP25 as a target molecule, up to now was not convincingly shown. In contrast many reports demonstrated BoNT-A activity and the presence of cleaved SNAP25 in the brain and spinal cord. In a model of mirror pain BoNT-A analgesic effect can be achieved even without participation of peripheral nerve ending. Thus generalized hypothesis central or peripheral mechanism of action belongs to history, and there is a need to confirm or dispute the results with meninges, urinary bladder, and possibly with other, especially visceral organs.There are two general options for the central actions of BoNT-A: 1. The activity ends by silencing primary sensory neuron thereby stopping the pain information further in the CNS. 2. Or thereafter, indirectly or transsynaptically, BoNT-A triggers smaller or larger neural loops, forming memory of pain in the CNS that could explain the bilateral effects after unilateral peripheral administration, similar effect in mirror image allodynia and the like Intensive research has shown that peripherally administered BoNT-A reaches the CNS by axonal transport. There is increasing evidence that BoNT-A is preventing pain in a growing range of disorders. In the absence of unexpected findings, or an increase in the uncontrolled use of illicit preparations by uneducated persons, BoNT-A is emerging as a new long-lasting and relatively safe analgesic.
Collapse
Affiliation(s)
- Zdravko Lacković
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.
| |
Collapse
|
43
|
Lee SB, Han YR, Jeon HJ, Jun CH, Kim SK, Chin J, Lee SJ, Jeong M, Lee JE, Lee CH, Cho SJ, Kim DS, Jeon YH. Medical fluorophore 1 (MF1), a benzoquinolizinium-based fluorescent dye, as an inflammation imaging agent. J Mater Chem B 2019; 7:7326-7331. [PMID: 31681930 DOI: 10.1039/c9tb01266d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structure-based targeting of fluorescent dyes is essential for their use as imaging agents for disease diagnosis. Here, we describe the development of the benzoquinolizinium compound Medical fluorophore 1 (MF1) as a novel biomedical imaging agent that allows the visualization of inflammation by virtue of its unique chemical structure. Lipopolysaccharide treatment stimulated the uptake of MF1 by bone marrow-derived macrophages, with no adverse effects on cell proliferation. In vivo fluorescence lifetime imaging revealed the accumulation of MF1 in carrageenan-induced acute inflammatory lesions in mice, which peaked at 6 h. MF1-based imaging also allowed monitoring of the response to the anti-inflammatory drugs dexamethasone and sulfasalazine. Thus, MF1 can be used to diagnose diseases characterized by inflammation as well as treatment efficacy.
Collapse
Affiliation(s)
- Sang Bong Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Ye Ri Han
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Hui-Jeon Jeon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Chul-Ho Jun
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea and Center for NanoMedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea and Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Kyoon Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Su-Jeong Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Minseon Jeong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Jae-Eon Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea. and Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Pusan, Republic of Korea
| | - Chang-Hee Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea and Center for NanoMedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea and Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Dong-Su Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| |
Collapse
|
44
|
Afridi R, Khan AU, Khalid S, Shal B, Rasheed H, Ullah MZ, Shehzad O, Kim YS, Khan S. Anti-hyperalgesic properties of a flavanone derivative Poncirin in acute and chronic inflammatory pain models in mice. BMC Pharmacol Toxicol 2019; 20:57. [PMID: 31511086 PMCID: PMC6737657 DOI: 10.1186/s40360-019-0335-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/30/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Poncirin is flavanone derivative (isolated from Poncirus trifoliata) with known pharmacological activities such as anti-tumor, anti-osteoporotic, anti-inflammatory and anti-colitic. The present study aimed to explore the anti-allodynic and anti-hyperalgesic potentials of poncirin in murine models of inflammatory pain. METHODS The analgesic potential of poncirin was evaluated in formalin-, acetic acid-, carrageenan- and Complete Freund's Adjuvant (CFA)-induced inflammatory pain models in mice. Anti-allodynic and anti-hyperalgesic activities were measured using Von Frey filaments, Randall Selitto, hotplate and cold acetone tests. The serum nitrite levels were determined using Griess reagent. The Quantitative Real-time PCR (qRT-PCR) was performed to assess the effect of poncirin on mRNA expression levels of inflammatory cytokines and anti-oxidant enzymes. RESULTS Intraperitoneal administration of poncirin (30 mg/kg) markedly reduced the pain behavior in both acetic acid-induced visceral pain and formalin-induced tonic pain models used as preliminary screening tools. The poncirin (30 mg/kg) treatment considerably inhibited the mechanical hyperalgesia and allodynia as well as thermal hyperalgesia and cold allodynia. The qRT-PCR analysis showed noticeable inhibition of pro-inflammatory cytokines (mRNA expression levels of TNF-α, IL-1β and IL-6) (p < 0.05) in poncirin treated group. Similarly, poncirin treatment also enhanced the mRNA expressions levels of anti-oxidant enzymes such as transcription factor such as nuclear factor (erythroid-derived 2)-like 2 (Nrf2) (p < 0.05), heme oxygenase (HO-1) (p < 0.05) and superoxide dismutase (SOD2) (p < 0.05). Chronic treatment of poncirin for 6 days did not confer any significant hepatic and renal toxicity. Furthermore, poncirin treatment did not altered the motor coordination and muscle strength in CFA-induced chronic inflammatory pain model. CONCLUSION The present study demonstrated that poncirin treatment significantly reduced pain behaviors in all experimental models of inflammatory pain, suggesting the promising analgesic potential of poncirin in inflammatory pain conditions.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ashraf Ullah Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sidra Khalid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Shal
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hina Rasheed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Zia Ullah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Omer Shehzad
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Yeong Shik Kim
- College of Pharmacy, Seoul National University, Seoul, 151-742 South Korea
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- College of Pharmacy, Seoul National University, Seoul, 151-742 South Korea
| |
Collapse
|
45
|
Dos Santos RS, Sorgi CA, Peti APF, Veras FP, Faccioli LH, Galdino G. Involvement of Spinal Cannabinoid CB 2 Receptors in Exercise-Induced Antinociception. Neuroscience 2019; 418:177-188. [PMID: 31473278 DOI: 10.1016/j.neuroscience.2019.08.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 11/29/2022]
Abstract
Muscle pain affects approximately 11-24% of the global population. Several studies have shown that exercise is a non-pharmacological therapy to pain control. It has been suggested that the endocannabinoid system is involved in this antinociceptive effect. However, the participation of this pathway is unclear. The present study aimed to investigate whether spinal cannabinoid CB2 receptors participate in the exercise-induced antinociception. The inflammatory muscle pain model was induced by the intramuscular injection of carrageenan. Tactile allodynia and thermal hyperalgesia were determined with the von Frey filaments and hot-plate tests. C57BL/6J female mice underwent a swimming training protocol that lasted 3 weeks. This protocol of exercise reduced carrageenan-induced tactile allodynia and thermal hyperalgesia and this effect was prevented by the cannabinoid CB2 receptors inverse agonist AM630 and potentiated by MAFP (inhibitor of the enzyme that metabolizes endocannabinoids) and minocycline (microglia inhibitor). In addition, exercise increased the endocannabinoid anandamide levels and cannabinoid CB2 receptors expression whereas it reduced Iba1 (microglial marker) protein expression as well as pro-inflammatory cytokines (TNF-α and IL-1β) in the spinal cord of mice with inflammatory muscle pain. Swimming training also reduced muscle temperature of carrageen-treated animals. The present study suggests that activation of spinal cannabinoid CB2 receptors and reduction of activated microglia are involved in exercise-induced antinociception.
Collapse
Affiliation(s)
- Rafaela Silva Dos Santos
- Institute of Motricity Sciences, Federal University of Alfenas, Minas Gerais, Av. Jovino Fernandes Sales, 2600, 37133-840, Alfenas, Brazil
| | - Carlos Arterio Sorgi
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Paula Ferranti Peti
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Flávio Protasio Veras
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lúcia Helena Faccioli
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Giovane Galdino
- Institute of Motricity Sciences, Federal University of Alfenas, Minas Gerais, Av. Jovino Fernandes Sales, 2600, 37133-840, Alfenas, Brazil.
| |
Collapse
|
46
|
Šutulović N, Grubač Ž, Šuvakov S, Jovanović Đ, Puškaš N, Macut Đ, Marković AR, Simić T, Stanojlović O, Hrnčić D. Chronic prostatitis/chronic pelvic pain syndrome increases susceptibility to seizures in rats and alters brain levels of IL-1β and IL-6. Epilepsy Res 2019; 153:19-27. [DOI: 10.1016/j.eplepsyres.2019.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/06/2019] [Accepted: 03/21/2019] [Indexed: 11/28/2022]
|
47
|
Turcato F, Almeida C, Mota C, Kusuda R, Carvalho A, Nascimento GC, Zanon S, Leite-Panissi CR, Lucas G. Dynamic expression of glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1 in the mouse spinal cord dorsal horn under pathological pain states. Neurol Res 2019; 41:633-643. [DOI: 10.1080/01616412.2019.1603804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Flavia Turcato
- Department of Physiology, Laboratory of Pain Neurobiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Cayo Almeida
- Federal University of ABC, São Bernardo do Campo, Brazil
| | - Clarissa Mota
- Department of Physiology, Laboratory of Pain Neurobiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Kusuda
- Department of Physiology, Laboratory of Pain Neurobiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Andrea Carvalho
- Department of Experimental Psychology, Neuroscience and Behavior Training Program, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - Glauce C Nascimento
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sonia Zanon
- Department of Physiology, Laboratory of Pain Neurobiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Christie R Leite-Panissi
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry School, University of São Paulo, Ribeirão Preto, Brazil
| | - Guilherme Lucas
- Department of Physiology, Laboratory of Pain Neurobiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
- Department of Experimental Psychology, Neuroscience and Behavior Training Program, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
Morales-Medina JC, Flores G, Vallelunga A, Griffiths NH, Iannitti T. Cerebrolysin improves peripheral inflammatory pain: Sex differences in two models of acute and chronic mechanical hypersensitivity. Drug Dev Res 2019; 80:513-518. [PMID: 30908710 DOI: 10.1002/ddr.21528] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/24/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022]
Abstract
Chronic inflammatory pain is a major health problem worldwide with high prevalence in women. Cerebrolysin is a multimodal neuropeptide preparation that crosses the blood brain barrier and displays neuroprotective properties in aging and disease. Previously, we showed that cerebrolysin reduced mechanical allodynia in a model of persistent inflammation and pain. We aim to build upon the findings of our previous study by investigating the response to acute administration of cerebrolysin in two models of peripheral inflammation and assessing sex differences. We utilized the complete Freund's adjuvant (CFA) that produces maximal oedema and mechanical allodynia within days and carrageenan that produces similar effects within hours. Cerebrolysin reversed the mechanical allodynia in both sexes in CFA-treated rats. On the other hand, in rats treated with carrageenan, cerebrolysin was only effective in reducing mechanical allodynia in female rats. In conclusion, the present study shows that cerebrolysin effects may be sex-specific depending on different mechanisms that are at play in these two models of peripheral inflammatory pain. Further investigations are required to determine the factors contributing to sex differences.
Collapse
Affiliation(s)
- Julio C Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV- Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Gonzalo Flores
- Laboratorio Neuropsiquiatría. Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Annamaria Vallelunga
- Department of Medicine and Surgery, Centre for Neurodegenerative Diseases (CEMAND), University of Salerno, Salerno, Italy
| | - Natalie H Griffiths
- Laboratorio Neuropsiquiatría. Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Tommaso Iannitti
- KWS BioTest, Department of Pharmacology, Portishead, Somerset, UK
| |
Collapse
|
49
|
Rocha TM, Machado NJ, de Sousa JAC, Araujo EVO, Guimaraes MA, Lima DF, Leite JRDSDA, Leal LKAM. Imidazole alkaloids inhibit the pro-inflammatory mechanisms of human neutrophil and exhibit anti-inflammatory properties in vivo. ACTA ACUST UNITED AC 2019; 71:849-859. [PMID: 30652314 DOI: 10.1111/jphp.13068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Epiisopiloturine (EPI) and epiisopilosine (EPIIS) are side products in the pharmaceutical industry. The present study aimed to investigate the anti-inflammatory potential of the alkaloids EPI and EPIIS in human neutrophils and mechanical hyperalgesia in mice. METHODS Neutrophils (5 × 106 cells/ml) incubated with EPI and EPIIS and stimulated by the addition of N-formyl-methionyl-leucyl-phenylalanine or phorbol 12-myristate-13-acetate. The release of myeloperoxidase (MPO), reactive oxygen species (ROS) production, calcium influx, gene expression of NF-κB and pro-inflammatory cytokines production were evaluated. It was also investigated the effect these alkaloids on carrageenan-induced mechanical hyperalgesia model in mice. KEY FINDINGS We demonstrated that both EPI and EPIIS inhibited the degranulation of activated neutrophils. This effect was accompanied by the reduction in ROS, the prevention of the increase in intracellular Ca2+ and decrease in the density of cytosolic NF-κB, and inhibition of TNF-α and IL-6 production. Evaluating hypernociception in mice, EPI and EPIIS inhibited carrageenan-induced inflammatory hypernociception and reduced MPO levels. CONCLUSIONS The results obtained suggest EPI and EPIIS not only inhibit neutrophils functions in vitro, but also exhibits anti-inflammatory properties in vivo, acting through the modulation of the activation and/or accumulation of neutrophils in the inflammatory focus. Thus, EPI and EPIIS possess promising anti-inflammatory therapeutic potential.
Collapse
Affiliation(s)
- Talita Magalhães Rocha
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Nuno J Machado
- Department of Pharmacy, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | - David Fernandes Lima
- Academic College of Medicine, Federal University of Vale do São Francisco (UNIVASF), Paulo Afonso, Brazil
| | | | - Luzia Kalyne Almeida Moreira Leal
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil.,Department of Pharmacy, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
50
|
Abstract
A large series of different ion channels have been identified and investigated as potential targets for new medicines for the treatment of a variety of human diseases, including pain. Among these channels, the voltage gated calcium channels (VGCC) are inhibited by drugs for the treatment of migraine, neuropathic pain or intractable pain. Transient receptor potential (TRP) channels are emerging as important pain transducers as they sense low pH media or oxidative stress and other mediators and are abundantly found at sites of inflammation or tissue injury. Low pH may also activate acid sensing ion channels (ASIC) and mechanical forces stimulate the PIEZO channels. While potent agonists of TRP channels due to their desensitizing action on pain transmission are used as topical applications, the potential of TRP antagonists as pain therapeutics remains an exciting field of investigation. The study of ASIC or PIEZO channels in pain signaling is in an early stage, whereas antagonism of the purinergic P2X3 channels has been reported to provide beneficial effects in chronic intractable cough. The present chapter covers these intriguing channels in great detail, highlighting their diverse mechanisms and broad potential for therapeutic utility.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| |
Collapse
|