1
|
Ventura-Martínez R, Ángeles-López GE, González-Ugalde D, Domínguez-Páez T, Navarrete-Vázquez G, Jaimez R, Déciga-Campos M. Antinociceptive effect of LMH-2, a new sigma-1 receptor antagonist analog of haloperidol, on the neuropathic pain of diabetic mice. Biomed Pharmacother 2024; 174:116524. [PMID: 38574622 DOI: 10.1016/j.biopha.2024.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
This study evaluates the antiallodynic and antihyperalgesic effects of LMH-2, a new haloperidol (HAL) analog that acts as sigma-1 receptor (σ1 R) antagonist, in diabetic mice using a model of neuropathic pain induced by chronic hyperglycemia. Additionally, we compared its effects with those of HAL. Hyperglycemia was induced in mice by nicotinamide-streptozotocin administration (NA-STZ, 50-130 mg/kg). Four weeks later, mechanical allodynia was assessed using the up-down method, and hyperalgesia was evoked with formalin 0.5%. We evaluated antiallodynic and antihyperalgesic effects of LMH-2 (5.6-56.2 mg/kg), HAL (0.018-0.18 mg/kg) and gabapentin (GBP, 5.6-56.2 mg/kg). The results showed that LMH-2 had a more significant antiallodynic effect compared to HAL and GBP (90.4±8.7 vs 75.1±3.1 and 41.9±2.3%, respectively; P<0.05), as well as an antihyperalgesic effect (96.3±1.2 vs 86.9±7.41 and 86.9±4.8%, respectively; P<0.05). Moreover, the antiallodynic and antihyperalgesic effect of both LMH-2 and HAL were completely abolished by PRE-084 (σ1 R agonist); and partially by pramipexole (a D2-like receptor agonist). Finally, the effect of all treatments on the rotarod test, barra, open field and exploratory behaviors showed that LMH-2 did not alter the animals' balance or the exploratory behavior, unlike as HAL or GBP. The molecular docking included indicate that LMH-2 has lower affinity to the D2R than HAL. These results provide evidence that LMH-2 exerts its antinociceptive effects as a σ1 R antagonist without the adverse effects induced by HAL or GBP. Consequently, LMH-2 can be considered a good and safe strategy for treating neuropathic pain caused by hyperglycemia in patients with diabetes.
Collapse
Affiliation(s)
- Rosa Ventura-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Av Universidad No. 3000, Col. Ciudad Universitaria, Alcaldía Coyoacán, Ciudad de México 04510, Mexico.
| | - Guadalupe Esther Ángeles-López
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Av Universidad No. 3000, Col. Ciudad Universitaria, Alcaldía Coyoacán, Ciudad de México 04510, Mexico
| | - Diana González-Ugalde
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Tania Domínguez-Páez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| | - Ruth Jaimez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Av Universidad No. 3000, Col. Ciudad Universitaria, Alcaldía Coyoacán, Ciudad de México 04510, Mexico
| | - Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico.
| |
Collapse
|
2
|
Palazzo E, Boccella S, Marabese I, Perrone M, Belardo C, Iannotta M, Scuteri D, De Dominicis E, Pagano M, Infantino R, Bagetta G, Maione S. Homo-AMPA in the periaqueductal grey modulates pain and rostral ventromedial medulla activity in diabetic neuropathic mice. Neuropharmacology 2022; 212:109047. [DOI: 10.1016/j.neuropharm.2022.109047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/22/2022] [Accepted: 03/26/2022] [Indexed: 12/21/2022]
|
3
|
Liu X, He J, Gao J, Xiao Z. Fluorocitrate and neurotropin confer analgesic effects on neuropathic pain in diabetic rats via inhibition of astrocyte activation in the periaqueductal gray. Neurosci Lett 2022; 768:136378. [PMID: 34861344 DOI: 10.1016/j.neulet.2021.136378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023]
Abstract
Currently, effective treatments for diabetic neuropathic pain (DNP) are still unmet clinical needs. Activation of astrocytes in the ventrolateral region of periaqueductal gray (vlPAG) has a regulating effect on pain responses. The present study was designed to confirm that repeated intra-vlPAG injection of fluorocitrate (FC), a selective inhibitor of astrocyte activation or intraperitoneal (IP) injection of neurotropin, a widely prescribed analgesic drug for chronic pain, inhibited the activation of astrocytes in vlPAG and thus produced an analgesic effect on DNP. An in vivo model was developed to study DNP in rats. The changes in mechanical withdrawal threshold (MWT) and activation levels of astrocytes in the vlPAG were evaluated in all experimental rats. Compared with normal rats, vlPAG-based glial fibrillary acid protein (GFAP) was clearly upregulated, whereas the MWTs of DNP rats were markedly diminished. The intra-vlPAG injections of FC or IP injections of neurotropin attenuated the alterations both in MWTs and expression levels of GFAP in vlPAG in DNP rats. Collectively, these findings suggest the antinociceptive effects of FC and neurotropin in DNP rats, which were associated with suppressing the activation of astrocytes in vlPAG.
Collapse
Affiliation(s)
- Xingfeng Liu
- Key Laboratory of Brain Science, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563000, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou 563000, China
| | - Jingxin He
- Graduate School, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou 563000, China
| | - Jie Gao
- Grade 2019, School of Anesthesiology, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou 563000, China
| | - Zhi Xiao
- Key Laboratory of Brain Science, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563000, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou 563000, China.
| |
Collapse
|
4
|
Khaleghzadeh-Ahangar H, Khandan S, Khosravi S. Intraventricular insulin adjacent to the arcuate nucleus reduced the formalin-induced pain through dorsal raphe nucleus opioid receptors in the STZ-induced diabetic rats. Behav Brain Res 2021; 418:113662. [PMID: 34774584 DOI: 10.1016/j.bbr.2021.113662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022]
Abstract
Diabetes mellitus is one of the diseases that affect nociception. In type 1 diabetes, the insulin release declines. One of the regions that respond to insulin and have insulin receptors is the hypothalamus, especially the arcuate nucleus. This hypothalamic nucleus has proopiomelanocortin (POMC)-containing neurons that affect the pain endogenous modulatory pathways such as dorsal raphe nucleus (DR) via releasing endorphins. So it was tried to investigate the influence of insulin within the arcuate nucleus with/without DR opioid receptors blockade on the nociception in the formalin test paradigm. In the present study, the role of different doses of insulin (2, 10, and 50 mIU/0.5 µl saline) within the arcuate nucleus was investigated via formalin test in type 1 (STZ-induced) diabetic rats. To perform the formalin test, 50 µl of formalin 2.5% was injected subcutaneously (s.c.) into the right palm. The behavior of the animal after the stimulation of pain receptors by s.c. formalin injection was scored from 0 (no distinguished pain) to 3 (the most nociception and highest pain score). Insulin within the arcuate nucleus diminished the nociception in formalin-induced paw in the STZ-induced diabetic rats. Intra-DR naloxone 0.2 µg/0.5 µl saline prevented this analgesia. A possible suggested mechanism for this observation is that insulin reinforces the POMC and endorphin release from the arcuate nucleus and decreases pain through DR.
Collapse
Affiliation(s)
- Hossein Khaleghzadeh-Ahangar
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Shaghayegh Khandan
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Saeideh Khosravi
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
5
|
Ismail CAN, Ghazali AK, Suppian R, Abd Aziz CB, Long I. Lower Formalin-Induced Pain Responses in Painless Diabetic Neuropathy Rat Correlate with the Reduced Spinal Cord NR2B Subunit of N-Methyl-D-Aspartate Receptor Activation. J Mol Neurosci 2021; 72:598-609. [PMID: 34727325 DOI: 10.1007/s12031-021-01929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 10/11/2021] [Indexed: 11/30/2022]
Abstract
Diabetic neuropathy (DN) is a late complication of diabetic mellitus and may rise into painful and painless variants. Limited studies have looked at nociceptive mechanisms of painless DN variant. The study aimed to determine phosphorylation and total NR2B subunit of N-methyl-D-aspartate receptor in the spinal cord of painless DN rat during early phase following formalin injection. Thirty-six Sprague-Dawley male rats were randomly assigned into three groups: control, painful, and painless DN (n = 12). The rats were developed into the early phase of DN for 2 weeks following diabetic induction. Two weeks later, the rats were injected with 5% formalin solution and flinching and licking responses were recorded for 60 min. The rats were sacrificed 3 days later, and the spinal cord enlargement region was collected. Immunohistochemistry and Western blot procedures were conducted to determine the phosphorylated and total NR2B subunit expressions. The results showed reduced flinching and licking responses in painless DN rats compared to control and painful DN groups, followed by a significant reduction in phosphorylated and total NR2B expression at both ipsilateral and contralateral regions of the spinal cord. In conclusion, reduced pain behavior responses in painless DN rats following formalin injection is possibly contributed by the reduced expression of phosphorylated and total NR2B subunit in the spinal cord.
Collapse
Affiliation(s)
- Che Aishah Nazariah Ismail
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia.
- Brain and Behaviour Clusters, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia.
| | - Anis Kausar Ghazali
- Biostatistics and Research Methodology Unit, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Rapeah Suppian
- School of Health Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Che Badariah Abd Aziz
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Idris Long
- School of Health Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia
| |
Collapse
|
6
|
Gasparin AT, Rosa ES, Jesus CHA, Guiloski IC, da Silva de Assis HC, Beltrame OC, Dittrich RL, Pacheco SDG, Zanoveli JM, da Cunha JM. Bixin attenuates mechanical allodynia, anxious and depressive-like behaviors associated with experimental diabetes counteracting oxidative stress and glycated hemoglobin. Brain Res 2021; 1767:147557. [PMID: 34107278 DOI: 10.1016/j.brainres.2021.147557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Neuropathic pain, depression, and anxiety are common comorbidities in diabetic patients, whose pathophysiology involves hyperglycemia-induced increased oxidative stress. Bixin (BIX), an apocarotenoid extracted from the seeds of Bixa orellana, has been used in traditional medicine to treat diabetes and has been recognized by its antioxidant profile. We aimed to investigate the effect of the BIX over the mechanical allodynia, depressive, and anxious-like behaviors associated with experimental diabetes, along with its involved mechanisms. Streptozotocin-induced diabetic rats were treated for 17 days (starting 14 days after diabetes induction) with the corresponding vehicle, BIX (10, 30 or 90 mg/kg; p.o), or INS (6 IU; s.c.). Mechanical allodynia, depressive, and anxious-like behavior were assessed by electronic Von Frey, forced swimming, and elevated plus-maze tests, respectively. Locomotor activity was assessed by the open field test. Blood glycated hemoglobin (HbA1) and the levels of lipid peroxidation (LPO) and reduced glutathione (GSH) were evaluated on the hippocampus, pre-frontal cortex, lumbar spinal cord, and sciatic nerve. Diabetic animals developed mechanical allodynia, depressive and anxious-like behavior, increased plasma HbA1, increased LPO, and decreased GSH levels in tissues analyzed. Repeated BIX-treatment (at all tested doses) significantly attenuated mechanical allodynia, the depressive (30 and 90 mg/kg) and, anxious-like behaviors (all doses) in diabetic rats, without changing the locomotor performance. BIX (at all tested doses) restored the oxidative parameters in tissues analyzed and reduced the plasma HbA1. Thereby, bixin may represent an alternative for the treatment of comorbidities associated with diabetes, counteracting oxidative stress and plasma HbA1.
Collapse
Affiliation(s)
- Alexia Thamara Gasparin
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil
| | - Evelize Stacoviaki Rosa
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil
| | - Carlos Henrique Alves Jesus
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil
| | - Izonete Cristina Guiloski
- Laboratory of Toxicology, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil
| | | | - Olair Carlos Beltrame
- Laboratory of Veterinary Clinical Pathology, Department of Veterinary Medicine, Federal University of Paraná, 80035-050 Curitiba, PR, Brazil
| | - Rosângela Locatelli Dittrich
- Laboratory of Veterinary Clinical Pathology, Department of Veterinary Medicine, Federal University of Paraná, 80035-050 Curitiba, PR, Brazil
| | | | - Janaina Menezes Zanoveli
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil
| | - Joice Maria da Cunha
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil.
| |
Collapse
|
7
|
Ye LX, Huang HH, Zhang SH, Lu JS, Cao DX, Wu DD, Chi PW, Hong LH, Wu MX, Xu Y, Yu CX. Streptozotocin-Induced Hyperglycemia Affects the Pharmacokinetics of Koumine and its Anti-Allodynic Action in a Rat Model of Diabetic Neuropathic Pain. Front Pharmacol 2021; 12:640318. [PMID: 34054521 PMCID: PMC8156416 DOI: 10.3389/fphar.2021.640318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Koumine (KM), the most abundant alkaloid in Gelsemium elegans, has anti-neuropathic, anti-inflammatory, and analgesic activities; thus, it has the potential to be developed as a broad-spectrum analgesic drug. However, factors determining the relationship between analgesic efficacy and the corresponding plasma KM concentration are largely unclear. The pharmacokinetics and pharmacodynamics of KM and their optimization in the context of neuropathic pain have not been reported. We investigated the pharmacokinetics and pharmacodynamics of KM after oral administration in a streptozotocin-induced rat model of diabetic neuropathic pain (DNP) using a population approach. A first-order absorption and elimination pharmacokinetics model best described the plasma KM concentration. This pharmacokinetic model was then linked to a linear pharmacodynamic model with an effect compartment based on the measurement of the mechanical withdrawal threshold. KM was rapidly absorbed (time to maximum plasma concentration: 0.14–0.36 h) with similar values in both DNP and naïve rats, suggesting that DNP did not influence the KM absorption rate. However, the area under the curve (AUC0–∞) of KM in DNP rats was over 3-fold higher than that in naïve rats. The systemic clearance rate and volume of KM distribution were significantly lower in DNP rats than in naïve rats. Blood glucose value prior to KM treatment was a significant covariate for the systemic clearance rate of KM and baseline value of the threshold. Our results suggest that streptozotocin-induced hyperglycemia is an independent factor for decreased KM elimination and its anti-allodynic effects in a DNP rat model. To the best of our knowledge, this is the first study to investigate the role of DNP in the pharmacokinetics and pharmacokinetics-pharmacodynamics of KM in streptozotocin-induced diabetic rats.
Collapse
Affiliation(s)
- Li-Xiang Ye
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Hui-Hui Huang
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, China
| | - Shui-Hua Zhang
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Jing-Shan Lu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Da-Xuan Cao
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Dan-Dan Wu
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Pei-Wang Chi
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Long-Hui Hong
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Min-Xia Wu
- Electron Microscopy Laboratory of Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Ying Xu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, China
| | - Chang-Xi Yu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, China
| |
Collapse
|
8
|
Miao B, Yin Y, Mao G, Zhao B, Wu J, Shi H, Fei S. The implication of transient receptor potential canonical 6 in BDNF-induced mechanical allodynia in rat model of diabetic neuropathic pain. Life Sci 2021; 273:119308. [PMID: 33667520 DOI: 10.1016/j.lfs.2021.119308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 02/01/2023]
Abstract
AIMS Brain-derived neurotrophic factor (BDNF) is vital in the pathogenesis of mechanical allodynia with a paucity of reports available regarding diabetic neuropathy pain (DNP). Herein we identified the involvement of BDNF in driving mechanical allodynia in DNP rats via the activation of transient receptor potential canonical 6 (TRPC6) channel. MATERIALS AND METHODS The DNP rat model was established via streptozotocin (STZ) injection, and allodynia was assessed by paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL). The expression profiles of BDNF and TRPC6 in dorsal root ganglia (DRG) and spinal cord were illustrated by immunofluorescence and Western blotting. Intrathecal administration of K252a or TrkB-Fc was performed to inhibit BNDF/TrkB expression, and respective injection of GsMTX-4, BTP2 and TRPC6 antisense oligodeoxynucleotides (TRPC6-AS) was likewise conducted to inhibit TRPC6 expression in DNP rats. Calcium influx in DRG was monitored by calcium imaging. KEY FINDINGS The time-dependent increase of BDNF and TRPC6 expression in DRG and spinal cord was observed since the 7th post-STZ day, correlated with the development of mechanical allodynia in DNP rats. Intrathecal administration of K252a, TrkB-Fc, GsMTX-4 and BTP2 prevented mechanical allodynia in DNP rats. Pre-treatment of TRPC6-AS reversed the BDNF-induced pain-like responses in DNP rats rather than the naïve rats. In addition, the TRPC6-AS reversed BDNF-induced increase of calcium influx in DRG neurons in DNP rats. SIGNIFICANCE The intrathecal inhibition of TRPC6 alleviated the BDNF-induced mechanical allodynia in DNP rat model. This finding may validate the application of TRPC6 antagonists as interesting strategy for DNP management.
Collapse
Affiliation(s)
- Bei Miao
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China; Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Yue Yin
- Department of Anesthesiology, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou 221009, Jiangsu Province, China
| | - Guangtong Mao
- Department of Pathology, Xinyi People's Hospital, 16 Renmin Road, Xinyi 221400, Jiangsu Province, China
| | - Benhuo Zhao
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Jiaojiao Wu
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Hengliang Shi
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China.
| | - Sujuan Fei
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China; Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China.
| |
Collapse
|
9
|
Abstract
Neuropathy is a common complication of long-term diabetes that impairs quality of life by producing pain, sensory loss and limb amputation. The presence of neuropathy in both insulin-deficient (type 1) and insulin resistant (type 2) diabetes along with the slowing of progression of neuropathy by improved glycemic control in type 1 diabetes has caused the majority of preclinical and clinical investigations to focus on hyperglycemia as the initiating pathogenic lesion. Studies in animal models of diabetes have identified multiple plausible mechanisms of glucotoxicity to the nervous system including post-translational modification of proteins by glucose and increased glucose metabolism by aldose reductase, glycolysis and other catabolic pathways. However, it is becoming increasingly apparent that factors not necessarily downstream of hyperglycemia can also contribute to the incidence, progression and severity of neuropathy and neuropathic pain. For example, peripheral nerve contains insulin receptors that transduce the neurotrophic and neurosupportive properties of insulin, independent of systemic glucose regulation, while the detection of neuropathy and neuropathic pain in patients with metabolic syndrome and failure of improved glycemic control to protect against neuropathy in cohorts of type 2 diabetic patients has placed a focus on the pathogenic role of dyslipidemia. This review provides an overview of current understanding of potential initiating lesions for diabetic neuropathy and the multiple downstream mechanisms identified in cell and animal models of diabetes that may contribute to the pathogenesis of diabetic neuropathy and neuropathic pain.
Collapse
|
10
|
Khaleghzadeh-Ahangar H, Sadeghimahalli F, Khandan S, Shahabi S, Moghadamnia A. Insulin within the Arcuate Nucleus Has Paradoxical Effects on Nociception in Healthy and Diabetic Rats. Basic Clin Neurosci 2020; 11:727-736. [PMID: 33850610 PMCID: PMC8019850 DOI: 10.32598/bcn.11.6.1983.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/15/2019] [Accepted: 11/08/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction Broad neural circuits originate from the hypothalamic arcuate nucleus and project to many parts of the brain which are related to pain perception. Insulin receptors are found in the arcuate nucleus. Since nociception may be affected in type 1 diabetes, the present study aimed to investigate the intra-arcuate nucleus insulin role in pain perception in streptozotocin (STZ)-induced diabetic and healthy rats. Methods Regular insulin was microinjected within the arcuate nucleus and the pain tolerance was measured using the hot plate and the tail-flick apparatus in diabetic rats. Results The results showed that the arcuate nucleus suppression with lidocaine could increase thermal nociception in non-diabetic animals. Also, insulin within the arcuate nucleus decreased the acute thermal pain perception in these animals. STZ-induced diabetes produced hypoalgesia which the latency of these tests, progressively increased over time after induction of diabetes. Also, in the same animal group, intra-arcuate injection of insulin reduced the latency of nociception. Conclusion Intra-arcuate insulin has paradoxical and controversial effects in healthy and diabetic rats' nociception. These effects seem to be due to the insulin effect on releasing proopiomelanocortin and its derivatives.
Collapse
Affiliation(s)
- Hossein Khaleghzadeh-Ahangar
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Forouzan Sadeghimahalli
- Departement of Physiology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shaghayegh Khandan
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sima Shahabi
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Aliakbar Moghadamnia
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Pharmacology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
11
|
Martinez N, Sánchez A, Diaz P, Broekhuizen R, Godoy J, Mondaca S, Catenaccio A, Macanas P, Nervi B, Calvo M, Court F. Metformin protects from oxaliplatin induced peripheral neuropathy in rats. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100048. [PMID: 32490289 PMCID: PMC7260677 DOI: 10.1016/j.ynpai.2020.100048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/20/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
Oxaliplatin is a commonly used drug to treat cancer, extending the rate of disease-free survival by 20% in colorectal cancer. However, oxaliplatin induces a disabling form of neuropathy resulting in more than 60% of patients having to reduce or discontinue oxaliplatin, negatively impacting their chance of survival. Oxaliplatin-induced neuropathies are accompanied by degeneration of sensory fibers in the epidermis and hyperexcitability of sensory neurons. These morphological and functional changes have been associated with sensory symptoms such as dysesthesia, paresthesia and mechanical and cold allodynia. Various strategies have been proposed to prevent or treat oxaliplatin-induced neuropathies without success. The anti-diabetic drug metformin has been recently shown to exert neuroprotection in other chemotherapy-induced neuropathies, so here we aimed to test if metformin can prevent the development of oxaliplatin-induced neuropathy in a rat model of this condition. Animals treated with oxaliplatin developed significant intraepidermal fiber degeneration, a mild gliosis in the spinal cord, and mechanical and cold hyperalgesia. The concomitant use of metformin prevented degeneration of intraepidermal fibers, gliosis, and the altered sensitivity. Our evidence further supports metformin as a new approach to prevent oxaliplatin-induced neuropathy with a potential important clinical impact.
Collapse
Affiliation(s)
- N.W. Martinez
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor de Chile, Santiago 8580745, Chile
- Department of Physiology, Faculty of Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A. Sánchez
- Department of Physiology, Faculty of Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - P. Diaz
- Department of Physiology, Faculty of Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - R. Broekhuizen
- Department of Hematology and Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J. Godoy
- Department of Neurology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - S. Mondaca
- Department of Hematology and Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A. Catenaccio
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor de Chile, Santiago 8580745, Chile
| | - P. Macanas
- Department of Hematology and Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - B. Nervi
- Department of Hematology and Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M. Calvo
- Department of Physiology, Faculty of Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F.A. Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor de Chile, Santiago 8580745, Chile
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago 8580745, Chile
- Buck Institute for Research on Ageing, Novato, San Francisco, CA 94945, USA
| |
Collapse
|
12
|
Muscarinic Toxin 7 Signals Via Ca 2+/Calmodulin-Dependent Protein Kinase Kinase β to Augment Mitochondrial Function and Prevent Neurodegeneration. Mol Neurobiol 2020; 57:2521-2538. [PMID: 32198698 PMCID: PMC7253379 DOI: 10.1007/s12035-020-01900-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022]
Abstract
Mitochondrial dysfunction is implicated in a variety of neurodegenerative diseases of the nervous system. Peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α) is a regulator of mitochondrial function in multiple cell types. In sensory neurons, AMP-activated protein kinase (AMPK) augments PGC-1α activity and this pathway is depressed in diabetes leading to mitochondrial dysfunction and neurodegeneration. Antimuscarinic drugs targeting the muscarinic acetylcholine type 1 receptor (M1R) prevent/reverse neurodegeneration by inducing nerve regeneration in rodent models of diabetes and chemotherapy-induced peripheral neuropathy (CIPN). Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) is an upstream regulator of AMPK activity. We hypothesized that antimuscarinic drugs modulate CaMKKβ to enhance activity of AMPK, and PGC-1α, increase mitochondrial function and thus protect from neurodegeneration. We used the specific M1R antagonist muscarinic toxin 7 (MT7) to manipulate muscarinic signaling in the dorsal root ganglia (DRG) neurons of normal rats or rats with streptozotocin-induced diabetes. DRG neurons treated with MT7 (100 nM) or a selective muscarinic antagonist, pirenzepine (1 μM), for 24 h showed increased neurite outgrowth that was blocked by the CaMKK inhibitor STO-609 (1 μM) or short hairpin RNA to CaMKKβ. MT7 enhanced AMPK phosphorylation which was blocked by STO-609 (1 μM). PGC-1α reporter activity was augmented up to 2-fold (p < 0.05) by MT7 and blocked by STO-609. Mitochondrial maximal respiration and spare respiratory capacity were elevated after 3 h of exposure to MT7 (p < 0.05). Diabetes and CIPN induced a significant (p < 0.05) decrease in corneal nerve density which was corrected by topical delivery of MT7. We reveal a novel M1R-modulated, CaMKKβ-dependent pathway in neurons that represents a therapeutic target to enhance nerve repair in two of the most common forms of peripheral neuropathy.
Collapse
|
13
|
Evaluation of ameliorative effect of sodium nitrate in experimental model of streptozotocin-induced diabetic neuropathy in male rats. Endocr Regul 2020; 53:14-25. [PMID: 31517620 DOI: 10.2478/enr-2019-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Diabetes induces sensory symptoms of neuropathy as positive (hyperalgesia), negative (hypoalgesia), or both. METHODS In the present study, fifty male Wistar rats were allocated to five groups: control, control+nitrate, diabetes, diabetes+insulin, and diabetes+nitrate. Thirty days after diabetes confirmation, insulin (2-4 U/day) was injected subcutaneously in diabetes+insulin group and nitrate (100 mg/l) was added into drinking water of the control+nitrate and diabetes+nitrate groups for a period of 2 months. In order to assess the mechanical and thermal algesia, tail immersion, hot plate, and von Frey tests were performed. The serum insulin levels were determined with insulin ELISA Kit. Serum level of NOx was determined by the Griess method. RESULTS Both thermal and mechanical nociceptive thresholds showed a significant decrease (p<0.05) which was followed by a significant increase (p<0.01) in the thermal nociceptive threshold in the diabetes group. Chronic nitrate or insulin treatment led to a significant decrease (p<0.01) in blood glucose levels, as well as a significant (p<0.05) increase in the body weight and serum NOx. Moreover, nitrate treatment significantly increased serum insulin levels (p<0.001) compared to the other groups. CONCLUSION Chronic nitrate treatment modified the thermal and mechanical sensitivities in diabetic animals.
Collapse
|
14
|
Sodium nitrate preconditioning prevents progression of the neuropathic pain in streptozotocin-induced diabetes Wistar rats. J Diabetes Metab Disord 2020; 19:105-113. [PMID: 32550160 DOI: 10.1007/s40200-019-00481-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Purpose The purpose of the study was to evaluate the possible protective effects of low dose sodium nitrate preconditioning on the peripheral neuropathy in streptozotocin (STZ)-induced diabetic model. Methods Male Wistar rats were randomly divided into five groups: control (no intervention), control treated sodium nitrate (100 mg/L in drinking water), diabetic (no intervention), diabetic treated NPH insulin (2-4 U), and diabetic treated sodium nitrate (100 mg/L in drinking water). Diabetes was induced by intraperitoneal injection of STZ (60 mg/kg). All interventions were done for 60 days immediately following diabetes confirmation. Thermal and mechanical algesia thresholds were measured by means of hot-plate test, von Frey test, and tail-withdrawal test before the diabetic induction and after diabetes confirmation. At the end of the experiment, serum NOx level and serum insulin level were assessed. Blood glucose concentration and body weight have recorded at the base and duration of the experiment. Results Both hypoalgesia, hyperalgesia along with allodynia developed in diabetic rats. Significant alterations including, decrease in tail withdrawal latency (30th day), decreased mechanical threshold (60th day), and an increase in hot plate latency (61st day) were displayed in diabetic rats compared to control rats. Nitrate and insulin preconditioning produced protective effects against diabetes-induced peripheral neuropathy. Data analysis also showed a significant increase in glucose level as well as a considerable reduction in serum insulin and body weight of diabetic rats, which restored by both insulin and nitrate preconditioning. Conclusion Sodium nitrate preconditioning produces a protective effect in diabetic neuropathy, which may be mediated by its antihyperglycemic effects and increased serum insulin level.
Collapse
|
15
|
Gavini CK, Bookout AL, Bonomo R, Gautron L, Lee S, Mansuy-Aubert V. Liver X Receptors Protect Dorsal Root Ganglia from Obesity-Induced Endoplasmic Reticulum Stress and Mechanical Allodynia. Cell Rep 2019; 25:271-277.e4. [PMID: 30304667 PMCID: PMC7732131 DOI: 10.1016/j.celrep.2018.09.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/15/2018] [Accepted: 09/12/2018] [Indexed: 01/22/2023] Open
Abstract
Obesity is associated with many complications, including type 2 diabetes and painful neuropathy. There is no cure or prevention for obesity-induced pain, and the neurobiology underlying the onset of the disease is still obscure. In this study, we observe that western diet (WD)-fed mice developed early allodynia with an increase of ER stress markers in the sensory neurons of the dorsal root ganglia (DRG). Using cell-specific approaches, we demonstrate that neuronal liver X receptor (LXR) activation delays ER stress and allodynia in WD-fed mice. Our findings suggest that lipid-binding nuclear receptors expressed in the sensory neurons of the DRG play a role in the onset of obesity-induced hypersensitivity. The LXR and lipid-sensor pathways represent a research avenue to identify targets to prevent debilitating complications affecting the peripheral nerve system in obesity. The mechanism underlying obesityinduced pain is explored by Gavini et al. using cell-specific models. Their analysis reveals that in sensory neurons of the dorsal root ganglia, LXR activation delays western diet-induced ER stress and allodynia. These findings suggest that LXRs in sensory neurons are involved in nociception induced by western diet nutrition.
Collapse
Affiliation(s)
- Chaitanya K Gavini
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Angie L Bookout
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Raiza Bonomo
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Laurent Gautron
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Syann Lee
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Virginie Mansuy-Aubert
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
16
|
Larson CM, Wilcox GL, Fairbanks CA. The Study of Pain in Rats and Mice. Comp Med 2019; 69:555-570. [PMID: 31822322 PMCID: PMC6935695 DOI: 10.30802/aalas-cm-19-000062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/17/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Pain is a clinical syndrome arising from a variety of etiologies in a heterogeneous population, which makes successfully treating the individual patient difficult. Organizations and governments recognize the need for tailored and specific therapies, which drives pain research. This review summarizes the different types of pain assessments currently being used and the various rodent models that have been developed to recapitulate the human pain condition.
Collapse
Affiliation(s)
- Christina M Larson
- Comparative and Molecular Biosciences, University of Minnesota College of Veterinary Medicine, St Paul, Minnesota
| | - George L Wilcox
- Departments of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Carolyn A Fairbanks
- Departments of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota;,
| |
Collapse
|
17
|
Shekunova EV, Kashkin VA, Muzhikyan AА, Makarova MN, Balabanyan VY, Makarov VG. Therapeutic efficacy of arginine-rich exenatide on diabetic neuropathy in rats. Eur J Pharmacol 2019; 866:172835. [PMID: 31794708 DOI: 10.1016/j.ejphar.2019.172835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 01/15/2023]
Abstract
Diabetes mellitus is characterized by metabolic dysregulation associated with a number of health complications. More than 50% of patients with diabetes mellitus suffer from diabetic polyneuropathy, which involves the presence of peripheral nerve dysfunction symptoms. The aim of this study was to evaluate the potential of a new synthetic arginine-rich exendin-4 (Peptide D) in the treatment of complications caused by diabetes, including peripheral neuropathy, in rats. Diabetes was induced by administering streptozotocin (STZ). Three groups of diabetic rats were treated with Peptide D (0.1, 1, and 10 μg/kg). One group of diabetic rats was treated with Byetta® (1 μg/kg) for 80 days. Neuropathic pain development was assessed by tactile allodynia. STZ-treated rats showed an increased level of tactile allodynia unlike naïve animals. A histological study revealed that the diameter of the sciatic nerve fibers in STZ-treated rats was smaller than that of the naïve animals. An IHC study demonstrated decreased expression of myelin basic protein (MBP) in the sciatic nerve of diabetic rats compared to that in the naïve animals. Peptide D reduced the severity of tactile allodynia. This effect was more pronounced in the Peptide D treated groups than in the group treated with Byetta®. Peptide D and Byetta® treatment resulted in increased MBP expression in the sciatic nerve and increased diameter of myelinated nerve fibers. These findings suggest that poly-arginine peptides are promising agents for the treatment of peripheral polyneuropathies.
Collapse
Affiliation(s)
- Elena V Shekunova
- RMC "HOME OF PHARMACY", The Leningrad Region, Vsevolozhskiy District, 188663, Russia
| | - Vladimir A Kashkin
- Valdman Institute of Pharmacology, First Pavlov State Medical University, St.-Petersburg, 197022, Russia; Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, 194223, Russia.
| | - Arman А Muzhikyan
- Smorodintsev Research Institute of Influenza, St. Petersburg, 197376, Russia; Konstantinov Institute of Nuclear Physics, The Leningrad Region, Gatchina, 188300, Russia
| | - Marina N Makarova
- RMC "HOME OF PHARMACY", The Leningrad Region, Vsevolozhskiy District, 188663, Russia
| | - Vadim Y Balabanyan
- Faculty of Fundamental Medicine of Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Valery G Makarov
- RMC "HOME OF PHARMACY", The Leningrad Region, Vsevolozhskiy District, 188663, Russia
| |
Collapse
|
18
|
Guo N, Li C, Liu Q, Liu S, Huan Y, Wang X, Bai G, Yang M, Sun S, Xu C, Shen Z. Maltol, a food flavor enhancer, attenuates diabetic peripheral neuropathy in streptozotocin-induced diabetic rats. Food Funct 2019; 9:6287-6297. [PMID: 30411095 DOI: 10.1039/c8fo01964a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SCOPE Maltol (3-hydroxy-2-methy-4-pyrone), a potent antioxidative agent, typically is used to enhance flavor and preserve food. This study evaluated its effects on preventing diabetic peripheral neuropathy (DPN) in streptozotocin (STZ)-induced diabetic rats and explored its mechanisms. METHODS AND RESULTS We intraperitoneally injected Sprague-Dawley (SD) rats with STZ (65 mg kg-1, ip) and treated the rats with different doses of maltol after 4 weeks of injection. During treatment, we evaluated motor nerve conduction velocity (MNCV) and thermal and mechanical hyperalgesia and assayed the oxidative stress, Na+-K+-ATPase activity, and apoptosis. Repeated treatment with maltol for 12 weeks significantly improved thermal and mechanical hyperalgesia, increased the MNCV, elevated the Na+-K+-ATPase activity, and ameliorated oxidative stress and apoptosis in STZ-induced diabetic rats. We coincubated RSC96 cells, a Schwann cell line, with maltol and hydrogen peroxide (H2O2, 0.6 mM). Evidently, maltol increased cell viability and inhibited apoptosis after injury by H2O2. CONCLUSIONS Maltol was demonstrated to prevent DPN development and may provide a new alternative for the treatment of DPN.
Collapse
Affiliation(s)
- Nan Guo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
α5GABAA receptors play a pronociceptive role and avoid the rate-dependent depression of the Hoffmann reflex in diabetic neuropathic pain and reduce primary afferent excitability. Pain 2019; 160:1448-1458. [DOI: 10.1097/j.pain.0000000000001515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
De Gregorio C, Contador D, Campero M, Ezquer M, Ezquer F. Characterization of diabetic neuropathy progression in a mouse model of type 2 diabetes mellitus. Biol Open 2018; 7:bio.036830. [PMID: 30082375 PMCID: PMC6176942 DOI: 10.1242/bio.036830] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) is one of most common chronic diseases with an increasing incidence in most countries. Diabetic neuropathy (DN) is one of the earliest and main complications of diabetic patients, which is characterized by progressive, distal-to-proximal degeneration of peripheral nerves. The cellular and molecular mechanisms that trigger DN are highly complex, heterogeneous and not completely known. Animal models have constituted a valuable tool for understanding diabetes pathophysiology; however, the temporal course of DN progression in animal models of type 2 diabetes (T2DM) is not completely understood. In this work, we characterized the onset and progression of DN in BKS diabetic (db/db) mice, including the main functional and histological features observed in the human disease. We demonstrated that diabetic animals display progressive sensory loss and electrophysiological impairments in the early-to-mid phases of the disease. Furthermore, we detected an early decrease in intraepidermal nerve fiber (IENF) density in 18-week-old diabetic mice, which is highly associated with sensory loss and constitutes a reliable marker of DN. Other common histological parameters of DN – like Schwann cells apoptosis and infiltration of CD3+ cells in the sciatic nerve – were altered in mid-to-late phases of the disease. Our results support the general consensus that DN evolves from initial functional to late structural changes. This work aimed to characterize the progression of DN in a reliable animal model sharing the main human disease features, which is necessary to assess new therapies for this complex disease. Finally, we also aimed to identify an effective temporal window where these potential treatments could be successfully applied. Summary: We characterized the main functional and structural diabetic neuropathy features during early-to-late phases of type 2 diabetes mellitus. This study aimed to identify a therapeutic window for new treatments.
Collapse
Affiliation(s)
- Cristian De Gregorio
- Center for Regenerative Medicine, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago 7710162, Chile
| | - David Contador
- Center for Regenerative Medicine, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago 7710162, Chile
| | - Mario Campero
- Department of Neurology & Neurosurgery, Hospital José Joaquín Aguirre, Universidad de Chile, Santiago 7710162, Chile.,Departamento de Neurología, Clínica Las Condes, Santiago 7710162, Chile
| | - Marcelo Ezquer
- Center for Regenerative Medicine, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago 7710162, Chile
| | - Fernando Ezquer
- Center for Regenerative Medicine, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago 7710162, Chile
| |
Collapse
|
21
|
Zhang TT, Xue R, Fan SY, Fan QY, An L, Li J, Zhu L, Ran YH, Zhang LM, Zhong BH, Li YF, Ye CY, Zhang YZ. Ammoxetine attenuates diabetic neuropathic pain through inhibiting microglial activation and neuroinflammation in the spinal cord. J Neuroinflammation 2018; 15:176. [PMID: 29879988 PMCID: PMC5992688 DOI: 10.1186/s12974-018-1216-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/24/2018] [Indexed: 02/07/2023] Open
Abstract
Background Diabetic neuropathic pain (DNP) is a common and distressing complication in patients with diabetes, and the underlying mechanism remains unclear. Tricyclic antidepressants (TCAs) and serotonin and norepinephrine reuptake inhibitors (SNRIs) are recommended as first-line drugs for DNP. Ammoxetine is a novel and potent SNRI that exhibited a strong analgesic effect on models of neuropathic pain, fibromyalgia-related pain, and inflammatory pain in our primary study. The present study was undertaken to investigate the chronic treatment properties of ammoxetine on DNP and the underlying mechanisms for its effects. Methods The rat model of DNP was established by a single streptozocin (STZ) injection (60 mg/kg). Two weeks after STZ injection, the DNP rats were treated with ammoxetine (2.5, 5, and 10 mg/kg/day) for 4 weeks. The mechanical allodynia and locomotor activity were assayed to evaluate the therapeutic effect of ammoxetine. In mechanism study, the activation of microglia, astrocytes, the protein levels of pro-inflammatory cytokines, the mitogen-activated protein kinases (MAPK), and NF-κB were evaluated. Also, microglia culture was used to assess the direct effects of ammoxetine on microglial activation and the signal transduction mechanism. Results Treatment with ammoxetine for 4 weeks significantly relieved the mechanical allodynia and ameliorated depressive-like behavior in DNP rats. In addition, DNP rats displayed increased activation of microglia in the spinal cord, but not astrocytes. Ammoxetine reduced the microglial activation, accumulation of pro-inflammatory cytokines, and activation of p38 and c-Jun N-terminal kinase (JNK) in the spinal cord of DNP rats. Furthermore, ammoxetine displayed anti-inflammatory effects upon challenge with LPS in BV-2 microglia cells. Conclusion Our results suggest that ammoxetine may be an effective treatment for relieving DNP symptoms. Moreover, a reduction in microglial activation and pro-inflammatory release by inhibiting the p-p38 and p-JNK pathways is involved in the mechanism.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China.,Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Rui Xue
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Shi-Yong Fan
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Qiong-Yin Fan
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Lei An
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China.,Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University (BTBU), No.11, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Juan Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yu-Hua Ran
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Li-Ming Zhang
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Bo-Hua Zhong
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Yun-Feng Li
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China
| | - Cai-Ying Ye
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - You-Zhi Zhang
- Institute of Pharmacology and Toxicology, Beijing Key laboratory of Neuropsychopharmacology, 27th Taiping Road, Haidian District, Beijing, 100850, China.
| |
Collapse
|
22
|
Lee-Kubli C, Marshall AG, Malik RA, Calcutt NA. The H-Reflex as a Biomarker for Spinal Disinhibition in Painful Diabetic Neuropathy. Curr Diab Rep 2018; 18:1. [PMID: 29362940 PMCID: PMC6876556 DOI: 10.1007/s11892-018-0969-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Neuropathic pain may arise from multiple mechanisms and locations. Efficacy of current treatments for painful diabetic neuropathy is limited to an unpredictable subset of patients, possibly reflecting diversity of pain generator mechanisms, and there is a lack of targeted treatments for individual patients. This review summarizes preclinical evidence supporting a role for spinal disinhibition in painful diabetic neuropathy, the physiology and pharmacology of rate-dependent depression (RDD) of the spinal H-reflex and the translational potential of using RDD as a biomarker of spinally mediated pain. RECENT FINDINGS Impaired RDD occurs in animal models of diabetes and was also detected in diabetic patients with painful vs painless neuropathy. RDD status can be determined using standard neurophysiological equipment. Loss of RDD may provide a clinical biomarker of spinal disinhibition, thereby enabling a personalized medicine approach to selection of current treatment options and enrichment of future clinical trial populations.
Collapse
Affiliation(s)
| | - Andrew G Marshall
- Faculty of Medical and Human Sciences, Institute of Cardiovascular Sciences, University of Manchester and National Institute for Healthy Research/Wellcome Trust Clinical Research Facility, Manchester, UK
- Department of Clinical Neurophysiology, Salford Royal Hospital, National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rayaz A Malik
- Faculty of Medical and Human Sciences, Institute of Cardiovascular Sciences, University of Manchester and National Institute for Healthy Research/Wellcome Trust Clinical Research Facility, Manchester, UK
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
23
|
Evaluation of the neonatal streptozotocin model of diabetes in rats: Evidence for a model of neuropathic pain. Pharmacol Rep 2017; 70:294-303. [PMID: 29477037 DOI: 10.1016/j.pharep.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/01/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The purpose of this study was to evaluate the participation of satellite glial cells (SGC), microglia and astrocytes in a model of streptozotocin-induced diabetes initiated in neonatal rats (nSTZ) and to determine the pharmacological profile for pain relief. METHODS nSTZ was used to induce experimental diabetes. Von Frey filaments were used to assess tactile allodynia. Drugs were given by systemic administration. Western blotting and immunohistochemistry were used to determine protein expression and cellular localization. RESULTS nSTZ produced mild hyperglycemia, weight loss, glucose intolerance, and reduction of nerve conduction velocity of C fibers. Moreover, nSTZ enhanced activating transcription factor 3 (ATF3) immunoreactivity in dorsal root ganglia (DRG) and sciatic nerve of adult rats. ATF3 was found in SGC (GFAP+ cells) surrounding DRG at week 16. Late changes in ATF3 immunoreactivity in DRG correlated with up-regulation of ATF3 and GFAP protein expression. nSTZ increased GFAP and OX-42 immunoreactivity and percentage of hypertrophied and ameboid microglia in the spinal dorsal horn. These changes correlated with the presence of mechanical hypersensitivity (tactile allodynia). Administration of gabapentin (30-100mg/kg, po) and metformin (200mg/kg/day, po for 2 weeks) alleviated tactile allodynia, whereas morphine (1-3mg/kg, ip) had a modest effect. CONCLUSIONS Results suggest that nSTZ leads to activation of SGC, microglia and astrocytes in DRG and spinal cord. Pharmacological profile in the nSTZ model resembles diabetic neuropathic pain in humans. Our findings support the conclusion that the nSTZ rat model has utility for the study of a long-lasting diabetic neuropathic pain.
Collapse
|
24
|
Ji ZH, Liu ZJ, Liu ZT, Zhao W, Williams BA, Zhang HF, Li L, Xu SY. Diphenyleneiodonium Mitigates Bupivacaine-Induced Sciatic Nerve Damage in a Diabetic Neuropathy Rat Model by Attenuating Oxidative Stress. Anesth Analg 2017; 125:653-661. [PMID: 28682956 DOI: 10.1213/ane.0000000000002186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Increased oxidative stress has been linked to local anesthetic-induced nerve injury in a diabetic neuropathy (DN) rat model. The current study explores the effects of diphenyleneiodonium (DPI) chloride, an NADPH oxidase (NOX) inhibitor, on bupivacaine-induced sciatic nerve injury in DN rats. METHODS A rat DN model was established through high-fat diet feeding and streptozotocin injection. The model was confirmed via testing (i) blood glucose, (ii) hindpaw allodynia responses to von Frey (VF) monofilaments, (iii) paw withdrawal thermal latency (PWTL), and (iv) nerve conduction velocity (NCV). Bupivacaine (Bup, 0.2 mL, 5 mg/mL) was used to block the right sciatic nerve. DPI (1 mg/kg) was injected subcutaneously 24 hours and 30 minutes before the sciatic block. At 24 hours after the block, NCV, various reactive oxygen species, and Caspase-3 were evaluated to determine the extent of sciatic nerve injury. RESULTS The DN rat model was successfully established. Compared with the DN control group, the postblock values of VF responses (DN-Con, 16.5 ± 1.3 g; DN + Bup, 19.1 ± 1.5 g, P < .001) and PWTL significantly increased (DN-Con, 13.3 ± 1.1 seconds; DN + Bup, 14.6 ± 1.1 seconds, P = .028); the NCV of sciatic nerve was significantly reduced (DN-Con, 38.8 ± 2.4 m/s, DN + Bup, 30.5 ± 2.0 m/s, P = .003), and sciatic nerve injury (as indicated by axonal area) was more severe in the bupivacaine-treated DN group (DN-Con, 11.6 ± 0.3 μm, DN + Bup, 7.5 ± 0.3 μm, P < .001). In addition, DPI treatment significantly improved nerve function (VF responses, 17.3 ± 1.3 g; PWTL, 13.4 ± 1.1 seconds; NCV, 35.6 ± 3.1 m/s) and mitigated loss of axonal area (9.6 ± 0.3 μm). Compared to the DN + Bup group (without DPI), the levels of lipid peroxides and hydroperoxides, as well as the protein expression of NOX2, NOX4, and Caspase-3, were significantly reduced in the DN + Bup + DPI group (P < .05). CONCLUSIONS Subcutaneous injection of DPI appears to protect against the functional and neurohistological damage of bupivacaine-blocked sciatic nerves in a high-fat diet/streptozotocin-induced DN model.
Collapse
Affiliation(s)
- Zhong-Hua Ji
- From the *Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; and †Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Murine model and mechanisms of treatment-induced painful diabetic neuropathy. Neuroscience 2017; 354:136-145. [PMID: 28476321 DOI: 10.1016/j.neuroscience.2017.04.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/21/2017] [Accepted: 04/23/2017] [Indexed: 11/21/2022]
Abstract
Diabetes mellitus represents a group of metabolic diseases that are characterized by hyperglycemia caused by either lack of insulin production or a reduced ability to respond to insulin. It is estimated that there were 347 million people worldwide who suffered from diabetes in 2008 and incidence is predicted to double by 2050. Neuropathy is the most common complication of long-term diabetes and approximately 30% of these subjects develop chronic neuropathic pain. A distinct acute, severe form of neuropathic pain, called insulin neuritis or treatment-induced painful neuropathy of diabetes (TIND), may also occur shortly after initiation of intensive glycemic control, with an incidence rate of up to 10.9%. The pathological mechanisms leading to TIND, which is mostly unresponsive to analgesics, are not yet understood, impeding the development of therapies. Studies to date have been clinical and with limited cohorts of patients. In the current study, we developed chronic and acute insulin-induced neuropathic pain in mice with type 2 insulin-resistant diabetes. Furthermore, we determined that insulin-induced acute allodynia is independent of glycemia levels, can also be induced with Insulin-like Growth Factor 1 (IGF1) and be prevented by inhibition of AKT, providing evidence of an insulin/IGF1 signaling pathway-based mechanism for TIND. This mouse model is useful for the elucidation of mechanisms contributing to TIND and for the testing of new therapeutic approaches to treat TIND.
Collapse
|
26
|
Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis. Biosci Rep 2017; 37:BSR20170036. [PMID: 28246353 PMCID: PMC5408653 DOI: 10.1042/bsr20170036] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes mellitus (DM) and is the leading cause of vision loss globally. However, the pathogenic mechanism and clinical therapy still needs further improvement. The biologic significance of myocardial infarction associated transcript (MIAT) in DR remains unknown. Here, we aim to explore the mechanism between MIAT and DR, which is essential for RD. Streptozotocin (STZ) was used to induce DM mice and high glucose was used to stimulate cells. ChIP was used to detect the binding activity between nuclear factor κB (NF-κB) and the promoter of the MIAT gene, luciferase activity assay was used to detect the target-specific selectivity between miR-29b and MIAT. The expressions of MIAT and p-p65 were increased in STZ-induced DM mice and high glucose stimulated rat retinal Müller cells (rMC-1) cells. ChIP results revealed that high glucose promoted the binding activity between NF-κB and MIAT, while Bay11-7082 acted as an inhibitor for NF-κB that suppressed the binding activity. miR-29b controled MIAT to regulate its expression and MIAT overexpression suppressed miR-29b, but promoted Sp1. High glucose stimulation increased the cell apoptosis and decreased the cell activity, while MIAT suppression reversed the effect induced by high glucose, however, miR-29b knockdown reversed the effects induced by MIAT suppression. Our results provided evidence that the mechanism of cell apoptosis in DR might be associated with the regulation of MIAT, however, miR-29b acted as a biomarker that was regulated by MIAT and further regulated cell apoptosis in DR.
Collapse
|
27
|
Zheng X, Chen L, Du X, Cai J, Yu S, Wang H, Xu G, Luo Z. Effects of hyperbaric factors on lidocaine-induced apoptosis in spinal neurons and the role of p38 mitogen-activated protein kinase in rats with diabetic neuropathic pain. Exp Ther Med 2017; 13:2855-2861. [PMID: 28587350 PMCID: PMC5450626 DOI: 10.3892/etm.2017.4334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 01/19/2017] [Indexed: 01/10/2023] Open
Abstract
The application of lidocaine can lead to nerve damage. Evidence suggests that patients with diabetic neuropathy are at a higher risk for neurotoxicity. In the present study, the successful induction of diabetic neuropathic pain (DNP) in rats via a high-sugar, high-fat diet and intraperitoneal injection of 1% streptozotocin was verified and pronounced tactile allodynia was observed. It was found that intrathecal injections of hyperbaric lidocaine produced motor blocks of longer durations in the DNP model rats than in nondiabetic rats, or in DNP model rats injected with isobaric lidocaine. Histology of the lumbar 4-5 spinal cord revealed a significant difference in neuropathology between the DNP and nondiabetic rats. Moreover, edematous neurons and TUNEL-positive cells were observed in the hyperbaric lidocaine group. It was also found that the inhibition of p38 mitogen-activated protein kinase (p38MAPK) played a neuroprotective role in response to hyperbaric lidocaine-induced apoptosis in DNP rats, which indicates that p38MAPK plays a key role in the regulation of hyperbaric lidocaine-induced apoptosis in DNP rats. These findings suggest that hyperbaric lidocaine can promote spinal cord neuronal apoptosis in rats with DNP. Furthermore, p38MAPK might play a key role in the regulation of hyperbaric lidocaine-induced apoptosis in rats with DNP.
Collapse
Affiliation(s)
- Xiaolan Zheng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling Chen
- Department of Prevention and Health Care, The First Affiliated Hospital, Nanchang University, Jiangxi 330006, P.R. China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Junying Cai
- Department of Anesthesiology, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shuchun Yu
- Department of Anesthesiology, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hongtao Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhenzhong Luo
- Department of Anesthesiology, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
28
|
Sensory and autonomic function and structure in footpads of a diabetic mouse model. Sci Rep 2017; 7:41401. [PMID: 28128284 PMCID: PMC5269750 DOI: 10.1038/srep41401] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022] Open
Abstract
Sensory and autonomic neuropathy affects the majority of type II diabetic patients. Clinically, autonomic evaluation often focuses on sudomotor function yet this is rarely assessed in animal models. We undertook morphological and functional studies to assess large myelinated and small unmyelinated axons in the db/db type II diabetes mouse model. We observed that autonomic innervation of sweat glands in the footpads was significantly reduced in db/db mice compared to control db/+ mice and this deficit was greater compared to reductions in intraepidermal sensory innervation of adjacent epidermis. Additionally, db/db mice formed significantly fewer sweat droplets compared to controls as early as 6 weeks of age, a time when no statistical differences were observed electrophysiologically between db/db and db/+ mice studies of large myelinated sensory and motor nerves. The rate of sweat droplet formation was significantly slower and the sweat droplet size larger and more variable in db/db mice compared to controls. Whereas pilocarpine and glycopyrrolate increased and decreased sweating, respectively, in 6 month-old controls, db/db mice did not respond to pharmacologic manipulations. Our findings indicate autonomic neuropathy is an early and prominent deficit in the db/db model and have implications for the development of therapies for peripheral diabetic neuropathy.
Collapse
|
29
|
Papanas N, Ziegler D. Emerging drugs for diabetic peripheral neuropathy and neuropathic pain. Expert Opin Emerg Drugs 2016; 21:393-407. [DOI: 10.1080/14728214.2016.1257605] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Tripathi CD, Mehta AK, Yadav AM. Drug combinations in diabetic neuropathic pain: an experimental validation. J Basic Clin Physiol Pharmacol 2016; 27:617-624. [PMID: 27331307 DOI: 10.1515/jbcpp-2015-0163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/30/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Diabetic neuropathy is the most common complication of diabetes mellitus, and the different drug combinations available do not provide effective pain relief. The present study was performed to observe the effect of amitripyline, duloxetine, sitagliptin, and pregabalin, and their combinations on streptozotocin (STZ)-induced diabetic neuropathy. METHODS Diabetic neuropathy was induced by STZ, and the tail-flick test was used to assess thermal hyperalgesia before and after (at 30, 60, and 120 min) drug administration. One week after STZ administration, the blood glucose level was observed to be in the diabetic range. RESULTS Administration of all the drugs except sitagliptin increased the tail-flick latency significantly as compared to control. Further, the drugs amitriptyline, duloxetine, and pregabalin showed significant pain-relieving effect, when either two of them were administered in combination, although the different combinations had varied degree of pain relief. However, sitagliptin was observed to have no effect when administered alone or in combination with the other three drugs. CONCLUSIONS Therefore, the study provides new insights concerning combined therapy of pain, which further needs clinical exploration.
Collapse
|
31
|
Pain modulation from the brain during diabetic neuropathy: Uncovering the role of the rostroventromedial medulla. Neurobiol Dis 2016; 96:346-356. [PMID: 27717882 DOI: 10.1016/j.nbd.2016.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/06/2016] [Accepted: 10/01/2016] [Indexed: 01/17/2023] Open
Abstract
Diabetic neuropathy has a profound impact in the quality of life of patients who frequently complain of pain. The mechanisms underlying diabetic neuropathic pain (DNP) are no longer ascribed only to damage of peripheral nerves. The effects of diabetes at the central nervous system are currently considered causes of DPN. Management of DNP may be achieved by antidepressants that act on serotonin (5-HT) uptake, namely specific serotonin reuptake inhibitors. The rostroventromedial medulla (RVM) is a key pain control center involved in descending pain modulation at the spinal cord through local release of 5-HT and plays a peculiar role in the balance of bidirectional control (i.e. inhibitory and facilitatory) from the brain to the spinal cord. This review discusses recently uncovered neurobiological mechanisms that mediate nociceptive modulation from the RVM during diabetes installation. In early phases of the disease, facilitation of pain modulation from the RVM prevails through a triplet of mechanisms which include increase in serotonin expression at the RVM and consequent rise of serotonin levels at the spinal cord and upregulation of local facilitatory 5HT3 receptors, enhancement of spontaneous activity of facilitatory RVM neurons and up-regulation of the expression of transient receptor potential vanilloid type 1 (TRPV1) receptor. With the progression of diabetes the alterations in the RVM increase dramatically, with oxidative stress and neuronal death associated to microglia-mediated inflammation. In a manner similar to other central areas, like the thalamus, the RVM is likely to be a "pain generator/amplifier" during diabetes, accounting to increase DNP. Early interventions in DNP prevention using strategies that simultaneously tackle the exacerbation of 5-HT3 spinal receptors and of microglial RVM activity, namely those that increase the levels of anti-inflammatory cytokines, should be considered in the future of DNP treatment.
Collapse
|
32
|
Jolivalt CG, Frizzi KE, Guernsey L, Marquez A, Ochoa J, Rodriguez M, Calcutt NA. Peripheral Neuropathy in Mouse Models of Diabetes. ACTA ACUST UNITED AC 2016; 6:223-255. [PMID: 27584552 DOI: 10.1002/cpmo.11] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peripheral neuropathy is a frequent complication of chronic diabetes that most commonly presents as a distal degenerative polyneuropathy with sensory loss. Around 20% to 30% of such patients may also experience neuropathic pain. The underlying pathogenic mechanisms are uncertain, and therapeutic options are limited. Rodent models of diabetes have been used for more than 40 years to study neuropathy and evaluate potential therapies. For much of this period, streptozotocin-diabetic rats were the model of choice. The emergence of new technologies that allow relatively cheap and routine manipulations of the mouse genome has prompted increased use of mouse models of diabetes to study neuropathy. In this article, we describe the commonly used mouse models of type 1 and type 2 diabetes, and provide protocols to phenotype the structural, functional, and behavioral indices of peripheral neuropathy, with a particular emphasis on assays pertinent to the human condition. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Corinne G Jolivalt
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Katie E Frizzi
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Lucie Guernsey
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Alex Marquez
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Joseline Ochoa
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Maria Rodriguez
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, California
| |
Collapse
|
33
|
Baba H, Petrenko AB, Fujiwara N. Clinically relevant concentration of pregabalin has no acute inhibitory effect on excitation of dorsal horn neurons under normal or neuropathic pain conditions: An intracellular calcium-imaging study in spinal cord slices from adult rats. Brain Res 2016; 1648:445-458. [PMID: 27543338 DOI: 10.1016/j.brainres.2016.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/11/2016] [Accepted: 08/13/2016] [Indexed: 01/10/2023]
Abstract
Pregabalin is thought to exert its therapeutic effect in neuropathic pain via binding to α2δ-1 subunits of voltage-gated calcium (Ca(2+)) channels. However, the exact analgesic mechanism after its binding to α2δ-1 subunits remains largely unknown. Whether a clinical concentration of pregabalin (≈10μM) can cause acute inhibition of dorsal horn neurons in the spinal cord is controversial. To address this issue, we undertook intracellular Ca(2+)-imaging studies using spinal cord slices with an intact attached L5 dorsal root, and examined if pregabalin acutely inhibits the primary afferent stimulation-evoked excitation of dorsal horn neurons in normal rats and in rats with streptozotocin-induced painful diabetic neuropathy. Under normal conditions, stimulation of a dorsal root evoked Ca(2+) signals predominantly in the superficial dorsal horn. Clinically relevant (10μM) and a very high concentration of pregabalin (100μM) did not affect the intensity or spread of dorsal root stimulation-evoked Ca(2+) signals, whereas an extremely high dose of pregabalin (300μM) slightly but significantly attenuated Ca(2+) signals in normal rats and in diabetic neuropathic (DN) rats. There was no difference between normal rats and DN rats with regard to the extent of signal attenuation at all concentrations tested. These results suggest that the activity of dorsal horn neurons in the spinal cord is not inhibited acutely by clinical doses of pregabalin under normal or DN conditions. It is very unlikely that an acute inhibitory action in the dorsal horn is the main analgesic mechanism of pregabalin in neuropathic pain states.
Collapse
Affiliation(s)
- Hiroshi Baba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| | - Andrey B Petrenko
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Naoshi Fujiwara
- Division of Medical Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata 951-8518, Japan
| |
Collapse
|
34
|
Abstract
Diabetic polyneuropathy (DPN) is a common but intractable degenerative disorder of peripheral neurons. DPN first results in retraction and loss of sensory terminals in target organs such as the skin, whereas the perikarya (cell bodies) of neurons are relatively preserved. This is important because it implies that regrowth of distal terminals, rather than neuron replacement or rescue, may be useful clinically. Although a number of neuronal molecular abnormalities have been examined in experimental DPN, several are prominent: loss of structural proteins, neuropeptides, and neurotrophic receptors; upregulation of "stress" and "repair" proteins; elevated nitric oxide synthesis; increased AGE-RAGE signaling, NF-κB and PKC; altered neuron survival pathways; changes of pain-related ion channel investment. There is also a role for abnormalities of direct signaling of neurons by insulin, an important trophic factor for neurons that express its receptors. While evidence implicating each of these pathways has emerged, how they link together and result in neuronal degeneration remains unclear. However, several offer interesting new avenues for more definitive therapy of this condition.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
35
|
Abstract
Painful neuropathy, like the other complications of diabetes, is a growing healthcare concern. Unfortunately, current treatments are of variable efficacy and do not target underlying pathogenic mechanisms, in part because these mechanisms are not well defined. Rat and mouse models of type 1 diabetes are frequently used to study diabetic neuropathy, with rats in particular being consistently reported to show allodynia and hyperalgesia. Models of type 2 diabetes are being used with increasing frequency, but the current literature on the progression of indices of neuropathic pain is variable and relatively few therapeutics have yet been developed in these models. While evidence for spontaneous pain in rodent models is sparse, measures of evoked mechanical, thermal and chemical pain can provide insight into the pathogenesis of the condition. The stocking and glove distribution of pain tantalizingly suggests that the generator site of neuropathic pain is found within the peripheral nervous system. However, emerging evidence demonstrates that amplification in the spinal cord, via spinal disinhibition and neuroinflammation, and also in the brain, via enhanced thalamic activity or decreased cortical inhibition, likely contribute to the pathogenesis of painful diabetic neuropathy. Several potential therapeutic strategies have emerged from preclinical studies, including prophylactic treatments that intervene against underlying mechanisms of disease, treatments that prevent gains of nociceptive function, treatments that suppress enhancements of nociceptive function, and treatments that impede normal nociceptive mechanisms. Ongoing challenges include unraveling the complexity of underlying pathogenic mechanisms, addressing the potential disconnect between the perceived location of pain and the actual pain generator and amplifier sites, and finding ways to identify which mechanisms operate in specific patients to allow rational and individualized choice of targeted therapies.
Collapse
Affiliation(s)
- Corinne A Lee-Kubli
- Graduate School of Biomedical Sciences, Sanford-Burnham Institute for Molecular Medicine, La Jolla, CA, USA; Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
36
|
Ovalle-Magallanes B, Déciga-Campos M, Mata R. Antinociceptive and hypoglycaemic evaluation of Conyza filaginoides (D.C.) Hieron Asteraceae. J Pharm Pharmacol 2015; 67:1733-43. [DOI: 10.1111/jphp.12477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/19/2015] [Indexed: 12/31/2022]
Abstract
Abstract
Objectives
This work was undertaken to assess the antinociceptive and hypoglycaemic properties of a quantified extract of Conyza filaginoides (CFOE), as well as the antinociceptive potential of rutin, the main active compound of the plant, in normoglycaemic and/or hyperglycaemic mice (nicotinamide-streptozotocin, NA-STZ).
Methods
The antinociceptive effect of CFOE was evaluated using the writhing, hotplate and formalin tests in mice. Rutin was also examined with the formalin test. In addition, the antihyperalgesic effect of CFOE was evaluated in hyperglycaemic mice. The hypoglycaemic effect of CFOE was tested using an acute hypoglycaemic assay, and oral glucose and sucrose tests in normoglycaemic and hyperglycaemic mice.
Key findings
CFOE showed antinociceptive effect when tested in normoglycaemic mice in the writhing and hotplate tests (31.6–316 mg/kg). CFOE was also active in both normoglycaemic and hyperglycaemic mice in the formalin test (10–100 μg/paw) revealing its antihyperalgesic property. Rutin reduced the nociceptive behaviour in the formalin test; its mechanism of action seems to involve GABAergic and opioid pathways. CFOE possessed noted hypoglycaemic and antihyperglycaemic effects in normoglycaemic and hyperglycaemic mice (31.6–316 mg/kg).
Conclusions
The antinociceptive, antihyperalgesic and hypoglycaemic effects of C. filaginoides found in this study support the contemporary uses of the plant in Mexican folk medicine.
Collapse
Affiliation(s)
| | - Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México D.F., México
| | - Rachel Mata
- Facultad de Química, Universidad Nacional Autónoma de México, México D.F., México
| |
Collapse
|
37
|
Araiza-Saldaña CI, Pedraza-Priego EF, Torres-López JE, Rocha-González HI, Castañeda-Corral G, Hong-Chong E, Granados-Soto V. Fosinopril Prevents the Development of Tactile Allodynia in a Streptozotocin-Induced Diabetic Rat Model. Drug Dev Res 2015; 76:442-9. [DOI: 10.1002/ddr.21280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/22/2015] [Indexed: 01/01/2023]
Affiliation(s)
| | - Erick Fabián Pedraza-Priego
- División Académica de Ciencias de la Salud; Universidad Juárez Autónoma de Tabasco; Villahermosa Tabasco Mexico
| | - Jorge Elías Torres-López
- División Académica de Ciencias de la Salud; Universidad Juárez Autónoma de Tabasco; Villahermosa Tabasco Mexico
| | - Héctor Isaac Rocha-González
- Sección de Estudios de Posgrado e Investigación; Escuela Superior de Medicina, Instituto Politécnico Nacional; México D.F. Mexico
| | | | - Enrique Hong-Chong
- Departamento de Farmacobiología; Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur.; México D.F. Mexico
| | - Vinicio Granados-Soto
- Departamento de Farmacobiología; Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur.; México D.F. Mexico
| |
Collapse
|
38
|
Habash T, Saleh A, Roy Chowdhury SK, Smith DR, Fernyhough P. The proinflammatory cytokine, interleukin-17A, augments mitochondrial function and neurite outgrowth of cultured adult sensory neurons derived from normal and diabetic rats. Exp Neurol 2015; 273:177-89. [PMID: 26321687 DOI: 10.1016/j.expneurol.2015.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/31/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diabetic neuropathy comprises dying back of nerve endings that reflects impairment in axonal plasticity and regenerative nerve growth. Metabolic changes in diabetes can lead to a dysregulation of hormonal mediators, such as cytokines, that may constrain distal nerve fiber growth. Interleukin-17 (IL-17A), a proinflammatory and neurotropic cytokine produced by T-cells, was significantly reduced in sciatic nerve of streptozotocin (STZ)-diabetic rats. Thus we studied the effect of IL-17A on the phenotype of sensory neurons derived from age matched control or type 1 diabetic rats. The aims were to determine the ability of IL-17A to enhance neurite outgrowth in cultured sensory neurons, investigate the signaling pathways activated by IL-17A, study the role of mitochondria and mechanistically link to neurite outgrowth. RESULTS IL-17A (10 ng/ml; p<0.05) significantly and dose-dependently increased total neurite outgrowth in cultures of adult dorsal root ganglia (DRG) sensory neurons derived from both control and streptozotocin (STZ)-diabetic rats. This enhancement was mediated by IL-17A-dependent activation of extracellular-regulated protein kinase (ERK) and phosphoinositide-3 kinase (PI-3K) signal transduction pathways. Pharmacological blockade of one of these activated pathways triggered complete inhibition of neurite outgrowth. IL-17A augmented mitochondrial bioenergetic function of sensory neurons derived from control or diabetic rats and this was also mediated via ERK or PI-3K. IL-17A-dependent elevation of bioenergetic function was associated with augmented expression of proteins of the mitochondrial electron transport system complexes. CONCLUSIONS IL-17A enhanced axonal plasticity through activation of ERK and PI-3K pathways and was associated with augmented mitochondrial bioenergetic function in sensory neurons.
Collapse
Affiliation(s)
- Tarek Habash
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Ali Saleh
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Darrell R Smith
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada.
| |
Collapse
|
39
|
Kroin JS, Buvanendran A, Li J, Moric M, Im HJ, Tuman KJ, Shafikhani SH. Short-term glycemic control is effective in reducing surgical site infection in diabetic rats. Anesth Analg 2015; 120:1289-96. [PMID: 25695673 DOI: 10.1213/ane.0000000000000650] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Patients and animals with diabetes exhibit enhanced vulnerability to bacterial surgical infections. Despite multiple retrospective studies demonstrating the benefits associated with glycemic control in reducing bacterial infection after cardiac surgery, there are fewer guidelines on the use of glycemic control for noncardiac surgeries. In the current study, we investigated whether long-term (begun 2 weeks before surgery) or immediate (just before surgery) glycemic controls, continued postoperatively, can reduce surgical site infection in type 1 diabetic-induced rats. METHODS Rats were injected with streptozotocin to induce type 1 diabetes. Four groups of animals underwent surgery and thigh muscle Staphylococcus aureus bacteria challenge (1 × 10 colony forming units) at the time of surgery. Group 1 diabetic rats received insulin treatment just before surgery and continued until the end of study (short-term glycemic control group). Group 2 diabetic rats received insulin treatment 2 weeks before surgery and continued until the end of study (long-term glycemic control). Group 3 diabetic rats received no insulin treatment (no glycemic control group). Group 4 nondiabetic rats served as a healthy control group. Rats were euthanized at 3 or 6 days after surgery. Blood glucose and muscle bacterial burden were measured at 3 or 6 days after surgery. RESULTS Glycemic control was achieved in both long- and short-term insulin-treated diabetic rats. Compared with untreated diabetic rats, the bacterial burden in muscle was significantly lower in both groups of glycemic controlled diabetic rats at 3 (all P < 0.003) and 6 (all P < 0.0001) days after surgery. CONCLUSIONS A short-term glycemic control regimen, initiated just before surgery and bacterial exposure, was as effective in reducing surgical site infection as a long-term glycemic control in type 1 diabetic rats. These data suggest that immediately implementing glycemic control in type 1 diabetic surgical patients before undergoing noncardiac surgery may decrease the risk of infection.
Collapse
Affiliation(s)
- Jeffrey S Kroin
- From the *Department of Anesthesiology, Rush University Medical Center, Chicago, Illinois; †Department of Biochemistry, Rush University Medical Center, Chicago, Illinois; and ‡Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
40
|
King MR, Anderson NJ, Liu C, Law E, Cundiff M, Mixcoatl-Zecuatl TM, Jolivalt CG. Activation of the insulin-signaling pathway in sciatic nerve and hippocampus of type 1 diabetic rats. Neuroscience 2015; 303:220-8. [PMID: 26149351 DOI: 10.1016/j.neuroscience.2015.06.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 12/20/2022]
Abstract
Peripheral neuropathy is a major complication associated with diabetes and central neuropathy characterized by Alzheimer's disease-like features in the brain is associated with increased dementia risk for patients with diabetes. Although glucose uptake into the cells of the nervous system is insulin-independent, contribution of impaired insulin support is clearly recognized to play a role, however not yet fully understood, in the development of neuropathy. In this study, we assessed the direct role of insulin on the peripheral nervous system (PNS) and central nervous system (CNS) of insulin-dependent type 1 diabetic rats. Fresh sciatic nerve and hippocampus from control and diabetic rats were incubated with varied ex vivo concentrations of insulin and phosphorylation levels of insulin receptor and glycogen synthase kinase-3 (GSK3β) were assessed by Western blot analysis. Both the sciatic nerve and hippocampus from type 1 diabetic rats were highly responsive to exogenous insulin with a significantly increased phosphorylation of insulin receptor and GSK3 compared to tissues from control rats. Further, sustained in vivo insulin delivery, not sufficient to restore normal blood glucose, normalized the activation of both insulin receptor and GSK3 in both PNS and CNS tissues. These results suggest that the insulin-signaling pathway is responsive to exogenous insulin in the nervous system of insulin-deficient type 1 diabetic rats and that constant insulin delivery restore normal nerve function and may protect PNS and CNS from damage.
Collapse
Affiliation(s)
- M R King
- University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - N J Anderson
- University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - C Liu
- University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - E Law
- University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - M Cundiff
- University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | - C G Jolivalt
- University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
41
|
Gomez-Brouchet A, Blaes N, Mouledous L, Fourcade O, Tack I, Francès B, Girolami JP, Minville V. Beneficial effects of levobupivacaine regional anaesthesia on postoperative opioid induced hyperalgesia in diabetic mice. J Transl Med 2015; 13:208. [PMID: 26136113 PMCID: PMC4488045 DOI: 10.1186/s12967-015-0575-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/16/2015] [Indexed: 12/26/2022] Open
Abstract
Background Diabetic neuropathy is one of the most common complications of diabetes and causes various problems in daily life. The aim of this study was to assess the effect of regional anaesthesia on post surgery opioid induced hyperalgesia in diabetic and non-diabetic mice. Methods Diabetic and non-diabetic mice underwent plantar surgery. Levobupivacaine and sufentanil were used before surgery, for sciatic nerve block (regional anaesthesia) and analgesia, respectively. Diabetic and non-diabetic groups were each randomly assigned to three subgroups: control, no sufentanil and no levobupivacaine; sufentanil and no levobupivacaine; sufentanil and levobupivacaine. Three tests were used to assess pain behaviour: mechanical nociception; thermal nociception and guarding behaviours using a pain scale. Results Sufentanil, alone or in combination with levobupivacaine, produced antinociceptive effects shortly after administration. Subsequently, sufentanil induced hyperalgesia in diabetic and non-diabetic mice. Opioid-induced hyperalgesia was enhanced in diabetic mice. Levobupivacaine associated to sufentanil completely prevented hyperalgesia in both groups of mice. Conclusion The results suggest that regional anaesthesia can decrease opioid-induced hyperalgesia in diabetic as well as in non-diabetic mice. These observations may be clinically relevant for the management of diabetic patients.
Collapse
Affiliation(s)
- Anne Gomez-Brouchet
- Service d'Anatomie Pathologique et Histologie-Cytologie, IUCT Oncopôle, 1 Avenue du Juliot Curie, 31059, Toulouse Cedex 9, France.
| | - Nelly Blaes
- Institute of Metabolic and Cardiovascular Diseases, I2MC, INSERM, U1048, Université Paul Sabatier, 31432, Toulouse, France.
| | - Lionel Mouledous
- CNRS, IPBS, Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077, Toulouse, France.
| | - Olivier Fourcade
- Department of Anaesthesiology and Intensive Care, Toulouse University Hospital, 31432, Toulouse, France.
| | - Ivan Tack
- Institute of Metabolic and Cardiovascular Diseases, I2MC, INSERM, U1048, Université Paul Sabatier, 31432, Toulouse, France.
| | - Bernard Francès
- Université de Toulouse, Centre de Recherches sur la Cognition Animale, CNRS, UMR 5169, Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France.
| | - Jean-Pierre Girolami
- Institute of Metabolic and Cardiovascular Diseases, I2MC, INSERM, U1048, Université Paul Sabatier, 31432, Toulouse, France.
| | - Vincent Minville
- Department of Anaesthesiology and Intensive Care, Toulouse University Hospital, 31432, Toulouse, France. .,Institute of Metabolic and Cardiovascular Diseases, I2MC, INSERM, U1048, Université Paul Sabatier, 31432, Toulouse, France.
| |
Collapse
|
42
|
Chen YW, Chiu CC, Hsieh PL, Hung CH, Wang JJ. Treadmill training combined with insulin suppresses diabetic nerve pain and cytokines in rat sciatic nerve. Anesth Analg 2015; 121:239-246. [PMID: 25993391 DOI: 10.1213/ane.0000000000000799] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Insulin therapy plays a critical role in managing type 1 diabetes mellitus, and exercise produces alterations in pain sensation. This experiment explored the effects of insulin therapy combined with treadmill training on diabetic neuropathic pain and on the expression of malondialdehyde (MDA) and cytokines. METHODS Rats were given 4 weeks of insulin (100 IU/kg) therapy and treadmill training (30-60 min/d of training at 20-25 m/min) each day beginning on day 3 after streptozotocin (65 mg/kg, IV) injection and continuing until day 27. Sensitivity to heat and mechanical stimuli and the expression of interleukin (IL)-10, IL-6, tumor necrosis factor-α, and MDA in the sciatic nerve were estimated. RESULTS We showed that 2 to 4 weeks of treadmill training, insulin treatment, or their combination increased both paw withdrawal thresholds and latencies compared with the same regimen in sedentary diabetic rats (all P < 0.0022). Treatment with insulin, but without treadmill training, had significant effects on glycemic control (P < 0.0001) and restored body weight (P < 0.0001) in the diabetic rats. The diabetic rats demonstrated the upregulation (all P < 0.009) of IL-6, MDA, and tumor necrosis factor-α in the sciatic nerve on days 14 and 28 after streptozotocin treatment, whereas in diabetic rats receiving insulin, treadmill training, or a combination (all P < 0.01), this upregulation was decreased. Insulin, treadmill training, or the combination increased IL-10 expression (all P < 0.0051) in all diabetic rats. CONCLUSIONS Treadmill training combined with insulin therapy showed the best improvements in tactile allodynia and thermal hyperalgesia among our 3 treatment groups. The benefits of insulin intervention and treadmill training could be related to chronic inflammation (proinflammatory cytokines) and oxidative stress (MDA).
Collapse
Affiliation(s)
- Yu-Wen Chen
- From the Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan; Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan; Department of General Surgery, Chi-Mei Medical Center, Tainan and Liouying, Taiwan; Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan; and Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
43
|
Gauvin DV, Abernathy MM, Tapp RL, Yoder JD, Dalton JA, Baird TJ. The failure to detect drug-induced sensory loss in standard preclinical studies. J Pharmacol Toxicol Methods 2015; 74:53-74. [DOI: 10.1016/j.vascn.2015.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 12/19/2022]
|
44
|
Byrne FM, Cheetham S, Vickers S, Chapman V. Characterisation of pain responses in the high fat diet/streptozotocin model of diabetes and the analgesic effects of antidiabetic treatments. J Diabetes Res 2015; 2015:752481. [PMID: 25759824 PMCID: PMC4338392 DOI: 10.1155/2015/752481] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/08/2014] [Accepted: 12/16/2014] [Indexed: 12/12/2022] Open
Abstract
Chronic pain is a common complication of diabetes. The aim of the present study was to characterise pain behaviour in a high fat diet/streptozotocin (HFD/STZ) model of diabetes in the rat, investigate spinal mechanisms, and determine the effects of antidiabetic interventions. Three-week consumption of a high fat diet followed by single injection of STZ (45 mgkg(-1)) produced sustained changes in plasma insulin and glucose until day 120. Hindpaw mechanical withdrawal thresholds were significantly lowered in the model, but mechanically evoked responses of spinal neurones were unaltered, compared to HFD/vehicle rats. HFD/STZ rats had significantly lower numbers of spinal Iba-1 positive cells (morphologically identified as activated microglia) and spinal GFAP immunofluorescence (a marker of astrogliosis) in the spinal cord at day 50, compared to time-matched controls. The PPARγ ligand pioglitazone (10 mgkg(-1)) did not alter HFD/STZ induced metabolic changes or hindpaw withdrawal thresholds of HFD/STZ rats. Daily linagliptin (3 mgkg(-1)) and metformin (200 mgkg(-1)) from day 4 after model induction did not alter plasma glucose or insulin in HFD/STZ rats but significantly prevented changes in the mechanical withdrawal thresholds. The demonstration that currently prescribed antidiabetic drugs prevent aberrant pain behaviour supports the use of this model to investigate pain mechanisms associated with diabetes.
Collapse
Affiliation(s)
| | - Sharon Cheetham
- RenaSci Ltd., BioCity Nottingham, Pennyfoot Street, Nottingham NG1 1GF, UK
| | - Steven Vickers
- RenaSci Ltd., BioCity Nottingham, Pennyfoot Street, Nottingham NG1 1GF, UK
| | - Victoria Chapman
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham NG7 2UH, UK
- *Victoria Chapman:
| |
Collapse
|
45
|
Hasanein P, Mohammad Zaheri L. Effects of rosmarinic acid on an experimental model of painful diabetic neuropathy in rats. PHARMACEUTICAL BIOLOGY 2014; 52:1398-402. [PMID: 25026351 DOI: 10.3109/13880209.2014.894090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Diabetic neuropathic (DN) pain is one of the diabetes complications. Rosmarinic acid (RA), a natural phenol antioxidant, shows some biological activities, including anti-inflammatory, analgesic, and anti-diabetic effects. OBJECTIVES We investigated the efficacy of RA administration (10 and 30 mg/kg) on streptozotocin (STZ)-induced neuropathy in rats. MATERIAL AND METHODS The animals received saline or RA (10 and 30 mg/kg, p.o.; once daily) for 8 weeks. DN was evaluated by the tail flick (TF) method, formalin test, and tactile allodynia. At the end, all rats were weighed and underwent plasma glucose measurement. RESULTS There was an increase in licking time during both formalin test phases in diabetic animals (138.5 ± 10.7 and 448.7 ± 2.6 s) that was decreased by RA10 mg/kg (103.5 ± 7.5 and 284.4 ± 19 s) and RA 30 mg/kg (81.8 ± 11 and 192.7 ± 14 s). RA 30 mg/kg caused anti-nociception during the early phase in treated controls (52.1 ± 6 s) than untreated controls (99.4 ± 5.9 s). The TF latency in diabetics (2.9 ± 0.1 s) was increased in RA10 and 30 mg/kg treated diabetics (5.3 ± 0.4 and 6 ± 0.86 s). The paw withdrawal threshold (PWT) of the diabetics (3.6 ± 0.7 g) was increased after RA 10 and 30 mg/kg (13.8 ± 0.3 and 14 ± 0.4 g) treatment. RA did not induce a significant change in body weight and plasma glucose of rats. CONCLUSION RA showed efficacy in amelioration of some aspects of DN. Therefore, RA makes a good candidate for DN treatment in clinical studies.
Collapse
Affiliation(s)
- Parisa Hasanein
- Department of Biology, School of Basic Sciences, Bu-Ali Sina University , Hamedan , Iran
| | | |
Collapse
|
46
|
Becker M, Benromano T, Shahar A, Nevo Z, Pick CG. Changes in the basal membrane of dorsal root ganglia Schwann cells explain the biphasic pattern of the peripheral neuropathy in streptozotocin-induced diabetic rats. J Mol Neurosci 2014; 54:704-13. [PMID: 25260693 DOI: 10.1007/s12031-014-0424-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
Peripheral neuropathy is one of the main complications of diabetes mellitus. The current study demonstrated the bimodal pattern of diabetic peripheral neuropathy found in the behavioral study of pain perception in parallel to the histopathological findings in dorsal root ganglia (DRGs) neurons and satellite Schwann cell basement membranes. A gradual decrease in heparan sulfate content, with a reciprocal increase in deposited laminin in the basement membranes of dorsal root ganglia Schwann cells, was shown in streptozotocin-treated rats. In addition, the characteristic biphasic pain profiles were demonstrated in diabetic rats, as shown by hypersensitivity at the third week and hyposensitivity at the tenth week post-streptozotocin injection, accompanied by a continuous decrease in the sciatic nerve conduction velocity. It appears that these basal membrane abnormalities in content of heparan sulfate and laminin, noticed in diabetic rats, may underline the primary damage in dorsal ganglion sensory neurons, simultaneously with the bimodal painful profile in diabetic peripheral neuropathy, simulating the scenario of filtration rate in diabetic kidney.
Collapse
Affiliation(s)
- Maria Becker
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, University of Tel Aviv, Tel Aviv, 69978, Israel
| | | | | | | | | |
Collapse
|
47
|
Abo-Salem OM. Kaempferol Attenuates the Development of Diabetic Neuropathic Pain in Mice: Possible Anti-Inflammatory and Anti-Oxidant Mechanisms. Open Access Maced J Med Sci 2014. [DOI: 10.3889/oamjms.2014.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Diabetic neuropathic pain (DNP) is one of the most difficult types of pain to treat. Many studies emphasized on the role of microglial cells, oxidative stress (OS) and inflammatory cytokines (IC) in the development of diabetic neuropathy (DN).AIM: Present study was designed to evaluate the effect of kaempferol in attenuation of DN in mice. METHODS: Diabetes was induced in mice by i.p. injection of a single dose of streptozotocin (STZ) (200 mg/kg). Cold allodynia, thermal hyperalgesia and chemical hyperalgesia were assessed, as well as markers of inflammation and OS.RESULTS: Diabetic mice (DM) showed an increased pain sensation, IC and OS accompanied with reduced body weigh gain. Treatment of DM with kaempferol (25, 50 and 100 mg/kg/day/orally) attenuated the development of DN and reduced pain sensation. Moreover, it reduced interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), lipid peroxidation and nitrite, concomitant with the improvement of antioxidant defense and body weight gain. In contrast, kaempferol (100 mg/kg) had no effects on the behavioral and biochemical parameters. Our results strongly suggest that activated microglia, IC and OS are involved in the development of DN.CONCLUSIONS: Kaempferol attenuates the development of DNP in mice probably by inhibition of neuroimmune activation of microglia and, partly mediated by reducing IC and OS.
Collapse
|
48
|
Temporal course of streptozotocin-induced diabetic polyneuropathy in rats. Neurol Sci 2014; 35:1813-20. [DOI: 10.1007/s10072-014-1848-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
|
49
|
Tanaka KI, Nakanishi Y, Sekino S, Ikegami M, Ikeda H, Kamei J. Fentanyl produces an anti-hyperalgesic effect through the suppression of sodium channels in mice with painful diabetic neuropathy. Eur J Pharmacol 2014; 733:68-74. [DOI: 10.1016/j.ejphar.2014.03.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 11/30/2022]
|
50
|
Jinzenji A, Sogawa C, Miyawaki T, Wen XF, Yi D, Ohyama K, Kitayama S, Sogawa N, Morita K. Antiallodynic action of 1-(3-(9H-Carbazol-9-yl)-1-propyl)-4-(2-methyoxyphenyl)-4-piperidinol (NNC05-2090), a betaine/GABA transporter inhibitor. J Pharmacol Sci 2014; 125:217-26. [PMID: 24881960 DOI: 10.1254/jphs.13146fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The GABAergic system in the spinal cord has been shown to participate in neuropathic pain in various animal models. GABA transporters (GATs) play a role in controlling the synaptic clearance of GABA; however, their role in neuropathic pain remains unclear. In the present study, we compared the betaine/GABA transporter (BGT-1) with other GAT subtypes to determine its participation in neuropathic pain using a mouse model of sciatic nerve ligation. 1-(3-(9H-Carbazol-9-yl)-1-propyl)-4-(2-methyoxyphenyl)-4-piperidinol (NNC05-2090), an inhibitor that displays moderate selectivity for BGT-1, had an antiallodynic action on model mice treated through both intrathecally and intravenous administration routes. On the other hand, SKF89976A, a selective GAT-1 inhibitor, had a weak antiallodynic action, and (S)-SNAP5114, an inhibitor that displays selectivity for GAT-3, had no antiallodynic action. Systemic analysis of these compounds on GABA uptake in CHO cells stably expressing BGT-1 revealed that NNC05-2090 not only inhibited BGT-1, but also serotonin, noradrenaline, and dopamine transporters, using a substrate uptake assay in CHO cells stably expressing each transporter, with IC50: 5.29, 7.91, and 4.08 μM, respectively. These values were similar to the IC50 value at BGT-1 (10.6 μM). These results suggest that the antiallodynic action of NNC05-2090 is due to the inhibition of both BGT-1 and monoamine transporters.
Collapse
Affiliation(s)
- Ayako Jinzenji
- Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|