1
|
Cantin LJ, Gregory V, Blum LN, Foster JM. Dual RNA-seq in filarial nematodes and Wolbachia endosymbionts using RNase H based ribosomal RNA depletion. Front Microbiol 2024; 15:1418032. [PMID: 38832111 PMCID: PMC11144916 DOI: 10.3389/fmicb.2024.1418032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Lymphatic filariasis is caused by parasitic nematodes and is a leading cause of disability worldwide. Many filarial worms contain the bacterium Wolbachia as an obligate endosymbiont. RNA sequencing is a common technique used to study their molecular relationships and to identify potential drug targets against the nematode and bacteria. Ribosomal RNA (rRNA) is the most abundant RNA species, accounting for 80-90% of the RNA in a sample. To reduce sequencing costs, it is necessary to remove ribosomal reads through poly-A enrichment or ribosomal depletion. Bacterial RNA does not contain a poly-A tail, making it difficult to sequence both the nematode and Wolbachia from the same library preparation using standard poly-A selection. Ribosomal depletion can utilize species-specific oligonucleotide probes to remove rRNA through pull-down or degradation methods. While species-specific probes are commercially available for many commonly studied model organisms, there are currently limited depletion options for filarial parasites. Here, we performed total RNA sequencing from Brugia malayi containing the Wolbachia symbiont (wBm) and designed ssDNA depletion probes against their rRNA sequences. We compared the total RNA library to poly-A enriched, Terminator 5'-Phosphate-Dependent Exonuclease treated, NEBNext Human/Bacteria rRNA depleted and our custom nematode probe depleted libraries. The custom nematode depletion library had the lowest percentage of ribosomal reads across all methods, with a 300-fold decrease in rRNA when compared to the total RNA library. The nematode depletion libraries also contained the highest percentage of Wolbachia mRNA reads, resulting in a 16-1,000-fold increase in bacterial reads compared to the other enrichment and depletion methods. Finally, we found that the Brugia malayi depletion probes can remove rRNA from the filarial worm Dirofilaria immitis and the majority of rRNA from the more distantly related free living nematode Caenorhabditis elegans. These custom filarial probes will allow for future dual RNA-seq experiments between nematodes and their bacterial symbionts from a single sequencing library.
Collapse
Affiliation(s)
- Lindsey J. Cantin
- Biochemistry and Microbiology Division, New England BioLabs, Ipswich, MA, United States
| | - Vanessa Gregory
- Biochemistry and Microbiology Division, New England BioLabs, Ipswich, MA, United States
| | - Laura N. Blum
- Applications and Product Development, New England BioLabs, Ipswich, MA, United States
| | - Jeremy M. Foster
- Biochemistry and Microbiology Division, New England BioLabs, Ipswich, MA, United States
| |
Collapse
|
2
|
Cantin LJ, Dunning Hotopp JC, Foster JM. Improved metagenome assemblies through selective enrichment of bacterial genomic DNA from eukaryotic host genomic DNA using ATAC-seq. Front Microbiol 2024; 15:1352378. [PMID: 38426058 PMCID: PMC10902005 DOI: 10.3389/fmicb.2024.1352378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Genomics can be used to study the complex relationships between hosts and their microbiota. Many bacteria cannot be cultured in the laboratory, making it difficult to obtain adequate amounts of bacterial DNA and to limit host DNA contamination for the construction of metagenome-assembled genomes (MAGs). For example, Wolbachia is a genus of exclusively obligate intracellular bacteria that live in a wide range of arthropods and some nematodes. While Wolbachia endosymbionts are frequently described as facultative reproductive parasites in arthropods, the bacteria are obligate mutualistic endosymbionts of filarial worms. Here, we achieve 50-fold enrichment of bacterial sequences using ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) with Brugia malayi nematodes, containing Wolbachia (wBm). ATAC-seq uses the Tn5 transposase to cut and attach Illumina sequencing adapters to accessible DNA lacking histones, typically thought to be open chromatin. Bacterial and mitochondrial DNA in the lysates are also cut preferentially since they lack histones, leading to the enrichment of these sequences. The benefits of this include minimal tissue input (<1 mg of tissue), a quick protocol (<4 h), low sequencing costs, less bias, correct assembly of lateral gene transfers and no prior sequence knowledge required. We assembled the wBm genome with as few as 1 million Illumina short paired-end reads with >97% coverage of the published genome, compared to only 12% coverage with the standard gDNA libraries. We found significant bacterial sequence enrichment that facilitated genome assembly in previously published ATAC-seq data sets from human cells infected with Mycobacterium tuberculosis and C. elegans contaminated with their food source, the OP50 strain of E. coli. These results demonstrate the feasibility and benefits of using ATAC-seq to easily obtain bacterial genomes to aid in symbiosis, infectious disease, and microbiome research.
Collapse
Affiliation(s)
- Lindsey J. Cantin
- Biochemistry and Microbiology Division, New England BioLabs, Ipswich, MA, United States
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jeremy M. Foster
- Biochemistry and Microbiology Division, New England BioLabs, Ipswich, MA, United States
| |
Collapse
|
3
|
Hamid A, Mäser P, Mahmoud AB. Drug Repurposing in the Chemotherapy of Infectious Diseases. Molecules 2024; 29:635. [PMID: 38338378 PMCID: PMC10856722 DOI: 10.3390/molecules29030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Repurposing is a universal mechanism for innovation, from the evolution of feathers to the invention of Velcro tape. Repurposing is particularly attractive for drug development, given that it costs more than a billion dollars and takes longer than ten years to make a new drug from scratch. The COVID-19 pandemic has triggered a large number of drug repurposing activities. At the same time, it has highlighted potential pitfalls, in particular when concessions are made to the target product profile. Here, we discuss the pros and cons of drug repurposing for infectious diseases and analyze different ways of repurposing. We distinguish between opportunistic and rational approaches, i.e., just saving time and money by screening compounds that are already approved versus repurposing based on a particular target that is common to different pathogens. The latter can be further distinguished into divergent and convergent: points of attack that are divergent share common ancestry (e.g., prokaryotic targets in the apicoplast of malaria parasites), whereas those that are convergent arise from a shared lifestyle (e.g., the susceptibility of bacteria, parasites, and tumor cells to antifolates due to their high rate of DNA synthesis). We illustrate how such different scenarios can be capitalized on by using examples of drugs that have been repurposed to, from, or within the field of anti-infective chemotherapy.
Collapse
Affiliation(s)
- Amal Hamid
- Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan;
| | - Pascal Mäser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, 4123 Basel, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Abdelhalim Babiker Mahmoud
- Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan;
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, 66123 Saarbruecken, Germany
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| |
Collapse
|
4
|
Huggins LG, Atapattu U, Young ND, Traub RJ, Colella V. Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans. BMC Microbiol 2024; 24:28. [PMID: 38245715 PMCID: PMC10799534 DOI: 10.1186/s12866-023-03159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Filarial worms are important vector-borne pathogens of a large range of animal hosts, including humans, and are responsible for numerous debilitating neglected tropical diseases such as, lymphatic filariasis caused by Wuchereria bancrofti and Brugia spp., as well as loiasis caused by Loa loa. Moreover, some emerging or difficult-to-eliminate filarioid pathogens are zoonotic using animals like canines as reservoir hosts, for example Dirofilaria sp. 'hongkongensis'. Diagnosis of filariasis through commonly available methods, like microscopy, can be challenging as microfilaremia may wane below the limit of detection. In contrast, conventional PCR methods are more sensitive and specific but may show limited ability to detect coinfections as well as emerging and/or novel pathogens. Use of deep-sequencing technologies obviate these challenges, providing sensitive detection of entire parasite communities, whilst also being better suited for the characterisation of rare or novel pathogens. Therefore, we developed a novel long-read metabarcoding assay for deep-sequencing the filarial nematode cytochrome c oxidase subunit I gene on Oxford Nanopore Technologies' (ONT) MinION™ sequencer. We assessed the overall performance of our assay using kappa statistics to compare it to commonly used diagnostic methods for filarial worm detection, such as conventional PCR (cPCR) with Sanger sequencing and the microscopy-based modified Knott's test (MKT). RESULTS We confirmed our metabarcoding assay can characterise filarial parasites from a diverse range of genera, including, Breinlia, Brugia, Cercopithifilaria, Dipetalonema, Dirofilaria, Onchocerca, Setaria, Stephanofilaria and Wuchereria. We demonstrated proof-of-concept for this assay by using blood samples from Sri Lankan dogs, whereby we identified infections with the filarioids Acanthocheilonema reconditum, Brugia sp. Sri Lanka genotype and zoonotic Dirofilaria sp. 'hongkongensis'. When compared to traditionally used diagnostics, such as the MKT and cPCR with Sanger sequencing, we identified an additional filarioid species and over 15% more mono- and coinfections. CONCLUSIONS Our developed metabarcoding assay may show broad applicability for the metabarcoding and diagnosis of the full spectrum of filarioids from a wide range of animal hosts, including mammals and vectors, whilst the utilisation of ONT' small and portable MinION™ means that such methods could be deployed for field use.
Collapse
Affiliation(s)
- Lucas G Huggins
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, 3050, Australia.
| | - Ushani Atapattu
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, 3050, Australia
| | - Neil D Young
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, 3050, Australia
| | - Rebecca J Traub
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, 3050, Australia
| | - Vito Colella
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, 3050, Australia
| |
Collapse
|
5
|
Lau DCW, Power RI, Šlapeta J. Exploring multiplex qPCR as a diagnostic tool for detecting microfilarial DNA in dogs infected with Dirofilaria immitis: A comparative analysis with the modified Knott's test. Vet Parasitol 2024; 325:110097. [PMID: 38104431 DOI: 10.1016/j.vetpar.2023.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Current recommendations to diagnose cardiopulmonary dirofilariosis in dogs caused by Dirofilaria immitis involves tandem antigen and circulating microfilariae tests. The modified Knott's test is an important tool in heartworm diagnosis, allowing identification of circulating microfilariae. However, the subjective nature of the modified Knott's test affects its accuracy and diagnostic laboratories usually do not provide a quantitative outcome. Quantitative enumeration of microfilariae enables clinicians to track treatment progress and acts as a proxy for detecting emerging macrocyclic lactone resistance. There is a need for better diagnostic tools suitable for routine use to efficiently and accurately quantify the presence of D. immitis microfilaremia. The aim of this study was to determine whether the quantitative modified Knott's test can be substituted by multiplex quantitative polymerase chain reaction (qPCR) targeting D. immitis and associated Wolbachia endosymbiont DNA in canine blood samples. To do this, genomic DNA samples (n = 161) from Australian dogs, collected as part of a previous 2021 study, were assessed in a TaqMan qPCR targeting DNA of D. immitis, Wolbachia sp. and Canis lupus familiaris. Of the 161 genomic DNA samples, eight were considered positive for D. immitis microfilariae. The qPCR assay demonstrated good efficiency (E = 90 to 110%, R2 > 0.94). Considering the performance and efficient use of bench time, this TaqMan qPCR assay is a suitable alternative to the modified Knott's test for quantitative enumeration of microfilariae (Cohen's kappa coefficient [κ]: κ = 1 using D. immitis qPCR marker, κ = 0.93 using Wolbachia qPCR marker). The qPCR data demonstrated a comparable result to that of the quantitative modified Knott's test in a 2022 survey of D. immitis in Australian dogs (n = 23) before and after macrocyclic lactone (ML) administration. Improving the detection and diagnosis of canine heartworm infections will assist veterinarians in better managing and controlling disease outcomes and will be valuable for tracking the spread of ML resistance in Australia.
Collapse
Affiliation(s)
- Daisy Ching-Wai Lau
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, New South Wales 2006, Australia
| | - Rosemonde Isabella Power
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, New South Wales 2006, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, New South Wales 2006, Australia; The University of Sydney Institute for Infectious Diseases, New South Wales 2006, Australia.
| |
Collapse
|
6
|
Sounart H, Voronin D, Masarapu Y, Chung M, Saarenpää S, Ghedin E, Giacomello S. Miniature spatial transcriptomics for studying parasite-endosymbiont relationships at the micro scale. Nat Commun 2023; 14:6500. [PMID: 37838705 PMCID: PMC10576761 DOI: 10.1038/s41467-023-42237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/03/2023] [Indexed: 10/16/2023] Open
Abstract
Several important human infectious diseases are caused by microscale-sized parasitic nematodes like filarial worms. Filarial worms have their own spatial tissue organization; to uncover this tissue structure, we need methods that can spatially resolve these miniature specimens. Most filarial worms evolved a mutualistic association with endosymbiotic bacteria Wolbachia. However, the mechanisms underlying the dependency of filarial worms on the fitness of these bacteria remain unknown. As Wolbachia is essential for the development, reproduction, and survival of filarial worms, we spatially explored how Wolbachia interacts with the worm's reproductive system by performing a spatial characterization using Spatial Transcriptomics (ST) across a posterior region containing reproductive tissue and developing embryos of adult female Brugia malayi worms. We provide a proof-of-concept for miniature-ST to explore spatial gene expression patterns in small sample types, demonstrating the method's ability to uncover nuanced tissue region expression patterns, observe the spatial localization of key B. malayi - Wolbachia pathway genes, and co-localize the B. malayi spatial transcriptome in Wolbachia tissue regions, also under antibiotic treatment. We envision our approach will open up new avenues for the study of infectious diseases caused by micro-scale parasitic worms.
Collapse
Affiliation(s)
- Hailey Sounart
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Denis Voronin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yuvarani Masarapu
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Matthew Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sami Saarenpää
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Stefania Giacomello
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden.
| |
Collapse
|
7
|
McCall JW, Mansour A, DiCosty U, Fricks C, McCall S, Dzimianski MT, Carson B. Long-term evaluation of viability of microfilariae and intravenously transplanted adult Dirofilaria immitis in microfilaremic dogs treated with low-dose, short- and long-treatment regimens of doxycycline and ivermectin. Parasit Vectors 2023; 16:190. [PMID: 37291586 PMCID: PMC10251710 DOI: 10.1186/s13071-023-05769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/09/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Microfilarial (mf) counts were monitored over 21.3 months for any rebound that might occur in counts, and adulticidal efficacy was assessed following administration of low dosage with short- and long-treatment regimens of doxycycline and ivermectin to heartworm-microfilaremic dogs. METHODS Twelve heartworm-naïve beagles infected with 10 pairs of adult Dirofilaria immitis by intravenous transplantation were randomly allocated to three groups of four dogs. All treatments started on day 0. On day 0, Group 1 (short-treatment regimen) received doxycycline orally at 10 mg/kg once daily for 30 days plus ivermectin orally (minimum, 6 mcg/kg) on days 0 and 30. Group 2 (long-treatment regimen) received doxycycline orally at 10 mg/kg once daily until individual dogs became mf-negative (72-98 days) and ivermectin every other week until individual dogs became mf-negative (6-7 doses). Group 3 was the untreated control. Mf counts and antigen (Ag) tests were conducted. Dogs were necropsied for recovery and enumeration of heartworms on day 647. RESULTS Day -1 mean mf counts were 15,613, 23,950, and 15,513 mf/ml for groups 1, 2, and 3, respectively. Mean counts for Groups 1 and 2 declined until days 239 and 97, respectively, when all were negative. Group 3 had high mf counts throughout the study. There was not a rebound in mf counts in any of the treated dogs after they became amicrofilaremic. All dogs in group 1 and group 3 were Ag-positive throughout the study and had at least one live female worm at necropsy. All dogs in treated Group 2 were positive for Ag through day 154, but were antigen-negative on days 644 and 647, as all had only male worms. Mean live adult worm recoveries for Groups 1, 2, and 3 were 6.8 (range, 5-8), 3.3 (range, 1-6), and 16.0 (range, 14-17), respectively, with a percent reduction in adult worm counts of 57.5% for Group 1 and 79.3% for Group 2. CONCLUSIONS These data lend support to the use of the American Heartworm Society Canine Guidelines for adulticide therapy recommending the initiation of doxycycline plus a macrocyclic lactone (ML) at the time of the heartworm-positive diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Timothy Dzimianski
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
8
|
Rodrigues J, Lefoulon E, Gavotte L, Perillat-Sanguinet M, Makepeace B, Martin C, D'Haese CA. Wolbachia springs eternal: symbiosis in Collembola is associated with host ecology. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230288. [PMID: 37266040 PMCID: PMC10230187 DOI: 10.1098/rsos.230288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
Wolbachia are endosymbiotic alpha-proteobacteria infecting a wide range of arthropods and nematode hosts with diverse interactions, from reproductive parasites to obligate mutualists. Their taxonomy is defined by lineages called supergroups (labelled by letters of the alphabet), while their evolutionary history is complex, with multiple horizontal transfers and secondary losses. One of the least recently derived, supergroup E, infects springtails (Collembola), widely distributed hexapods, with sexual and/or parthenogenetic populations depending on species. To better characterize the diversity of Wolbachia infecting springtails, the presence of Wolbachia was screened in 58 species. Eleven (20%) species were found to be positive, with three Wolbachia genotypes identified for the first time in supergroup A. The novel genotypes infect springtails ecologically and biologically different from those infected by supergroup E. To root the Wolbachia phylogeny, rather than distant other Rickettsiales, supergroup L infecting plant-parasitic nematodes was used here. We hypothesize that the ancestor of Wolbachia was consumed by soil-dwelling nematodes, and was transferred horizontally via plants into aphids, which then infected edaphic arthropods (e.g. springtails and oribatid mites) before expanding into most clades of terrestrial arthropods and filarial nematodes.
Collapse
Affiliation(s)
- Jules Rodrigues
- UMR7245, MCAM, Museum national d'Histoire naturelle, Paris, France
| | - Emilie Lefoulon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | | | | | - Benjamin Makepeace
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Coralie Martin
- UMR7245, MCAM, Museum national d'Histoire naturelle, Paris, France
| | - Cyrille A D'Haese
- UMR7179 MECADEV, Museum national d'Histoire naturelle, Paris, France
| |
Collapse
|
9
|
Manoj RRS, Latrofa MS, Louni M, Laidoudi Y, Fenollar F, Otranto D, Mediannikov O. In vitro maintenance of the endosymbiont Wolbachia of Dirofilaria immitis. Parasitol Res 2023; 122:939-943. [PMID: 36810669 DOI: 10.1007/s00436-023-07789-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023]
Abstract
Wolbachia has an obligatory mutualistic relationship with many onchocercid nematodes of the subfamilies Dirofilariinae and Onchocercinae. Till date, no attempts have been made for the in vitro cultivation of this intracellular bacterium from the filarioid host. Hence, the current study attempted cell co-culture method using embryonic Drosophila S2 and the LD cell lines to cultivate Wolbachia from Dirofilaria immitis microfilariae (mfs) harvested from infected dogs. Microfilariae (mfs = 1500) were inoculated in shell vials supplemented with Schneider medium using both cell lines. The establishment and multiplication of the bacterium were observed during the initial inoculation, at day 0 and before every medium change (from days 14 to 115). An aliquot (50 µl) from each time point was tested by quantitative real-time PCR (qPCR). Comparing the average of Ct values, obtained by the tested parameters (i.e., LD/S2 cell lines and mfs with/without treatment), the S2 cell line without mechanical disruption of mfs provided the highest Wolbachia cell count by qPCR. Despite the maintenance of Wolbachia within both S2 and LD-based cell co-culture models for up to 115 days, a definitive conclusion is still far. Further trials using fluorescent microscopy and viable staining will help to demonstrate the cell line infection and viability of Wolbachia. Use of considerable amount of untreated mfs to inoculate the Drosophilia S2 cell lines, as well as the supplementation of the culture media with growth stimulants or pre-treated cells to increase their susceptibility for the infection and development of a filarioid-based cell line system are recommended for the future trials.
Collapse
Affiliation(s)
- Ranju Ravindran Santhakumari Manoj
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy.
- Aix Marseille University, IRD, AP-HM, MEPHI, 13385, Marseille, France.
- IHU Méditerranée Infection, 13385, Marseille, France.
| | | | - Meriem Louni
- Aix Marseille University, IRD, AP-HM, MEPHI, 13385, Marseille, France
- IHU Méditerranée Infection, 13385, Marseille, France
| | - Younes Laidoudi
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
- Aix Marseille University, IRD, AP-HM, MEPHI, 13385, Marseille, France
- IHU Méditerranée Infection, 13385, Marseille, France
| | - Florence Fenollar
- IHU Méditerranée Infection, 13385, Marseille, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
- Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Oleg Mediannikov
- Aix Marseille University, IRD, AP-HM, MEPHI, 13385, Marseille, France.
- IHU Méditerranée Infection, 13385, Marseille, France.
| |
Collapse
|
10
|
Pfarr KM, Krome AK, Al-Obaidi I, Batchelor H, Vaillant M, Hoerauf A, Opoku NO, Kuesel AC. The pipeline for drugs for control and elimination of neglected tropical diseases: 1. Anti-infective drugs for regulatory registration. Parasit Vectors 2023; 16:82. [PMID: 36859332 PMCID: PMC9979492 DOI: 10.1186/s13071-022-05581-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/05/2022] [Indexed: 03/03/2023] Open
Abstract
The World Health Organization 'Ending the neglect to attain the Sustainable Development Goals: A road map for neglected tropical diseases 2021-2030' outlines the targets for control and elimination of neglected tropical diseases (NTDs). New drugs are needed to achieve some of them. We are providing an overview of the pipeline for new anti-infective drugs for regulatory registration and steps to effective use for NTD control and elimination. Considering drugs approved for an NTD by at least one stringent regulatory authority: fexinidazole, included in WHO guidelines for Trypanosoma brucei gambiense African trypanosomiasis, is in development for Chagas disease. Moxidectin, registered in 2018 for treatment of individuals ≥ 12 years old with onchocerciasis, is undergoing studies to extend the indication to 4-11-year-old children and obtain additional data to inform WHO and endemic countries' decisions on moxidectin inclusion in guidelines and policies. Moxidectin is also being evaluated for other NTDs. Considering drugs in at least Phase 2 clinical development, a submission is being prepared for registration of acoziborole as an oral treatment for first and second stage T.b. gambiense African trypanosomiasis. Bedaquiline, registered for tuberculosis, is being evaluated for multibacillary leprosy. Phase 2 studies of emodepside and flubentylosin in O. volvulus-infected individuals are ongoing; studies for Trichuris trichuria and hookworm are planned. A trial of fosravuconazole in Madurella mycetomatis-infected patients is ongoing. JNJ-64281802 is undergoing Phase 2 trials for reducing dengue viral load. Studies are ongoing or planned to evaluate oxantel pamoate for onchocerciasis and soil-transmitted helminths, including Trichuris, and oxfendazole for onchocerciasis, Fasciola hepatica, Taenia solium cysticercosis, Echinococcus granulosus and soil-transmitted helminths, including Trichuris. Additional steps from first registration to effective use for NTD control and elimination include country registrations, possibly additional studies to inform WHO guidelines and country policies, and implementation research to address barriers to effective use of new drugs. Relative to the number of people suffering from NTDs, the pipeline is small. Close collaboration and exchange of experience among all stakeholders developing drugs for NTDs may increase the probability that the current pipeline will translate into new drugs effectively implemented in affected countries.
Collapse
Affiliation(s)
- Kenneth M. Pfarr
- grid.15090.3d0000 0000 8786 803XInstitute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany ,grid.452463.2German Center for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| | - Anna K. Krome
- grid.10388.320000 0001 2240 3300Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| | - Issraa Al-Obaidi
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Hannah Batchelor
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michel Vaillant
- grid.451012.30000 0004 0621 531XCompetence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Grand Duchy of Luxembourg
| | - Achim Hoerauf
- grid.15090.3d0000 0000 8786 803XInstitute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany ,grid.452463.2German Center for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| | - Nicholas O. Opoku
- grid.449729.50000 0004 7707 5975Department of Epidemiology and Biostatistics School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Annette C. Kuesel
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (WHO/TDR), World Health Organization, Geneva, Switzerland
| |
Collapse
|
11
|
Latrofa MS, Varotto-Boccazzi I, Louzada-Flores VN, Iatta R, Mendoza-Roldan JA, Roura X, Zatelli A, Epis S, Bandi C, Otranto D. Interaction between Wolbachia pipientis and Leishmania infantum in heartworm infected dogs. Parasit Vectors 2023; 16:77. [PMID: 36850014 PMCID: PMC9972713 DOI: 10.1186/s13071-023-05662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/10/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Wolbachia is a Gram-negative endosymbiont associated with several species of arthropods and filarioid nematodes, including Dirofilaria immitis. This endosymbiont may elicit a Th1 response, which is a component of the immunity against Leishmania infantum. METHODS To investigate the interactions between Wolbachia of D. immitis and L. infantum in naturally infected dogs and cytokine circulation, dogs without clinical signs (n = 187) were selected. Dogs were tested for microfilariae (mfs) by Knott, for female antigens of D. immitis by SNAP, and for anti-L. infantum antibodies by IFAT and assigned to four groups. Dogs of group 1 (G1) and 2 (G2) were positive for D. immitis and positive or negative to L. infantum, respectively. Dogs of group 3 (G3) and 4 (G4) were negative to D. immitis and positive or negative to L. infantum, respectively. Wolbachia and L. infantum DNA was quantified by real-time PCR (qPCR) in dog blood samples. A subset of dogs (n = 65) was examined to assess pro- and anti-inflammatory cytokine production using an ELISA test. RESULTS Of 93 dogs positive to D. immitis with circulating mfs, 85% were positive to Wolbachia, with the highest amount of DNA detected in G1 and the lowest in dogs with low mfs load in G1 and G2. Among dogs positive to L. infantum, 66% from G1 showed low antibody titer, while 48.9% from G3 had the highest antibody titer. Of 37 dogs positive to Wolbachia from G1, 26 (70.3%) had low antibody titers to L. infantum (1:160). Among cytokines, TNFα showed the highest mean concentration in G1 (246.5 pg/ml), IFNγ being the one most represented (64.3%). IL-10 (1809.5 pg/ml) and IL-6 (123.5 pg/ml) showed the highest mean concentration in dogs from G1. A lower percentage of dogs producing IL-4 was observed in all groups examined, with the highest mean concentration (2794 pg/ml) recorded in G2. CONCLUSION Results show the association of D. immitis and Wolbachia with the lower antibody titers of L. infantum in co-infected dogs, suggesting the hypothesis that the endosymbiont may affect the development of the patent leishmaniosis. However, due to the limitations associated with the heterogeneity of naturally infected dogs in field conditions, results should be validated by investigation on experimental models.
Collapse
Affiliation(s)
- Maria Stefania Latrofa
- grid.7644.10000 0001 0120 3326Department of Veterinary Medicine, University of Bari, Bari, Italy
| | | | | | - Roberta Iatta
- grid.7644.10000 0001 0120 3326Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | | | - Xavier Roura
- grid.7080.f0000 0001 2296 0625Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrea Zatelli
- grid.7644.10000 0001 0120 3326Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Sara Epis
- grid.4708.b0000 0004 1757 2822Department of Biosciences, University of Milan, Milan, Italy ,grid.4708.b0000 0004 1757 2822Pediatric CRC ‘Fondazione Romeo ed Enrica Invernizzi’, University of Milan, Milan, Italy
| | - Claudio Bandi
- grid.4708.b0000 0004 1757 2822Department of Biosciences, University of Milan, Milan, Italy ,grid.4708.b0000 0004 1757 2822Pediatric CRC ‘Fondazione Romeo ed Enrica Invernizzi’, University of Milan, Milan, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Bari, Italy. .,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
12
|
Louzada-Flores VN, Kramer L, Brianti E, Napoli E, Mendoza-Roldan JA, Bezerra-Santos MA, Latrofa MS, Otranto D. Treatment with doxycycline is associated with complete clearance of circulating Wolbachia DNA in Dirofilaria immitis-naturally infected dogs. Acta Trop 2022; 232:106513. [PMID: 35598650 DOI: 10.1016/j.actatropica.2022.106513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/01/2022]
Abstract
Bacteria of the genus Wolbachia are endosymbionts of parasitic filarial nematodes, including Dirofilaria immitis, and are a target for the treatment of canine heartworm disease. In the present study, 53 naturally-infected dogs were divided in three groups, based on their positivity to D. immitis by antigen and Knott tests, to assess the efficacy of doxycycline treatment in eliminating Wolbachia from circulating blood. At T0, dogs that scored positive to both tests (G1) or to antigen only (G2) were submitted to doxycycline (10 mg/kg BID PO) treatment and to 10% Imidacloprid + 2.5% Moxidectin (Advocate®), while those negative to both tests (G3) received only 10% Imidacloprid + 2.5% Moxidectin (Advocate®). All dogs were followed-up for one year, monthly treated with Advocate® and regularly monitored by antigen and Knott tests. During the whole period, all blood samples were screened for Wolbachia-D. immitis DNA load by quantitative real-time PCR (qPCR). At T0, 88.2% of the microfilariemic dogs were positive for Wolbachia DNA, while none of the dogs from G2 or G3 were positive. Wolbachia DNA was no longer detectable in dogs from G1 following 1 month of doxycycline treatment and microfilariae (mfs) were cleared at T2. All dogs from the G1 and G2 were negative for D. immitis antigen at 12 months. Results of this study suggest that successful elimination of mfs by doxycycline is associated with complete clearance of Wolbachia DNA in D. immitis-naturally infected dogs.
Collapse
|
13
|
Transient Introgression of Wolbachia into Aedes aegypti Populations Does Not Elicit an Antibody Response to Wolbachia Surface Protein in Community Members. Pathogens 2022; 11:pathogens11050535. [PMID: 35631057 PMCID: PMC9142965 DOI: 10.3390/pathogens11050535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Wolbachia is an endosymbiotic bacterium that can restrict the transmission of human pathogenic viruses by Aedes aegypti mosquitoes. Recent field trials have shown that dengue incidence is significantly reduced when Wolbachia is introgressed into the local Ae. aegypti population. Female Ae. aegypti are anautogenous and feed on human blood to produce viable eggs. Herein, we tested whether people who reside on Tri Nguyen Island (TNI), Vietnam developed antibodies to Wolbachia Surface Protein (WSP) following release of Wolbachia-infected Ae. aegypti, as a measure of exposure to Wolbachia. Paired blood samples were collected from 105 participants before and after mosquito releases and anti-WSP titres were measured by ELISA. We determined no change in anti-WSP titres after ~30 weeks of high levels of Wolbachia-Ae. aegypti on TNI. These data suggest that humans are not exposed to the major Wolbachia surface antigen, WSP, following introgression of Wolbachia-infected Ae. aegypti mosquitoes.
Collapse
|
14
|
Kwofie SK, Broni E, Yunus FU, Nsoh J, Adoboe D, Miller WA, Wilson MD. Molecular Docking Simulation Studies Identifies Potential Natural Product Derived-Antiwolbachial Compounds as Filaricides against Onchocerciasis. Biomedicines 2021; 9:biomedicines9111682. [PMID: 34829911 PMCID: PMC8615632 DOI: 10.3390/biomedicines9111682] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Onchocerciasis is the leading cause of blindness and severe skin lesions which remain a major public health problem, especially in tropical areas. The widespread use of antibiotics and the long duration required for effective treatment continues to add to the increasing global menace of multi-resistant pathogens. Onchocerca volvulus harbors the endosymbiont bacteria Wolbachia, essential for the normal development of embryos, larvae and long-term survival of the adult worm, O. volvulus. We report here results of using structure-based drug design (SBDD) approach aimed at identifying potential novel Wolbachia inhibitors from natural products against the Wolbachia surface protein (WSP). The protein sequence of the WSP with UniProtKB identifier Q0RAI4 was used to model the three-dimensional (3D) structure via homology modelling techniques using three different structure-building algorithms implemented in Modeller, I-TASSER and Robetta. Out of the 15 generated models of WSP, one was selected as the most reasonable quality model which had 82, 15.5, 1.9 and 0.5% of the amino acid residues in the most favored regions, additionally allowed regions, generously allowed regions and disallowed regions, respectively, based on the Ramachandran plot. High throughput virtual screening was performed via Autodock Vina with a library comprising 42,883 natural products from African and Chinese databases, including 23 identified anti-Onchocerca inhibitors. The top six compounds comprising ZINC000095913861, ZINC000095486235, ZINC000035941652, NANPDB4566, acetylaleuritolic acid and rhemannic acid had binding energies of −12.7, −11.1, −11.0, −11, −10.3 and −9.5 kcal/mol, respectively. Molecular dynamics simulations including molecular mechanics Poisson-Boltzmann (MMPBSA) calculations reinforced the stability of the ligand-WSP complexes and plausible binding mechanisms. The residues Arg45, Tyr135, Tyr148 and Phe195 were predicted as potential novel critical residues required for ligand binding in pocket 1. Acetylaleuritolic acid and rhemannic acid (lantedene A) have previously been shown to possess anti-onchocercal activity. This warrants the need to evaluate the anti-WSP activity of the identified molecules. The study suggests the exploitation of compounds which target both pockets 1 and 2, by investigating their potential for effective depletion of Wolbachia. These compounds were predicted to possess reasonably good pharmacological profiles with insignificant toxicity and as drug-like. The compounds were computed to possess biological activity including antibacterial, antiparasitic, anthelmintic and anti-rickettsials. The six natural products are potential novel antiwolbachial agents with insignificant toxicities which can be explored further as filaricides for onchocerciasis.
Collapse
Affiliation(s)
- Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
- Correspondence: ; Tel.: +233-203-797922
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra LG 581, Ghana;
| | - Faruk U. Yunus
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
| | - John Nsoh
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
| | - Dela Adoboe
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, IL 19104, USA
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra LG 581, Ghana;
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| |
Collapse
|
15
|
Manoj RRS, Latrofa MS, Mendoza-Roldan JA, Otranto D. Molecular detection of Wolbachia endosymbiont in reptiles and their ectoparasites. Parasitol Res 2021; 120:3255-3261. [PMID: 34292377 PMCID: PMC8397688 DOI: 10.1007/s00436-021-07237-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022]
Abstract
Wolbachia, a maternally transmitted Gram-negative endosymbiont of onchocercid nematodes and arthropods, has a role in the biology of their host; thus it has been exploited for the filariasis treatment in humans. To assess the presence and prevalence of this endosymbiont in reptiles and their ectoparasites, blood and tail tissue as well as ticks and mites collected from them were molecularly screened for Wolbachia DNA using two sets of primers targeting partial 16S rRNA and Wolbachia surface protein (wsp) genes. Positive samples were screened for the partial 12S rRNA and cytochrome c oxidase subunit 1 (cox1) genes for filarioids. Of the different species of lizards (Podarcis siculus, Podarcis muralis and Lacerta bilineata) and snakes (Elaphe quatuorlineata and Boa constrictor constrictor) screened from three collection sites, only P. siculus scored positive for Wolbachia 16S rRNA. Among ectoparasites collected from reptiles (Ixodes ricinus ticks and Neotrombicula autumnalis, Ophionyssus sauracum and Ophionyssus natricis mites), I. ricinus (n = 4; 2.8%; 95% CI, 0.9–7) from P. siculus, N. autumnalis (n = 2 each; 2.8%; 95% CI, 0.9–6.5) from P. siculus and P. muralis and O. natricis (n = 1; 14.3%; 95% CI, 0.7–55.4) from Boa constrictor constrictor scored positive for Wolbachia DNA. None of the positive Wolbachia samples scored positive for filarioids. This represents the first report of Wolbachia in reptilian hosts and their ectoparasites, which follows a single identification in the intestinal cells of a filarioid associated with a gecko. This data could contribute to better understand the reptile filarioid-Wolbachia association and to unveil the evolutionary pattern of Wolbachia in its filarial host.
Collapse
Affiliation(s)
| | | | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy. .,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
16
|
Brattig NW, Cheke RA, Garms R. Onchocerciasis (river blindness) - more than a century of research and control. Acta Trop 2021; 218:105677. [PMID: 32857984 DOI: 10.1016/j.actatropica.2020.105677] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
This review summarises more than a century of research on onchocerciasis, also known as river blindness, and its control. River blindness is an infection caused by the tissue filaria Onchocerca volvulus affecting the skin, subcutaneous tissue and eyes and leading to blindness in a minority of infected persons. The parasite is transmitted by its intermediate hosts Simulium spp. which breed in rivers. Featured are history and milestones in onchocerciasis research and control, state-of-the-art data on the parasite, its endobacteria Wolbachia, on the vectors, previous and current prevalence of the infection, its diagnostics, the interaction between the parasite and its host, immune responses and the pathology of onchocerciasis. Detailed information is documented on the time course of control programmes in the afflicted countries in Africa and the Americas, a long road from previous programmes to current successes in control of the transmission of this infectious disease. By development, adjustment and optimization of the control measures, transmission by the vector has been interrupted in foci of countries in the Americas, in Uganda, in Sudan and elsewhere, followed by onchocerciasis eliminations. The current state and future perspectives for control, elimination and eradication within the next 20-30 years are described and discussed. This review contributes to a deeper comprehension of this disease by a tissue-dwelling filaria and it will be helpful in efforts to control and eliminate other filarial infections.
Collapse
|
17
|
Manoj RRS, Latrofa MS, Epis S, Otranto D. Wolbachia: endosymbiont of onchocercid nematodes and their vectors. Parasit Vectors 2021; 14:245. [PMID: 33962669 PMCID: PMC8105934 DOI: 10.1186/s13071-021-04742-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Background Wolbachia is an obligate intracellular maternally transmitted, gram-negative bacterium which forms a spectrum of endosymbiotic relationships from parasitism to obligatory mutualism in a wide range of arthropods and onchocercid nematodes, respectively. In arthropods Wolbachia produces reproductive manipulations such as male killing, feminization, parthenogenesis and cytoplasmic incompatibility for its propagation and provides an additional fitness benefit for the host to protect against pathogens, whilst in onchocercid nematodes, apart from the mutual metabolic dependence, this bacterium is involved in moulting, embryogenesis, growth and survival of the host. Methods This review details the molecular data of Wolbachia and its effect on host biology, immunity, ecology and evolution, reproduction, endosymbiont-based treatment and control strategies exploited for filariasis. Relevant peer-reviewed scientic papers available in various authenticated scientific data bases were considered while writing the review. Conclusions The information presented provides an overview on Wolbachia biology and its use in the control and/or treatment of vectors, onchocercid nematodes and viral diseases of medical and veterinary importance. This offers the development of new approaches for the control of a variety of vector-borne diseases. Graphic Abstract ![]()
Collapse
Affiliation(s)
| | | | - Sara Epis
- Department of Biosciences and Pediatric CRC 'Romeo Ed Enrica Invernizzi', University of Milan, Milan, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy. .,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
18
|
Kwarteng A, Asiedu E, Sylverken A, Larbi A, Mubarik Y, Apprey C. In silico drug repurposing for filarial infection predicts nilotinib and paritaprevir as potential inhibitors of the Wolbachia 5'-aminolevulinic acid synthase. Sci Rep 2021; 11:8455. [PMID: 33875732 PMCID: PMC8055890 DOI: 10.1038/s41598-021-87976-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Filarial infections affect millions of individuals and are responsible for some notorious disabilities. Current treatment options involve repeated mass drug administrations, which have been met with several challenges despite some successes. Administration of doxycycline, an anti-Wolbachia agent, has shown clinical effectiveness but has several limitations, including long treatment durations and contraindications. We describe the use of an in silico drug repurposing approach to screening a library of over 3200 FDA-approved medications against the filarial endosymbiont, Wolbachia. We target the enzyme which catalyzes the first step of heme biosynthesis in the Wolbachia. This presents an opportunity to inhibit heme synthesis, which leads to depriving the filarial worm of heme, resulting in a subsequent macrofilaricidal effect. High throughput virtual screening, molecular docking and molecular simulations with binding energy calculations led to the identification of paritaprevir and nilotinib as potential anti-Wolbachia agents. Having higher binding affinities to the catalytic pocket than the natural substrate, these drugs have the structural potential to bind and engage active site residues of the wolbachia 5'-Aminolevulinic Acid Synthase. We hereby propose paritaprevir and nilotinib for experimental validations as anti-Wolbachia agents.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana. .,Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana.
| | - Ebenezer Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Augustina Sylverken
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Amma Larbi
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Yusif Mubarik
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Charles Apprey
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| |
Collapse
|
19
|
Cheke RA, Little KE, Young S, Walker M, Basáñez MG. Taking the strain out of onchocerciasis? A reanalysis of blindness and transmission data does not support the existence of a savannah blinding strain of onchocerciasis in West Africa. ADVANCES IN PARASITOLOGY 2021; 112:1-50. [PMID: 34024357 DOI: 10.1016/bs.apar.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Onchocerciasis (also known as 'river blindness'), is a neglected tropical disease (NTD) caused by the (Simulium-transmitted) filarial nematode Onchocerca volvulus. The occurrence of 'blinding' (savannah) and non-blinding (forest) parasite strains and the existence of corresponding, locally adapted Onchocerca-Simulium complexes were postulated to explain greater blindness prevalence in savannah than in forest foci. As a result, the World Health Organization (WHO) Onchocerciasis Control Programme in West Africa (OCP) focused anti-vectorial and anti-parasitic interventions in savannah endemic areas. In this paper, village-level data on blindness prevalence, microfilarial prevalence, and transmission intensity (measured by the annual transmission potential, the number of infective, L3, larvae per person per year) were extracted from 16 West-Central Africa-based publications, and analysed according to habitat (forest, forest-savannah mosaic, savannah) to test the dichotomous strain hypothesis in relation to blindness. When adjusting for sample size, there were no statistically significant differences in blindness prevalence between the habitats (one-way ANOVA, P=0.68, mean prevalence for forest=1.76±0.37 (SE); mosaic=1.49±0.38; savannah=1.89±0.26). The well-known relationship between blindness prevalence and annual transmission potential for savannah habitats was confirmed and shown to hold for (but not to be statistically different from) forest foci (excluding data from southern Côte d'Ivoire, in which blindness prevalence was significantly lower than in other West African forest communities, but which had been the focus of studies leading to the strain-blindness hypothesis that was accepted by OCP planners). We conclude that the evidence for a savannah blinding onchocerciasis strain in simple contrast with a non-blinding forest strain is equivocal. A re-appraisal of the strain hypothesis to explain patterns of ocular disease is needed to improve understanding of onchocerciasis epidemiology and disease burden estimates in the light of the WHO 2030 goals for onchocerciasis.
Collapse
Affiliation(s)
- Robert A Cheke
- Natural Resources Institute, Department of Agriculture, Health & Environment, University of Greenwich at Medway, Kent, United Kingdom; London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Stephen Young
- Natural Resources Institute, Department of Agriculture, Health & Environment, University of Greenwich at Medway, Kent, United Kingdom
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research, Department of Pathobiology and Populations Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom; MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom.
| |
Collapse
|
20
|
Kwarteng A, Sylverken A, Asiedu E, Ahuno ST. Genome editing as control tool for filarial infections. Biomed Pharmacother 2021; 137:111292. [PMID: 33581654 DOI: 10.1016/j.biopha.2021.111292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Human filarial infections are vector-borne nematode infections, which include lymphatic filariasis, onchocerciasis, loiasis, and mansonella filariasis. With a high prevalence in developing countries, filarial infections are responsible for some of the most debilitating morbidities and a vicious cycle of poverty and disease. Global initiatives set to eradicate these infections include community mass treatments, vector control, provision of care for morbidity, and search for vaccines. However, there are growing challenges associated with mass treatments, vector control, and antifilarial vaccine development. With the emergence of genome editing tools and successful applications in other infectious diseases, the integration of genetic editing techniques in future control strategies for filarial infections would offer the best option for eliminating filarial infections. In this review, we briefly discuss the mechanisms of the three main genetic editing techniques and explore the potential applications of these powerful tools to control filarial infections.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana; Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana.
| | - Augustina Sylverken
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana; Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Ebenezer Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Samuel Terkper Ahuno
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana; Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| |
Collapse
|
21
|
Bishop C, Asgari S. Altered gene expression profile of Wolbachia pipientis wAlbB strain following transinfection from its native host Aedes albopictus to Aedes aegypti cells. Mol Microbiol 2021; 115:1229-1243. [PMID: 33325576 DOI: 10.1111/mmi.14668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022]
Abstract
Wolbachia is an obligate intracellular bacterial symbiont prevalent among arthropods and nematodes. To survive and reproduce, Wolbachia interacts with and modifies host subcellular structures, while sensing and responding to changes within the cellular environment. In mutualistic associations, Wolbachia may provision the host with metabolites, or help to maintain the chemical homeostasis of the host cell. Some strains can rapidly invade insect populations by manipulating host reproductive biology, while also preventing viral replication, allowing their use in vector control of arthropod-borne viruses. The Aedes albopictus-derived strain wAlbB is promising in this regard. When transinfected into the Yellow fever mosquito, Aedes aegypti, wAlbB reaches high frequencies within wild populations, and strongly inhibits viral transmission. Despite its obvious potential, much is still unknown about the molecular interactions between Wolbachia and host that enable its use in vector control. Furthermore, most Wolbachia transinfection research to date has focused on host effects. In the current study, we used a cell line model to explore the effect of transinfection of wAlbB from Ae. albopictus to Ae. aegypti. Using RNA sequencing, we show that several genes associated with host-symbiont interactions were downregulated by transinfection, with the greatest downregulation exhibited by prophage-associated genes.
Collapse
Affiliation(s)
- Cameron Bishop
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Carretón E, Morchón R, Falcón-Cordón Y, Falcón-Cordón S, Matos JI, Montoya-Alonso JA. Evaluation of different dosages of doxycycline during the adulticide treatment of heartworm (Dirofilaria immitis) in dogs. Vet Parasitol 2020; 283:109141. [PMID: 32502919 DOI: 10.1016/j.vetpar.2020.109141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/26/2022]
Abstract
The endosymbiont bacteria Wolbachia plays an important role in the pathogenesis and inflammatory immune response to heartworm (Dirofilaria immitis) infection in dogs. Doxycycline is used to reduce Wolbachia from all life stages of heartworm to avoid large releases of the bacteria during the death of the worms. However, the dose and duration currently recommended have been extrapolated from the treatment of other rickettsial infections. Therefore, the aim was to study the dynamics of Wolbachia IgG antibodies in heartworm-infected dogs under adulticide treatment using different dosages of doxycycline. Forty-nine heartworm-infected dogs were recruited. On day 0 (diagnosis), monthly ivermectin (6 μg/kg) was prescribed, as well as daily doxycycline for 30 days, at 10 mg/kg/12 h (n = 13), 5 mg/kg/12 h (n = 19), and 10 mg/kg/24 h (n = 17). Dogs underwent adulticide treatment and blood samples were collected on days 0, 30, 90, and 120. All dogs had antibodies against recombinant Wolbachia surface protein (rWSP), confirming the important role of the bacteria in heartworm. No significant differences were found in anti-rWSP response by presence/absence of microfilariae, or by parasite burden on day 0. In all treated groups, the anti-rWSP antibody response was not significantly different between days 0 and 30 but was significantly lower between days 0 and 120 (p < 0.05). The results of the present study suggest that the administration of a lower dose than currently recommended is sufficient to achieve a significant reduction of Wolbachia in dogs infected by D. immitis.
Collapse
Affiliation(s)
- E Carretón
- Internal Medicine, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain.
| | - R Morchón
- Group GIR of animal and human dirofilariosis, Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Y Falcón-Cordón
- Internal Medicine, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain
| | - S Falcón-Cordón
- Internal Medicine, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain
| | - J I Matos
- Internal Medicine, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain
| | - J A Montoya-Alonso
- Internal Medicine, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain
| |
Collapse
|
23
|
Voronin D, Schnall E, Grote A, Jawahar S, Ali W, Unnasch TR, Ghedin E, Lustigman S. Pyruvate produced by Brugia spp. via glycolysis is essential for maintaining the mutualistic association between the parasite and its endosymbiont, Wolbachia. PLoS Pathog 2019; 15:e1008085. [PMID: 31568486 PMCID: PMC6791551 DOI: 10.1371/journal.ppat.1008085] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/14/2019] [Accepted: 09/16/2019] [Indexed: 01/01/2023] Open
Abstract
Human parasitic nematodes are the causative agents of lymphatic filariasis (elephantiasis) and onchocerciasis (river blindness), diseases that are endemic to more than 80 countries and that consistently rank in the top ten for the highest number of years lived with disability. These filarial nematodes have evolved an obligate mutualistic association with an intracellular bacterium, Wolbachia, a symbiont that is essential for the successful development, reproduction, and survival of adult filarial worms. Elimination of the bacteria causes adult worms to die, making Wolbachia a primary target for developing new interventional tools to combat filariases. To further explore Wolbachia as a promising indirect macrofilaricidal drug target, the essential cellular processes that define the symbiotic Wolbachia-host interactions need to be identified. Genomic analyses revealed that while filarial nematodes encode all the enzymes necessary for glycolysis, Wolbachia does not encode the genes for three glycolytic enzymes: hexokinase, 6-phosphofructokinase, and pyruvate kinase. These enzymes are necessary for converting glucose into pyruvate. Wolbachia, however, has the full complement of genes required for gluconeogenesis starting with pyruvate, and for energy metabolism via the tricarboxylic acid cycle. Therefore, we hypothesized that Wolbachia might depend on host glycolysis to maintain a mutualistic association with their parasitic host. We did conditional experiments in vitro that confirmed that glycolysis and its end-product, pyruvate, sustain this symbiotic relationship. Analysis of alternative sources of pyruvate within the worm indicated that the filarial lactate dehydrogenase could also regulate the local intracellular concentration of pyruvate in proximity to Wolbachia and thus help control bacterial growth via molecular interactions with the bacteria. Lastly, we have shown that the parasite's pyruvate kinase, the enzyme that performs the last step in glycolysis, could be a potential novel anti-filarial drug target. Establishing that glycolysis is an essential component of symbiosis in filarial worms could have a broader impact on research focused on other intracellular bacteria-host interactions where the role of glycolysis in supporting intracellular survival of bacteria has been reported.
Collapse
Affiliation(s)
- Denis Voronin
- Molecular Parasitology, New York Blood Center, New York, New York, United States of America
| | - Emily Schnall
- Molecular Parasitology, New York Blood Center, New York, New York, United States of America
| | - Alexandra Grote
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Shabnam Jawahar
- Molecular Parasitology, New York Blood Center, New York, New York, United States of America
| | - Waleed Ali
- Molecular Parasitology, New York Blood Center, New York, New York, United States of America
| | - Thomas R. Unnasch
- Center for Global Health Infectious Disease Research, University of South Florida, College of Public Health, Tampa, Florida, United States of America
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- College of Global Public Health, New York University, New York, New York, United States of America
| | - Sara Lustigman
- Molecular Parasitology, New York Blood Center, New York, New York, United States of America
| |
Collapse
|
24
|
Huggins LG, Koehler AV, Ng-Nguyen D, Wilcox S, Schunack B, Inpankaew T, Traub RJ. Assessment of a metabarcoding approach for the characterisation of vector-borne bacteria in canines from Bangkok, Thailand. Parasit Vectors 2019; 12:394. [PMID: 31395073 PMCID: PMC6686542 DOI: 10.1186/s13071-019-3651-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/01/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Globally, bacterial vector-borne disease (VBD) exerts a large toll on dogs in terms of morbidity and mortality but nowhere is this more pronounced than in the tropics. Tropical environments permit a burgeoning diversity and abundance of ectoparasites some of which can transmit an extensive range of infectious agents, including bacteria, amongst others. Although some of these vector-borne bacteria are responsible for both animal and human diseases in the tropics, there is a scarcity of epidemiological investigation into these pathogens' prevalence. The situation is further exacerbated by frequent canine co-infection, complicating symptomatology that regular diagnostic techniques may miss or be unable to fully characterise. Such limitations draw attention to the need to develop screening tools capable of detecting a wide range of pathogens from a host simultaneously. RESULTS Here, we detail the employment of a next-generation sequencing (NGS) metabarcoding methodology to screen for the spectrum of bacterial VBD that are infecting semi-domesticated dogs across temple communities in Bangkok, Thailand. Our NGS detection protocol was able to find high levels of Ehrlichia canis, Mycoplasma haemocanis and Anaplasma platys infection rates as well as less common pathogens, such as "Candidatus Mycoplasma haematoparvum", Mycoplasma turicensis and Bartonella spp. We also compared our high-throughput approach to conventional endpoint PCR methods, demonstrating an improved detection ability for some bacterial infections, such as A. platys but a reduced ability to detect Rickettsia. CONCLUSIONS Our methodology demonstrated great strength at detecting coinfections of vector-borne bacteria and rare pathogens that are seldom screened for in canines in the tropics, highlighting its advantages over traditional diagnostics to better characterise bacterial pathogens in environments where there is a dearth of research.
Collapse
Affiliation(s)
- Lucas G. Huggins
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3052 Australia
| | - Anson V. Koehler
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3052 Australia
| | - Dinh Ng-Nguyen
- Faculty of Animal Sciences and Veterinary Medicine, Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000 Vietnam
| | - Stephen Wilcox
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052 Australia
| | | | - Tawin Inpankaew
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900 Thailand
| | - Rebecca J. Traub
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3052 Australia
| |
Collapse
|
25
|
Satjawongvanit H, Phumee A, Tiawsirisup S, Sungpradit S, Brownell N, Siriyasatien P, Preativatanyou K. Molecular Analysis of Canine Filaria and Its Wolbachia Endosymbionts in Domestic Dogs Collected from Two Animal University Hospitals in Bangkok Metropolitan Region, Thailand. Pathogens 2019; 8:pathogens8030114. [PMID: 31362350 PMCID: PMC6789508 DOI: 10.3390/pathogens8030114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022] Open
Abstract
Canine filariasis is caused by several nematode species, such as Dirofilaria immitis, Dirofilaria repens, Brugia pahangi, Brugia malayi, and Acanthocheilonema reconditum. Zoonotic filariasis is one of the world's neglected tropical diseases. Since 2000, the World Health Organization (WHO) has promoted a global filarial eradication program to eliminate filariasis by 2020. Apart from vector control strategies, the infection control of reservoir hosts is necessary for more effective filariasis control. In addition, many studies have reported that Wolbachia is necessary for the development, reproduction, and survival of the filarial nematode. Consequently, the use of antibiotics to kill Wolbachia in nematodes has now become an alternative strategy to control filariasis. Previously, a case of subconjunctival dirofilariasis caused by Dirofilaria spp. has been reported in a woman who resides in the center of Bangkok, Thailand. Therefore, our study aimed to principally demonstrate the presence of filarial nematodes and Wolbachia bacteria in blood collected from domestic dogs from the Bangkok Metropolitan Region, Thailand. A total of 57 blood samples from dogs with suspected dirofilariasis who had visited veterinary clinics in Bangkok were collected. The investigations for the presence of microfilaria were carried out by using both microscopic and molecular examinations. PCR was used as the molecular detection method for the filarial nematodes based on the COI and ITS1 regions. The demonstration of Wolbachia was performed using PCR to amplify the FtsZ gene. All positive samples by PCR were then cloned and sequenced. The results showed that the filarial nematodes were detected in 16 samples (28.07%) using microscopic examinations. The molecular detection of filarial species using COI-PCR revealed that 50 samples (87.72%) were positive; these consisted of 33 (57.89%), 13 (22.81%), and 4 (7.02%) samples for D. immitis, B. pahangi, and B. malayi, respectively. While the ITS1-PCR showed that 41 samples (71.93%) were positive-30 samples (52.63%) were identified as containing D. immitis and 11 samples (19.30%) were identified to have B. pahangi, whereas B. malayi was not detected. Forty-seven samples (82.45%) were positive for Wolbachia DNA and the phylogenetic tree of all positive Wolbachia was classified into the supergroup C clade. This study has established fundamental data on filariasis associated with Wolbachia infection in domestic dogs in the Bangkok Metropolitan Region. An extensive survey of dog blood samples would provide valuable epidemiologic data on potential zoonotic filariasis in Thailand. In addition, this information could be used for the future development of more effective prevention and control strategies for canine filariasis in Thailand.
Collapse
Affiliation(s)
| | - Atchara Phumee
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Thai Red Cross Emerging Infectious Disease-Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Bangkok 10330, Thailand
| | - Sonthaya Tiawsirisup
- Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sivapong Sungpradit
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Narisa Brownell
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Padet Siriyasatien
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanok Preativatanyou
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
26
|
Rowan-Nash AD, Korry BJ, Mylonakis E, Belenky P. Cross-Domain and Viral Interactions in the Microbiome. Microbiol Mol Biol Rev 2019; 83:e00044-18. [PMID: 30626617 PMCID: PMC6383444 DOI: 10.1128/mmbr.00044-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The importance of the microbiome to human health is increasingly recognized and has become a major focus of recent research. However, much of the work has focused on a few aspects, particularly the bacterial component of the microbiome, most frequently in the gastrointestinal tract. Yet humans and other animals can be colonized by a wide array of organisms spanning all domains of life, including bacteria and archaea, unicellular eukaryotes such as fungi, multicellular eukaryotes such as helminths, and viruses. As they share the same host niches, they can compete with, synergize with, and antagonize each other, with potential impacts on their host. Here, we discuss these major groups making up the human microbiome, with a focus on how they interact with each other and their multicellular host.
Collapse
Affiliation(s)
- Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
27
|
Mioduchowska M, Czyż MJ, Gołdyn B, Kilikowska A, Namiotko T, Pinceel T, Łaciak M, Sell J. Detection of bacterial endosymbionts in freshwater crustaceans: the applicability of non-degenerate primers to amplify the bacterial 16S rRNA gene. PeerJ 2018; 6:e6039. [PMID: 30581663 PMCID: PMC6296333 DOI: 10.7717/peerj.6039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022] Open
Abstract
Bacterial endosymbionts of aquatic invertebrates remain poorly studied. This is at least partly due to a lack of suitable techniques and primers for their identification. We designed a pair of non-degenerate primers which enabled us to amplify a fragment of ca. 500 bp of the 16S rRNA gene from various known bacterial endosymbiont species. By using this approach, we identified four bacterial endosymbionts, two endoparasites and one uncultured bacterium in seven, taxonomically diverse, freshwater crustacean hosts from temporary waters across a wide geographical area. The overall efficiency of our new WOLBSL and WOLBSR primers for amplification of the bacterial 16S rRNA gene was 100%. However, if different bacterial species from one sample were amplified simultaneously, sequences were illegible, despite a good quality of PCR products. Therefore, we suggest using our primers at the first stage of bacterial endosymbiont identification. Subsequently, genus specific primers are recommended. Overall, in the era of next-generation sequencing our method can be used as a first simple and low-cost approach to identify potential microbial symbionts associated with freshwater crustaceans using simple Sanger sequencing. The potential to detected bacterial symbionts in various invertebrate hosts in such a way will facilitate studies on host-symbiont interactions and coevolution.
Collapse
Affiliation(s)
- Monika Mioduchowska
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Michał Jan Czyż
- Research Centre of Quarantine, Invasive and Genetically Modified Organisms, Institute of Plant Protection-National Research Institute, Poznan, Poland
| | - Bartłomiej Gołdyn
- Department of General Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Adrianna Kilikowska
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Tadeusz Namiotko
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium.,Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| | - Małgorzata Łaciak
- Polish Academy of Sciences, Institute of Nature Conservation, Krakow, Poland
| | - Jerzy Sell
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
28
|
Ciuca L, Simòn F, Rinaldi L, Kramer L, Genchi M, Cringoli G, Acatrinei D, Miron L, Morchon R. Seroepidemiological survey of human exposure to Dirofilaria spp. in Romania and Moldova. Acta Trop 2018; 187:169-174. [PMID: 30056075 DOI: 10.1016/j.actatropica.2018.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
The present study aimed to evaluate the extent of Dirofilaria immitis and D. repens exposure in humans from eastern and southern areas of Romania and central Moldova by serological methods. The serological screening was performed on a total of 450 serum samples (187 from Romania and 263 from Moldova). The sera were collected using a convenience sampling with the help of physicians from the hospitals of the study areas. All samples were analysed by a non-commercial ELISA test for the detection of IgG antibodies against adult somatic antigens of D. immitis and D. repens. The results showed a total of 49 (10.9%; 95% CI = 8.3-14.1%) individuals from Romania and Moldova with a positive response to IgG antibodies against both adult somatic antigens of D. immitis and D. repens. Specifically, 48 (10.7%; 95% CI = 8.0-14.0%) patients were positive for IgG-antibodies against adult somatic antigens of D. immitis, one (0.2%; 95% CI = 0.4-1.2%) against D. repens antigens, and four (0.9%; 95% CI = 0.4-3.3%). were positive for antigens of both parasites. At country level, out of 187 samples from Romania, 13 (6.9%; 95% CI = 4.1-11.5%) were positive for anti-D. immitis IgG with high exposure in the southern part of the country (Bucharest). Of the 263 people from Moldova, 36 (13.7%; 95% CI = 10.0-18.4%) were positive for D. immitis antigens from which three (1.1%, 95% CI = 0.4-3.3%) were positive for the antibodies against antigens of both parasites. Only one sample was found positive for anti-D. repens IgG. Positive IgG-ELISA results were confirmed by Western blot analysis. In addition, for further confirmation, a complementary ELISA was performed for anti-WSP IgG antibodies against Wolbachia endosymbionts. Our findings showed a noticeable exposure of humans from Romania and Moldova to Dirofilaria parasites. Serology can be useful for indicating exposure to Dirofilaria spp. in a healthy population in order to obtain useful data on the epidemiological scenario of human dirofilariosis in Eastern Europe.
Collapse
|
29
|
Muñoz-Caro T, Conejeros I, Zhou E, Pikhovych A, Gärtner U, Hermosilla C, Kulke D, Taubert A. Dirofilaria immitis Microfilariae and Third-Stage Larvae Induce Canine NETosis Resulting in Different Types of Neutrophil Extracellular Traps. Front Immunol 2018; 9:968. [PMID: 29867950 PMCID: PMC5951940 DOI: 10.3389/fimmu.2018.00968] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022] Open
Abstract
Heartworm disease is a zoonotic vector-borne disease caused by Dirofilaria immitis mainly affecting canids. Infectious third-stage larvae (L3) are transmitted to the definitive hosts via culicid mosquitoes; adult nematodes reside in the pulmonary arteries and in the right heart releasing unsheathed first-stage larvae (microfilariae) into the bloodstream leading to chronic and sometimes fatal disease. So far, early innate immune reactions triggered by these different D. immitis stages in the canine host have scarcely been investigated. Therefore, D. immitis microfilariae and L3 were analyzed for their capacity to induce neutrophil extracellular traps (NETs) in canine polymorphonuclear neutrophils (PMN). Overall, scanning electron microscopy analysis revealed both larval stages as strong inducers of canine NETosis. Co-localization of PMN-derived extracellular DNA with granulocytic histones, neutrophil elastase, or myeloperoxidase in parasite-entrapping structures confirmed the classical characteristics of NETosis. Quantitative analyses showed that both larval stages triggered canine NETs in a time-dependent but dose-independent manner. Moreover, parasite-induced NET formation was not influenced by the parasites viability since heat-inactivated microfilariae and L3 also induced NETs. In addition, parasite/PMN confrontation promoted significant entrapment but not killing of microfilariae and L3. Both, NETosis and larval entrapment was significantly reversed via DNase I treatments while treatments with the NADPH oxidase inhibitor diphenyleneiodonium failed to significantly influence these reactions. Interestingly, different types of NETs were induced by microfilariae and L3 since microfilarial stages merely induced spread and diffuse NETs while the larger L3 additionally triggered aggregated NET formation.
Collapse
Affiliation(s)
- Tamara Muñoz-Caro
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Ershun Zhou
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anton Pikhovych
- Clinical Development Animal Health, Animal Center, Bayer Animal Health GmbH, Leverkusen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Daniel Kulke
- Drug Discovery Animal Health, Parasiticides, Filaricides Research, Bayer Animal Health GmbH, Leverkusen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
30
|
Willi LMV, Labarthe NV, d’Escoffier LN, Paiva JP, de Miranda MGN, Mendes-de-Almeida F, Zaverucha do Valle T. Can P-glycoprotein and β-tubulin polymorphisms be used as genetic markers of resistance in Dirofilaria immitis from Rio de Janeiro, Brazil? BMC Res Notes 2018; 11:152. [PMID: 29475454 PMCID: PMC5824453 DOI: 10.1186/s13104-018-3259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/14/2018] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Dirofilaria immitis, the causative agent of canine heartworm infection, is worldwide the most important filarid to affect domestic dogs. Prevention of this infection is done by macrocyclic lactones, but some reports on the lack of efficacy have been published. Although the actual cause of resistance is unknown, single nucleotide polymorphisms (SNPs) on a P-glycoprotein ABC transporter and β-tubulin genes have been pointed out as candidates for genetic markers of resistance. We conducted a survey to verify the presence of these suggested genetic markers in microfilariae from 30 naturally infected dogs under macrocyclic lactones treatment living in an endemic area in the state of Rio de Janeiro. RESULTS The analysis of these specific SNPs demonstrated no sign of polymorphism on the P-glycoprotein loci, while 72 and 48% of the samples were polymorphic to the first and second SNPs on β-tubulin loci, respectively. This work demonstrates that the P-glycoprotein position 11 and 618 were not polymorphic and, therefore, not suitable as a genetic marker of resistance in Rio de Janeiro whereas both β-tubulin loci were polimorphic. This work points out the difficulty of finding a universal genetic marker for resistance.
Collapse
Affiliation(s)
- Liliane Maria Valentim Willi
- Programa de Pós-Graduação em Medicina Veterinária – Clínica e Reprodução Animal, Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho 64, Niterói, RJ 24230-340 Brazil
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ 21040-360 Brazil
| | - Norma Vollmer Labarthe
- Programa de Pós-Graduação em Medicina Veterinária – Clínica e Reprodução Animal, Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho 64, Niterói, RJ 24230-340 Brazil
- Fundação Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro, RJ 21040-360 Brazil
| | - Luiz Ney d’Escoffier
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ 21040-360 Brazil
| | - Jonimar Pereira Paiva
- Departamento de Medicina e Cirurgia Veterinária, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7, Seropédica, RJ 23890-000 Brazil
| | | | - Flavya Mendes-de-Almeida
- Programa de Pós-Graduação em Medicina Veterinária – Clínica e Reprodução Animal, Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho 64, Niterói, RJ 24230-340 Brazil
| | - Tânia Zaverucha do Valle
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ 21040-360 Brazil
| |
Collapse
|
31
|
Are the estrogenic hormonal effects of environmental toxins affecting small intestinal bacterial and microfilaria overgrowth? Med Hypotheses 2017; 109:90-94. [DOI: 10.1016/j.mehy.2017.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/06/2017] [Accepted: 09/24/2017] [Indexed: 11/19/2022]
|
32
|
Carvalho FD, Moreira LA. Why is Aedes aegypti Linnaeus so Successful as a Species? NEOTROPICAL ENTOMOLOGY 2017; 46:243-255. [PMID: 28401481 DOI: 10.1007/s13744-017-0520-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/22/2017] [Indexed: 05/21/2023]
Abstract
Diseases transmitted by mosquitoes impose enormous burden towards human morbidity and mortality. Over the last three decades, Brazil has suffered from severe Dengue epidemics. In September 2014, this situation is further complicated by the introduction of two other viruses, Zika and Chikungunya, placing Brazil in a triple epidemic. In this article, we discuss the biology of Aedes aegypti Linnaeus, and the principal initiatives currently used to control mosquito populations and the diseases they transmit. Aedes aegypti has broad global distribution and is involved in the transmission of various arboviral diseases such as Dengue, Zika, and Chikungunya. Several factors contribute to the success of the species, particularly behavioral plasticity, rapid development, desiccation-resistant eggs, resistance to the principle insecticide classes currently available on the market, preference for the urban environment, and proximity to humans. Vector control programs are the best way to reduce the burden of mosquito-borne diseases. Chemical control is most commonly used in recent times, and unfortunately, the results have not been satisfactory but instead, there is increased vector dispersal and, subsequently, the spread of disease epidemics. Investigations of alternative control methods such as release of Wolbachia-infected mosquitoes for blocking vector-borne pathogens, release of transgenic mosquitoes carrying a lethal gene for offspring, and the use of insecticide-dispersing mosquitoes are under way in Brazil, and some have shown promising results. Special emphasis should be placed on integrated management of all available tactics, so as to maximize efforts towards mosquito control. Finally, we emphasize that continuous actions and community participation control initiatives are critically important for success.
Collapse
Affiliation(s)
- F D Carvalho
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou / Fundação Oswaldo Cruz (CPqRR / Fiocruz), Belo Horizonte, Minas Gerais, Brazil.
| | - L A Moreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou / Fundação Oswaldo Cruz (CPqRR / Fiocruz), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
33
|
Luck AN, Slatko BE, Foster JM. Removing the needle from the haystack: Enrichment of Wolbachia endosymbiont transcripts from host nematode RNA by Cappable-seq™. PLoS One 2017; 12:e0173186. [PMID: 28291780 PMCID: PMC5349465 DOI: 10.1371/journal.pone.0173186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/18/2022] Open
Abstract
Efficient transcriptomic sequencing of microbial mRNA derived from host-microbe associations is often compromised by the much lower relative abundance of microbial RNA in the mixed total RNA sample. One solution to this problem is to perform extensive sequencing until an acceptable level of transcriptome coverage is obtained. More cost-effective methods include use of prokaryotic and/or eukaryotic rRNA depletion strategies, sometimes in conjunction with depletion of polyadenylated eukaryotic mRNA. Here, we report use of Cappable-seq™ to specifically enrich, in a single step, Wolbachia endobacterial mRNA transcripts from total RNA prepared from the parasitic filarial nematode, Brugia malayi. The obligate Wolbachia endosymbiont is a proven drug target for many human filarial infections, yet the precise nature of its symbiosis with the nematode host is poorly understood. Insightful analysis of the expression levels of Wolbachia genes predicted to underpin the mutualistic association and of known drug target genes at different life cycle stages or in response to drug treatments is typically challenged by low transcriptomic coverage. Cappable-seq resulted in up to ~ 5-fold increase in the number of reads mapping to Wolbachia. On average, coverage of Wolbachia transcripts from B. malayi microfilariae was enriched ~40-fold by Cappable-seq. Additionally, this method has an additional benefit of selectively removing abundant prokaryotic ribosomal RNAs.The deeper microbial transcriptome sequencing afforded by Cappable-seq facilitates more detailed characterization of gene expression levels of pathogens and symbionts present in animal tissues.
Collapse
Affiliation(s)
- Ashley N. Luck
- Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, United States of America
| | - Barton E. Slatko
- Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, United States of America
| | - Jeremy M. Foster
- Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, United States of America
- * E-mail:
| |
Collapse
|
34
|
Hise AG, Gillette-Ferguson I, Pearlman E. Immunopathogenesis of Onchocerca volvulus keratitis (river blindness): a novel role for TLR4 and endosymbiotic Wolbachia bacteria. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090060101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Infection with the parasitic nematode Onchocerca volvulus is associated with inflammation of the skin and cornea that can lead to blindness. Corneal damage is thought to occur as a result of the host inflammatory responses to degenerating microfilariae in the eye. We have utilized a murine model of corneal inflammation (keratitis) to investigate the immune and inflammatory responses associated with river blindness. Soluble extracts of O. volvulus, a filarial species that contains the endosymbiont bacteria Wolbachia or Acanthocheilonema viteae (a nematode not naturally infected with the bacteria) were injected into mouse corneas. Inflammatory responses and corneal changes were measured. We demonstrated a major role for endosymbiont Wolbachia bacteria and Toll-like receptor 4 (TLR4) in the pathogenesis of ocular onchocerciasis.
Collapse
Affiliation(s)
- Amy G. Hise
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Eric Pearlman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA,
| |
Collapse
|
35
|
Dyab AK, Galal LA, Mahmoud AE, Mokhtar Y. Finding Wolbachia in Filarial larvae and Culicidae Mosquitoes in Upper Egypt Governorate. THE KOREAN JOURNAL OF PARASITOLOGY 2016; 54:265-72. [PMID: 27417080 PMCID: PMC4977788 DOI: 10.3347/kjp.2016.54.3.265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 12/04/2022]
Abstract
Wolbachia is an obligatory intracellular endosymbiotic bacterium, present in over 20% of all insects altering insect reproductive capabilities and in a wide range of filarial worms which is essential for worm survival and reproduction. In Egypt, no available data were found about Wolbachia searching for it in either mosquitoes or filarial worms. Thus, we aimed to identify the possible concurrent presence of Wolbachia within different mosquitoes and filarial parasites, in Assiut Governorate, Egypt using multiplex PCR. Initially, 6 pools were detected positive for Wolbachia by single PCR. The simultaneous detection of Wolbachia and filarial parasites (Wuchereria bancrofti, Dirofilaria immitis, and Dirofilaria repens) by multiplex PCR was spotted in 5 out of 6 pools, with an overall estimated rate of infection (ERI) of 0.24%. Unexpectedly, the highest ERI (0.53%) was for Anopheles pharoensis with related Wolbachia and W. bancrofti, followed by Aedes (0.42%) and Culex (0.26%). We also observed that Wolbachia altered Culex spp. as a primary vector for W. bancrofti to be replaced by Anopheles sp. Wolbachia within filaria-infected mosquitoes in our locality gives a hope to use bacteria as a new control trend simultaneously targeting the vector and filarial parasites.
Collapse
Affiliation(s)
- Ahmed K Dyab
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Lamia A Galal
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abeer E Mahmoud
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Yasser Mokhtar
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
36
|
Maia C, Altet L, Serrano L, Cristóvão JM, Tabar MD, Francino O, Cardoso L, Campino L, Roura X. Molecular detection of Leishmania infantum, filariae and Wolbachia spp. in dogs from southern Portugal. Parasit Vectors 2016; 9:170. [PMID: 27160085 PMCID: PMC4862134 DOI: 10.1186/s13071-016-1452-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/15/2016] [Indexed: 01/12/2023] Open
Abstract
Background Leishmaniosis caused by the protozoan Leishmania infantum and dirofilariosis caused by the nematodes Dirofilaria immitis or Dirofilaria repens are vector-borne zoonoses widely present in the Mediterranean basin. In addition, some studies reported that the endosymbiont Wolbachia spp. play a role in the biology and pathogenesis of filarial parasites. The aim of this work was to evaluate the frequency of mono- and co-infections by L. infantum, filariae and Wolbachia spp. and their association with clinical signs in dogs from the south of Portugal. Leishmanial, filarial and Wolbachia spp. DNA were evaluated by specific real-time polymerase chain reaction (qPCR) assays in blood samples from 230 dogs. Findings One hundred and thirty-nine (60.4 %) dogs were qPCR-positive for L. infantum and 26 (11.3 %) for filariae (24 for D. immitis only, one D. immitis and for Acanthocheilonema dracunculoides and another one for Acanthocheilonema reconditum only). Wolbachia spp. DNA was amplified from 16 (64.0 %) out of the 25 D. immitis-positive dogs. Nineteen (8.3 %) dogs were co-infected with L. infantum and D. immitis, including the one (0.4 %) A. drancunculoides-positive animal. In dogs without clinical signs consistent with leishmaniosis and/or dirofilariosis, L. infantum prevalence was 69 %, whereas in those dogs with at least one clinical manifestation compatible with any of the two parasitoses prevalence was 42.7 %. Leishmania prevalence was significantly higher in apparently healthy mongrels (77.2 %) and pets (76.9 %) than in defined-breed dogs (including crosses; 58.8 %) and in dogs with an aptitude other than pet (i.e. farm, guard, hunting, shepherd or stray), respectively, whereas in those dogs with at least one clinical sign, the detection of L. infantum DNA was higher in males (53.3 %) and in those dogs not receiving insect repellents (52.8 %). Conclusions The molecular detection of canine vector-borne disease (CVBD) agents, some of which are zoonotic, reinforces the need to implement efficient prophylactic measures, such as insect repellents and macrocyclic lactones (including compliance to administration), in the geographical areas where these agents are distributed, with the view to prevent infection and disease among mammalian hosts including humans.
Collapse
Affiliation(s)
- Carla Maia
- Global Health and Tropical Medicine, Medical Parasitology Unit, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal. .,Faculty of Veterinary Medicine, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal.
| | - Laura Altet
- Vetgenomics, Parc de Recerca Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Lorena Serrano
- Vetgenomics, Parc de Recerca Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - José Manuel Cristóvão
- Global Health and Tropical Medicine, Medical Parasitology Unit, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Olga Francino
- Vetgenomics, Parc de Recerca Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,SVGM, Departamento de Ciencia Animal y de los Alimentos, Facultad de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Luís Cardoso
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Lenea Campino
- Global Health and Tropical Medicine, Medical Parasitology Unit, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Department of Biomedical Sciences and Medicine, Universidade do Algarve, Faro, Portugal
| | - Xavier Roura
- Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
37
|
Glucose and Glycogen Metabolism in Brugia malayi Is Associated with Wolbachia Symbiont Fitness. PLoS One 2016; 11:e0153812. [PMID: 27078260 PMCID: PMC4831766 DOI: 10.1371/journal.pone.0153812] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/04/2016] [Indexed: 11/19/2022] Open
Abstract
Wolbachia are endosymbiotic bacteria found in the majority of arthropods and filarial nematodes of medical and veterinary importance. They have evolved a wide range of symbiotic associations. In filarial nematodes that cause human lymphatic filariasis (Wuchereria bancrofti, Brugia malayi) or onchocerciasis (Onchocerca volvulus), Wolbachia are important for parasite development, reproduction and survival. The symbiotic bacteria rely in part on nutrients and energy sources provided by the host. Genomic analyses suggest that the strain of Wolbachia found in B. malayi (wBm) lacks the genes for two glycolytic enzymes—6-phosphofructokinase and pyruvate kinase—and is thus potentially unable to convert glucose into pyruvate, an important substrate for energy generation. The Wolbachia surface protein, wBm00432, is complexed to six B. malayi glycolytic enzymes, including aldolase. In this study we characterized two B. malayi aldolase isozymes and found that their expression is dependent on Wolbachia fitness and number. We confirmed by immuno-transmission electron microscopy that aldolase is associated with the Wolbachia surface. RNAi experiments suggested that aldolase-2 plays a significant role in both Wolbachia survival and embryogenesis in B. malayi. Treatment with doxycycline reduced Wolbachia fitness and increased the amount of both glucose and glycogen detected in the filarial parasite, indicating that glucose metabolism and glycogen storage in B. malayi are associated with Wolbachia fitness. This metabolic co-dependency between Wolbachia and its filarial nematode indicates that glycolysis could be a shared metabolic pathway between the bacteria and B. malayi, and thus a potential new target for anti-filarial therapy.
Collapse
|
38
|
Keroack CD, Wurster JI, Decker CG, Williams KM, Slatko BE, Foster JM, Williams SA. Absence of the Filarial Endosymbiont Wolbachia in Seal Heartworm (Acanthocheilonema spirocauda) but Evidence of Ancient Lateral Gene Transfer. J Parasitol 2016; 102:312-8. [PMID: 26859724 DOI: 10.1645/15-872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The symbiotic relationship of Wolbachia spp. was first observed in insects and subsequently in many parasitic filarial nematodes. This bacterium is believed to provide metabolic and developmental assistance to filarial parasitic nematodes, although the exact nature of this relationship remains to be fully elucidated. While Wolbachia is present in most filarial nematodes in the family Onchocercidae, it is absent in several disparate species such as the human parasite Loa loa . All tested members of the genus Acanthocheilonema, such as Acanthocheilonema viteae, have been shown to lack Wolbachia. Consistent with this, we show that Wolbachia is absent from the seal heartworm (Acanthocheilonema spirocauda), but lateral gene transfer (LGT) of DNA sequences between Wolbachia and A. spirocauda has occurred, indicating a past evolutionary association. Seal heartworm is an important pathogen of phocid seals and understanding its basic biology is essential for conservation of the host. The findings presented here may allow for the development of future treatments or diagnostics for the disease and also aid in clarification of the complicated nematode-Wolbachia relationship.
Collapse
Affiliation(s)
- Caroline D Keroack
- * Smith College, Department of Biological Sciences, Northampton, Massachusetts 01063
| | - Jenna I Wurster
- * Smith College, Department of Biological Sciences, Northampton, Massachusetts 01063
| | - Caroline G Decker
- * Smith College, Department of Biological Sciences, Northampton, Massachusetts 01063
| | - Kalani M Williams
- * Smith College, Department of Biological Sciences, Northampton, Massachusetts 01063
| | | | | | - Steven A Williams
- * Smith College, Department of Biological Sciences, Northampton, Massachusetts 01063
| |
Collapse
|
39
|
Tahir U, Khan UH, Zubair MS, Bahar-E-Mustafa. Wolbachia pipientis: A potential candidate for combating and eradicating dengue epidemics in Pakistan. ASIAN PAC J TROP MED 2015; 8:989-998. [PMID: 26706669 DOI: 10.1016/j.apjtm.2015.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/20/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022] Open
Abstract
Dengue virus syndrome is an emerging global health challenge which is endemic in tropical countries like Pakistan. In recent years dengue incidences have increased considerably in different areas of Pakistan with more sever impacts on urban and peri-urban populations. This review is an effort to highlight the changing epidemiology of dengue fever, role of Government of Pakistan in disease management and control using preventive and community based approaches in the region. Moreover, there is an emphasis on application of Wolbachia as novel, inexpensive and environmentally benign candidate for control and eradication of dengue transmitting vectors.
Collapse
Affiliation(s)
- Uruj Tahir
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan.
| | - Umair Hassan Khan
- Department of Microbiology, University of Agriculture Faisalabad, Sub-Campus Toba Tek Singh, Pakistan
| | | | - Bahar-E-Mustafa
- Department of Microbiology, University of Agriculture Faisalabad, Sub-Campus Toba Tek Singh, Pakistan
| |
Collapse
|
40
|
Luck AN, Anderson KG, McClung CM, VerBerkmoes NC, Foster JM, Michalski ML, Slatko BE. Tissue-specific transcriptomics and proteomics of a filarial nematode and its Wolbachia endosymbiont. BMC Genomics 2015; 16:920. [PMID: 26559510 PMCID: PMC4642636 DOI: 10.1186/s12864-015-2083-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/15/2015] [Indexed: 11/12/2022] Open
Abstract
Background Filarial nematodes cause debilitating human diseases. While treatable, recent evidence suggests drug resistance is developing, necessitating the development of novel targets and new treatment options. Although transcriptomic and proteomic studies around the nematode life cycle have greatly enhanced our knowledge, whole organism approaches have not provided spatial resolution of gene expression, which can be gained by examining individual tissues. Generally, due to their small size, tissue dissection of human-infecting filarial nematodes remains extremely challenging. However, canine heartworm disease is caused by a closely related and much larger filarial nematode, Dirofilaria immitis. As with many other filarial nematodes, D. immitis contains Wolbachia, an obligate bacterial endosymbiont present in the hypodermis and developing oocytes within the uterus. Here, we describe the first concurrent tissue-specific transcriptomic and proteomic profiling of a filarial nematode (D. immitis) and its Wolbachia (wDi) in order to better understand tissue functions and identify tissue-specific antigens that may be used for the development of new diagnostic and therapeutic tools. Methods Adult D. immitis worms were dissected into female body wall (FBW), female uterus (FU), female intestine (FI), female head (FH), male body wall (MBW), male testis (MT), male intestine (MI), male head (MH) and 10.1186/s12864-015-2083-2 male spicule (MS) and used to prepare transcriptomic and proteomic libraries. Results Transcriptomic and proteomic analysis of several D. immitis tissues identified many biological functions enriched within certain tissues. Hierarchical clustering of the D. immitis tissue transcriptomes, along with the recently published whole-worm adult male and female D. immitis transcriptomes, revealed that the whole-worm transcriptome is typically dominated by transcripts originating from reproductive tissue. The uterus appeared to have the most variable transcriptome, possibly due to age. Although many functions are shared between the reproductive tissues, the most significant differences in gene expression were observed between the uterus and testis. Interestingly, wDi gene expression in the male and female body wall is fairly similar, yet slightly different to that of Wolbachia gene expression in the uterus. Proteomic methods verified 32 % of the predicted D. immitis proteome, including over 700 hypothetical proteins of D. immitis. Of note, hypothetical proteins were among some of the most abundant Wolbachia proteins identified, which may fulfill some important yet still uncharacterized biological function. Conclusions The spatial resolution gained from this parallel transcriptomic and proteomic analysis adds to our understanding of filarial biology and serves as a resource with which to develop future therapeutic strategies against filarial nematodes and their Wolbachia endosymbionts. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2083-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashley N Luck
- Genome Biology Division, New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Kathryn G Anderson
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
| | - Colleen M McClung
- Chemical Biology Division, New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Nathan C VerBerkmoes
- Chemical Biology Division, New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Jeremy M Foster
- Genome Biology Division, New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Michelle L Michalski
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
| | - Barton E Slatko
- Genome Biology Division, New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA.
| |
Collapse
|
41
|
Grácio AJS, Richter J, Komnenou AT, Grácio MA. Onchocerciasis caused by Onchocerca lupi: an emerging zoonotic infection. Systematic review. Parasitol Res 2015; 114:2401-13. [PMID: 25990062 DOI: 10.1007/s00436-015-4535-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/06/2015] [Indexed: 11/25/2022]
Abstract
Globalization has increased circulation of people, their food, livestock and pets in the world, and changes in the environment, climate and human behaviour have led to the rapid expansion of emerging infections throughout the world. One of the reasons of a new pathogen affecting humans is the passage from an animal to a human being. Onchocerca (O.) lupi, a filarial worm first described in a wolf in 1967, is an emerging pathogen which has been incriminated as the etiological agent for 205 canine, 2 feline and 18 human infections in Europe, Tunisia, Turkey, Iran and the USA. Most frequent findings in animals and humans are monolateral or asymmetrical variably painful subconjunctival swellings and nodules containing immature or mature worms affecting the eye and/or adjacent tissues accompanied by conjunctival hyperemia. Occasionally, subcutaneous nodules and masses affecting the spinal cord have been observed in humans. Diagnosis of O. lupi is achieved by microscopy of excised adult female worms which exhibit a particular cuticular structure and molecular analysis. Treatment consists in worm removal accompanied by antihelminthic, antibiotic and anti-inflammatory therapy.
Collapse
Affiliation(s)
- António J Santos Grácio
- Medical Parasitology Unit/Medical Entomology Group, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | | | | |
Collapse
|
42
|
Komnenou AT, Thomas ALN, Papadopoulos E, Koutinas AF. Intraocular localization of Onchocerca lupi adult worm in a dog with anterior uveitis: A case report. Vet Ophthalmol 2015; 19:245-249. [PMID: 25929486 DOI: 10.1111/vop.12277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Canine ocular onchocercosis may represent an important ocular disease with zoonotic potential and widespread geographical distribution. An uncommon localization of Onchocerca lupi adult worm in the anterior chamber of the eye is described for the first time. ANIMAL STUDIED A 4-year-old, intact, male, mixed-breed dog was admitted with profuse lacrimation and severe squinting. On the right eye, there were mucopurulent discharge, chemosis, and all typical signs of anterior uveitis which were attributed to the presence of a moving filarial worm within the anterior chamber. PROCEDURE Removal of the parasite from the anterior chamber by a limbal incision revealed a mature adult male, 7.65-cm-long O. lupi worm. Periocular skin scrapings for the corresponding microfilariae were negative. Postoperatively, apart from systemic prednisolone and doxycycline hyclate and a topical antibiotic/steroid solution, parenteral melarsomine, followed by ivermectin, was given until the complete disappearance of the ocular lesions. CONCLUSIONS Intraocular onchocercosis should be included in the differential diagnosis of canine anterior uveitis in endemic areas. This case highlights the atypical localization of O. lupi in the canine eye emphasizing on the possibility for a complete cure after the surgical removal of the parasite and the filaricidal medication subsequently applied.
Collapse
Affiliation(s)
- Anastasia Th Komnenou
- Ophthalmology Unit, Companion Animal Clinic, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki (AUTH), 11, St. Voutira st., 54627, Thessaloniki, Greece
| | - Angelos L N Thomas
- Ophthalmology Unit, Companion Animal Clinic, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki (AUTH), 11, St. Voutira st., 54627, Thessaloniki, Greece
| | - Elias Papadopoulos
- Laboratory of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University Campus, 54124, Thessaloniki, Aristotle University of Thessaloniki, Greece
| | - Alex F Koutinas
- Quality Vet Practice, 94, 54th Syntagmatos st., 38333, Volos, Greece
| |
Collapse
|
43
|
Labarthe NV, Paiva JP, Reifur L, Mendes-de-Almeida F, Merlo A, Carvalho Pinto CJ, Juliani PS, de Almeida MAO, Alves LC. Updated canine infection rates for Dirofilaria immitis in areas of Brazil previously identified as having a high incidence of heartworm-infected dogs. Parasit Vectors 2014; 7:493. [PMID: 25376238 PMCID: PMC4229606 DOI: 10.1186/s13071-014-0493-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/20/2014] [Indexed: 03/13/2024] Open
Abstract
Background Canine heartworm infections were frequently diagnosed in Brazil before the new millennium. After the year 2000, the frequency of diagnosis showed a sharp decline; however, a few years later, new evidence indicated that the parasite was still present and that canine infection rates seemed to be increasing. Therefore, an updated survey of canine heartworm prevalence was conducted in several locations in south, southeast, and northeast Brazil. Methods Dogs from 15 locations having previously reported a high prevalence of heartworm infection were included in the survey according to defined criteria, including the absence of treatment with a macrocyclic lactone for at least 1 year. Blood samples from 1531 dogs were evaluated by an in-clinic immunochromatography test kit (Witness® Heartworm, Zoetis, USA) for detection of Dirofilaria immitis antigen. At each location, epidemiologic data, including physical characteristics and clinical signs reported by owners or observed by veterinarians, were recorded on prepared forms for tabulation of results by location, clinical signs, and physical characteristics. Results The overall prevalence of canine heartworm infection was 23.1%, with evidence of heartworm-infected dogs detected in all 15 locations studied. There was a tendency for higher prevalence rates in environmentally protected areas, despite some locations having less-than-ideal environmental temperatures for survival of vector mosquitoes. Among physical characteristics, it was noted that dogs with predominantly white hair coats and residing in areas with a high (≥20%) prevalence of heartworm were less likely to have heartworm infection detected by a commercial heartworm antigen test kit than were dogs with other coat colors. In general, dogs older than 2 years were more frequently positive for D. immitis antigen than were younger dogs. Clinical signs of heartworm infections were rare or owners were unable to detect them, and could not be used for reliable prediction of the presence of heartworm. Conclusions These results indicate that the prevalence of D. immitis has increased in these areas of Brazil over the past few years. Small animal practitioners in these areas should include routine screening tests for heartworm infections in every dog’s annual evaluation protocol and make sure to have uninfected dogs on prevention.
Collapse
Affiliation(s)
- Norma Vollmer Labarthe
- Programa de Pós-Graduação em Medicina Veterinária, Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho 64, Santa Rosa, CEP 24230-340, Niterói, RJ, Brazil. .,Programa Institucional Biodiversidade e Saúde, Fundação Oswaldo Cruz, Av. Brasil 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, RJ, Brazil.
| | | | - Larissa Reifur
- Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia Básica, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos, 100, CEP 81530-900, Curitiba, PR, Brazil.
| | - Flavya Mendes-de-Almeida
- Programa de Pós-Graduação em Medicina Veterinária, Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho 64, Santa Rosa, CEP 24230-340, Niterói, RJ, Brazil.
| | - Alexandre Merlo
- Zoetis, Rua Alexandre Dumas, 1711, 8th floor, tower B, CEP: 04717-000, São Paulo, SP, Brazil.
| | | | - Paulo Sérgio Juliani
- Universidade de São Paulo, Via Santos Dumont 405, Jardim Santo Antônio, CEP: 11432-501, Guarujá, SP, Brazil.
| | - Maria Angela Ornelas de Almeida
- Escola de Medicina Veterinária e Zootecnia da Universidade Federal da Bahia, Av. Ademar de Barros, 500, Ondina, CEP 40170-110, Salvador, BA, Brazil.
| | - Leucio Câmara Alves
- Departamento de Medicina Veterinária da Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, CEP 52171-900, Recife, PE, Brazil.
| |
Collapse
|
44
|
Cloning, expression and characterization of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from Wolbachia endosymbiont of human lymphatic filarial parasite Brugia malayi. PLoS One 2014; 9:e99884. [PMID: 24941309 PMCID: PMC4062475 DOI: 10.1371/journal.pone.0099884] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022] Open
Abstract
Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for treatment of lymphatic filariasis. Although functional characterization of the Wolbachia peptidoglycan assembly has not been fully explored, the Wolbachia genome provides evidence for coding all of the genes involved in lipid II biosynthesis, a part of peptidoglycan biosynthesis pathway. UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is one of the lipid II biosynthesis pathway enzymes and it has inevitably been recognized as an antibiotic target. In view of the vital role of MurA in bacterial viability and survival, MurA ortholog from Wolbachia endosymbiont of Brugia malayi (wBm-MurA) was cloned, expressed and purified for further molecular characterization. The enzyme kinetics and inhibition studies were undertaken using fosfomycin. wBm-MurA was found to be expressed in all the major life stages of B. malayi and was immunolocalized in Wolbachia within the microfilariae and female adults by the confocal microscopy. Sequence analysis suggests that the amino acids crucial for enzymatic activity are conserved. The purified wBm-MurA was shown to possess the EPSP synthase (3-phosphoshikimate 1-carboxyvinyltransferase) like activity at a broad pH range with optimal activity at pH 7.5 and 37°C temperature. The apparent affinity constant (Km) for the substrate UDP-N-acetylglucosamine was found to be 0.03149 mM and for phosphoenolpyruvate 0.009198 mM. The relative enzymatic activity was inhibited ∼2 fold in presence of fosfomycin. Superimposition of the wBm-MurA homology model with the structural model of Haemophilus influenzae (Hi-MurA) suggests binding of fosfomycin at the same active site. The findings suggest wBm-MurA to be a putative antifilarial drug target for screening of novel compounds.
Collapse
|
45
|
Gehringer C, Kreidenweiss A, Flamen A, Antony JS, Grobusch MP, Bélard S. Molecular Evidence ofWolbachiaEndosymbiosis inMansonella perstansin Gabon, Central Africa. J Infect Dis 2014; 210:1633-8. [DOI: 10.1093/infdis/jiu320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Abstract
Most ecosystems are populated by a large number of diversified microorganisms, which interact with one another and form complex interaction networks. In addition, some of these microorganisms may colonize the surface or internal parts of plants and animals, thereby providing an additional level of interaction complexity. These microbial relations range from intraspecific to interspecific interactions, and from simple short-term interactions to intricate long-term ones. They have played a key role in the formation of plant and animal kingdoms, often resulting in coevolution; they control the size, activity level, and diversity patterns of microbial communities. Therefore, they modulate trophic networks and biogeochemical cycles, regulate ecosystem productivity, and determine the ecology and health of plant and animal partners. A better understanding of these interactions is needed to develop microbe-based ecological engineering strategies for environmental sustainability and conservation, to improve environment-friendly approaches for feed and food production, and to address health challenges posed by infectious diseases. The main types of biotic interactions are presented: interactions between microorganisms, interactions between microorganisms and plants, and interactions between microorganisms and animals.
Collapse
|
47
|
Pham JS, Dawson KL, Jackson KE, Lim EE, Pasaje CFA, Turner KEC, Ralph SA. Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2013; 4:1-13. [PMID: 24596663 PMCID: PMC3940080 DOI: 10.1016/j.ijpddr.2013.10.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 01/02/2023]
Abstract
Aminoacyl-tRNA synthetases are essential and many aaRS inhibitors kill parasites. We examine compound inhibitors tested experimentally against parasite aaRSs. Successful inhibitors were discovered by both phenotype and target-based approaches. Selectivity and resistance are ongoing challenges for development of parasite drugs.
Aminoacyl-tRNA synthetases are central enzymes in protein translation, providing the charged tRNAs needed for appropriate construction of peptide chains. These enzymes have long been pursued as drug targets in bacteria and fungi, but the past decade has seen considerable research on aminoacyl-tRNA synthetases in eukaryotic parasites. Existing inhibitors of bacterial tRNA synthetases have been adapted for parasite use, novel inhibitors have been developed against parasite enzymes, and tRNA synthetases have been identified as the targets for compounds in use or development as antiparasitic drugs. Crystal structures have now been solved for many parasite tRNA synthetases, and opportunities for selective inhibition are becoming apparent. For different biological reasons, tRNA synthetases appear to be promising drug targets against parasites as diverse as Plasmodium (causative agent of malaria), Brugia (causative agent of lymphatic filariasis), and Trypanosoma (causative agents of Chagas disease and human African trypanosomiasis). Here we review recent developments in drug discovery and target characterisation for parasite aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- James S Pham
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Karen L Dawson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Katherine E Jackson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Erin E Lim
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Charisse Flerida A Pasaje
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Kelsey E C Turner
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
48
|
Sanada-Morimura S, Matsumura M, Noda H. Male killing caused by a Spiroplasma symbiont in the small brown planthopper, Laodelphax striatellus. J Hered 2013; 104:821-9. [PMID: 23975837 DOI: 10.1093/jhered/est052] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spiroplasma-mediated late male killing was found in the small brown planthopper, Laodelphax striatellus. Female-biased colonies (maternal lines, N = 4) were established from planthoppers collected in Taiwan and Japan. This sex ratio distortion was maternally inherited (sex ratio of total number of progenies [female:male]: 488:0 in F1, 198:7 in F2, 407:0 in F3; likelihood ratio test of all generations, P < 0.0001) and caused by male death during nymphal stages. The female-biased colonies were doubly infected with Spiroplasma and Wolbachia, and the non-biased colonies were infected solely with Wolbachia. Antibiotic treatment resulted in a normal sex ratio, strongly suggesting that bacteria are manipulating host reproduction. Spiroplasma-singly-infected planthopper colonies created by the antibiotic treatment produced progeny with strongly female-biased sex ratios (181:2; likelihood ratio test, χ(2) = 231.6, P < 0.0001). This is the first report of Spiroplasma-mediated male killing in hemimetabolous insects.
Collapse
|
49
|
Melnikow E, Xu S, Liu J, Bell AJ, Ghedin E, Unnasch TR, Lustigman S. A potential role for the interaction of Wolbachia surface proteins with the Brugia malayi glycolytic enzymes and cytoskeleton in maintenance of endosymbiosis. PLoS Negl Trop Dis 2013; 7:e2151. [PMID: 23593519 PMCID: PMC3617236 DOI: 10.1371/journal.pntd.0002151] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/22/2013] [Indexed: 11/19/2022] Open
Abstract
The human filarial parasite Brugia malayi harbors an endosymbiotic bacterium of the genus Wolbachia. The Wolbachia represent an attractive target for the control of filarial induced disease as elimination of the bacteria affects molting, reproduction and survival of the worms. The molecular basis for the symbiotic relationship between Wolbachia and their filarial hosts has yet to be elucidated. To identify proteins involved in this process, we focused on the Wolbachia surface proteins (WSPs), which are known to be involved in bacteria-host interactions in other bacterial systems. Two WSP-like proteins (wBm0152 and wBm0432) were localized to various host tissues of the B. malayi female adult worms and are present in the excretory/secretory products of the worms. We provide evidence that both of these proteins bind specifically to B. malayi crude protein extracts and to individual filarial proteins to create functional complexes. The wBm0432 interacts with several key enzymes involved in the host glycolytic pathway, including aldolase and enolase. The wBm0152 interacts with the host cytoskeletal proteins actin and tubulin. We also show these interactions in vitro and have verified that wBm0432 and B. malayi aldolase, as well as wBm0152 and B. malayi actin, co-localize to the vacuole surrounding Wolbachia. We propose that both WSP protein complexes interact with each other via the aldolase-actin link and/or via the possible interaction between the host's enolase and the cytoskeleton, and play a role in Wolbachia distribution during worm growth and embryogenesis.
Collapse
Affiliation(s)
- Elena Melnikow
- Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Shulin Xu
- Department of Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Jing Liu
- Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Aaron J. Bell
- Electron Microscopy, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Elodie Ghedin
- Department of Computational & Systems Biology, Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Thomas R. Unnasch
- Department of Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Sara Lustigman
- Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| |
Collapse
|
50
|
Sharma R, Hoti SL, Vasuki V, Sankari T, Meena RL, Das PK. Filamentation temperature-sensitive protein Z (FtsZ) of Wolbachia, endosymbiont of Wuchereria bancrofti: a potential target for anti-filarial chemotherapy. Acta Trop 2013; 125:330-8. [PMID: 23262214 DOI: 10.1016/j.actatropica.2012.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 01/13/2023]
Abstract
Lymphatic filariasis (LF) is a leading cause of morbidity in the tropical world. It is caused by the filarial parasites Wuchereria bancrofti, Brugia malayi and Brugia timori and transmitted by vector mosquitoes. Currently a programme for the elimination of LF, Global programme for Elimination of Lymphatic Filariasis (GPELF), is underway with the strategy of mass administration of single dose of diethylcarbamazine or ivermectin, in combination with an anthelmintic drug, albendazole. However, antifilarial drugs used in the programme are only microfilaricidal but not or only partially macrofilaricidal. Hence, there is a need to identify new targets for developing antifilarial drugs. Filarial parasites harbor rickettsial endosymbionts, Wolbachia sp., which play an important role in their biology and hence are considered as potential targets for antifilarial chemotherapy development. In this study, one of the cell division proteins of Wolbachia of the major lymphatic filarial parasite, W. bancrofti, viz., filamentation temperature-sensitive protein Z (FtsZ), was explored as a drug target. The gene coding for FtsZ protein was amplified from the genomic DNA of W. bancrofti, cloned and sequenced. The derived amino acid sequence of the gene revealed that FtsZ protein is 396 amino acids long and contained the tubulin motif (GGGTGTG) involved in GTP binding and the GTP hydrolyzing motif (NLDFAD). The FtsZ gene of endosymbiont showed limited sequence homology, but exhibited functional homology with β-tubulin of its host, W. bancrofti, as it had both the functional motifs and conserved amino acids that are critical for enzymatic activity. β-tubulin is the target for the anti-helminthic activity of albendazole and since FtsZ shares functional homology with, β-tubulin it may also be sensitive to albendazole. Therefore, the effect of albendazole was tested against Wolbachia occurring in mosquitoes instead of filarial parasites as the drug has lethal effect on the latter. Third instar larvae of Culex quinquefasciatus were treated with 0.25mg/ml of albendazole (test) or tetracycline (positive control) in the rearing medium for different intervals and tested for the presence of Wolbachia by FtsZ PCR. All the treated larvae were negative for the presence of the FtsZ band, whereas all the control larvae were positive. The findings of the study, thus indicated that FtsZ is sensitive to albendazole. In view of this albendazole appears to have dual targets; FtsZ in Wolbachia and β-tubulin in W. bancrofti. Further, the functional domain of the gene was assessed for polymorphism among recombinant clones representing 120 W. bancrofti parasites, prevalent across wide geographic areas of India and found to be highly conserved among them. Since it is highly conserved and plays an important role in Wolbachia cell division it appears to be a potential target for anti-filarial chemotherapy development.
Collapse
Affiliation(s)
- Rohit Sharma
- Vector Control Research Centre, Indira Nagar, Medical Complex, Puducherry, India
| | | | | | | | | | | |
Collapse
|