1
|
Hu X, Wang M, Cai F, Liu L, Cheng Z, Zhao J, Zhang Q, Long C. A comprehensive review of medicinal Toxicodendron (Anacardiaceae): Botany, traditional uses, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116829. [PMID: 37429501 DOI: 10.1016/j.jep.2023.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Comprising of about 30 species, the genus Toxicodendron (Anacardiaceae) are mainly distributed in East Asia and North America. Among them, 13 species have been traditionally used as folk medicines in Asia and other parts of the world to treat blood diseases, abnormal bleeding, skin diseases, gastrointestinal diseases, liver diseases, bone injury, lung diseases, neurological diseases, cardiovascular diseases, tonic, cancer, eye diseases, menstrual irregularities, inflammation, rheumatism, diabetes mellitus, rattlesnake bite, internal parasites, contraceptive, vomiting and diarrhea. AIM OF THE STUDY To date, no comprehensive review on Toxicodendron has been published and the scientific basis of the traditional medicinal benefits of Toxicodendron have been less reported. Therefore, this review aims to provide a reference for further research and development on medicinal purpose of Toxicodendron by summarizing the works (from 1980 to 2023), and focusing on its botany, traditional uses, phytochemistry and pharmacology. MATERIALS AND METHODS The names of the species were from The Plant List Database (http://www.theplantlist.org), World Flora Online (http://www.worldfloraonline.org), Catalogue of Life Database (https://www.catalogueoflife.org/) and Plants for A Future Database (https://pfaf.org/user/Default.aspx). And the search terms "Toxicodendron" and "the names of 31 species and their synonyms" were used to search for information from electronic databases such as Web of Science, Scopus, Google Scholar, Science Direct, PubMed, Baidu Scholar, Springer, and Wiley Online Library. Moreover, PhD and MSc dissertations were also used to support this work. RESULTS These species on Toxicodendron are widely used in folkloric medicine and modern pharmacological activities. So far, approximately 238 compounds, mainly phenolic acids and their derivatives, urushiols, flavonoids and terpenoids, are extracted and isolated from Toxicodendron plants, commonly, T. trichocarpum, T. vernicifluum, T. succedaneum, and T. radicans. Among them, phenolic acids and flavonoids are the main compound classes that show pharmacological activities in Toxicodendron plants both in vitro and in vivo. Furthermore, the extracts and single compounds of these species show a wide range of activities, such as antioxidant, antibacterial, anti-inflammatory, anti-tumor, liver protection, fat reduction, nerve protection, and treatment of blood diseases. CONCLUSIONS Selected species of Toxicodendron have been used as herbal medicines in the Southeast Asian for a long time. Furthermore, some bioactive constituents have been identified from them, so plants in this genus may be potential new drugs. The existing research on Toxicodendron has been reviewed, and the phytochemistry and pharmacology provide theoretical basis for some of the traditional medicinal uses. Therefore, in this review, the traditional medicinal, phytochemical and modern pharmacology of Toxicodendron plants are summarized to help future researchers to find new drug leads or to get a better understanding of structure-activity relationships.
Collapse
Affiliation(s)
- Xian Hu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Ethnology and Sociology, Minzu University of China, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Miaomiao Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Fei Cai
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Liya Liu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Zhuo Cheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Jiaqi Zhao
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Ethnology and Sociology, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Qing Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China; Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Institute of National Security Studies, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
2
|
Johnson BD, Kaulagari S, Chen WC, Hayes K, Geldenhuys WJ, Hazlehurst LA. Identification of Natural Product Sulfuretin Derivatives as Inhibitors for the Endoplasmic Reticulum Redox Protein ERO1α. ACS BIO & MED CHEM AU 2022; 2:161-170. [PMID: 35892127 DOI: 10.1021/acsbiomedchemau.1c00062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The flavin adenine dinucleotide containing Endoplasmic Reticulum Oxidoreductase-1 α (ERO1α) catalyzes the formation of de novo disulfide bond formation of secretory and transmembrane proteins and contributes towards proper protein folding. Recently, increased ERO1α expression has been shown to contribute to increased tumor growth and metastasis in multiple cancer types. In this report we sought to define novel chemical space for targeting ERO1α function. Using the previously reported ERO1α inhibitor compound, EN-460, as a benchmark pharmacological tool we were able to identify a sulfuretin derivative, T151742 which was approximately two-fold more potent using a recombinant enzyme assay system (IC50 = 8.27 ± 2.33 μM) compared to EN-460 (IC50= 16.46 ± 3.47 μM). Additionally, T151742 (IC50 = 16.04 μM) was slightly more sensitive than EN-460 (IC50= 19.35μM) using an MTT assay as an endpoint. Utilizing a cellular thermal shift assay (CETSA), we determined that the sulfuretin derivative T151742 demonstrated isozyme specificity for ERO1α as compared to ERO1β and showed no detectable binding to the FAD containing enzyme LSD-1. T151742 retained activity in PC-9 cells in a clonogenicity assay while EN-460 was devoid of activity. Furthermore, the activity of T151742 inhibition of clonogenicity was dependent on ERO1α expression as CRISPR edited PC-9 cells were resistant to treatment with T151742. In summary we identified a new scaffold that shows specificity for ERO1α compared to the closely related paralog ERO1β or the FAD containing enzyme LSD-1 that can be used as a tool compound for inhibition of ERO1α to allow for pharmacological validation of the role of ERO1α in cancer.
Collapse
Affiliation(s)
- Brennan D Johnson
- Cancer Center, School of Medicine, West Virginia University, Morgantown WV 26501
| | | | - Wei-Chih Chen
- Cancer Center, School of Medicine, West Virginia University, Morgantown WV 26501
| | - Karen Hayes
- Modulation Therapeutics Inc, Morgantown WV 26506
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy West Virginia University, Morgantown WV 26505.,Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26501
| | - Lori A Hazlehurst
- Cancer Center, School of Medicine, West Virginia University, Morgantown WV 26501.,Department of Pharmaceutical Sciences, School of Pharmacy West Virginia University, Morgantown WV 26505
| |
Collapse
|
3
|
Wang Y, Han Y, Wang Y, Lv M, Li Y, Niu D. Expression of p38MAPK and its regulation of apoptosis under high temperature stress in the razor clam Sinonovacula constricta. FISH & SHELLFISH IMMUNOLOGY 2022; 122:288-297. [PMID: 35172214 DOI: 10.1016/j.fsi.2022.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
p38MAPK is a key branch of the MAPK (mitogen-activated protein kinase) pathway that plays an important role in physiological processes such as apoptosis, cell proliferation and growth. In this experiment, we screened and identified one p38MAPK gene in the razor clam Sinonovacula constricta, which encoded 359 amino acids and was widely expressed in various adult tissues. After 24 h of high temperature stress at 34 °C, the transcript expression of p38MAPK showed significant changes in all tested tissues. In particular in the gill and hepatopancreas tissues, where the expression increased 1.81 and 7.83 times compared with the control group, respectively (P < 0.01). Furthermore, we examined the expression of the apoptosis suppressor gene Bcl-2 and pro-apoptosis gene Bax by knock-down of p38MAPK with dsRNA interference in the gill and hepatopancreas tissues. The obvious up-regulation expression of Bcl-2 and significant suppression of Bax were observed, respectively (P < 0.01). Moreover, the TUNEL staining technique was used to detect apoptosis before and after interference. The degree of apoptosis in the gill and hepatopancreas tissues was reduced after interference with p38MAPK, and the ROS content was significantly reduced (P < 0.01). The results suggested that p38MAPK had a regulatory role in the heat tolerance of razor clams.
Collapse
Affiliation(s)
- Yizhen Wang
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuting Han
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanhui Wang
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Min Lv
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Yifeng Li
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Donghong Niu
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
4
|
Milosavljevic S, Djordjevic I, Mandic B, Tesevic V, Stankovic M, Todorovic N, Novakovic M. Flavonoids of the Heartwood of Cotinus coggygria Scop. Showing Protective Effect on Human Lymphocyte DNA. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211067289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In continuation of our study on Cotinus coggygria from Serbia, 10 known flavonoids (1-10) were isolated from the methylene chloride/methanol extract of the heartwood. They were tested for in vitro protective effect against chromosome aberrations in peripheral human lymphocytes, using the cytokinesis-block micronucleus assay. All tested compounds (in minimal doses of 1 μg/mL) exerted a beneficial effect by decreasing DNA damage of human lymphocytes in the range of 24.2% to 54.5%, better than the radio protectant control, amifostine. Functional groups, such as 3′,4′-dihydroxyphenyl (catechol), 5-OH, 3-OH, and 4-keto in flavonoids (3-keto in aurones), which play a key role in antioxidant activity, are proposed to be responsible for the DNA protective activity of the tested compounds.
Collapse
Affiliation(s)
| | - Iris Djordjevic
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Boris Mandic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Vele Tesevic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | | - Nina Todorovic
- Instituite of Chemistry, Technology and Metallurgy, Department of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Miroslav Novakovic
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
- Dedicated to Professor Yoshinori Asakawa on the occasion of his 80th birthday
| |
Collapse
|
5
|
Khan RA, Hossain R, Roy P, Jain D, Mohammad Saikat AS, Roy Shuvo AP, Akram M, Elbossaty WF, Khan IN, Painuli S, Semwal P, Rauf A, Islam MT, Khan H. Anticancer effects of acteoside: Mechanistic insights and therapeutic status. Eur J Pharmacol 2021; 916:174699. [PMID: 34919888 DOI: 10.1016/j.ejphar.2021.174699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
Cancer, the uncontrolled proliferation and metastasis of abnormal cells, is a major public health issue worldwide. To date, several natural compounds have been reported with their efficacy in the treatment of different types of cancer. Chemotherapeutic agents are used in cancer treatment and prevention, among other aspects. Acteoside is a phenylethanoid glycoside, first isolated from Verbascum sinuatum, which has demonstrated multiple effects, including antioxidant, anti-epileptic, neuroprotective, anti-inflammatory, antifungal, antihypertensive, and anti-leishmanial properties. This review gathered, analyzed, and summarized the literature on acteoside and its anticancer properties. All the available information about this compound and its role in different types of cancer was collected using different scientific search engines, including PubMed, Scopus, Springer Link, Wiley Online, Web of Science, Scifinder, ScienceDirect, and Google Scholar. Acteoside is found in a variety of plants and has been shown to have anticancer activity in many experimental models through oxidative stress, apoptosis, anti-angiogenesis, anti-invasion, anti-metastasis, synergism with other agents, and anti-proliferative effects through modulation of several pathways. In conclusion, acteoside exhibited potent anticancer activity against different cancer cell lines through modulating several cancer signaling pathways in different non- and pre-clinical experimental models and thus could be a strong candidate for further clinical studies.
Collapse
Affiliation(s)
- Rasel Ahmed Khan
- Pharmacy Discipline, Khulna University, Khulna, 9280, Bangladesh
| | - Rajib Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Dhaka, Bangladesh
| | - Pranta Roy
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430064, Hubei, China
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan University, Tonk, 304022, India
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Dhaka, Bangladesh
| | - Anik Prasad Roy Shuvo
- Department of Pharmacy, Southern University Bangladesh, Mehedibag Road, Chattagram, 4000, Bangladesh
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, 38000, Pakistan
| | | | - Ishaq N Khan
- Institute of Basic Medical Sciences Khyber Medical University, Peshawar, 25100, Pakistan
| | - Sakshi Painuli
- Himalayan Environmental Studies and Conservation Organization (HESCO), Dehradun, 248006, Uttarakhand, India
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era Demeed to be University, Dehradun, 248002, Uttarakhand, India
| | - Abdur Rauf
- Department of Chemistry University of Swabi, Swabi, Anbar, 23430, KPK, Pakistan.
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Dhaka, Bangladesh.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
6
|
Hoa NT, Hang DTN, Hieu DP, Van Truong H, Hoang LP, Mechler A, Vo QV. The hydroperoxyl radical scavenging activity of sulfuretin: insights from theory. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210626. [PMID: 34350021 PMCID: PMC8316794 DOI: 10.1098/rsos.210626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/10/2021] [Indexed: 05/14/2023]
Abstract
Sulfuretin (SFR), which is isolated from Rhus verniciflua, Toxicodendron vernicifluum, Dahlia, Bidens tripartite and Dipterx lacunifera, is one of the most important natural flavonoids. This compound is known to have numerous biological activities; among these, the antioxidant activity has not been thoroughly studied yet. In this study, the hydroperoxyl scavenging activity of SFR was examined by using density functional theory calculations. SFR is predicted to be an excellent HOO• scavenger in water at pH = 7.40 with k overall = 4.75 × 107 M-1 s-1, principally due to an increase in the activity of the anionic form following the single-electron transfer mechanism. Consistently, the activity of the neutral form is more prominent in the non-polar environment with k overall = 1.79 × 104 M-1 s-1 following the formal hydrogen transfer mechanism. Thus, it is predicted that SFR exhibits better HOO• antiradical activity than typical antioxidants such as resveratrol, ascorbic acid or Trolox in the lipid medium. The hydroperoxyl radical scavenging of SFR in the aqueous solution is approximately 530 times faster than that of Trolox and similar to ascorbic acid or resveratrol. This suggests that SFR is a promising radical scavenger in physiological environments.
Collapse
Affiliation(s)
- Nguyen Thi Hoa
- The University of Danang – University of Technology and Education, Danang 550000, Vietnam
| | - Do Thi Ngoc Hang
- The University of Danang – University of Technology and Education, Danang 550000, Vietnam
| | - Do Phu Hieu
- The University of Danang – University of Technology and Education, Danang 550000, Vietnam
| | - Huynh Van Truong
- The University of Danang – University of Technology and Education, Danang 550000, Vietnam
| | - Loc Phuoc Hoang
- Quang Tri Teacher Training College, Quang Tri province 520000, Vietnam
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Victoria 3086, Australia
| | - Quan V. Vo
- The University of Danang – University of Technology and Education, Danang 550000, Vietnam
| |
Collapse
|
7
|
Li MC, Zhang YQ, Meng CW, Gao JG, Xie CJ, Liu JY, Xu YN. Traditional uses, phytochemistry, and pharmacology of Toxicodendron vernicifluum (Stokes) F.A. Barkley - A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113476. [PMID: 33075438 DOI: 10.1016/j.jep.2020.113476] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Toxicodendron vernicifluum (Stokes) F.A. Barkley (syn. Rhus verniciflua or vernicifera Stokes, Anacardiaceae) (RVS), the lacquer tree, also known as sumac, has been used in China, Japan and South Korea for thousands of years as a highly durable coating material and a traditional herbal medicine, which contains medicinal ingredients with anti-tumor, anti-inflammatory, antiviral, and anti-rheumatic activities. AIM OF THIS REVIEW This review intends to provide a comprehensive and critical appraisal of RVS, including its phytochemical data, botanical and pharmacological literature that support its therapeutic potential in treatment on human diseases, with emphasis on the isolation of natural occurring compounds and detailed pharmacological investigations. MATERIALS AND METHODS Specific information of RVS was collected by using the key words "Toxicodendron vernicifluum", "Rhus verniciflua Stokes", "Rhus vernicifera Stokes" and "Lacquer tree" through published scientific materials (including PubMed, ScienceDirect, Wiley, ACS, CNKI, Scifinder, Springer, Web of Science, Google Scholar, and Baidu Scholar) and other literature sources. RESULTS The major phytoconstituents, 175 of which are presented in this review, including flavonoids, urushiols, terpenes, phenolic acids and other types of compounds, of which flavonoids and urushiols are main components. The extracts and isolates purified from RVS showed a wide range of in vitro and in vivo pharmacological effects, such as anti-cancer, anti-oxidation, anti-inflammatory, antimicrobial, tyrosinase inhibition and so on. CONCLUSION The modern pharmacological research of RVS mainly focus on the pharmacological effects of crude extract or active constituents, of which the flavonoids are widely studied. However, there are few reports on the relationship between pharmacological effects and their structures. And at present, there is still a lack of researches that are of both effective and in-depth. Meanwhile, there is little research on quality control. Apart from the wood and lacquer, other botanical parts also need to be explored further. In addition to phenolic compounds, the study on other types of components in T. vernicifluum would start more sparks for the discovery of new bioactive principles.
Collapse
Affiliation(s)
- Mei-Chen Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yun-Qiang Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Cai-Wen Meng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jin-Gou Gao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chao-Jie Xie
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jian-Yu Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yong Nan Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
8
|
Zhang M, Zhang Y, Huang Q, Duan H, Zhao G, Liu L, Li Y. Flavonoids from Sophora alopecuroides L. improve palmitate-induced insulin resistance by inhibiting PTP1B activity in vitro. Bioorg Med Chem Lett 2021; 35:127775. [PMID: 33412152 DOI: 10.1016/j.bmcl.2021.127775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 11/18/2022]
Abstract
Seventeen flavonoids (1-17) were isolated from Sophora alopecuroides L.. Compounds 1 and 2 were new compounds, and compounds 5, 8, 11, 12, and 17 were isolated from S. alopecuroides for the first time. The sources of compounds 1 and 2 were determined from the seeds of S. alopecuroides by UPLC-QE-Orbitrap-MS, and compounds 1, 2, 7, 13, 14, 15, 16, and 17 were proven to improve the insulin resistance of C2C12 myotubes and significantly increase glucose consumption levels. Among them, compounds 1, 2, 13, 14, 16, and 17 could bind to protein tyrosine phosphatase 1B (PTP1B), thereby significantly inhibiting the enzyme activity of PTP1B. Compound 2 had the strongest inhibitory effect, with an inhibition rate of 95.22% at 0.1 μg mL-1.
Collapse
Affiliation(s)
- Ming Zhang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
| | - Yuwei Zhang
- Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan 250103, China
| | - Qiqi Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
| | - Hui Duan
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
| | - Guodong Zhao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Yuxin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
9
|
Akacha A, Badraoui R, Rebai T, Zourgui L. Effect of Opuntia ficus indica extract on methotrexate-induced testicular injury: a biochemical, docking and histological study. J Biomol Struct Dyn 2020; 40:4341-4351. [PMID: 33305699 DOI: 10.1080/07391102.2020.1856187] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Methotrexate (MTX) is a chemotherapeutic medicine used in the treatment of several types of cancer and inflammatory diseases. It exhibits several drawbacks especially on highly dividing and developing cells. This study aimed to assess the role of Opuntia ficus indica ethanolic extract on testicular damage induced by MTX in rat. MTX was administrated for 10 days (20 mg/kg). Extract of cactus cladodes (Opuntia ficus indica) was given to MTX-treated rats (0.4 g/kg). Spermatozoa were collected from cauda epididymis and analyzed for sperm count and motility. Testis samples were used for histopathological and oxidative stress studies (assessment of malondialdehyde (MDA) levels, protein carbonyls (PCs), catalase (CAT) glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities). Moreover, levels of testosterone were measured in serum by radioimmunoassay. Our results showed that MTX had destructive effects on sperm count and motility associated with significant decrease in testosterone levels in MTX group. This effect was then confirmed by docking results. Testis of MTX group showed increased oxidative stress status. In fact, PCs and MDA were increased and CAT, GPx and SOD were decreased suggesting increased reactive oxygen species and deficiency in enzymatic antioxidant. These findings were associated with disrupted testicular morphology as assessed by histological study. Cladodes extract had protective effects on rat's gonad histology, oxidative stress and improve both sperm parameters (count and motility) and serum testosterone levels. In conclusion, our results suggested that Opuntia ficus indica cladodes extract improved MTX-induced testicular injury and possess potent fertility boosting effects in rats.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amira Akacha
- Higher Institute of Applied Biology (ISBAM) of Medenine, University of Gabés, Medenine, Tunisia.,Laboratory of Functional Neurophysiology and Pathology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Riadh Badraoui
- Laboratory of General Biology, Biology Department, University of Hail, Hail, Saudi Arabia.,Section of Histology - Cytology, Faculty of Medicine of Tunis, University of Tunis, Tunis, Tunisia.,Laboratory Histo-embryology and Cytogenetics, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Tarek Rebai
- Laboratory Histo-embryology and Cytogenetics, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Lazhar Zourgui
- Higher Institute of Applied Biology (ISBAM) of Medenine, University of Gabés, Medenine, Tunisia.,Laboratory of Functional Neurophysiology and Pathology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
10
|
Ugan RA, Un H. The Protective Roles of Butein on Indomethacin Induced Gastric Ulcer in Mice. Eurasian J Med 2020; 52:265-270. [PMID: 33209079 DOI: 10.5152/eurasianjmed.2020.20022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective Butein is a potential agent first isolated from Rhus verniciflua that has medicinal value in East Asia and has been used in the treatment of gastritis, gastric cancer, and atherosclerosis since ancient times. The aim of our study is to show, for the first time, the anti-ulcerative effect of butein in indomethacin induced gastric ulcer in mice. Materials and Methods A total of 42 mice were fasted 24 hours for the ulcer experiment, and 10, 20, and 40 mg/kg doses of butein were evaluated for their antiulcer activity. Famotidine 40 mg/kg was used as a positive control group. For ulcer induction, 25 mg/kg dose of indomethacin was administered to the mice and after 6 hours all stomachs were dissected out. After macroscopic analyses, tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), COX-1, and COX-2 mRNA levels of stomachs were evaluated by Real Time PCR, and Superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) were determined by ELISA. Results Butein administration exerted 50.8%, 65.9%, and 87.1% antiulcer effects at 10, 20, and 40 mg/kg, respectively. Butein administration decreased oxidative stress and inflammatory parameters in stomach tissues dose dependently. Furthermore, butein administration increased stomach PGE2 levels and decreased COX-1 and COX-2 mRNA levels. Conclusion Butein has been shown to have a healing effect on ulcers in macroscopic examinations in our study. We observed that butein has antioxidant and anti-cytokine properties in gastric tissue. Butein could be an important alternative in the treatment of indomethacin-induced ulcers. Whether butein is a partial agonist of the COX enzyme should be investigated in future studies.
Collapse
Affiliation(s)
- Rustem Anil Ugan
- Department of Pharmacology, Ataturk University, Faculty of Pharmacy, Erzurum, Turkey
| | - Harun Un
- Department of Biochemistry, Agri Ibrahim Cecen University, Faculty of Pharmacy, Agri, Turkey
| |
Collapse
|
11
|
Does 3-pentadecylcatechol, an urushiol derivative, get absorbed in the body? A rat oral administration experiment. Food Sci Biotechnol 2020; 29:997-1005. [DOI: 10.1007/s10068-020-00739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/08/2020] [Accepted: 02/07/2020] [Indexed: 10/24/2022] Open
|
12
|
Lee HS, Jung JI, Kim KH, Park SJ, Kim EJ. Rhus verniciflua Stokes extract suppresses migration and invasion in human gastric adenocarcinoma AGS cells. Nutr Res Pract 2020; 14:463-477. [PMID: 33029287 PMCID: PMC7520559 DOI: 10.4162/nrp.2020.14.5.463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/27/2020] [Accepted: 05/20/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/OBJECTIVES Many studies have suggested that Rhus verniciflua Stokes (RVS) and its extract are anticancer agents. However, RVS had limited use because it contains urushiol, an allergenic toxin. By improving an existing allergen-removal extraction method, we developed a new allergen-free Rhus verniciflua Stokes extract (RVSE) with higher flavonoid content. In this study, we examined whether RVSE inhibits the ability of AGS gastric cancer cells to migrate and invade. MATERIALS/METHODS The flavonoids content of RVSE was analyzed by HPLC. The effects of RVSE on migration and invasion in AGS cells were analyzed by each assay kit. Matrix metalloproteinase (MMP)-9, plasminogen activator inhibitor-1 (PAI-1) and urokinase-type plasminogen activator (uPA) protein expression was analyzed by protein antibody array. The Phosphorylation of signal transducer and activator of transcription (STAT) 3 were assayed by Western blot analysis. RESULTS RVSE treatment with 0-100 μg/mL dose-dependently reduced the ability of AGS cells to migrate and invade. Notably, treatment with RVSE strongly inhibited the expression of MMP-9 and uPA and the phosphorylation of STAT3. In contrast, RVSE treatment dramatically increased the expression of PAI-1. These results indicate that the inhibition of MMP-9 and uPA expression and STAT3 phosphorylation and the stimulation of PAI-1 expression contributed to the decreased migration and invasion of AGS cells treated with RVSE. CONCLUSIONS These results suggest that RVSE may be used as a natural herbal agent to reduce gastric cancer metastasis.
Collapse
Affiliation(s)
- Hyun Sook Lee
- Department of Food Science & Nutrition, Dongseo University, Busan 47011, Korea
| | - Jae In Jung
- Regional Strategic Industry Innovation Center, Hallym University, Chuncheon 24252, Korea
| | | | | | - Eun Ji Kim
- Regional Strategic Industry Innovation Center, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
13
|
Jeong HY, Lee TH, Lee HJ, Cho JY, Moon JH. Ionization Neutralizes the Allergy-Inducing Property of 3-Pentadecylcatechol: A Urushiol Derivative. J Med Food 2020; 23:793-801. [PMID: 32380887 DOI: 10.1089/jmf.2019.4510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Urushiols are amphipathic compounds found in Rhus verniciflua Stokes that exhibit various biological activities. However, their practical use is very restricted due to their contact dermatitis-inducing property. Therefore, we applied the ionization method to remove the allergenic properties of the urushiols and to increase their usability. One of the natural urushiols, 3-pentadecylcatechol (PDC), was heated for 30 min with a solution of H2O and sodium carbonate (Na2CO3). The reaction product was analyzed by electrospray ionization mass spectrometry (ESI-MS). Ionized PDC with an m/z value of 316.9 and complexed PDCs with Na+ of 1 - 3 atoms with m/z values of 340.8, 365.2, and 380.8 were detected. PDC and ionized PDC (3 μmol/3 mg of Vaseline) treatments were applied on the rear of left ear of Sprague-Dawley rats once daily for 10 days. Erythema and swelling were observed on the ear skin treated with PDC, but not in case of ionized PDC. Compared with control, contact hypersensitivity-related biomarkers (neutrophils, eosinophils, immunoglobulin E, and histamine) in the blood were significantly higher only in the PDC-treated group. In addition, Il-1b, Il-6, Tnfα, and Cox-2 mRNA expression levels were dramatically increased in the ear tissue of PDC-treated rats, but in the ionized PDC-treated group, they were similar to those in the control group. Overall, it was confirmed that the allergenic property of the urushiol PDC was removed by ionization. This method is expected to be useful for preventing allergy induction in cooking and food processing using R. verniciflua Stokes.
Collapse
Affiliation(s)
- Hang Yeon Jeong
- Department of Food Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Tae Ho Lee
- Department of Food Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Hyoung Jae Lee
- Department of Food Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Yong Cho
- Department of Food Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Hak Moon
- Department of Food Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
14
|
Yang Y, Xu X, Liu Q, Huang H, Huang X, Lv H. Myricetin Prevents Cataract Formation by Inhibiting the Apoptotic Cell Death Mediated Cataractogenesis. Med Sci Monit 2020; 26:e922519. [PMID: 32335580 PMCID: PMC7199429 DOI: 10.12659/msm.922519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/27/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The current research work aimed to explore the protective role of myricetin against cataractogenesis in humans, in terms of its anti-apoptotic potential. MATERIAL AND METHODS Human eye lens epithelial cells were exposed to oxidative stress by treating with hydrogen peroxide (H₂O₂). The levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) were determined using standard detection kits. DAPI (4',6-diamidino-2-phenylindole), AO/EB (acridine orange/ethidium bromide) and Annexin V/propidium iodide (PI) staining assays were used for the assessment of cell apoptosis. Western blotting was used to examine the protein concentrations. RESULTS The exposure of human epithelial eye lens cells to H₂O₂ led to significant accumulation of reactive oxygen species molecules. Treatment of the H₂O₂-stressed epithelial cells with myricetin caused significant (P<0.05) increased levels of SOD, CAT, and GSH. Western blot analysis also showed a significant (P<0.05) increase in the expression of SOD, CAT, and GSH levels in human epithelial eye lens cells. Additionally, myricetin administration to H₂O₂-treated epithelial eye lens cells caused a significant decline in cell apoptosis ratio. The induction of apoptosis was associated with upregulation of Bax and downregulation of Bcl-2. CONCLUSIONS The results of this study showed the potential of myricetin in protecting the apoptosis driven cataract formation in humans.
Collapse
Affiliation(s)
- Yu Yang
- Department of Ophthalmology, Nanchong Central Hospital (The Second Clinical Medical College of North Sichuan Medical College), Nanchong, Sichuan, P.R. China
| | - Xiaoxia Xu
- Department of Ophthalmology, Nanchong Central Hospital (The Second Clinical Medical College of North Sichuan Medical College), Nanchong, Sichuan, P.R. China
| | - Qi Liu
- Department of Pediatrics, Nanchong Central Hospital (The Second Clinical Medical College of North Sichuan Medical College), Nanchong, Sichuan, P.R. China
| | - Hai Huang
- Department of Ophthalmology, Nanchong Central Hospital (The Second Clinical Medical College of North Sichuan Medical College), Nanchong, Sichuan, P.R. China
| | - Xuewen Huang
- Department of Ophthalmology, Nanchong Central Hospital (The Second Clinical Medical College of North Sichuan Medical College), Nanchong, Sichuan, P.R. China
| | - Hongbin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
15
|
Abstract
Butein is a plant flavonoid chalcone, with presumed anti-adipogenic properties. It was reported to impair preadipocyte differentiation, limit adipose tissue (AT) development and enhance white AT browning in rodents. In this study, we investigated the hypothesis that these effects of butein may occur via reduction of ADAMTS5 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 5) expression. Murine 3T3-L1 or 3T3-F442A preadipocytes were differentiated into mature adipocytes in the presence of butein or vehicle. At regular time intervals RNA was collected for gene expression studies. Male hemizygous mice for Tg(Ucp1-luc2,-tdTomato)1Kajim (ThermoMouse) were exposed to butein or vehicle, after which ATs were analyzed for Adamts5 and uncoupling protein-1 (Ucp-1) mRNA level changes. During preadipocyte differentiation, butein (25 – 50 mM) did not affect Adamts5 or Ucp-1 expression. Oil Red O analysis and monitoring of differentiation markers failed to demonstrate effects of butein on the differentiation extent. Furthermore, butein administration to the ThermoMouse (10 or 20 mg/kg, 4 days) or to the C57BL6/Rj mice (20 mg/kg, 4 weeks) did not enhance Adamts5 or Ucp-1 expression. Thus, we could not demonstrate marked effects of butein on the preadipocyte differentiation extent or AT development and browning, nor on Adamts5 or Ucp-1 gene expression during these processes.
Collapse
Affiliation(s)
- Bianca Hemmeryckx
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Christine Vranckx
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Dries Bauters
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - H. Roger Lijnen
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Ilse Scroyen
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Lu YT, Xiao YF, Li YF, Li J, Nan FJ, Li JY. Sulfuretin protects hepatic cells through regulation of ROS levels and autophagic flux. Acta Pharmacol Sin 2019; 40:908-918. [PMID: 30560904 PMCID: PMC6786379 DOI: 10.1038/s41401-018-0193-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/08/2018] [Indexed: 12/09/2022] Open
Abstract
Palmitate (PA) exposure induces stress conditions featuring ROS accumulation and upregulation of p62 expression, resulting in autophagic flux blockage and cell apoptosis. Sulfuretin (Sul) is a natural product isolated from Rhus verniciflua Stokes; the cytoprotective effect of Sul on human hepatic L02 cells and mouse primary hepatocytes under PA-induced stress conditions was investigated in this study. Sul induced mitophagy by activation of p-TBK1 and LC3 and produced a concomitant decline in p62 expression. Autophagosome formation and mitophagy were assessed by the sensitive dual fluorescence reporter mCherry-EGFP-LC3B, and mitochondrial fragmentation was analyzed using MitoTracker Deep Red FM. A preliminary structure-activity relationship (SAR) for Sul was also investigated, and the phenolic hydroxyl group was found to be pivotal for maintaining the cytoprotective bioactivity of Sul. Furthermore, experiments using flow cytometry and western blots revealed that Sul reversed the cytotoxic effect stimulated by the autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ), and its cytoprotective effect was almost eliminated when the autophagy-related 5 (Atg5) gene was knocked down. These studies suggest that, in addition to its antioxidative effects, Sul stimulates mitophagy and restores impaired autophagic flux, thus protecting hepatic cells from apoptosis, and that Sul has potential future medical applications for hepatoprotection.
Collapse
Affiliation(s)
- Yu-Ting Lu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yu-Feng Xiao
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu-Feng Li
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jia Li
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Fa-Jun Nan
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Jing-Ya Li
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
17
|
Saravanakumar K, Chelliah R, Hu X, Oh DH, Kathiresan K, Wang MH. Antioxidant, Anti-Lung Cancer, and Anti-Bacterial Activities of Toxicodendron vernicifluum. Biomolecules 2019; 9:E127. [PMID: 30934938 PMCID: PMC6523688 DOI: 10.3390/biom9040127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
This work tested antioxidant, anti-lung cancer, and antibacterial activities by in vitro, in vivo, and computational experiments for the metabolites extracted from the bark, seed, and stem of Toxicodendron vernicifluum. The results showed that all the extracts significantly scavenged 1,2-diphenyl-1-picrylhydrazyl (DPPH) in a dose-dependent manner. But, the total phenol content (TPC) ranged from 2.12 to 89.25% and total flavonoids content (TFC) ranged from 1.02 to 15.62% in the extracts. The methanolic bark extract (MBE) exhibited higher DPPH scavenging activity than the other extracts, probably due to the higher content of the TPC and TFC present in it. Among the extracts, only the MBE showed anti-lung cancer activity at an acceptable level with a therapeutic index value (22.26) against human lung carcinoma. This was due to the cancer cell death in A549 induced by MBE through reactive oxygen species (ROS) generation, apoptosis, and cell arrest in G1 phase and inhibition of anti-pro-apoptotic protein survivin. Among the extracts, MBE showed significantly higher antibacterial activity as evident through the higher zone of inhibition 13 ± 0.5 mm against methycilin resistant strain of Staphylococcus aureus (MRSA), Salmonila enteria subp. enterica, and P. aeruginosa, 11 ± 0.3 mm against E. coli and 10 ± 0.2 mm against B. cereus. The MBE also showed an excellent antibacterial activity with lower minimal inhibitory concentration (MIC). Particularly, the MBE showed more significant antibacterial activity in MRSA. The in vivo antibacterial activity of the MBE was further tested in C. elegans model. The treatment of the MRSA induced cell disruption, damage and increased mortality of C. elegans as compared to the untreated and MBE treated C. elegans with normal OP50 diet. Moreover, the MBE treatment enhanced the survival of the MRSA infected C. elegans. The compounds, such as 2,3,3-trimethyl-Octane and benzoic from the MBE, metabolized the novel bacterial topoisomerases inhibitor (NBTI) and MRSA related protein (PBP2a). Overall the T. vernicifluum is potentially bioactive as evident by antioxidant, anti-lung cancer, and antibacterial assays. Further studies were targeted on the purification of the novel compounds for the clinical evaluation.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology College of Biotechnology and Bioscience, Kangwon National University, Chuncheon 200-701, Korea.
| | - Xiaowen Hu
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology College of Biotechnology and Bioscience, Kangwon National University, Chuncheon 200-701, Korea.
| | - Kandasamy Kathiresan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu, India.
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| |
Collapse
|
18
|
Intestinal epithelial cell apoptosis due to a hemolytic toxin from Vibrio vulnificus and protection by a 36 kDa glycoprotein from Rhus verniciflua Stokes. Food Chem Toxicol 2019; 125:46-54. [DOI: 10.1016/j.fct.2018.12.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/22/2018] [Accepted: 12/24/2018] [Indexed: 01/22/2023]
|
19
|
A Review of Antiplatelet Activity of Traditional Medicinal Herbs on Integrative Medicine Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7125162. [PMID: 30719065 PMCID: PMC6335729 DOI: 10.1155/2019/7125162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
Thrombotic events mainly occurred by platelet activation and aggregation. The vascular occlusion causes serious disease states such as unstable angina, ischemic stroke, and heart attack. Due to the pervading of thrombotic diseases, new antiplatelet drugs are necessary for preventing and treating arterial thrombosis without adverse side effects. Traditional medicinal herbs have been used for the treatment of human ailments for a long time. The clinically useful and safe products from traditional medicinal herbs were identified and developed in numerous pharmacological approaches. A complementary system of traditional medicinal herbs is a good candidate for pharmacotherapy. However, it still has a limitation in its function and efficacy. Thus, it is necessary to study the mode of action of traditional medicinal herbs as alternative therapeutic agents. In this review, we focused on our current understanding of the regulatory mechanisms of traditional medicinal herbs in antiplatelet activity and antithrombotic effect of traditional medicinal herbs on platelet function.
Collapse
|
20
|
Yang PY, Hu DN, Kao YH, Lin IC, Liu FS. Butein induces apoptotic cell death of human cervical cancer cells. Oncol Lett 2018; 16:6615-6623. [PMID: 30344763 PMCID: PMC6176361 DOI: 10.3892/ol.2018.9426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/31/2018] [Indexed: 12/16/2022] Open
Abstract
Butein is a chalcone, a flavonoid that is widely biosynthesized in plants. Butein has been identified to possess varied pharmacological activity and is extractable from traditional Chinese medicinal herbs, therefore applicable for disease treatment. Recently, in vitro and in vivo studies have shown that butein may induce apoptotic cell death in various human cancer cells. In this study we investigated the apoptotic effect of butein and the underlying mechanisms in human cervical cancer cells. Two cell lines, C-33A and SiHa cells, were treated with butein at different dosages for different durations. The effect of butein on cell viability was assessed by MTT assay, which revealed that butein exerted cytotoxicity in both cervical cancer cells in a dose- and time-dependent fashion. Apoptotic pathway-related factors in the butein-treated cervical cancer cells were then examined. JC-1 flow cytometry, cytochrome c assay, and caspase activity assays demonstrated that butein disturbed mitochondrial transmembrane potential, and increased cytosolic cytochrome c levels and caspase activities in both cervical cancer cells. Western blot analysis revealed that butein downregulated anti-apoptotic protein Bcl-xL and led to proteolytic cleavage of poly (ADP-ribose) polymerase. In addition, butein decreased expressions of the inhibitor of apoptosis (IAP) proteins, including X-linked IAP, survivin, and cellular IAP-1. The findings of this study suggest that butein can decrease cervical cancer cell viability via a pro-apoptotic effect, which involves inhibition of the IAP proteins and activation of both extrinsic and intrinsic pro-apoptotic pathways. Therefore, butein may be applicable for cervical cancer treatment.
Collapse
Affiliation(s)
- Pei-Yu Yang
- Department of Laboratory, Show Chwan Memorial Hospital, Changhua 50049, Taiwan R.O.C
| | - Dan-Ning Hu
- Tissue Culture Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung 82445, Taiwan R.O.C
| | - I-Ching Lin
- Department of Family Medicine, Changhua Christian Hospital, Changhua 50006, Taiwan R.O.C.,Faculty of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan R.O.C.,Faculty of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan R.O.C
| | - Fu-Shing Liu
- Department of Obstetrics and Gynecology, Show Chwan Memorial Hospital, Changhua 50049, Taiwan R.O.C
| |
Collapse
|
21
|
Choi KC, Son YO, Hwang JM, Kim BT, Chae M, Lee JC. Antioxidant, anti-inflammatory and anti-septic potential of phenolic acids and flavonoid fractions isolated from Lolium multiflorum. PHARMACEUTICAL BIOLOGY 2017; 55:611-619. [PMID: 27937124 PMCID: PMC6130696 DOI: 10.1080/13880209.2016.1266673] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 08/07/2016] [Accepted: 11/26/2016] [Indexed: 05/21/2023]
Abstract
CONTEXT Interest has recently renewed in using Lolium multiflorum Lam. (Poaceae) (called Italian ryegrass; IRG) silage as an antioxidant and anti-inflammatory diet. OBJECTIVE This study investigated the antioxidant, anti-inflammatory and anti-septic potential of IRG silage and identified the primary components in IRG active fractions. MATERIALS AND METHODS Total 16 fractions were separated from the chloroform-soluble extract of IRG aerial part using Sephadex LH-20 column before HPLC analysis. Antioxidant and anti-inflammatory activities of the fractions at doses of 0-100 μg/mL were investigated using various cell-free and cell-mediated assay systems. To explore anti-septic effect of IRG fractions, female ICR and BALB/c mice orally received 40 mg/kg of phenolic acid and flavonoid-rich active fractions F7 and F8 every other day for 10 days, respectively, followed by LPS challenge. RESULTS The active fractions showed greater antioxidant and anti-inflammatory potential compared with other fractions. IC50 values of F7 and F8 to reduce LPS-stimulated NO and TNF-α production were around 15 and 30 μg/mL, respectively. Comparison of retention times with authentic compounds through HPLC analysis revealed the presence of caffeic acid, ferulic acid, myricetin and kaempferol in the fractions as primary components. These fractions inhibited LPS-stimulated MAPK and NF-κB activation. Supplementation with F7 or F8 improved the survival rates of mice to 70 and 60%, respectively, in LPS-injected mice and reduced near completely serum TNF-α and IL-6 levels. DISCUSSION AND CONCLUSION This study highlights antioxidant, anti-inflammatory and anti-septic activities of IRG active fractions, eventually suggesting their usefulness in preventing oxidative damage and inflammatory disorders.
Collapse
Affiliation(s)
- Ki-Choon Choi
- Grassland and Forages Research Center, National Institute of Animal Science, Cheonan, South Korea
| | - Young-Ok Son
- Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jung-Min Hwang
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, South Korea
| | - Beom-Tae Kim
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, South Korea
| | - Minseon Chae
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, South Korea
| | - Jeong-Chae Lee
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, South Korea
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, South Korea
- CONTACT Jeong-Chae LeeInstitute of Oral Biosciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju54896, South Korea
| |
Collapse
|
22
|
Sulfuretin has therapeutic activity against acquired lymphedema by reducing adipogenesis. Pharmacol Res 2017; 121:230-239. [DOI: 10.1016/j.phrs.2017.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 01/30/2023]
|
23
|
Lamichhane R, Kim SG, Kang S, Lee KH, Pandeya PR, Jung HJ. Exploration of Underlying Mechanism of Anti-adipogenic Activity of Sulfuretin. Biol Pharm Bull 2017; 40:1366-1373. [PMID: 28579594 DOI: 10.1248/bpb.b17-00049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sulfuretin is a natural flavonoid found in the plant Rhus verniciflua STOKES. The plant has been traditionally used as medicinal agent for antiviral, cathartic, diaphoretic, anti-rheumatic and sedative activities in East Asia. In this study we isolated and identified sulfuretin from R. verniciflua and investigated its anti-adipogenic activity against 3T3-L1 preadipocytes cells. We evaluated the effects of sulfuretin on the adipogenic transcription factors like peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid synthase (FAS), Fabp4, adiponectin and zinc fingerprint protein (Zfp) 521 by gene expression (real-time QPCR) and Western blot analysis. Sulfuretin treatment at Day 0 and 2 showed significant reduction of lipid production in 3T3-L1 cells in concentration dependent manner. Gene expression analysis (real-time PCR) revealed that sulfuretin inhibited the both major adipogenic factors (C/EBPα, C/EBPβ and PPARγ) and minor adipogenic factors (sterol regulatory element-binding protein (SREBP1c), adiponectin, FAS, Fabp4, Zfp423, and Ebf1). Western blot analysis showed the increased expression of β-catenin and suppression of PPARγ after sulfuretin treatment. Overall, sulfuretin is a natural flavonoid having potent anti-adipogenic activity through the suppression of major adipogenic factors C/EBPα, C/EBPβ and PPARγ, which initiate adipogenesis.
Collapse
Affiliation(s)
| | - Se-Gun Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California at Berkeley
| | - Kyung-Hee Lee
- College of Pharmacy, Department of Oriental Pharmacy, Wonkwang University
| | | | - Hyun-Ju Jung
- Wonkwang University, College of Pharmacy, Department of Oriental Pharmacy, and Wonkwang-Oriental Medicines Research Institute
| |
Collapse
|
24
|
Montenegro CDA, Gonçalves GF, Oliveira Filho AAD, Lira AB, Cassiano TTM, Lima NTRD, Barbosa-Filho JM, Diniz MDFFM, Pessôa HLF. In Silico Study and Bioprospection of the Antibacterial and Antioxidant Effects of Flavone and Its Hydroxylated Derivatives. Molecules 2017; 22:E869. [PMID: 28538688 PMCID: PMC6152620 DOI: 10.3390/molecules22060869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/14/2017] [Accepted: 05/20/2017] [Indexed: 12/14/2022] Open
Abstract
Flavonoid compounds are widely used as natural protective species, which can act as anti-inflammatory, antioxidant, anticoagulant, antihypertensive and antitumor agents. This study set out to investigate the probable pharmacological activities, along with the antibacterial and antioxidant effects, of flavone and its hydroxy derivatives: 3-hydroxyflavone, 5-hydroxyflavone and 6-hydroxyflavone. To do so, we investigated their pharmacological characteristics, using in silico tests that indicate likelihood of activity or inactivity, with the PASS online software, and the antimicrobial potential against Gram positive and Gram negative bacteria was also analyzed, including bacteria of clinical importance. We also tested for oxidant and antioxidant potential in these molecules in the presence of reactive oxygen species (ROS) and phenylhydrazine (Ph). The results revealed the following characteristics: pharmacological activities for the flavonoids as agonists of cell membrane integrity and as permeability inhibitors, as antagonists of anaphylatoxin receptors, as inhibitors of both kinase and peroxidase, and as having both antimutagenic capacity and vaso-protective potential. All of the flavonoids exhibited moderate antibacterial activity against Gram positive and Gram negative strains, with the flavones being bactericidal at 200 μg/mL for the strains of P. aeruginosa ATCC 8027, S. aureus ATCC 25619 and E. coli 104; the other flavonoids revealed bacteriostatic action. The substances did not promote erythrocyte oxidation and behaved as sequestrators and antioxidants of hydrogen peroxide (H₂O₂) and phenylhydrazine (Ph). It was concluded that the analyzed compounds have various pharmacological activities in accordance with the predictions of PASS online, as their antibacterial and antioxidant activities were confirmed. The study also helps to consolidate the use of computational chemistry in silico tools to guide new drug search and discovery protocols.
Collapse
Affiliation(s)
- Camila de Albuquerque Montenegro
- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraiba, João Pessoa 58033-455, Paraíba, Brazil.
- Department of Pharmacy, Center Biological Sciences and Health, State University of Paraiba, Campina Grande 58429-600, Paraíba, Brazil.
| | - Gregório Fernandes Gonçalves
- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraiba, João Pessoa 58033-455, Paraíba, Brazil.
| | - Abrahão Alves de Oliveira Filho
- Academic Biological Science Unit, Health Center and Rural Technology, Federal University of Campina Grande, Patos 58708-110, Paraíba, Brazil.
| | - Andressa Brito Lira
- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraiba, João Pessoa 58033-455, Paraíba, Brazil.
| | - Thays Thyara Mendes Cassiano
- Department of Pharmacy, Center Biological Sciences and Health, State University of Paraiba, Campina Grande 58429-600, Paraíba, Brazil.
| | - Natanael Teles Ramos de Lima
- Department of Pharmacy, Center Biological Sciences and Health, State University of Paraiba, Campina Grande 58429-600, Paraíba, Brazil.
| | - José Maria Barbosa-Filho
- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraiba, João Pessoa 58033-455, Paraíba, Brazil.
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, João Pessoa 58059-900, Paraíba, Brazil.
| | - Margareth de Fátima Formiga Melo Diniz
- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraiba, João Pessoa 58033-455, Paraíba, Brazil.
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, João Pessoa 58059-900, Paraíba, Brazil.
| | - Hilzeth Luna Freire Pessôa
- Department of Molecular Biology, Center of Exact Sciences and Nature, Federal University of Paraíba, João Pessoa 58051-090, Paraíba, Brazil.
| |
Collapse
|
25
|
Lee EJ, Lee G, Sohn SH, Bae H. Extract of Rhus verniciflua Stokes enhances Th1 response and NK cell activity. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-016-0044-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Use of Red Cactus Pear (Opuntia ficus-indica) Encapsulated Powder to Pigment Extruded Cereal. J FOOD QUALITY 2017. [DOI: 10.1155/2017/7262464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Encapsulated powder of the red cactus pear is a potential natural dye for the food industry and a known antioxidant. Although the use of this powder is possible, it is not clear how it alters food properties, thus ensuing commercial acceptability. The aim of this study was to evaluate the effect of encapsulated powder of the red cactus pear on the physicochemical properties of extruded cereals. The powder was mixed (2.5, 5.0, and 7.5% w/w) with maize grits and extruded (mix moisture 22%, temperature 100°C, and screw speed 325 rpm). The physical, chemical, and sensory characteristics of the extruded cereal were evaluated; extruded cereal without encapsulated powder was used as a control. All cereal extrudates pigmented with the encapsulated powder showed statistically significant differences (P<0.05) in expansion, water absorption, color, density, and texture compared to the control. The encapsulated powder had a positive effect on expansion and water absorption indices, as well as color parameters, but a negative effect on density and texture. Extruded cereal properties were significantly (P<0.05) correlated. Sensorially, consumers accepted the extruded cereal with a lower red cactus pear powder content (2.5% w/w), because this presented characteristics similar to extruded cereal lacking pigment.
Collapse
|
27
|
Shi C, Chen X, Liu Z, Meng R, Zhao X, Liu Z, Guo N. Oleuropein protects L-02 cells against H 2O 2-induced oxidative stress by increasing SOD1, GPx1 and CAT expression. Biomed Pharmacother 2017; 85:740-748. [PMID: 27914828 DOI: 10.1016/j.biopha.2016.11.092] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 12/14/2022] Open
Abstract
Oleuropein (OL), a natural phenolic compound, comprises the major constituent of Olea europea leaves and unprocessed olives, and OL is considered to be the principal components that confer the characteristic taste and stability of olive oil. Oxidative damage induced by H2O2 treatment can irreversibly damage the L-02 cells, resulting in cell death and apoptosis. Whether the effects of oxidative stress could be attenuated in cultured human L-02 cells by incubation with OL is still unknown. In this research, the function of OL in protecting human L-02 cells against H2O2 induced cell death and cell apoptosis was investigated, and the mechanism by which OL underlies the effect was also examed. L-02 cells were exposed to 100μM H2O2 with or without OL pretreatment at different concentrations. Cell viabilities were monitored by WST-1 assay. ALT, AST and LDH production in culture medium were also determined. ROS levels were detected by L-012 chemiluminescence, and OL increased SOD1, CAT and GPx1 expression in a concentration-dependent manner. Further studies showed that OL also inhibited H2O2-induced P38 and JNK phosphorylation but enhanced ERK1/2 phosphorylation in a dose-dependent manner. These findings suggested that OL as a potent antioxidant agent and a natural compound found in several plants, may be exploited as a potentially useful method for hepatopathy prevention.
Collapse
Affiliation(s)
- Ce Shi
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 130062 Changchun, PR China
| | - Xiangrong Chen
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 130062 Changchun, PR China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, PR China
| | - Rizeng Meng
- Jilin Entry-Exit Inspection and Quarantine Bureau, 130062, Changchun, PR China
| | - Xingchen Zhao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 130062 Changchun, PR China
| | - Zonghui Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 130062 Changchun, PR China
| | - Na Guo
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 130062 Changchun, PR China.
| |
Collapse
|
28
|
Kang SH, Hwang IH, Son E, Cho CK, Choi JS, Park SJ, Jang BC, Lee KB, Lee ZW, Lee JH, Yoo HS, Jang IS. Allergen-Removed Rhus verniciflua Extract Induces Ovarian Cancer Cell Death via JNK Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1719-1735. [PMID: 27848251 DOI: 10.1142/s0192415x16500968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nuclear factor-[Formula: see text]B (NF-[Formula: see text]B)/Rel transcription factors are best known for their central roles in promoting cell survival in cancer. NF-[Formula: see text]B antagonizes tumor necrosis factor (TNF)-[Formula: see text]-induced apoptosis through a process involving attenuation of the c-Jun-N-terminal kinase (JNK). However, the role of JNK activation in apoptosis induced by negative regulation of NF-[Formula: see text]B is not completely understood. We found that allergen-removed Rhus verniciflua Stokes (aRVS) extract-mediated NF-[Formula: see text]B inhibition induces apoptosis in SKOV-3 ovarian cancer cells via the serial activation of caspases and SKOV-3 cells are most specifically suppressed by aRVS. Here, we show that in addition to activating caspases, aRVS extract negatively modulates the TNF-[Formula: see text]-mediated I[Formula: see text]B/NF-[Formula: see text]B pathway to promote JNK activation, which results in apoptosis. When the cytokine TNF-[Formula: see text] binds to the TNF receptor, I[Formula: see text]B dissociates from NF-[Formula: see text]B. As a result, the active NF-[Formula: see text]B translocates to the nucleus. aRVS extract (0.5[Formula: see text]mg/ml) clearly prevented NF-[Formula: see text]B from mobilizing to the nucleus, resulting in the upregulation of JNK phosphorylation. This subsequently increased Bax activation, leading to marked aRVS-induced apoptosis, whereas the JNK inhibitor SP600125 in aRVS extract treated SKOV-3 cells strongly inhibited Bax. Bax subfamily proteins induced apoptosis through caspase-3. Thus, these results indicate that aRVS extract contains components that inhibit NF-[Formula: see text]B signaling to upregulate JNK activation in ovarian cancer cells and support the potential of aRVS as a therapeutic agent for ovarian cancer.
Collapse
Affiliation(s)
- Se-Hui Kang
- * Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - In-Hu Hwang
- † Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Eunju Son
- ‡ Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
| | - Chong-Kwan Cho
- § East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Jong-Soon Choi
- * Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea.,‡ Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
| | - Soo-Jung Park
- ¶ Department of Sasang Constitutional Medicine, College of Korean Medicine, Woosuk University, Wanju, Jeonbuk, 55338, Republic of Korea
| | - Byeong-Churl Jang
- ∥ Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 704-701, Republic of Korea
| | - Kyung-Bok Lee
- * Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Zee-Won Lee
- * Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Jong Hoon Lee
- ** Department of Integrative Cancer Center, Woosuk Korean Medicine Hospital, Woosuk University, Jeonju 560-833, Republic of Korea
| | - Hwa-Seung Yoo
- § East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Ik-Soon Jang
- * Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| |
Collapse
|
29
|
Doğan A, Çelik İ. Healing effects of sumac (Rhus coriaria) in streptozotocin-induced diabetic rats. PHARMACEUTICAL BIOLOGY 2016; 54:2092-102. [PMID: 26957014 DOI: 10.3109/13880209.2016.1145702] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Context Sumac [Rhus coriaria L. (RC) (Anacardiaceae)] is used as a folk medicine in the treatment of diabetes in Turkey. Objective This study investigates the in vivo healing and protective effects of lyophilized extract sumac against streptozotocin (STZ)-induced diabetic complications. Materials and methods Toxicity test was conducted in three different dosages (250, 500 and 1000 mg/kg of plant extracts, respectively). Six groups of seven rats each were used in experiments. Groups were designed as Normal control, Diabetic (DM), DM + AC-20 mg/kg, DM + Extract-100 mg/kg, DM + Extract 250 mg/kg and DM + Extract 500 mg/kg group. Experimental diabetes [50 mg/kg, intraperitoneal (i.p.)] was induced by STZ. The effects of oral administration of the extract for 21 d on the level of serum glucose, insulin, C-peptide, lipid profile (LP), hepatic and renal damage biomarkers (HRDB), diabetic serum biomarkers (DSB), glycosylated haemoglobin (HbA1c), antioxidant defence system constituents (ADSCs), malondialdehyde (MDA) and α-glucosidase activity in small intestine tissue were evaluated. Results The extract decreased the levels of blood glucose in diabetic groups (an average of 31%). Triglyceride, total cholesterol, high-density lipoprotein and low-density lipoprotein levels were balanced by plant extract (500 mg/kg) supplementation in the diabetic group. Decreased levels of aspartate aminotransferase (89%), alanine aminotransferase (91%), lactate dehydrogenase (35%), alkaline phosphatase (47%), creatinine (25%) and urea (29%) were detected in plant extract (500 mg/kg) supplemented diabetic group. Additionally, a considerable increase in the HRDB, DSB, LP, MDA and fluctuated ADSC levels were restored in RC-extract supplemented groups. Conclusion RC lyophilized extract has a healing effect on diabetes and diabetes-related complications.
Collapse
Affiliation(s)
- Abdulahad Doğan
- a Faculty of Science, Department of Biology , Yuzuncu Yil University , Van , Turkey
| | - İsmail Çelik
- b Faculty of Science, Department of Molecular Biology and Genetics , Yuzuncu Yil University , Van , Turkey
| |
Collapse
|
30
|
Gil MN, Choi DR, Yu KS, Jeong JH, Bak DH, Kim DK, Lee NS, Lee JH, Jeong YG, Na CS, Na DS, Ryu KH, Han SY. Rhus verniciflua Stokes attenuates cholestatic liver cirrhosis-induced interstitial fibrosis via Smad3 down-regulation and Smad7 up-regulation. Anat Cell Biol 2016; 49:189-198. [PMID: 27722012 PMCID: PMC5052228 DOI: 10.5115/acb.2016.49.3.189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022] Open
Abstract
Cholestatic liver cirrhosis (CLC) eventually proceeds to end-stage liver failure by mediating overwhelming deposition of collagen, which is produced by activated interstitial myofibroblasts. Although the beneficial effects of Rhus verniciflua Stokes (RVS) on various diseases are well-known, its therapeutic effect and possible underlying mechanism on interstitial fibrosis associated with CLC are not elucidated. This study was designed to assess the protective effects of RVS and its possible underlying mechanisms in rat models of CLC established by bile duct ligation (BDL). We demonstrated that BDL markedly elevated the serological parameters such as aspartate aminotransferase, alanine transaminase, total bilirubin, and direct bilirubin, all of which were significantly attenuated by the daily uptake of RVS (2 mg/kg/day) for 28 days (14 days before and after operation) via intragastric route. We observed that BDL drastically induced the deterioration of liver histoarchitecture and excessive deposition of extracellular matrix (ECM), both of which were significantly attenuated by RVS. In addition, we revealed that RVS inhibited BDL-induced proliferation and activation of interstitial myofibroblasts, a highly suggestive cell type for ECM production, as shown by immunohistochemical and semi-quantitative detection of α-smooth muscle actin and vimentin. Finally, we demonstrated that the anti-fibrotic effect of RVS was associated with the inactivation of Smad3, the key downstream target of a major fibrogenic cytokine, i.e., transforming growth factor β (TGF-β). Simultaneously, we also found that RVS reciprocally increased the expression of Smad7, a negative regulatory protein of the TGF-β/Smad3 pathway. Taken together, these results suggested that RVS has a therapeutic effect on CLC, and these effects are, at least partly, due to the inhibition of liver fibrosis by the downregulation of Smad3 and upregulation of Smad7.
Collapse
Affiliation(s)
- Mi Na Gil
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Du Ri Choi
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Kwang Sik Yu
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Ji Heun Jeong
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Dong-Ho Bak
- Department of Dermatology, Chung-Ang University R&D Center, Seoul, Korea
| | - Do-Kyung Kim
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Nam-Seob Lee
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Je-Hun Lee
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Young-Gil Jeong
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | | | | | - Ki-Hyun Ryu
- Department of Gastroenterology and Hepatology, Konyang University Hospital, Daejeon, Korea
| | - Seung Yun Han
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea.; Myunggok Research Institute, Konyang University College of Medicine, Daejeon, Korea
| |
Collapse
|
31
|
Jang IS, Park JW, Jo EB, Cho CK, Lee YW, Yoo HS, Park J, Kim J, Jang BC, Choi JS. Growth inhibitory and apoptosis-inducing effects of allergen-free Rhus verniciflua Stokes extract on A549 human lung cancer cells. Oncol Rep 2016; 36:3037-3043. [PMID: 27667098 DOI: 10.3892/or.2016.5131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/20/2016] [Indexed: 11/06/2022] Open
Abstract
Evidence suggests that Rhus verniciflua Stokes (RVS) or its extract has the potential to be used for the treatment of inflammatory and neoplastic diseases. However, direct use of RVS or its extract as a herbal medicine has been limited due to the presence of urushiol, an allergenic toxin. In the present study, we prepared an extract of the allergen‑removed RVS (aRVS) based on a traditional method and investigated its inhibitory effect on the growth of various types of human cancer cells, including lung (A549), breast (MCF-7) and prostate (DU-145) cancer cell lines. Notably, among the cell lines tested, treatment with the aRVS extract strongly inhibited proliferation of the A549 cells at a 0.5 mg/ml concentration for 24 h that was not cytotoxic to normal human dermal fibroblasts. Furthermore, aRVS extract treatment largely reduced the survival and induced apoptosis of the A549 cells. At the mechanistic levels, treatment with the aRVS extract led to the downregulation of Bcl-2 and Mcl-1 proteins, the activation of caspase-9/-3 proteins, an increase in cytosolic cytochrome c levels, the upregulation of Bax protein, an increase in phosphorylated p53 protein but a decrease in phosphorylated S6 protein in the A549 cells. Importantly, treatment with z-VAD‑fmk, a pan-caspase inhibitor attenuated aRVS extract-induced apoptosis in the A549 cells. These results demonstrate firstly that aRVS extract has growth inhibitory and apoptosis-inducing effects on A549 human lung cancer cells through modulation of the expression levels and/or activities of caspases, Bcl-2, Mcl-1, Bax, p53 and S6.
Collapse
Affiliation(s)
- Ik-Soon Jang
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Jae-Woo Park
- East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Eun-Bi Jo
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Chong-Kwan Cho
- East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Yeon-Weol Lee
- East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Hwa-Seung Yoo
- East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju 220-100, Republic of Korea
| | - Jihye Kim
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 704-701, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 704-701, Republic of Korea
| | - Jong-Soon Choi
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| |
Collapse
|
32
|
New urushiols with platelet aggregation inhibitory activities from resin of Toxicodendron vernicifluum. Fitoterapia 2016; 112:38-44. [PMID: 27156871 DOI: 10.1016/j.fitote.2016.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 11/27/2022]
Abstract
Eight new urushiol-type compounds (1-7b), along with seven known compounds were isolated from the resin of Toxicodendron vernicifluum Stokes. Their structures were determined by extensive spectroscopic methods, included (1)H NMR, (13)C NMR, HMQC, HMBC, HRESIMS, EI-MS in combination with CD methods. All the compounds except 7a and 7b were evaluated for their anti-platelet aggregation activities in vitro. Among them, compound 5 (IC50=5.12±0.85μmol/L), with a vic-diol moiety in the long alkyl chain showed the most potent inhibitory of platelet aggregation activity induced by ADP. In addition, compound 6 showed the effect of anti-platelet aggregation induced by AA with the IC50 value of 3.09±0.70μmol/L. Thus, these compounds might be the active components to the traditional use of Resina Toxicodendri for breaking up blood stasis, which could be related to the anti-platelet aggregation.
Collapse
|
33
|
Choi KC, Cho SW, Kook SH, Chun SR, Bhattarai G, Poudel SB, Kim MK, Lee KY, Lee JC. Intestinal anti-inflammatory activity of the seeds of Raphanus sativus L. in experimental ulcerative colitis models. JOURNAL OF ETHNOPHARMACOLOGY 2016; 179:55-65. [PMID: 26721217 DOI: 10.1016/j.jep.2015.12.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/08/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Water extract of Raphanus sativus L. (RSL) seeds was traditionally used to treat digestive inflammatory complaints in Korean culture. RSL seeds exerted antioxidant, anti-inflammatory, and anti-septic functions, suggesting their pharmacological potential for the treatment of inflammatory pathologies associated with oxidative stress such as inflammatory bowel disease. AIM OF THIS STUDY We evaluated the intestinal anti-inflammatory effects of RSL seed water extract (RWE) in experimental rat models of trinitrobenzenesulphonic acid (TNBS)- or dextran sodium sulfate (DSS)-induced colitis. MATERIALS AND METHODS RWE was characterized by determining the content of sinapic acid as a reference material and then assayed in the DSS and TNBS models of rat colitis. Male Sprague-Dawley rats were divided into 10 groups (n=7/group): non-colitic control, DSS or TNBS control, DSS colitis groups treated with RWE (100mg/kg) or mesalazine (25mg/kg), and TNBS colitis groups treated with various doses (10, 40, 70, and 100mg/kg) of RWE or mesalazine (25mg/kg). RWE or mesalazine treatment started the same day of colitis induction and rats were sacrificed 24h after the last treatment followed by histological and biochemical analyses. RESULTS Oral administration with RWE suppressed intestinal inflammatory damages in both DSS- and TNBS-induced colitic rats. The treatment with 100mg/kg RWE recovered intestinal damages caused by TNBS or DSS to levels similar to that of mesalazine, decreasing the activity of myeloperoxidase activity and the secretion of tumor necrosis factor (TNF)-α and interleukin (IL)-1β. RWE treatment inhibited malondialdehyde production and glutathione reduction in colon of colitis rats. The administration of RWE at dose of 100mg/kg also suppressed the TNBS- or DSS-stimulated expression of TNF-α, IL-1β, monocyte chemotactic protein-1, inducible nitric oxide, and intercellular adhesion molecule-1. Furthermore, RWE inhibited p38 kinase and DNA-nuclear factor-κB binding activities, both of which were stimulated in the colitic rats. CONCLUSIONS The current findings show that RWE ameliorates intestinal oxidative and inflammatory damages in DSS and TNBS models of rat colitis, suggesting its beneficial use for the treatment of intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Ki-Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Cheonan, Chungnam 330-801, South Korea.
| | - Seong-Wan Cho
- Department of Pharmaceutical Engineering, Konyang University, Nonsan 320-711, South Korea.
| | - Sung-Ho Kook
- Research Center of Bioactive Materials and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, South Korea; Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 561-756, South Korea.
| | - Sa-Ra Chun
- Research Center of Bioactive Materials and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, South Korea.
| | - Govinda Bhattarai
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 561-756, South Korea.
| | - Sher Bahadur Poudel
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 561-756, South Korea.
| | - Min-Kook Kim
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 561-756, South Korea.
| | - Kyung-Yeol Lee
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 561-756, South Korea.
| | - Jeong-Chae Lee
- Research Center of Bioactive Materials and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, South Korea; Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 561-756, South Korea.
| |
Collapse
|
34
|
Rozmer Z, Perjési P. Naturally occurring chalcones and their biological activities. PHYTOCHEMISTRY REVIEWS 2016. [PMID: 0 DOI: 10.1007/s11101-014-9387-8] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
35
|
Clemente-Vicario F, Couto CG, Suruga K, Komatsu Y, Buffington CAT, Kisseberth WC. Clinical Effects of a Plant Extract Mixture Containing <i>Rhus verniciflua</i> and Other Herbs in Tumor Bearing Dogs. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jct.2016.77048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Caliskan G, Dirim SN. The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2015.10.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Antioxidant and antimalarial properties of butein and homobutein based on their ability to chelate iron (II and III) cations: a DFT study in vacuo and in solution. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2520-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Yang PY, Hu DN, Lin IC, Liu FS. Butein Shows Cytotoxic Effects and Induces Apoptosis in Human Ovarian Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:769-82. [DOI: 10.1142/s0192415x15500482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Butein is a polyphenol, one of the compounds of chalcones, which are flavonoids that are widely biosynthesized in plants, and exhibits different pharmacological activities. Plants containing butein have been used in Chinese traditional medicine. Recently, it has been reported that butein suppresses proliferation and triggers apoptosis in various human cancer cells in vitro and in vivo. The aim of this study was to investigate its pro-apoptotic effect and mechanisms in two cultured human ovarian cancer cells (ES-2 and TOV-21G). The effects of butein on cell viability were assessed by a MTT assay at 3, 10, 30, and 100 μ/M. The apoptotic pathway related factors, including the mitochondrial transmembrane potential (MTP), cytochrome c, caspase cascade, and Bcl-2 family proteins, were examined. MTT assay revealed that butein was cytotoxic to both ovarian cancer cells in a dose- and time-dependent manner. JC-1 flow cytometry, cytochrome c, and caspase activity assays revealed that butein damaged the MTP, increased the level of cytosol cytochrome c and the activities of caspase-3, -8, and -9 in the two ovarian cancer cells. Western blot analysis revealed that butein down-regulated the anti-apoptotic proteins Bcl-2 and Bcl-xL and increased the pro-apoptotic proteins Bax and Bad. These findings suggest that butein-induced apoptosis in ovarian cancer cells via the activation of both extrinsic and intrinsic pathways. In addition, butein also down-regulated the expressions of the inhibitor of apoptosis (IAP) proteins, XIAP, survivin, CIAP-1, and CIAP-2. This indicates that the inhibition of IAP proteins was also involved in butein-induced apoptosis. The results of our study suggest that butein may be a promising anticancer agent in treating ovarian cancer.
Collapse
Affiliation(s)
- Pei-Yu Yang
- Department of Medical Research, Show Chwan Memorial Hospital, Changhua 500, Taiwan, ROC
| | - Dan-Ning Hu
- Tissue Culture Center, New York Eye & Ear Infirmary of Mount Sinai, New York, NY, USA
| | - I-Ching Lin
- Department of Family Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC
- Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Fu-Shing Liu
- Cancer Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan, ROC
| |
Collapse
|
39
|
Jin MJ, Kim IS, Park JS, Dong MS, Na CS, Yoo HH. Pharmacokinetic Profile of Eight Phenolic Compounds and Their Conjugated Metabolites after Oral Administration of Rhus verniciflua Extracts in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5410-5416. [PMID: 25998231 DOI: 10.1021/acs.jafc.5b01724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Rhus verniciflua (Toxicodendron vernicifluum) is a medicinal tree popularly used in Asian countries such as China, Japan, and Korea as a food additive or herbal medicine because of its beneficial effects. R. verniciflua extract (RVE) contains diverse phenolic compounds, such as flavonoids, as its major biological active constituents. In this study, the pharmacokinetic profiles of eight phenolic compounds were investigated following oral administration of RVE to rats. The eight phenolic compounds were 2,4-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, fisetin, fustin, butin, sulfuretin, taxifolin, and garbanzol. The plasma concentrations of the eight compounds were determined by using a liquid chromatography-triple-quadrupole mass spectrometer before and after treatment with β-glucuronidase. When 1.5 g/kg RVE was administered, the eight compounds were all detected in plasma, mainly as conjugated forms. These pharmacokinetic data would be useful for understanding the pharmacological effects of RVE.
Collapse
Affiliation(s)
- Ming Ji Jin
- †Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Korea
| | - In Sook Kim
- †Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Korea
| | - Jong Suk Park
- †Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Korea
| | - Mi-Sook Dong
- §School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Chun-Soo Na
- #Lifetree Biotech Company, Ltd., Suwon, Gyeonggi-do 441-350, Korea
| | - Hye Hyun Yoo
- †Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Korea
| |
Collapse
|
40
|
Ruiz-Gutiérrez MG, Amaya-Guerra CA, Quintero-Ramos A, Pérez-Carrillo E, Ruiz-Anchondo TDJ, Báez-González JG, Meléndez-Pizarro CO. Effect of extrusion cooking on bioactive compounds in encapsulated red cactus pear powder. Molecules 2015; 20:8875-92. [PMID: 25993418 PMCID: PMC6272353 DOI: 10.3390/molecules20058875] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/30/2015] [Indexed: 11/16/2022] Open
Abstract
Red cactus pear has significant antioxidant activity and potential as a colorant in food, due to the presence of betalains. However, the betalains are highly thermolabile, and their application in thermal process, as extrusion cooking, should be evaluated. The aim of this study was to evaluate the effect of extrusion conditions on the chemical components of red cactus pear encapsulated powder. Cornstarch and encapsulated powder (2.5% w/w) were mixed and processed by extrusion at different barrel temperatures (80, 100, 120, 140 °C) and screw speeds (225, 275, 325 rpm) using a twin-screw extruder. Mean residence time (trm), color (L*, a*, b*), antioxidant activity, total polyphenol, betacyanin, and betaxanthin contents were determined on extrudates, and pigment degradation reaction rate constants (k) and activation energies (Ea) were calculated. Increases in barrel temperature and screw speed decreased the trm, and this was associated with better retentions of antioxidant activity, total polyphenol, betalain contents. The betacyanins k values ranged the -0.0188 to -0.0206/s and for betaxanthins ranged of -0.0122 to -0.0167/s, while Ea values were 1.5888 to 6.1815 kJ/mol, respectively. The bioactive compounds retention suggests that encapsulated powder can be used as pigments and to provide antioxidant properties to extruded products.
Collapse
Affiliation(s)
- Martha G Ruiz-Gutiérrez
- Departamento de Investigación y Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n Campus Universitario 2, Chihuahua 31125, Mexico.
| | - Carlos A Amaya-Guerra
- Departamento de Investigación y Posgrado, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza 66450, Mexico.
| | - Armando Quintero-Ramos
- Departamento de Investigación y Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n Campus Universitario 2, Chihuahua 31125, Mexico.
| | - Esther Pérez-Carrillo
- Centro de Biotecnología-FEMSA, Escuela de Ingenería y Ciencias, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico.
| | - Teresita de J Ruiz-Anchondo
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n Campus Universitario 1, Chihuahua 31310, Mexico.
| | - Juan G Báez-González
- Departamento de Investigación y Posgrado, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza 66450, Mexico.
| | - Carmen O Meléndez-Pizarro
- Departamento de Investigación y Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n Campus Universitario 2, Chihuahua 31125, Mexico.
| |
Collapse
|
41
|
Lee WJ, Kang JE, Choi JH, Jeong ST, Kim MK, Choi HS. Comparison of the Flavonoid and Urushiol Content in Different Parts of Rhus verniciflua Stokes Grown in Wonju and Okcheon. ACTA ACUST UNITED AC 2015. [DOI: 10.9721/kjfst.2015.47.2.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Jeong SJ, Park JG, Kim S, Kweon HY, Seo S, Na DS, Lee D, Hong CY, Na CS, Dong MS, Oh GT. Extract of Rhus verniciflua stokes protects the diet-induced hyperlipidemia in mice. Arch Pharm Res 2015; 38:2049-58. [DOI: 10.1007/s12272-015-0579-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 02/19/2015] [Indexed: 01/28/2023]
|
43
|
Kim KH, Moon E, Choi SU, Pang C, Kim SY, Lee KR. Identification of cytotoxic and anti-inflammatory constituents from the bark of Toxicodendron vernicifluum (Stokes) F.A. Barkley. JOURNAL OF ETHNOPHARMACOLOGY 2015; 162:231-237. [PMID: 25582488 DOI: 10.1016/j.jep.2014.12.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/26/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Toxicodendron vernicifluum (Stokes) F.A. Barkley (Anacardiaceae) has traditionally been used as a food supplement and in traditional herbal medicine to treat inflammatory diseases and cancers for centuries in Korea. This study was designed to isolate the bioactive constituents from the ethanol extract of Toxicodendron vernicifluum bark and evaluate their cytotoxic and anti-inflammatory activities. MATERIAL AND METHODS Bioassay-guided fractionation and chemical investigation of the ethanol extract of Toxicodendron vernicifluum bark resulted in the isolation and identification of three new polyphenols (1-3) and six flavonoids (4-9). The structures of the isolated compounds were elucidated by spectroscopic analysis, including 1D and 2D nuclear magnetic resonance (NMR) ((1)H, (13)C, COSY, HMQC and HMBC experiments), and high resolution (HR)-mass spectrometry, and their absolute configurations were further confirmed by chemical methods and circular dichroism (CD) data analysis. Compounds 1-9 were evaluated for their antiproliferative activities against four human tumor cell lines (A549, SK-OV-3, SK-MEL-2, and HCT-15), and anti-inflammatory activities by measuring nitric oxide (NO) levels in the medium of murine microglia BV-2 cells. RESULTS The isolated compounds were characterized as in the following: three new polyphenols, rhusopolyphenols G-I (1-3) and six flavonoids including two aurones, 2-benzyl-2,3',4',6-tetrahydroxybenzo[b]furan-3(2H)-one (4), sulfuretin (5), two dihydroflavonols, (+)-(2S,3R)-fustin (6), (+)-epitaxifolin (7), one chalcone, butein (8), and one flavonol, fisetin (9). The published NMR assignments of 4 were corrected by the detailed analysis of spectroscopic data in this study. Among the tested compounds, compounds 4-9 showed antiproliferative activity against the tested cells, with IC50 values of 4.78-28.89 μM. Compounds 5 and 8 significantly inhibited NO production in lipopolysaccharide (LPS)-stimulated BV-2 cells with IC50 values of 23.37 and 11.68 μM, respectively. CONCLUSIONS Polyphenols including flavonoids were one of the main constituents of Toxicodendron vernicifluum bark, and activities demonstrated by the isolated compounds support the ethnopharmacological use of Toxicodendron vernicifluum as anti-cancer and/or anti-inflammatory agents.
Collapse
Affiliation(s)
- Ki Hyun Kim
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Eunjung Moon
- College of Pharmacy, Gachon University, #191 Hambakmoero, Yeonsu-gu, Incheon 406-799, Republic of Korea
| | - Sang Un Choi
- Korea Research Institute of Chemical Technology, Deajeon 305-600, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, #191 Hambakmoero, Yeonsu-gu, Incheon 406-799, Republic of Korea
| | - Kang Ro Lee
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
44
|
Chung NJ, Choi KC, Lee SA, Baek JA, Lee JC. Rice hull extracts inhibit proliferation of MCF-7 cells with G₁ cell cycle arrest in parallel with their antioxidant activity. J Med Food 2014; 18:314-23. [PMID: 25469660 DOI: 10.1089/jmf.2014.3181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rice (Oryza sativa L.) has been a major dietary staple worldwide for centuries. Growing interest in the beneficial effects of antioxidants has inspired investigation of rice hulls as an attractive source of chemopreventive compounds for breast cancer intervention. We prepared methanol extracts from rice hulls of three Korean bred cultivars (japonica), Ilpum, Heugjinju, and Jeogjinju, and one japonica weedy rice, WD-3. We examined the antiproliferative potential of the hull extracts on MCF-7 human breast cancer cells and the related mechanisms thereof. Hull extracts inhibited proliferation of the cells and mediated G0/G1 phase arrest by suppressing cyclins and cyclin-dependent kinases, where WD-3 extract showed the most potent. Blockage of p21 expression by small interfering RNA transfection attenuated G1 phase arrest induced by WD-3 extract. The WD-3 extract exhibited greater antioxidant potential and total phenolic compounds, compared with other rice hulls. Gas chromatography-mass spectrometry analysis for the F4 fractioned from WD-3 extract revealed that cinnamic acid derivatives were the major active constituents. The F4 fraction most potently inhibited proliferation of MCF-7 cells than WD-3 extract through the suppression of cell cycle regulatory factors. Collectively, our results suggest that the pigmented rice hulls possess greater antioxidant and chemopreventive activity against breast cancer than the other rice cultivars tested, demonstrating that WD-3 rice hulls are an attractive source of chemopreventive bioactive compounds.
Collapse
Affiliation(s)
- Nam-Jin Chung
- 1 Department of Crop Science and Biotechnology, Chonbuk National University , Jeonju, South Korea
| | | | | | | | | |
Collapse
|
45
|
Sulfuretin inhibits 6-hydroxydopamine-induced neuronal cell death via reactive oxygen species-dependent mechanisms in human neuroblastoma SH-SY5Y cells. Neurochem Int 2014; 74:53-64. [DOI: 10.1016/j.neuint.2014.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/14/2014] [Accepted: 04/27/2014] [Indexed: 12/31/2022]
|
46
|
Kim JH, Shin YC, Ko SG. Integrating traditional medicine into modern inflammatory diseases care: multitargeting by Rhus verniciflua Stokes. Mediators Inflamm 2014; 2014:154561. [PMID: 25024508 PMCID: PMC4082934 DOI: 10.1155/2014/154561] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 01/05/2023] Open
Abstract
Despite the fact that numerous researches were performed on prevention and treatment of inflammation related diseases, the overall incidence has not changed remarkably. This requires new approaches to overcome inflammation mediated diseases, and thus traditional medicine could be an efficacious source for prevention and treatment of these diseases. In this review, we discuss the contribution of traditional medicine, especially Rhus verniciflua Stokes, to modern medicine against diverse inflammation mediated diseases. Traditionally, this remedy has been used in Eastern Asia for the treatment of gastric problems, hepatic disorders, infectious diseases, and blood disorders. Modern science has provided the scientific basis for the use of Rhus verniciflua Stokes against such disorders and diseases. Various chemical constituents have been identified from this plant, including phenolic acid, and flavonoids. Cell-based studies have exhibited the potential of this as antibacterial, antioxidant, neuroprotective, anti-inflammatory, growth inhibitory, and anticancer activities. Enormous animal studies have shown the potential of this against proinflammatory diseases, neurodegenerative diseases, diabetes, liver diseases, and chemical insults. At the molecular level, this medicinal plant has been shown to modulate diverse cell-signaling pathways. In clinical studies, Rhus verniciflua Stokes has shown efficacy against various cancer patients such as colorectal, gastric, hepatic, renal, pancreatic, and pulmonary cancers. Thus, this remedy is now exhibiting activities in the clinic.
Collapse
Affiliation(s)
- Ji Hye Kim
- Laboratory of Clinical Biology and Pharmacogenomics, Department of Preventive Medicine, College of Oriental Medicine, Kyunghee University, 1 Hoegi-dong, Seoul 130-701, Republic of Korea
| | - Yong Cheol Shin
- Laboratory of Clinical Biology and Pharmacogenomics, Department of Preventive Medicine, College of Oriental Medicine, Kyunghee University, 1 Hoegi-dong, Seoul 130-701, Republic of Korea
| | - Seong-Gyu Ko
- Laboratory of Clinical Biology and Pharmacogenomics, Department of Preventive Medicine, College of Oriental Medicine, Kyunghee University, 1 Hoegi-dong, Seoul 130-701, Republic of Korea
| |
Collapse
|
47
|
Cho SG, Woo SM, Ko SG. Butein suppresses breast cancer growth by reducing a production of intracellular reactive oxygen species. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:51. [PMID: 24919544 PMCID: PMC4064524 DOI: 10.1186/1756-9966-33-51] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/02/2014] [Indexed: 02/08/2023]
Abstract
Background Butein has various functions in human diseases including cancer. While anti-cancer effects of butein have been revealed, it is urgent to understand a unique role of butein against cancer. In this study, we demonstrate that butein inhibition of reactive oxygen species (ROS) production results in suppression of breast cancer growth. Methods Different breast cancer cell lines were treated with butein and then subjected to cell viability and apoptosis assays. Butein-sensitive or -resistant breast cancer cells were injected into mammary fat pads of immunocompromised mice and then butein was injected. Breast cancer cells were categorized on the basis of butein sensitivity. Results Butein reduced viabilities of different breast cancer cells, while not affecting those of HER2-positive (HER2+) HCC-1419, SKBR-3 and HCC-2218 breast cancer cells. Butein reduction of ROS levels was correlated with apoptotic cell death. Furthermore, butein reduction of ROS level led to inhibitions of AKT phosphorylation. N-acetyl-L-cysteine (NAC), a free radical scavenger, also reduced ROS production and AKT phosphorylation, resulting in apoptotic cell death. In contrast, inhibitory effects of both butein and NAC on ROS production and AKT phosphorylation were not detected in butein-resistant HER2+ HCC-1419, SKBR-3 and HCC-2218 cells. In the in vivo tumor growth assays, butein inhibited tumor growth of butein-sensitive HER2+ BT-474 cells, while not affecting that of butein-resistant HER2+ HCC-1419 cells. Moreover, butein inhibition of ROS production and AKT phosphorylation was confirmed by in vivo tumor growth assays. Conclusions Our study first reveals that butein causes breast cancer cell death by the reduction of ROS production. Therefore, our finding provides better knowledge for butein effect on breast cancer and also suggests its treatment option.
Collapse
Affiliation(s)
| | | | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul 130701, Korea.
| |
Collapse
|
48
|
The cytoprotective effect of sulfuretin against tert-butyl hydroperoxide-induced hepatotoxicity through Nrf2/ARE and JNK/ERK MAPK-mediated heme oxygenase-1 expression. Int J Mol Sci 2014; 15:8863-77. [PMID: 24857917 PMCID: PMC4057764 DOI: 10.3390/ijms15058863] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022] Open
Abstract
Sulfuretin is one of the major flavonoid components in Rhus verniciflua Stokes (Anacardiaceae) isolates. In this study, we investigated the protective effects of sulfuretin against tert-butyl hydroperoxide (t-BHP)-induced oxidative injury. The results indicated that the addition of sulfuretin before t-BHP treatment significantly inhibited cytotoxicity and reactive oxygen species (ROS) production in human liver-derived HepG2 cells. Sulfuretin up-regulated the activity of the antioxidant enzyme heme oxygenase (HO)-1 via nuclear factor E2-related factor 2 (Nrf2) translocation into the nucleus and increased the promoter activity of the antioxidant response element (ARE). Moreover, sulfuretin exposure enhanced the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2), which are members of the mitogen-activated protein kinase (MAPK) family. Furthermore, cell treatment with a JNK inhibitor (SP600125) and ERK inhibitor (PD98059) reduced sulfuretin-induced HO-1 expression and decreased its protective effects. Taken together, these results suggest that the protective effect of sulfuretin against t-BHP-induced oxidative damage in human liver-derived HepG2 cells is attributable to its ability to scavenge ROS and up-regulate the activity of HO-1 through the Nrf2/ARE and JNK/ERK signaling pathways. Therefore, sulfuretin could be advantageous as a bioactive source for the prevention of oxidative injury.
Collapse
|
49
|
Inhibitory effect of Rhus verniciflua Stokes extract on human aromatase activity; butin is its major bioactive component. Bioorg Med Chem Lett 2014; 24:1730-3. [DOI: 10.1016/j.bmcl.2014.02.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/04/2014] [Accepted: 02/14/2014] [Indexed: 11/23/2022]
|
50
|
Standardized Rhus verniciflua stokes extract and its major flavonoid fustin attenuate oxidative stress induced by tert-butyl hydroperoxide via activation of nuclear factor erythroid 2-related factor. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13765-013-4201-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|