1
|
Sen K, Kumar Das S, Ghosh N, Sinha K, Sil PC. Lupeol: A dietary and medicinal triterpene with therapeutic potential. Biochem Pharmacol 2024; 229:116545. [PMID: 39293501 DOI: 10.1016/j.bcp.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Lupeol, a triterpene derived from various plants, has emerged as a potent dietary supplement with extensive therapeutic potential. This review offers a comprehensive examination of lupeol's applications across diverse health conditions. By meticulously analyzing current scientific literature, we have synthesized findings that underscore lupeol's impact on cancer, diabetes, gastrointestinal disorders, neurological diseases, dermatological conditions, nephrological issues, and cardiovascular health. The review delves into molecular studies that reveal lupeol's ability to modulate disease pathways and alleviate symptoms, positioning it as a promising therapeutic agent. Moreover, we discuss the potential role of lupeol in clinical practice and public health strategies, emphasizing its substantial benefits as a natural compound. This thorough analysis serves as a critical resource for researchers, providing insights into the multifaceted therapeutic properties of lupeol and its potential to significantly enhance health outcomes.
Collapse
Affiliation(s)
- Koushik Sen
- Jhargram Raj College, Jhargram 721507, India
| | | | | | | | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India.
| |
Collapse
|
2
|
Valdes Michel MF, Phillips BT. SYS-1/beta-catenin inheritance and regulation by Wnt-signaling during asymmetric cell division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.21.550069. [PMID: 37503055 PMCID: PMC10370182 DOI: 10.1101/2023.07.21.550069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Asymmetric cell division (ACD) allows daughter cells of a polarized mother to acquire different developmental fates. In C. elegans , the Wnt/β-catenin Asymmetry (WβA) pathway oversees many embryonic and larval ACDs; here, a Wnt gradient induces an asymmetric distribution of Wnt signaling components within the dividing mother cell. One terminal nuclear effector of the WβA pathway is the transcriptional activator SYS-1/β-catenin. SYS-1 is sequentially negatively regulated during ACD; first by centrosomal regulation and subsequent proteasomal degradation and second by asymmetric activity of the β-catenin "destruction complex" in one of the two daughter cells, which decreases SYS-1 levels in the absence of WβA signaling. However, the extent to which mother cell SYS-1 influences cell fate decisions of the daughters is unknown. Here, we quantify inherited SYS-1 in the differentiating daughter cells and the role of SYS-1 inheritance in Wnt-directed ACD. Photobleaching experiments demonstrate the GFP::SYS-1 present in daughter cell nuclei is comprised of inherited and de novo translated SYS-1 pools. We used a photoconvertible DENDRA2::SYS-1, to directly observe the dynamics of inherited SYS-1. Photoconversion during mitosis reveals that SYS-1 clearance at the centrosome preferentially degrades older SYS-1, and this accumulation is regulated via dynein trafficking. Photoconversion of the EMS cell during Wnt-driven ACD shows daughter cell inheritance of mother cell SYS-1. Additionally, loss of centrosomal SYS-1 increased inherited SYS-1 and, surprisingly, loss of centrosomal SYS-1 also resulted in increased levels of de novo SYS-1 in both EMS daughter cells. Lastly, we show that daughter cell negative regulation of SYS-1 via the destruction complex member APR-1/APC is key to limit both the de novo and the inherited SYS-1 pools in both the E and the MS cells. We conclude that regulation of both inherited and newly translated SYS-1 via centrosomal processing in the mother cell and daughter cell regulation via Wnt signaling are critical to maintain sister SYS-1 asymmetry during ACD.
Collapse
|
3
|
Kirti A, Simnani FZ, Jena S, Lenka SS, Kalalpitiya C, Naser SS, Singh D, Choudhury A, Sahu RN, Yadav A, Sinha A, Nandi A, Panda PK, Kaushik NK, Suar M, Verma SK. Nanoparticle-mediated metronomic chemotherapy in cancer: A paradigm of precision and persistence. Cancer Lett 2024; 594:216990. [PMID: 38801886 DOI: 10.1016/j.canlet.2024.216990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Current methods of cancer therapy have demonstrated enormous potential in tumor inhibition. However, a high dosage regimen of chemotherapy results in various complications which affect the normal body cells. Tumor cells also develop resistance against the prescribed drugs in the whole treatment regimen increasing the risk of cancer relapse. Metronomic chemotherapy is a modern treatment method that involves administering drugs at low doses continuously, allowing the drug sufficient time to take its effect. This method ensures that the toxicity of the drugs is to a minimum in comparison to conventional chemotherapy. Nanoparticles have shown efficacy in delivering drugs to the tumor cells in various cancer therapies. Combining nanoparticles with metronomic chemotherapy can yield better treatment results. This combination stimulates the immune system, improving cancer cells recognition by immune cells. Evidence from clinical and pre-clinical trials supports the use of metronomic delivery for drug-loaded nanoparticles. This review focuses on the functionalization of nanoparticles for improved drug delivery and inhibition of tumor growth. It emphasizes the mechanisms of metronomic chemotherapy and its conjunction with nanotechnology. Additionally, it explores tumor progression and the current methods of chemotherapy. The challenges associated with nano-based metronomic chemotherapy are outlined, paving the way for prospects in this dynamic field.
Collapse
Affiliation(s)
- Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | - Snehasmita Jena
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Sudakshya S Lenka
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Rudra Narayan Sahu
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Anu Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India; Instituto de Investigaciones en Materiales, UNAM, 04510, CDMX, Mexico
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
4
|
Karamad V, Sogutlu F, Ozkaya FC, Shademan B, Ebrahim W, El-Neketi M, Avci CB. Investigation of iso-propylchaetominine anticancer activity on apoptosis, cell cycle and Wnt signaling pathway in different cancer models. Fitoterapia 2024; 173:105789. [PMID: 38158162 DOI: 10.1016/j.fitote.2023.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Dysregulation of the Wnt signaling pathway contributes to the development of many cancer types. Natural compounds produced with biotechnological systems have been the focus of research for being a new drug candidate both with unlimited resources and cost-effective production. In this study, it was aimed to reveal the effects of isopropylchaetominine on cytotoxic, cytostatic, apoptotic and Wnt signaling pathways in brain, pancreatic and prostate cancer. The IC50 values of isopropylchaetominine in U-87 MG, PANC1, PC3 and LNCaP cells were calculated as 91.94 μM, 41.68 μM, 54.54 μM and 7.86 μM in 72nd h, respectively. The metabolite arrests the cell cycle in G0/G1 phase in each cancer cells. Iso-propylchaetominine induced a 4.3-fold and 1.9-fold increase in apoptosis in PC3 and PANC1 cells, respectively. The toxicity of isopropylchaetominine in healthy fibroblast cells was assessed using the annexin V method, and no significant apoptotic activity was observed between the groups treated with the active substance and untreated. In U-87 MG, PANC1, PC3, and LNCaP cells under treatment with isopropylchaetominin, the expression levels of DKK3, TLE1, AES, DKK1, FRZB, DAB2, AXIN1/2, PPARD, SFRP4, APC and SOX17 tumor suppressor genes increased significantly. Decreases in expression of Wnt1, Wnt2, Wnt3, Wnt4, Wnt5, Wnt6, Wnt10, Wnt11, FRZ2, FRZ3, FRZ7, TCF7L1, BCL9, PYGO, CCND2, c-MYC, WISP1 and CTNNB1 oncogenic genes were detected. All these result shows that isopropylchaetominine can present promising new treatment strategy in different cancer types.
Collapse
Affiliation(s)
- Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Ferhat Can Ozkaya
- Aliaga Industrial Zone Technology Transfer Office, Aliaga, İzmir 35800, Turkey
| | - Behrouz Shademan
- Stem cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-16471, Iran
| | - Weaam Ebrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mona El-Neketi
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey.
| |
Collapse
|
5
|
Idrissi YA, Rajabi MR, Beumer JH, Monga SP, Saeed A. Exploring the Impact of the β-Catenin Mutations in Hepatocellular Carcinoma: An In-Depth Review. Cancer Control 2024; 31:10732748241293680. [PMID: 39428608 PMCID: PMC11528747 DOI: 10.1177/10732748241293680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Liver cancer, primarily hepatocellular carcinoma, represents a major global health issue with significant clinical, economic, and psychological impacts. Its incidence continues to rise, driven by risk factors such as hepatitis B and C infections, nonalcoholic steatohepatitis, and various environmental influences. The Wnt/β-Catenin signaling pathway, frequently dysregulated in HCC, emerges as a promising therapeutic target. Critical genetic alterations, particularly in the CTNNB1 gene, involve mutations at key phosphorylation sites on β-catenin's N-terminal domain (S33, S37, T41, and S45) and in armadillo repeat domains (K335I and N387 K). These mutations impede β-catenin degradation, enhancing its oncogenic potential. In addition to genetic alterations, molecular and epigenetic mechanisms, including DNA methylation, histone modifications, and noncoding RNAs, further influence β-catenin signaling and tumor progression. However, β-catenin activation alone is insufficient for hepatocarcinogenesis; additional genetic "hits" are required for tumor initiation. Mutations or alterations in genes such as Ras, c-Met, NRF2, and LKB1, when combined with β-catenin activation, significantly contribute to HCC development and progression. Understanding these cooperative mutations provides crucial insights into the disease and reveals potential therapeutic strategies. The complex interplay between genetic variations and the tumor microenvironment, coupled with novel therapeutic approaches targeting the Wnt/β-Catenin pathway, offers promise for improved treatment of HCC. Despite advances, translating preclinical findings into clinical practice remains a challenge. Future research should focus on elucidating how specific β-catenin mutations and additional genetic alterations contribute to HCC pathogenesis, leveraging genetically clengineered mouse models to explore distinct signaling impacts, and identifying downstream targets. Relevant clinical trials will be essential for advancing personalized therapies and enhancing patient outcomes. This review provides a comprehensive analysis of β-Catenin signaling in HCC, highlighting its role in pathogenesis, diagnosis, and therapeutic targeting, and identifies key research directions to improve understanding and clinical outcomes.
Collapse
Affiliation(s)
- Yassine Alami Idrissi
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mohammad Reza Rajabi
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jan H. Beumer
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA, USA
| | - Satdarshan P. Monga
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Anwaar Saeed
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
7
|
Mamis K, Zhang R, Bozic I. Stochastic model for cell population dynamics quantifies homeostasis in colonic crypts and its disruption in early tumorigenesis. Proc Biol Sci 2023; 290:20231020. [PMID: 37848058 PMCID: PMC10581771 DOI: 10.1098/rspb.2023.1020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
The questions of how healthy colonic crypts maintain their size, and how homeostasis is disrupted by driver mutations, are central to understanding colorectal tumorigenesis. We propose a three-type stochastic branching process, which accounts for stem, transit-amplifying (TA) and fully differentiated (FD) cells, to model the dynamics of cell populations residing in colonic crypts. Our model is simple in its formulation, allowing us to estimate all but one of the model parameters from the literature. Fitting the single remaining parameter, we find that model results agree well with data from healthy human colonic crypts, capturing the considerable variance in population sizes observed experimentally. Importantly, our model predicts a steady-state population in healthy colonic crypts for relevant parameter values. We show that APC and KRAS mutations, the most significant early alterations leading to colorectal cancer, result in increased steady-state populations in mutated crypts, in agreement with experimental results. Finally, our model predicts a simple condition for unbounded growth of cells in a crypt, corresponding to colorectal malignancy. This is predicted to occur when the division rate of TA cells exceeds their differentiation rate, with implications for therapeutic cancer prevention strategies.
Collapse
Affiliation(s)
- Konstantinos Mamis
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
| | - Ruibo Zhang
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Nam T, Kang W, Oh S. Apoptosis of Kinetin Riboside in Colorectal Cancer Cells Occurs by Promoting β-Catenin Degradation. J Microbiol Biotechnol 2023; 33:1206-1212. [PMID: 37463866 PMCID: PMC10580898 DOI: 10.4014/jmb.2301.01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 07/20/2023]
Abstract
Kinetin riboside is a naturally produced cytokinin that displays strong antiproliferative activity in various human cancer cells. However, the mechanism of chemoprevention in colorectal cancer cells has not been elucidated. We used a cell-based reporter system to identify kinetin riboside as an antagonist of the Wnt/β-catenin pathway, which is aberrantly upregulated in colorectal cancer. Kinetin riboside suppressed β-catenin response transcription (CRT) by accelerating the degradation of intracellular β-catenin via a proteasomal degradation pathway. Pharmacological inhibition of glycogen synthase kinase-3β did not affect CRT downregulation. Kinetin riboside decreased the intracellular β-catenin levels in colorectal cancer cells with mutations in adenomatous polyposis coli (APC) and β-catenin. Consistently, kinetin riboside repressed expression of c-Myc and cyclin D1, β-catenin/T-cell factor (TCF)-dependent genes, and inhibited the proliferation of colorectal cancer cells. In addition, kinetin riboside stimulated apoptosis, as measured by an increase in annexin V-FITC-stained cells. These findings suggest that kinetin riboside exerts its anti-cancer activity by promoting β-catenin degradation and has significant potential as a chemopreventive agent for colorectal cancer cells.
Collapse
Affiliation(s)
- TaeKyung Nam
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
9
|
Trybek G, Jaroń A, Gabrysz-Trybek E, Rutkowska M, Markowska A, Chmielowiec K, Chmielowiec J, Grzywacz A. Genetic Factors of Teeth Impaction: Polymorphic and Haplotype Variants of PAX9, MSX1, AXIN2, and IRF6 Genes. Int J Mol Sci 2023; 24:13889. [PMID: 37762190 PMCID: PMC10530430 DOI: 10.3390/ijms241813889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
In recent research, there has been a growing awareness of the role of genetic factors in the positioning and eruption of teeth in the maxilla and mandible. This study aimed to evaluate the potential of specific polymorphic markers of single nucleotide polymorphisms (SNPs) located within the PAX9, MSX1, AXIN2, and IRF6 genes to determine the predisposition to tooth impaction. The study participants were divided into two groups: the first group consisted of individuals with at least one impacted secondary tooth. In contrast, the second group (control group) had no impacted teeth in their jaws. To analyze the genes, real-time PCR (polymerase chain reaction) and TaqMan probes were utilized to detect the selected polymorphisms. The findings suggest that disruptions in the structure and function of the mentioned genetic factors such as polymorphic and haplotype variants of PAX9, MSX1, AXIN2, and IRF6 genes, which play a direct role in tooth and periodontal tissue development, might be significant factors in tooth impaction in individuals with genetic variations. Therefore, it is reasonable to hypothesize that tooth impaction may be influenced, at least in part, by the presence of specific genetic markers, including different allelic variants of the PAX9, AXIN2, and IRF6 genes, and especially MSX1.
Collapse
Affiliation(s)
- Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72/18, 70-111 Szczecin, Poland
- 4th Military Clinical Hospital in Wroclaw, ul. Rudolfa Weigla 5, 50-981 Wroclaw, Poland; (A.J.); (A.M.)
| | - Aleksandra Jaroń
- 4th Military Clinical Hospital in Wroclaw, ul. Rudolfa Weigla 5, 50-981 Wroclaw, Poland; (A.J.); (A.M.)
| | - Ewa Gabrysz-Trybek
- Individual Specialist Medical Practice Ewa Gabrysz-Trybek, 70-111 Szczecin, Poland;
| | - Monika Rutkowska
- 4th Military Clinical Hospital in Wroclaw, ul. Rudolfa Weigla 5, 50-981 Wroclaw, Poland; (A.J.); (A.M.)
| | - Aleksandra Markowska
- 4th Military Clinical Hospital in Wroclaw, ul. Rudolfa Weigla 5, 50-981 Wroclaw, Poland; (A.J.); (A.M.)
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland; (K.C.); (J.C.)
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland; (K.C.); (J.C.)
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland;
| |
Collapse
|
10
|
Chien TL, Wu YC, Lee HL, Sung WW, Yu CY, Chang YC, Lin CC, Wang CC, Tsai MC. PNU-74654 Induces Cell Cycle Arrest and Inhibits EMT Progression in Pancreatic Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1531. [PMID: 37763649 PMCID: PMC10532988 DOI: 10.3390/medicina59091531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: PNU-74654, a Wnt/β-catenin pathway inhibitor, has an antiproliferative effect on many cancer types; however, its therapeutic role in pancreatic cancer (PC) has not yet been demonstrated. Here, the effects of PNU-74654 on proliferation and cell cycle phase distribution were studied in PC cell lines. Materials and Methods: The cancer-related molecular pathways regulated by PNU-74654 were determined by a proteome profiling oncology array and confirmed by western blotting. Results: The cell viability and proliferative ability of PC cells were decreased by PNU-74654 treatment. G1 arrest was observed, as indicated by the downregulation of cyclin E and cyclin-dependent kinase 2 (CDK2) and the upregulation of p27. PNU-74654 inhibited the epithelial-mesenchymal transition (EMT), as determined by an increase in E-cadherin and decreases in N-cadherin, ZEB1, and hypoxia-inducible factor-1 alpha (HIF-1α). PNU-74654 also suppressed cytoplasmic and nuclear β-catenin and impaired the NF-κB pathway. Conclusions: These results demonstrate that PNU-74654 modulates G1/S regulatory proteins and inhibits the EMT, thereby suppressing PC cell proliferation, migration, and invasion. The synergistic effect of PNU-74654 and chemotherapy or the exclusive use of PNU-74654 may be therapeutic options for PC and require further investigation.
Collapse
Affiliation(s)
- Tai-Long Chien
- Department of Gastroenterology, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung 928, Taiwan
| | - Yao-Cheng Wu
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Ying Yu
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ya-Chuan Chang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chun-Che Lin
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chi-Chih Wang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ming-Chang Tsai
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
11
|
Li X, Gao Z, Chen J, Feng S, Luo X, Shi Y, Tang Z, Liu W, Zhang X, Huang A, Gao Q, Ke A, Zhou J, Fan J, Fu X, Ding Z. Integrated single cell and bulk sequencing analysis identifies tumor reactive CXCR6 + CD8 T cells as a predictor of immune infiltration and immunotherapy outcomes in hepatocellular carcinoma. Front Oncol 2023; 13:1099385. [PMID: 37593098 PMCID: PMC10430781 DOI: 10.3389/fonc.2023.1099385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/30/2023] [Indexed: 08/19/2023] Open
Abstract
Background Various immune cell types in the tumor microenvironment (TME) of hepatocellular carcinoma (HCC) have been identified as important parameters associated with prognosis and responsiveness to immunotherapy. However, how various factors influence immune cell infiltration remains incompletely understood. Hence, we investigated the single cell multi-omics landscape of immune infiltration in HCC, particularly key gene and cell subsets that influence immune infiltration, thus potentially linking the immunotherapy response and immune cell infiltration. Methods We grouped patients with HCC according to immune cell infiltration scores calculated by single sample gene set enrichment analysis (ssGSEA). Differential expression analysis, functional enrichment, clinical trait association, gene mutation analysis, tumor immune dysfunction and exclusion (TIDE) and prognostic model construction were used to investigate the immune infiltration landscape through multi-omics. Stepwise regression was further used to identify key genes regulating immune infiltration. Single cell analysis was performed to explore expression patterns of candidate genes and investigate associated cellular populations. Correlation analysis, ROC analysis, Immunotherapy cohorts were used to explore and confirm the role of key gene and cellular population in predicting immune infiltration state and immunotherapy response. Immunohistochemistry and multiplexed fluorescence staining were used to further validated our results. Results Patients with HCC were clustered into high and low immune infiltration groups. Mutations of CTNNB1 and TTN were significantly associated with immune infiltration and altered enrichment of cell populations in the TME. TIDE analysis demonstrated that T cell dysfunction and the T cell exclusion score were elevated in the high and low infiltration groups, respectively. Six risk genes and five risk immune cell types were identified and used to construct risk scores and a nomogram model. CXCR6 and LTA, identified by stepwise regression, were highly associated with immune infiltration. Single cell analysis revealed that LTA was expressed primarily in tumor infiltrating T lymphocytes and partial B lymphocytes, whereas CXCR6 was enriched predominantly in T and NK cells. Notably, CXCR6+ CD8 T cells were characterized as tumor enriched cells that may be potential predictors of high immune infiltration and the immune-checkpoint blockade response, and may serve as therapeutic targets. Conclusion We constructed a comprehensive single cell and multi-omics landscape of immune infiltration in HCC, and delineated key genes and cellular populations regulating immune infiltration and immunotherapy response, thus providing insights into the mechanisms of immune infiltration and future therapeutic control.
Collapse
Affiliation(s)
- Xiaogang Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Zheng Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Jiafeng Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Shanru Feng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Xuanming Luo
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Yinghong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Weiren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Xin Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Aiwu Ke
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Xiutao Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Zhenbin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Erazo-Oliveras A, Muñoz-Vega M, Mlih M, Thiriveedi V, Salinas ML, Rivera-Rodríguez JM, Kim E, Wright RC, Wang X, Landrock KK, Goldsby JS, Mullens DA, Roper J, Karpac J, Chapkin RS. Mutant APC reshapes Wnt signaling plasma membrane nanodomains by altering cholesterol levels via oncogenic β-catenin. Nat Commun 2023; 14:4342. [PMID: 37468468 PMCID: PMC10356786 DOI: 10.1038/s41467-023-39640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Although the role of the Wnt pathway in colon carcinogenesis has been described previously, it has been recently demonstrated that Wnt signaling originates from highly dynamic nano-assemblies at the plasma membrane. However, little is known regarding the role of oncogenic APC in reshaping Wnt nanodomains. This is noteworthy, because oncogenic APC does not act autonomously and requires activation of Wnt effectors upstream of APC to drive aberrant Wnt signaling. Here, we demonstrate the role of oncogenic APC in increasing plasma membrane free cholesterol and rigidity, thereby modulating Wnt signaling hubs. This results in an overactivation of Wnt signaling in the colon. Finally, using the Drosophila sterol auxotroph model, we demonstrate the unique ability of exogenous free cholesterol to disrupt plasma membrane homeostasis and drive Wnt signaling in a wildtype APC background. Collectively, these findings provide a link between oncogenic APC, loss of plasma membrane homeostasis and CRC development.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Mohamed Mlih
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, 77807, USA
| | - Venkataramana Thiriveedi
- Department of Medicine, Division of Gastroenterology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Jaileen M Rivera-Rodríguez
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Eunjoo Kim
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Rachel C Wright
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kerstin K Landrock
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Jennifer S Goldsby
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Destiny A Mullens
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Jatin Roper
- Department of Medicine, Division of Gastroenterology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason Karpac
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, 77807, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA.
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA.
- Center for Environmental Health Research, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
13
|
Sun J, Shao X, Huang J, Gong M, Zhang J, Yuan Z. Multiple toxicity evaluations of perfluorooctane sulfonate on intact planarian Dugesia japonica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60932-60945. [PMID: 37042918 DOI: 10.1007/s11356-023-26842-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is gaining widespread attention as a persistent organic pollutant with multiple mechanisms of toxicity. In this study, PFOS at different concentrations and different exposure times was used to evaluate the multiple toxicities on intact planarian Dugesia japonica. The proliferation of neoblasts, apoptosis, DNA damage and the expression levels of neuronal genes and the major genes of the Wnt pathway were effectively studied. The results demonstrated that the balance between proliferation and apoptosis of intact planarian cells was disrupted after PFOS exposure, which in turn affected tissue homeostasis and differentiation. PFOS exposure led to increased DNA damage and altered neuronal gene expression. In addition, PFOS exposure could down-regulate the expression of Wnt pathway genes, but the inhibition of the Wnt pathway by PFOS was time- and concentration-dependent. These findings suggest that PFOS has multiple toxic effects on planarians and may interfere with cell proliferation and neurodevelopment by affecting the key gene expression in the Wnt pathway, providing estimable information on the neurodevelopmental toxicity and ecotoxicity of PFOS toxicity in aquatic animals and environments.
Collapse
Affiliation(s)
- Jingyi Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Xinxin Shao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Jinying Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Mengxin Gong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Jianyong Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Zuoqing Yuan
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China.
| |
Collapse
|
14
|
Yu L, Lee H, Rho SB, Park MK, Lee CH. Ethacrynic Acid: A Promising Candidate for Drug Repurposing as an Anticancer Agent. Int J Mol Sci 2023; 24:ijms24076712. [PMID: 37047688 PMCID: PMC10094867 DOI: 10.3390/ijms24076712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Ethacrynic acid (ECA) is a diuretic that inhibits Na-K-2Cl cotransporter (NKCC2) present in the thick ascending loop of Henle and muculo dens and is clinically used for the treatment of edema caused by excessive body fluid. However, its clinical use is limited due to its low bioavailability and side effects, such as liver damage and hearing loss at high doses. Despite this, ECA has recently emerged as a potential anticancer agent through the approach of drug repositioning, with a novel mechanism of action. ECA has been shown to regulate cancer hallmark processes such as proliferation, apoptosis, migration and invasion, angiogenesis, inflammation, energy metabolism, and the increase of inhibitory growth factors through various mechanisms. Additionally, ECA has been used as a scaffold for synthesizing a new material, and various derivatives have been synthesized. This review explores the potential of ECA and its derivatives as anticancer agents, both alone and in combination with adjuvants, by examining their effects on ten hallmarks of cancer and neuronal contribution to cancer. Furthermore, we investigated the trend of synthesis research of a series of ECA derivatives to improve the bioavailability of ECA. This review highlights the importance of ECA research and its potential to provide a cost-effective alternative to new drug discovery and development for cancer treatment.
Collapse
Affiliation(s)
- Lu Yu
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy National Cancer Center, Goyang 10408, Republic of Korea
| | - Seung Bae Rho
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy National Cancer Center, Goyang 10408, Republic of Korea
| | - Mi Kyung Park
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy National Cancer Center, Goyang 10408, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
15
|
Brown AD, Cranstone C, Dupré DJ, Langelaan DN. β-Catenin interacts with the TAZ1 and TAZ2 domains of CBP/p300 to activate gene transcription. Int J Biol Macromol 2023; 238:124155. [PMID: 36963539 DOI: 10.1016/j.ijbiomac.2023.124155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
The transcriptional co-regulator β-catenin is a critical member of the canonical Wnt signaling pathway, which plays an important role in regulating cell fate. Deregulation of the Wnt/β-catenin pathway is characteristic in the development of major types of cancer, where accumulation of β-catenin promotes cancer cell proliferation and renewal. β-catenin gene expression is facilitated through recruitment of co-activators such as histone acetyltransferases CBP/p300; however, the mechanism of their interaction is not fully understood. Here we investigate the interaction between the C-terminal transactivation domain of β-catenin and CBP/p300. Using a combination of pulldown assays, isothermal titration calorimetry, and nuclear resonance spectroscopy we determine the disordered C-terminal region of β-catenin binds promiscuously to the TAZ1 and TAZ2 domains of CBP/p300. We then map the interaction site of the C-terminal β-catenin transactivation domain onto TAZ1 and TAZ2 using chemical-shift perturbation studies. Luciferase-based gene reporter assays indicate Asp750-Leu781 is critical to β-catenin gene activation, and mutagenesis revealed that acidic and hydrophobic residues within this region are necessary to maintain TAZ1 binding. These results outline a mechanism of Wnt/β-catenin gene regulation that underlies cell development and provides a framework to develop methods to block β-catenin dependent signaling.
Collapse
Affiliation(s)
- Alexandra D Brown
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Connor Cranstone
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Denis J Dupré
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - David N Langelaan
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
16
|
Selvarathinam K, Subramani P, Thekkumalai M, Vilwanathan R, Selvarajan R, Abia ALK. Wnt Signaling Pathway Collapse upon β-Catenin Destruction by a Novel Antimicrobial Peptide SKACP003: Unveiling the Molecular Mechanism and Genetic Activities Using Breast Cancer Cell Lines. Molecules 2023; 28:molecules28030930. [PMID: 36770598 PMCID: PMC9920962 DOI: 10.3390/molecules28030930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Despite progress in breast cancer treatment, the survival rate for patients with metastatic breast cancer remains low due to chemotherapeutic agent resistance and the lack of specificity of the current generation of cancer drugs. Our previous findings indicated that the antimicrobial peptide SKACP003 exhibited anticancer properties, particularly against the MCF-7, MDA-MB-231, and MDA-MB-453 breast cancer cell lines. However, the mechanism of SKACP003-induced cancer cell death is unknown. Here, we investigated the molecular mechanism by which SKACP003 inhibits the cell cycle, cell proliferation, and angiogenesis in breast cancer cell lines. The results revealed that all the breast cancer cell lines treated at their IC50 values significantly inhibited the replicative phase of the cell cycle. The SKACP003-induced growth inhibition induced apoptosis, as evidenced by a decrease in BCL-2 and an increase in BAX and caspase gene (Cas-3, Cas-8, and Cas-9) expression. Reduced expression of the β-Catenin signaling pathway was associated with the SKACP003-induced apoptosis. SKACP003-treated breast cancer cells showed decreased expression of Wnt/β-Catenin targeting genes such as C-Myc, P68, and COX-2 and significant downregulation of CDK-4 and CDK-6 genes. Furthermore, cytoplasmic β-catenin protein levels in SKACP003-treated cell lines were significantly lower than in control cell lines. The results of the current study suggest that the newly identified antimicrobial peptide SKACP003 has great potential as a candidate for specifically targeting the β-catenin and thus significantly reducing the progression and prognosis of breast cancer cell lines.
Collapse
Affiliation(s)
- Kanitha Selvarathinam
- Department of Biochemistry, J.J. College of Arts and Science (Autonomous), Pudukkottai 622422, Tamilnadu, India
- Correspondence: (K.S.); (A.L.K.A.)
| | - Prabhu Subramani
- Department of Biochemistry, School of Life Science, Bharathidasan University, Tiruchirappalli 622422, Tamilnadu, India
| | | | - Ravikumar Vilwanathan
- Department of Biochemistry, School of Life Science, Bharathidasan University, Tiruchirappalli 622422, Tamilnadu, India
| | - Ramganesh Selvarajan
- Department of Environmental Sciences, College of Agricultural and Environmental Sciences (CAES), University of South Africa (UNISA), Florida—Campus, Florida Park, Roodepoort 1709, South Africa
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences (CAS), Sanya 572000, China
| | - Akebe Luther King Abia
- Department of Environmental Sciences, College of Agricultural and Environmental Sciences (CAES), University of South Africa (UNISA), Florida—Campus, Florida Park, Roodepoort 1709, South Africa
- Environmental Research Foundation, Westville 3630, South Africa
- Correspondence: (K.S.); (A.L.K.A.)
| |
Collapse
|
17
|
Effect of Tarantula cubensis alcoholic extract on tumour pathways in azoxymethane-induced colorectal cancer in rats. ACTA VET BRNO 2023. [DOI: 10.2754/avb202392010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to determine the effects of Tarantula cubensis alcoholic extract (TCAE) on tumour development pathways in azoxymethane (AOM)-induced colorectal cancer in rats by molecular methods. Eighteen paraffin-embedded intestinal tissues, six from each group, were studied in the healthy control (C), cancer control (CC), cancer + TCAE (C-TCAE) groups. Sections of 5 µm thickness were taken from the paraffin blocks and submitted to staining with haematoxylin-eosin. In the histopathological examination, the number of crypts forming aberrant crypt foci (ACF) and the degree of dysplasia in the crypts were scored. Real-time PCR analysis was completed to determine β-catenin, KRAS (Kirsten rat sarcoma virus), APC (adenomatous polyposis coli) and P53 expressions on samples from each paraffin block. The grading scores of the number of crypts forming ACF and dysplasia in the crypts showed an evident decrease in the C-TCAE group in comparison to the CC group (P < 0.05). In real-time PCR analysis, mRNA expression levels of P53 (P > 0.05) and APC (P < 0.001) genes were found to be increased in the C-TCAE group according to the CC group. The expression levels of KRAS (P < 0.01) and β-catenin (P < 0.005) mRNA were found significantly decreased in the C-TCAE group. In conclusion, the effects of TCAE on AOM-induced colorectal cancer (CRC) in rats were evaluated molecularly; TCAE was found to modulate some changes in CRC developmental pathways, inhibiting tumour development and proliferation, and stimulating non-mutagenic tumour suppressor genes. Thus, it can be stated that TCAE is an effective chemopreventive agent.
Collapse
|
18
|
Genetic alterations of TP53 and OTX2 indicate increased risk of relapse in WNT medulloblastomas. Acta Neuropathol 2022; 144:1143-1156. [PMID: 36181537 PMCID: PMC9637613 DOI: 10.1007/s00401-022-02505-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 01/26/2023]
Abstract
This study aimed to re-evaluate the prognostic impact of TP53 mutations and to identify specific chromosomal aberrations as possible prognostic markers in WNT-activated medulloblastoma (WNT-MB). In a cohort of 191 patients with WNT-MBs, mutations in CTNNB1, APC, and TP53 were analyzed by DNA sequencing. Chromosomal copy-number aberrations were assessed by molecular inversion probe technology (MIP), SNP6, or 850k methylation array hybridization. Prognostic impact was evaluated in 120 patients with follow-up data from the HIT2000 medulloblastoma trial or HIT registries. CTNNB1 mutations were present in 92.2%, and APC mutations in 6.8% of samples. One CTNNB1 wild-type tumor gained WNT activation due to homozygous FBXW7 deletion. Monosomy 6 was present in 78.6%, and more frequent in children than adults. 16.1% of tumor samples showed TP53 mutations, of those 60% with nuclear positivity for the p53 protein. Loss of heterozygosity at the TP53 locus (chromosome 17p13.1) was found in 40.7% (11/27) of TP53 mutant tumor samples and in 12.6% of TP53 wild-type cases (13/103). Patients with tumors harboring TP53 mutations showed significant worse progression-free survival (PFS; 5-year-PFS 68% versus 93%, p = 0.001), and were enriched for chromosomes 17p (p = 0.001), 10, and 13 losses. Gains of OTX2 (14q22.3) occurred in 38.9% of samples and were associated with poor PFS and OS (5-year-PFS 72% versus 93%, p = 0.017 resp. 5-year-OS 83% versus 97%, p = 0.006). Multivariable Cox regression analysis for PFS/OS identified both genetic alterations as independent prognostic markers. Our data suggest that patients with WNT-MB carrying TP53 mutations or OTX2 gains (58.1%) are at higher risk of relapse. Eligibility of these patients for therapy de-escalation trials needs to be debated.
Collapse
|
19
|
Potential role of Marine Bioactive Compounds targeting signaling pathways in cancer: A review. Eur J Pharmacol 2022; 936:175330. [DOI: 10.1016/j.ejphar.2022.175330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022]
|
20
|
Lin YC, Chen BS. Identifying Drug Targets of Oral Squamous Cell Carcinoma through a Systems Biology Method and Genome-Wide Microarray Data for Drug Discovery by Deep Learning and Drug Design Specifications. Int J Mol Sci 2022; 23:ijms231810409. [PMID: 36142321 PMCID: PMC9499358 DOI: 10.3390/ijms231810409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/22/2022] Open
Abstract
In this study, we provide a systems biology method to investigate the carcinogenic mechanism of oral squamous cell carcinoma (OSCC) in order to identify some important biomarkers as drug targets. Further, a systematic drug discovery method with a deep neural network (DNN)-based drug–target interaction (DTI) model and drug design specifications is proposed to design a potential multiple-molecule drug for the medical treatment of OSCC before clinical trials. First, we use big database mining to construct the candidate genome-wide genetic and epigenetic network (GWGEN) including a protein–protein interaction network (PPIN) and a gene regulatory network (GRN) for OSCC and non-OSCC. In the next step, real GWGENs are identified for OSCC and non-OSCC by system identification and system order detection methods based on the OSCC and non-OSCC microarray data, respectively. Then, the principal network projection (PNP) method was used to extract core GWGENs of OSCC and non-OSCC from real GWGENs of OSCC and non-OSCC, respectively. Afterward, core signaling pathways were constructed through the annotation of KEGG pathways, and then the carcinogenic mechanism of OSCC was investigated by comparing the core signal pathways and their downstream abnormal cellular functions of OSCC and non-OSCC. Consequently, HES1, TCF, NF-κB and SP1 are identified as significant biomarkers of OSCC. In order to discover multiple molecular drugs for these significant biomarkers (drug targets) of the carcinogenic mechanism of OSCC, we trained a DNN-based drug–target interaction (DTI) model by DTI databases to predict candidate drugs for these significant biomarkers. Finally, drug design specifications such as adequate drug regulation ability, low toxicity and high sensitivity are employed to filter out the appropriate molecular drugs metformin, gefitinib and gallic-acid to combine as a potential multiple-molecule drug for the therapeutic treatment of OSCC.
Collapse
|
21
|
Zhang L, Ren CF, Yang Z, Gong LB, Wang C, Feng M, Guan WX. Forkhead Box S1 mediates epithelial-mesenchymal transition through the Wnt/β-catenin signaling pathway to regulate colorectal cancer progression. J Transl Med 2022; 20:327. [PMID: 35864528 PMCID: PMC9306048 DOI: 10.1186/s12967-022-03525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022] Open
Abstract
Background Recent studies have shown that the fox family plays a vital role in tumorigenesis and progression. Forkhead Box S1 (FOXS1), as a newly identified subfamily of the FOX family, is overexpressed in certain types of malignant tumors and closely associated with patient's prognosis. However, the role and mechanism of the FOXS1 in colorectal cancer (CRC) remain unclear. Method FOXS1 level in CRC tissues and cell lines was analyzed by western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemistry (IHC) was used to detect the relationship between FOXS1 expression and clinicopathological features in 136 patients in our unit. The expression of FOXS1 was knocked down in CRC cells using small interfering RNA (siRNA) technology. Cell proliferation was assessed by CCK8 assay, colony formation, and 5-Ethynyl-20-deoxyuridine (EdU) incorporation assay. Flow cytometry detected apoptosis and wound healing, and Transwell assays determined cell migration and invasion. Western blotting was used to detect the levels of proteins associated with the Wnt/β-catenin signaling pathway. Then, we used short hairpin RNA (shRNA) to knock down FOXS1 to see the effect of FOXS1 on the proliferation, migration, invasion, and metastasis of CRC cells in vivo. Finally, we investigated the impact of Wnt activator LiCl on the proliferation, migration, invasion, and metastasis of CRC cells after FOXS1 knockdown. Result Compared to those in normal groups, FOXS1 overexpressed in CRC tissues and CRC cells (P < 0.05). Upregulation of FOXS1 association with poor prognosis of CRC patients. si-FOXS1 induced apoptosis and inhibited proliferation, migration, invasion, the epithelial-mesenchymal transition (EMT), and the Wnt/β-catenin signaling pathway in vitro; sh-FOXS1 inhibited the volume and weight of subcutaneous xenografts and the number of lung metastases in vivo. LiCl, an activator of Wnt signaling, partially reversed the effect of FOXS1 overexpression on CRC cells. Conclusion FOXS1 could function as an oncogene and promote CRC cell proliferation, migration, invasion and metastasis through the Wnt/βcatenin signaling pathway, FOXS1 may be a potential target for CRC treatment.
Collapse
Affiliation(s)
- Liang Zhang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China.,Department of Gastrointestinal, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chuan-Fu Ren
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Zhi Yang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Long-Bo Gong
- Department of Gastrointestinal, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Wang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Min Feng
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China.
| | - Wen-Xian Guan
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China.
| |
Collapse
|
22
|
Martín-Medina A, Cerón-Pisa N, Martinez-Font E, Shafiek H, Obrador-Hevia A, Sauleda J, Iglesias A. TLR/WNT: A Novel Relationship in Immunomodulation of Lung Cancer. Int J Mol Sci 2022; 23:6539. [PMID: 35742983 PMCID: PMC9224119 DOI: 10.3390/ijms23126539] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
The most frequent cause of death by cancer worldwide is lung cancer, and the 5-year survival rate is still very poor for patients with advanced stage. Understanding the crosstalk between the signaling pathways that are involved in disease, especially in metastasis, is crucial to developing new targeted therapies. Toll-like receptors (TLRs) are master regulators of the immune responses, and their dysregulation in lung cancer is linked to immune escape and promotes tumor malignancy by facilitating angiogenesis and proliferation. On the other hand, over-activation of the WNT signaling pathway has been reported in lung cancer and is also associated with tumor metastasis via induction of Epithelial-to-mesenchymal-transition (EMT)-like processes. An interaction between both TLRs and the WNT pathway was discovered recently as it was found that the TLR pathway can be activated by WNT ligands in the tumor microenvironment; however, the implications of such interactions in the context of lung cancer have not been discussed yet. Here, we offer an overview of the interaction of TLR-WNT in the lung and its potential implications and role in the oncogenic process.
Collapse
Affiliation(s)
- Aina Martín-Medina
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
| | - Noemi Cerón-Pisa
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
| | - Esther Martinez-Font
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Medical Oncology Department, Hospital Universitario Son Espases, 07120 Palma, Spain
| | - Hanaa Shafiek
- Chest Diseases Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Antònia Obrador-Hevia
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Molecular Diagnosis Unit, Hospital Universitario Son Espases, 07120 Palma, Spain
| | - Jaume Sauleda
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Department of Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Amanda Iglesias
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
23
|
Khoramjoo SM, Kazemifard N, Baradaran Ghavami S, Farmani M, Shahrokh S, Asadzadeh Aghdaei H, Sherkat G, Zali MR. Overview of Three Proliferation Pathways (Wnt, Notch, and Hippo) in Intestine and Immune System and Their Role in Inflammatory Bowel Diseases (IBDs). Front Med (Lausanne) 2022; 9:865131. [PMID: 35677821 PMCID: PMC9170180 DOI: 10.3389/fmed.2022.865131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a disorder, which involves the gastrointestinal (GI) tract consisting Crohn's disease (CD) and ulcerative colitis (UC). The etiology of this disease is not yet clear and, hence, there are numerous medications and treatments for patients with IBD, although a definite and permanent treatment is still missing. Therefore, finding novel therapeutic approaches are vital for curing patients with IBD. In the GI tract, there are various lineages of cells with different roles that their existence is necessary for the barrier function of intestinal epithelial cells (IECs). Therefore, signaling pathways, which manage the hemostasis of cell lineages in intestine, such as Wnt, Notch, and Hippo, could have crucial roles in regulation of barrier function in the intestine. Additionally, these signaling pathways function as a governor of cell growth, tissue homeostasis, and organ size. In patients with IBD, recent studies have revealed that these signaling pathways are dysregulated that it could result in depletion or excess of a cell lineage in the intestine. Moreover, dysregulation of these signaling pathways in different cell lineages of the immune system could lead to dysregulation of the immune system's responses in IBD. In this article, we summarized the components and signaling of Wnt, Notch, and Hippo pathways and their role in the intestine and immune system. Furthermore, we reviewed latest scientific literature on the crosstalk among these three signaling pathways in IBD. An overview of these three signaling pathways and their interactions in IBD could provide a novel insight for prospective study directions into finding efficient medications or treatments.
Collapse
Affiliation(s)
- Seyed Mobin Khoramjoo
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nesa Kazemifard
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Shaghayegh Baradaran Ghavami
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Sherkat
- Faculty of Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Influence of a Polyherbal Choline Source in Dogs: Body Weight Changes, Blood Metabolites, and Gene Expression. Animals (Basel) 2022; 12:ani12101313. [PMID: 35625159 PMCID: PMC9137459 DOI: 10.3390/ani12101313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 05/14/2022] [Indexed: 11/16/2022] Open
Abstract
Choline chloride is used to provide choline in dog foods; however, in other domestic species, it has been replaced with a polyherbal containing phosphatidylcholine. A polyherbal containing Achyrantes aspera, Trachyspermum ammi, Citrullus colocynthis, Andrographis paniculata, and Azadirachta indica was evaluated in adult dogs through body weight changes, subcutaneous fat thickness, blood metabolites, and gene expression. Forty dogs (4.6 ± 1.6 years old) who were individually housed in concrete kennels were randomly assigned to the following treatments: unsupplemented diet (377 mg choline/kg), choline chloride (3850 mg/kg equivalent to 2000 mg choline/kg diet), and polyherbal (200, 400, and 800 mg/kg) for 60 days. Blood samples were collected on day 59 for biochemistry, biometry, and gene expression analysis through microarray assays. Intake, final body weight, and weight changes were similar for the two choline sources. Feed intake variation among dogs (p = 0.01) and dorsal fat (p = 0.03) showed a quadratic response to herbal choline. Dogs that received the polyherbal diet had reduced blood cholesterol levels (Quadratic, p = 0.02). The gene ontology analysis indicated that 15 biological processes were modified (p ≤ 0.05) with implications for preventing cardiovascular and metabolic diseases, cancer prevention, inflammatory and immune response, and behavior and cognitive process. According to these results that were observed in a 60 day trial, the polyherbal form could replace choline chloride in dog diets at a concentration of 400 mg/kg.
Collapse
|
25
|
Cruciferous Vegetables and Their Bioactive Metabolites: from Prevention to Novel Therapies of Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1534083. [PMID: 35449807 PMCID: PMC9017484 DOI: 10.1155/2022/1534083] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
The Brassicaceae family, known as cruciferous vegetables, includes many economically important species, mainly edible oil plants, vegetable species, spice plants, and feed plants. Cruciferous vegetables are foods rich in nutritive composition and are also a good source of dietary fiber. Besides, cruciferous vegetables contain various bioactive chemicals known as glucosinolates and S-methyl cysteine sulfoxide, including sulphur-containing cancer-protective chemicals. Numerous studies have reported that daily intake of sulphurous vegetables helps prevent cancer formation and reduces cancer incidence, especially in colorectal cancer, through various mechanisms. The potential mechanisms of these compounds in preventing cancer in experimental studies are as follows: protecting cells against DNA damage, inactivating carcinogenic substances, showing antiviral and antibacterial effects, triggering apoptosis in cells with disrupted structure, inhibiting tumour cell migration causing metastasis and the development of tumour-feeding vessels (angiogenesis). These beneficial anticancer effects of cruciferous vegetables are generally associated with glucosinolates in their composition and some secondary metabolites, as well as other phenolic compounds, seed oils, and dietary fiber in the literature. This review aims to examine to the roles of cruciferous vegetables and their important bioactive metabolites in the prevention and treatment of colorectal cancer.
Collapse
|
26
|
Xu C, Xu Z, Zhang Y, Evert M, Calvisi DF, Chen X. β-Catenin signaling in hepatocellular carcinoma. J Clin Invest 2022; 132:154515. [PMID: 35166233 PMCID: PMC8843739 DOI: 10.1172/jci154515] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deregulated Wnt/β-catenin signaling is one of the main genetic alterations in human hepatocellular carcinoma (HCC). Comprehensive genomic analyses have revealed that gain-of-function mutation of CTNNB1, which encodes β-catenin, and loss-of-function mutation of AXIN1 occur in approximately 35% of human HCC samples. Human HCCs with activation of the Wnt/β-catenin pathway demonstrate unique gene expression patterns and pathological features. Activated Wnt/β-catenin synergizes with multiple signaling cascades to drive HCC formation, and it functions through its downstream effectors. Therefore, strategies targeting Wnt/β-catenin have been pursued as possible therapeutics against HCC. Here, we review the genetic alterations and oncogenic roles of aberrant Wnt/β-catenin signaling during hepatocarcinogenesis. In addition, we discuss the implication of this pathway in HCC diagnosis, classification, and personalized treatment.
Collapse
Affiliation(s)
- Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, UCSF, San Francisco, California, USA
| |
Collapse
|
27
|
Aoki T, Nishida N, Kudo M. Clinical Significance of the Duality of Wnt/β-Catenin Signaling in Human Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14020444. [PMID: 35053606 PMCID: PMC8773595 DOI: 10.3390/cancers14020444] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
Combination therapy with immune checkpoint inhibitors (ICIs) and vascular endothelial growth factor inhibitors has been approved as a first-line treatment for unresectable hepatocellular carcinoma (HCC), indicating a critical role of ICIs in the treatment of HCC. However, 20% of patients do not respond effectively to ICIs; mutations in the activation of the Wnt/β-catenin pathway are known to contribute to primary resistance to ICIs. From this point of view, non-invasive detection of Wnt/β-catenin activation should be informative for the management of advanced HCC. Wnt/β-catenin mutations in HCC have a dual aspect, which results in two distinct tumor phenotypes. HCC with minimal vascular invasion, metastasis, and good prognosis is named the “Jekyll phenotype”, while the poorly differentiated HCC subset with frequent vascular invasion and metastasis, cancer stem cell features, and high serum Alpha fetoprotein levels, is named the “Hyde phenotype”. To differentiate these two HCC phenotypes, a combination of the hepatobiliary phase of gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-DTPA)-enhanced magnetic resonance imaging and fluoro-2-deoxy-D-glucose-PET/CT may be useful. The former is applicable for the detection of the Jekyll phenotype, as nodules present higher enhancement on the hepatobiliary phase, while the latter is likely to be informative for the detection of the Hyde phenotype by showing an increased glucose uptake.
Collapse
Affiliation(s)
| | - Naoshi Nishida
- Correspondence: ; Tel.: +81-72-366-0221 (ext. 3149); Fax: +81-72-367-2880
| | | |
Collapse
|
28
|
Alaña L, Nunes-Xavier CE, Zaldumbide L, Martin-Guerrero I, Mosteiro L, Alba-Pavón P, Villate O, García-Obregón S, González-García H, Herraiz R, Astigarraga I, Pulido R, García-Ariza M. Identification and Functional Analysis of a Novel CTNNB1 Mutation in Pediatric Medulloblastoma. Cancers (Basel) 2022; 14:cancers14020421. [PMID: 35053583 PMCID: PMC8773623 DOI: 10.3390/cancers14020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary We have analyzed a panel of 88 pediatric medulloblastoma tumors for exon 3 mutations from the CTNNB1 gene and identified eight missense point-mutations and one in-frame deletion. We describe and functionally characterize a novel CTNNB1 in-frame deletion (c.109-111del, pSer37del, ΔS37) found in a pediatric patient with a classic medulloblastoma, WNT-activated grade IV (WHO 2016). To the best of our knowledge, this mutation has not been previously reported in medulloblastoma, and it is uncertain its role in the disease development and progression. Our analysis discloses gain-of-function properties for the new ΔS37 β-catenin variant. Abstract Medulloblastoma is the primary malignant tumor of the Central Nervous System (CNS) most common in pediatrics. We present here, the histological, molecular, and functional analysis of a cohort of 88 pediatric medulloblastoma tumor samples. The WNT-activated subgroup comprised 10% of our cohort, and all WNT-activated patients had exon 3 CTNNB1 mutations and were immunostained for nuclear β-catenin. One novel heterozygous CTNNB1 mutation was found, which resulted in the deletion of β-catenin Ser37 residue (ΔS37). The ΔS37 β-catenin variant ectopically expressed in U2OS human osteosarcoma cells displayed higher protein expression levels than wild-type β-catenin, and functional analysis disclosed gain-of-function properties in terms of elevated TCF/LEF transcriptional activity in cells. Our results suggest that the stabilization and nuclear accumulation of ΔS37 β-catenin contributed to early medulloblastoma tumorigenesis.
Collapse
Affiliation(s)
- Lide Alaña
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
- Correspondence: ; Tel.: +34-946-006-000 (ext. 2401)
| | - Caroline E. Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (C.E.N.-X.); (R.P.)
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0310 Oslo, Norway
| | - Laura Zaldumbide
- Department of Pathology, Hospital Universitario de Cruces, Osakidetza, Plaza de Cruces 12, 48903 Barakaldo, Spain; (L.Z.); (L.M.)
| | - Idoia Martin-Guerrero
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
- Department of Genetics, Physical Anthropology and Animal Pathology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
| | - Lorena Mosteiro
- Department of Pathology, Hospital Universitario de Cruces, Osakidetza, Plaza de Cruces 12, 48903 Barakaldo, Spain; (L.Z.); (L.M.)
| | - Piedad Alba-Pavón
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
| | - Olatz Villate
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
| | - Susana García-Obregón
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
- Department of Physiology, Faculty of Medicine and Nursing, Campus de Leioa, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
| | - Hermenegildo González-García
- Oncohematology Pediatric Unit, Department of Pediatrics, Hospital Universitario de Valladolid, C/Ramon y Cajal n°3, 47003 Valladolid, Spain; (H.G.-G.); (R.H.)
| | - Raquel Herraiz
- Oncohematology Pediatric Unit, Department of Pediatrics, Hospital Universitario de Valladolid, C/Ramon y Cajal n°3, 47003 Valladolid, Spain; (H.G.-G.); (R.H.)
| | - Itziar Astigarraga
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
- Pediatric Oncohematology Unit, Pediatrics Department, Hospital Universitario Cruces, Osakidetza, Plaza de Cruces 12, 48903 Barakaldo, Spain
- Pediatrics Department, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Plaza de Cruces 12, 48903 Barakaldo, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (C.E.N.-X.); (R.P.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Miguel García-Ariza
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
- Pediatric Oncohematology Unit, Pediatrics Department, Hospital Universitario Cruces, Osakidetza, Plaza de Cruces 12, 48903 Barakaldo, Spain
| |
Collapse
|
29
|
Ji Y, Lv J, Sun D, Huang Y. Therapeutic strategies targeting Wnt/β‑catenin signaling for colorectal cancer (Review). Int J Mol Med 2022; 49:1. [PMID: 34713301 PMCID: PMC8589460 DOI: 10.3892/ijmm.2021.5056] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common carcinomas. Although great progress has been made in recent years, CRC survival remains unsatisfactory due to high metastasis and recurrence. Understanding the underlying molecular mechanisms of CRC tumorigenesis and metastasis has become increasingly important. Recently, aberrant Wnt/β‑catenin signaling has been reported to be strongly associated with CRC tumorigenesis, metastasis and recurrence. Therefore, the Wnt/β‑catenin signaling pathway has potential value as a therapeutic target for CRC. In the present review, the dysregulation of this pathway in CRC and the promoting or suppressing function of therapeutic targets on CRC were explored. In addition, the interaction between this pathway and epithelial‑mesenchymal transition (EMT), cell stemness, mutations, metastasis‑related genes and tumor angiogenesis in CRC cells were also investigated. Numerous studies on this pathway may help identify the potential diagnostic and prognostic markers and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Yong Ji
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Jian Lv
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Di Sun
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Yufeng Huang
- Department of Oncology, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| |
Collapse
|
30
|
Joshi J, Patel H, Bhavnagari H, Tarapara B, Pandit A, Shah F. Eliminating Cancer Stem-Like Cells in Oral Cancer by Targeting Elementary Signaling Pathways. Crit Rev Oncog 2022; 27:65-82. [PMID: 37199303 DOI: 10.1615/critrevoncog.2022047207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Oral cancer is a heterogeneous, aggressive, and complex entity. Current major treatment options for the disease are surgery, chemo, and/or radiotherapy either alone or in combination with each other. Each treatment method has its own limitations such as a significant journey with deformities and a protracted rehabilitation process leading to loss of self-esteem, loss of tolerance, and therapeutic side effects. Conventional therapies are frequently experienced with regimen resistance and recurrence attributed to the cancer stem cells (CSCs). Given that CSCs exert their tumorigenesis by affecting several cellular and molecular targets and pathways an improved understanding of CSCs' actions is required. Hence, more research is recommended to fully understand the fundamental mechanisms driving CSC-mediated treatment resistance. Despite the difficulties and disagreements surrounding the removal of CSCs from solid tumors, a great amount of knowledge has been derived from the characterization of CSCs. Various efforts have been made to identify the CSCs using several cell surface markers. In the current review, we will discuss numerous cell surface markers such as CD44, ALDH1, EPCAM, CD24, CD133, CD271, CD90, and Cripto-1 for identifying and isolating CSCs from primary oral squamous cell carcinoma (OSCC). Further, a spectrum of embryonic signaling pathways has been thought to be the main culprit of CSCs' active state in cancers, resulting in conventional therapeutic resistance. Hence, we discuss the functional and molecular bases of several signaling pathways such as the Wnt/beta;-catenin, Notch, Hedgehog, and Hippo pathways and their associations with disease aggressiveness. Moreover, numerous inhibitors targeting the above mentioned signaling pathways have already been identified and some of them are already undergoing clinical trials. Hence, the present review encapsulates the characterization and effectiveness of the prospective potential targeted therapies for eradicating CSCs in oral cancers.
Collapse
Affiliation(s)
- Jigna Joshi
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Hitarth Patel
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Hunayna Bhavnagari
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Bhoomi Tarapara
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Apexa Pandit
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky Shah
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
31
|
Kuwano A, Tanaka K, Yada M, Nagasawa S, Morita Y, Masumoto A, Motomura K. Therapeutic efficacy of lenvatinib for hepatocellular carcinoma with iso‑high intensity in the hepatobiliary phase of Gd‑EOB‑DTPA‑MRI. Mol Clin Oncol 2021; 16:53. [PMID: 35070302 PMCID: PMC8764652 DOI: 10.3892/mco.2021.2486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/08/2021] [Indexed: 11/05/2022] Open
Abstract
Previous studies have reported that hepatocellular carcinoma (HCC) harboring WNT/β-catenin mutations exhibits iso-high intensity by gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-MRI, i.e. EOB-MRI) during the hepatobiliary phase (HBP), thus indicating that EOB-MRI may help clinicians identify an immune exclusion class, which might not respond to treatment with immune checkpoint inhibitors. The present study analyzed the efficacy of lenvatinib for HCC with iso-high intensity during the HBP of EOB-MRI. Overall, 52 patients who underwent EOB-MRI for 140 HCC nodules were classified into iso-high-intensity and low-intensity groups during the HBP of EOB-MRI. The clinical and histological characteristics, and different responses to treatment of both groups were analyzed. The expression levels of β-catenin and glutamine synthetase, indicative of WNT/β-catenin mutations, were enhanced in the HCC with iso-high-intensity group. Nine patients had iso-high intensity, whereas 43 patients had low intensity. Tumor size was larger, and the levels of antagonist-II or vitamin K absence were higher in the iso-high-intensity group. Furthermore, 3/9 patients in the iso-high-intensity group had objective responses compared with 13/43 patients in the low-intensity group. Disease control was observed in 5/9 patients in the iso-high-intensity group and 26/43 patients in the low-intensity group. Median overall survival was 29.8 months for the iso-high-intensity group compared with 20.8 months for the low-intensity group. In the iso-high-intensity group, the median progression-free survival rate was 6.7 months compared with 5.6 months in the low-intensity group. No differences in best percentage change from baseline tumor size were observed in either group. Although few patients were included in this study, the present findings suggested that the efficacy of lenvatinib was unaffected by signal intensity during the HBP of EOB-MRI.
Collapse
Affiliation(s)
- Akifumi Kuwano
- Department of Hepatology, Iizuka Hospital, Iizuka, Fukuoka 820‑8505, Japan
| | - Kosuke Tanaka
- Department of Hepatology, Iizuka Hospital, Iizuka, Fukuoka 820‑8505, Japan
| | - Masayoshi Yada
- Department of Hepatology, Iizuka Hospital, Iizuka, Fukuoka 820‑8505, Japan
| | - Shigehiro Nagasawa
- Department of Hepatology, Iizuka Hospital, Iizuka, Fukuoka 820‑8505, Japan
| | - Yusuke Morita
- Department of Hepatology, Iizuka Hospital, Iizuka, Fukuoka 820‑8505, Japan
| | - Akihide Masumoto
- Department of Hepatology, Iizuka Hospital, Iizuka, Fukuoka 820‑8505, Japan
| | - Kenta Motomura
- Department of Hepatology, Iizuka Hospital, Iizuka, Fukuoka 820‑8505, Japan
| |
Collapse
|
32
|
Ferroptosis Meets Cell-Cell Contacts. Cells 2021; 10:cells10092462. [PMID: 34572111 PMCID: PMC8471828 DOI: 10.3390/cells10092462] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is a regulated form of cell death characterized by iron dependency and increased lipid peroxidation. Initially assumed to be selectively induced in tumour cells, there is increasing evidence that ferroptosis plays an important role in pathophysiology and numerous cell types and tissues. Deregulated ferroptosis has been linked to human diseases, such as neurodegenerative diseases, cardiovascular disorders, and cancer. Along these lines, ferroptosis is a promising pathway to overcoming therapy resistance of cancer cells. It is therefore of utmost importance to understand the cellular signalling pathways and the molecular mechanisms underlying ferroptosis regulation, including context-specific effects mediated by the neighbouring cells through cell–cell contacts. Here, we give an overview on the molecular events and machinery linked to ferroptosis induction and commitment. We further summarize and discuss current knowledge about the role of cell–cell contacts, which differ in ferroptosis regulation between normal somatic cells and cancer cells. We present emerging concepts on the underlying mechanisms, address open questions, and discuss the possible impact of cell–cell contacts on exploiting ferroptosis in cancer therapy.
Collapse
|
33
|
Adaptor SH3BGRL promotes breast cancer metastasis through PFN1 degradation by translational STUB1 upregulation. Oncogene 2021; 40:5677-5690. [PMID: 34331014 DOI: 10.1038/s41388-021-01970-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Metastatic recurrence is still a major challenge in breast cancer treatment, but the underlying mechanisms remain unclear. Here, we report that a small adaptor protein, SH3BGRL, is upregulated in the majority of breast cancer patients, especially elevated in those with metastatic relapse, indicating it as a marker for the poor prognosis of breast cancer. Physiologically, SH3BGRL can multifunctionally promote breast cancer cell tumorigenicity, migration, invasiveness, and efficient lung colonization in nude mice. Mechanistically, SH3BGRL downregulates the acting-binding protein profilin 1 (PFN1) by accelerating the translation of the PFN1 E3 ligase, STUB1 via SH3BGRL interaction with ribosomal proteins, or/and enhancing the interaction of PFN1 with STUB1 to accelerate PFN1 degradation. Loss of PFN1 consequently contributes to downstream multiple activations of AKT, NF-kB, and WNT signaling pathways. In contrast, the forced expression of compensatory PFN1 in SH3BGRL-high cells efficiently neutralizes SH3BGRL-induced metastasis and tumorigenesis with PTEN upregulation and PI3K-AKT signaling inactivation. Clinical analysis validates that SH3BGRL expression is negatively correlated with PFN1 and PTEN levels, but positively to the activations of AKT, NF-kB, and WNT signaling pathways in breast patient tissues. Our results thus suggest that SH3BGRL is a valuable prognostic factor and a potential therapeutic target for preventing breast cancer progression and metastasis.
Collapse
|
34
|
Wu F, Wu B, Zhang X, Yang C, Zhou C, Ren S, Wang J, Yang Y, Wang G. Screening of MicroRNA Related to Irradiation Response and the Regulation Mechanism of miRNA-96-5p in Rectal Cancer Cells. Front Oncol 2021; 11:699475. [PMID: 34458143 PMCID: PMC8386172 DOI: 10.3389/fonc.2021.699475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
Neoadjuvant chemoradiotherapy has been widely used in the treatment of locally advanced rectal cancer due to the excellent advantages of irradiation in cancer therapy. Unfortunately, not every patient can benefit from this treatment, therefore, it is of great significance to explore biomarkers that can predict irradiation sensitivity. In this study, we screened microRNAs (miRNAs) which were positively correlated with irradiation resistance and found that miRNA-552 and miRNA-183 families were positively correlated with the irradiation resistance of rectal cancer, and found that high expression of miRNA-96-5p enhanced the irradiation resistance of rectal cancer cells through direct regulation of the GPC3 gene and abnormal activation of the canonical Wnt signal transduction pathway. Based on the radioreactivity results of patient-derived xenograft models, this is the first screening report for radio-resistant biomarkers in rectal cancer. Our results suggest that miRNA-96-5p expression is an important factor affecting the radiation response of colorectal cancer cells.
Collapse
Affiliation(s)
- Fengpeng Wu
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bingyue Wu
- Department of Oncology, Hebei Provincial People's Hospital, Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Xiaoxiao Zhang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Congrong Yang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaoxi Zhou
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuguang Ren
- Laboratory Animal Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yafan Yang
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Department of General Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
35
|
Zhu H, Liu X. Advances of Tumorigenesis, Diagnosis at Early Stage, and Cellular Immunotherapy in Gastrointestinal Malignancies. Front Oncol 2021; 11:666340. [PMID: 34434889 PMCID: PMC8381364 DOI: 10.3389/fonc.2021.666340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Globally, in 2018, 4.8 million new patients have a diagnosis of gastrointestinal (GI) cancers, while 3.4 million people died of such disorders. GI malignancies are tightly relevant to 26% of the world-wide cancer incidence and occupies 35% of all cancer-associated deaths. In this article, we principally investigated molecular and cellular mechanisms of tumorigenesis in five major GI cancers occurring at esophagus, stomach, liver, pancreas, and colorectal region that illustrate high morbidity in Eastern and Western countries. Moreover, through this investigation, we not only emphasize importance of the tumor microenvironment in development and treatment of malignant tumors but also identify significance of M2PK, miRNAs, ctDNAs, circRNAs, and CTCs in early detection of GI cancers, as well as systematically evaluate contribution of personalized precision medicine including cellular immunotherapy, new antigen and vaccine therapy, and oncolytic virotherapy in treatment of GI cancers.
Collapse
Affiliation(s)
- Haipeng Zhu
- Precision and Personalized Cancer Treatment Center, Division of Cancer Diagnosis & Therapy, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China.,Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical College, Xinxiang, China
| | - Xiaojun Liu
- Division of Cellular & Biomedical Science, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China
| |
Collapse
|
36
|
Lin Q, Bai MJ, Wang HF, Wu XY, Huang MS, Li X. Aspirin-induced long-term tumor remission in hepatocellular carcinoma with adenomatous polyposis coli stop-gain mutation: A case report. World J Clin Cases 2021; 9:7189-7195. [PMID: 34540977 PMCID: PMC8409191 DOI: 10.12998/wjcc.v9.i24.7189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Targeted therapy based on pathway analysis of hepatitis B-related hepatocellular carcinoma (HCC) may be a promising remedy.
CASE SUMMARY The present case involved an advanced hepatocellular carcinoma (HCC) patient who did not receive local regional therapy and was intolerant to sorafenib. Total RNA extracted from the patient’s tumor tissue was used to obtain the gene mutation profile. The c.3676A>T and c.4402A>T stop-gain mutations in adenomatous polyposis coli (APC) were the most prevalent (42.2% and 35.1%, respectively). MutationMapper analysis indicated that the functional domain of APC was lost in the two APC mutant genes. APC is a major suppressor of the Wnt signaling pathway. Thus, the Wnt pathway was exclusively activated due to APC dysfunction, as other elements of this pathway were not found to be mutated. Aspirin has been reported to suppress the Wnt pathway by inducing β-catenin phosphorylation through the activation of glycogen synthase kinase 3 beta via cyclooxygenase-2 pathway inhibition. Therefore, aspirin was administered to the patient, which achieved four years of disease control.
CONCLUSION Exclusive mutations of APC of all the Wnt pathway elements could be a therapeutic target in HCC, with aspirin as an effective treatment option.
Collapse
Affiliation(s)
- Qu Lin
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Ming-Jun Bai
- Department of Intervention and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Hao-Fan Wang
- Department of Intervention and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Xiang-Yuan Wu
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Ming-Sheng Huang
- Department of Intervention and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Xing Li
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
37
|
A transcription-based mechanism for oncogenic β-catenin-induced lethality in BRCA1/2-deficient cells. Nat Commun 2021; 12:4919. [PMID: 34389725 PMCID: PMC8363664 DOI: 10.1038/s41467-021-25215-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
BRCA1 or BRCA2 germline mutations predispose to breast, ovarian and other cancers. High-throughput sequencing of tumour genomes revealed that oncogene amplification and BRCA1/2 mutations are mutually exclusive in cancer, however the molecular mechanism underlying this incompatibility remains unknown. Here, we report that activation of β-catenin, an oncogene of the WNT signalling pathway, inhibits proliferation of BRCA1/2-deficient cells. RNA-seq analyses revealed β-catenin-induced discrete transcriptome alterations in BRCA2-deficient cells, including suppression of CDKN1A gene encoding the CDK inhibitor p21. This accelerates G1/S transition, triggering illegitimate origin firing and DNA damage. In addition, β-catenin activation accelerates replication fork progression in BRCA2-deficient cells, which is critically dependent on p21 downregulation. Importantly, we find that upregulated p21 expression is essential for the survival of BRCA2-deficient cells and tumours. Thus, our work demonstrates that β-catenin toxicity in cancer cells with compromised BRCA1/2 function is driven by transcriptional alterations that cause aberrant replication and inflict DNA damage. Germline mutations in BRCA1 or BRCA2 tumour suppressor genes predispose to different cancers, as does oncogene activation. Here the authors reveal that aberrant transcription of specific genes triggered by activation of the oncogene β-catenin causes replication failure and cell death in the context of BRCA1/2 deficiency.
Collapse
|
38
|
Xiao W, Zhou H, Chen B, Shen B, Zhou J. miR-582-5p inhibits migration and chemo-resistant capabilities of colorectal cancer cells by targeting TNKS2. Genes Genomics 2021; 44:747-756. [PMID: 34357507 DOI: 10.1007/s13258-021-01141-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Metastasis and chemo-resistance are still important factors that limit the overall efficacy of colorectal cancer treatment. Understanding the detailed molecular mechanism and identifying potential biomarkers are of great value in prognosis prediction and risk stratification. OBJECTIVE We investigated the role of miR-582-5p in colorectal cancer pathogenesis, progression and chemo-resistance. Furthermore, we explored the underlying molecular mechanism of miR-582-5p in modulation of malignant behaviors of colorectal cancer cells. METHODS Clinical samples and colorectal cancer cell lines were applied to explore miR-582-5p expression level and its significance on tumor cell metastasis and chemo-resistance. Transwell study and cellular survivability study were performed to explore the influences of miR-582-5p expression modulation on tumor cell chemo-resistance and invasion/migration. Dual-luciferase reporter gene assay was conducted to explore the influences of miR-582-5p on its target gene TNKS2. RESULTS Colorectal cancer patients with lymph node or distal organ metastatic diseases exhibited significantly lower level of miR-582-5p. In vitro studies have indicated that miR-582-5p inhibition significantly increased migration and chemo-resistant capabilities of tumor cells. And dual-luciferase reporter gene assay demonstrated that miR-582-5p exhibited its influences on the biological behavior of tumor cells by targeting TNKS2. CONCLUSIONS Our study demonstrated for the first time that miR-582-5p played an important role for colorectal tumor cell metastasis and chemo-resistance. Our research also indicated that miR-582-5p and its target gene TNKS2 could be novel biomarkers for metastatic disease prediction, overall prognosis evaluation, as well as potential therapeutic target for colorectal cancer patients.
Collapse
Affiliation(s)
- Weixing Xiao
- Department of Hepatobiliary Surgery, Jiaxing Hospital of Traditional Chinese Medicine, No. 1501 Zhongshan East Road, Jiaxing, 314000, Zhejiang, China
| | - Haijun Zhou
- Department of Hepatobiliary Surgery, Jiaxing Hospital of Traditional Chinese Medicine, No. 1501 Zhongshan East Road, Jiaxing, 314000, Zhejiang, China.
| | - Bingrong Chen
- Department of Hepatobiliary Surgery, Jiaxing Hospital of Traditional Chinese Medicine, No. 1501 Zhongshan East Road, Jiaxing, 314000, Zhejiang, China
| | - Bin Shen
- Department of Hepatobiliary Surgery, Jiaxing Hospital of Traditional Chinese Medicine, No. 1501 Zhongshan East Road, Jiaxing, 314000, Zhejiang, China
| | - Jun Zhou
- Department of Hepatobiliary Surgery, Jiaxing Hospital of Traditional Chinese Medicine, No. 1501 Zhongshan East Road, Jiaxing, 314000, Zhejiang, China
| |
Collapse
|
39
|
Budde K, Smith J, Wilsdorf P, Haack F, Uhrmacher AM. Relating simulation studies by provenance-Developing a family of Wnt signaling models. PLoS Comput Biol 2021; 17:e1009227. [PMID: 34351901 PMCID: PMC8407594 DOI: 10.1371/journal.pcbi.1009227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/31/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022] Open
Abstract
For many biological systems, a variety of simulation models exist. A new simulation model is rarely developed from scratch, but rather revises and extends an existing one. A key challenge, however, is to decide which model might be an appropriate starting point for a particular problem and why. To answer this question, we need to identify entities and activities that contributed to the development of a simulation model. Therefore, we exploit the provenance data model, PROV-DM, of the World Wide Web Consortium and, building on previous work, continue developing a PROV ontology for simulation studies. Based on a case study of 19 Wnt/β-catenin signaling models, we identify crucial entities and activities as well as useful metadata to both capture the provenance information from individual simulation studies and relate these forming a family of models. The approach is implemented in WebProv, a web application for inserting and querying provenance information. Our specialization of PROV-DM contains the entities Research Question, Assumption, Requirement, Qualitative Model, Simulation Model, Simulation Experiment, Simulation Data, and Wet-lab Data as well as activities referring to building, calibrating, validating, and analyzing a simulation model. We show that most Wnt simulation models are connected to other Wnt models by using (parts of) these models. However, the overlap, especially regarding the Wet-lab Data used for calibration or validation of the models is small. Making these aspects of developing a model explicit and queryable is an important step for assessing and reusing simulation models more effectively. Exposing this information helps to integrate a new simulation model within a family of existing ones and may lead to the development of more robust and valid simulation models. We hope that our approach becomes part of a standardization effort and that modelers adopt the benefits of provenance when considering or creating simulation models. We revise a provenance ontology for simulation studies of cellular biochemical models. Provenance information is useful for understanding the creation of a simulation model because it not only contains information about the entities and activities that have led to a simulation model but also their relations, all of which can be visualized. It provides additional structure by explicitly recording research questions, assumptions, and requirements and relating them along with data, qualitative models, simulation models, and simulation experiments through a small set of predefined but extensible activities. We have applied our concept to a family of 19 Wnt signaling models and implemented a web-based tool (WebProv) to store the provenance information from these studies. The resulting provenance graph visualizes the story line of simulation studies and demonstrates the creation and calibration of simulation models, the successive attempts of validation and extension, and shows, beyond an individual simulation study, how the Wnt models are related. Thereby, the steps and sources that contributed to a simulation model are made explicit. Our approach complements other approaches aimed at facilitating the reuse and assessment of simulation products in systems biology such as model repositories as well as annotation and documentation guidelines.
Collapse
Affiliation(s)
- Kai Budde
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
- * E-mail:
| | - Jacob Smith
- Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
| | - Pia Wilsdorf
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Fiete Haack
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Adelinde M. Uhrmacher
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| |
Collapse
|
40
|
Yang MH, Ha IJ, Lee SG, Lee J, Um JY, Ahn KS. Ginkgolide C promotes apoptosis and abrogates metastasis of colorectal carcinoma cells by targeting Wnt/β-catenin signaling pathway. IUBMB Life 2021; 73:1222-1234. [PMID: 34273236 DOI: 10.1002/iub.2532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/09/2021] [Indexed: 01/20/2023]
Abstract
Ginkgolide C (GGC), isolated from Ginkbiloba, has been reported to display various pharmacological actions, although, anti-cancer effect of GGC has been poorly understood till now. This study aimed to investigate whether GGC can exhibit anti-neoplastic effects against colon cancer cells and explore underlying mechanism. The Wnt/β-catenin signaling can regulate cell proliferation, survival, metastasis, and migration. Wnt/β-catenin signaling pathway plays important role in colorectal cancer (CRC) and acts as a potential therapeutic target. Abnormal activation of this signaling cascades has been reported in colon CRC. We found that GGC down-regulated Wnt/β-catenin signaling cascade. GGC inhibited the expression of Wnt3a, β-catenin, and β-catenin down-stream signals (Axin-1, p-GSK3β, and β-TrCP). Also, GGC suppressed the expression of Wnt/β-catenin pathway target genes including c-myc, cyclin D1, and survivin. Additionally, GGC induced apoptosis and suppressed cell proliferation, invasion, and migration. GGC down-regulated the expressions of matrix metalloproteinase (MMP)-9 and MMP-2 proteins. Moreover, silencing of β-catenin by small interfering RNA (siRNA) enhanced the GGC-induced apoptosis and inhibitory action of GGC on invasion. Overall, our results indicate that GGC can reduce proliferation and promote apoptosis in colon cancer cells through inhibition of the Wnt/β-catenin signaling pathway. Thus, GGC can serve as a potent therapeutic agent for management of colon cancer as a novel wnt signaling inhibitor.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea.,Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Seok-Geun Lee
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Junhee Lee
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea.,Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
41
|
Mani S, Radhakrishnan S, Cheramangalam RN, Harkar S, Rajendran S, Ramanan N. Shh-Mediated Increase in β-Catenin Levels Maintains Cerebellar Granule Neuron Progenitors in Proliferation. THE CEREBELLUM 2021; 19:645-664. [PMID: 32495183 DOI: 10.1007/s12311-020-01138-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cerebellar granule neuron progenitors (CGNPs) give rise to the cerebellar granule neurons in the developing cerebellum. Generation of large number of these neurons is made possible by the high proliferation rate of CGNPs in the external granule layer (EGL) in the dorsal cerebellum. Here, we show that upregulation of β-catenin can maintain murine CGNPs in a state of proliferation. Further, we show that β-catenin mRNA and protein levels can be regulated by the mitogen Sonic hedgehog (Shh). Shh signaling led to an increase in the level of the transcription factor N-myc. N-myc was found to bind the β-catenin promoter, and the increase in β-catenin mRNA and protein levels could be prevented by blocking N-myc upregulation downstream of Shh signaling. Furthermore, blocking Wingless-type MMTV integration site (Wnt) signaling by Wnt signaling pathway inhibitor Dickkopf 1 (Dkk-1) in the presence of Shh did not prevent the upregulation of β-catenin. We propose that in culture, Shh signaling regulates β-catenin expression through N-myc and results in increased CGNP proliferation.
Collapse
Affiliation(s)
- Shyamala Mani
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, 560012, India. .,Curadev Pharma, Pvt. Ltd., B-87, Sector 83, Noida, Uttar Pradesh, 201305, India. .,Université de Paris, Inserm UMR 1141 NeuroDiderot, F-75019, Paris, France.
| | | | | | - Shalini Harkar
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, 560012, India
| | - Samyutha Rajendran
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, 560012, India
| | | |
Collapse
|
42
|
Platelet-Activating Factor Acetylhydrolase Expression in BRCA1 Mutant Ovarian Cancer as a Protective Factor and Potential Negative Regulator of the Wnt Signaling Pathway. Biomedicines 2021; 9:biomedicines9070706. [PMID: 34206491 PMCID: PMC8301368 DOI: 10.3390/biomedicines9070706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Aberrantly activated Wnt/β-catenin signaling pathway, as well as platelet-activating factor (PAF), contribute to cancer progression and metastasis of many cancer entities. Nonetheless, the role of the degradation enzyme named platelet-activating factor acetylhydrolase (PLA2G7/PAF-AH) in ovarian cancer etiology is still unclear. This study investigated the functional impact of platelet-activating factor acetylhydrolase on BRCA1 mutant ovarian cancer biology and its crosstalk with the Wnt signaling pathway. PAF-AH, pGSK3β, and β-catenin expressions were analyzed in 156 ovarian cancer specimens by immunohistochemistry. PAF-AH expression was investigated in ovarian cancer tissue, serum of BRCA1-mutated patients, and in vitro in four ovarian cancer cell lines. Functional assays were performed after PLA2G7 silencing. The association of PAF-AH and β-catenin was examined by immunocytochemistry. In an established ovarian carcinoma collective, we identified PAF-AH as an independent positive prognostic factor for overall survival (median 59.9 vs. 27.4 months; p = 0.016). PAF-AH correlated strongly with the Wnt signaling proteins pGSK3β (Y216; nuclear: cc = 0.494, p < 0.001; cytoplasmic: cc = 0.488, p < 0.001) and β-catenin (nuclear: cc = 0.267, p = 0.001; cytoplasmic: cc = 0.291, p < 0.001). In particular, high levels of PAF-AH were found in tumor tissue and in the serum of BRCA1 mutation carriers. By in vitro expression analysis, a relevant gene and protein expression of PLA2G7/PAF-AH was detected exclusively in the BRCA1-negative ovarian cancer cell line UWB1.289 (p < 0.05). Functional assays showed enhanced viability, proliferation, and motility of UWB1.289 cells when PLA2G7/PAF-AH was downregulated, which underlines its protective character. Interestingly, by siRNA knockdown of PLA2G7/PAF-AH, the immunocytochemistry staining pattern of β-catenin changed from a predominantly membranous expression to a nuclear one, suggesting a negative regulatory role of PAF-AH on the Wnt/β-catenin pathway. Our data provide evidence that PAF-AH is a positive prognostic factor with functional impact, which seems particularly relevant in BRCA1 mutant ovarian cancer. For the first time, we show that its protective character may be mediated by a negative regulation of the Wnt/β-catenin pathway. Further studies need to specify this effect. Potential use of PAF-AH as a biomarker for predicting the disease risk of BRCA1 mutation carriers and for the prognosis of patients with BRCA1-negative ovarian cancer should be explored.
Collapse
|
43
|
Liu J, Wang F, Song H, Weng Z, Bao Y, Fang Y, Tang X, Shen X. Soybean-derived gma-miR159a alleviates colon tumorigenesis by suppressing TCF7/MYC in mice. J Nutr Biochem 2021; 92:108627. [PMID: 33705946 DOI: 10.1016/j.jnutbio.2021.108627] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/10/2020] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Previous reports have shown that plant-derived microRNAs (miRNAs) regulate mammalian gene expression through dietary intake. Our prior study found that gma-miR159a, which is abundant in soybean, significantly inhibited the proliferation of colon cancer cells. In the current study, dietary gma-miR159a was utilized to study its anti-colon cancer function in azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer mice. Under processing conditions, gma-miR159a exhibited excellent stability in cooked soybean. In vitro, gma-miR159a suppressed the expression of the oncogene MYC downstream of the Wnt signaling pathway by targeting the TCF7 gene, significantly inhibiting the growth of colon cancer cells. The in vivo experiments showed that gma-miR159a and soybean RNA (total RNA extracted from soybean) significantly reduced tumor growth in AOM/DSS-induced colon cancer mice by gavage. This effect disappeared when anti-miR159a was present. In addition, gma-miR159a and soybean RNA significantly attenuated inflammation in colon cancer mice. These results showed that long-term dietary intake of soybean-derived gma-miR159a effectively prevented the occurrence of colon cancer and colitis, which provides novel evidence for the prevention function of soybean.
Collapse
Affiliation(s)
- Juncheng Liu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Zebin Weng
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifan Bao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China.
| |
Collapse
|
44
|
Boucsein A, Kamstra K, Tups A. Central signalling cross-talk between insulin and leptin in glucose and energy homeostasis. J Neuroendocrinol 2021; 33:e12944. [PMID: 33615588 DOI: 10.1111/jne.12944] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/28/2022]
Abstract
Energy homeostasis is controlled by an intricate regulatory system centred in the brain. The peripheral adiposity signals insulin and leptin play a crucial role in this system by informing the brain of the energy status of the body and mediating their catabolic effects through signal transduction in hypothalamic areas that control food intake, energy expenditure and glucose metabolism. Disruptions of insulin and leptin signalling can result in diabetes and obesity. The central signalling cross-talk between insulin and leptin is essential for maintenance of normal healthy energy homeostasis. An important role of leptin in glucoregulation has been revealed. Typically regarded as being controlled by insulin, the control of glucose homeostasis critically depends on functional leptin action. Leptin, on the other hand, is able to lower glucose levels in the absence of insulin, although insulin is necessary for long-term stabilisation of euglycaemia. Evidence from rodent models and human patients suggests that leptin improves insulin sensitivity in type 1 diabetes. The signalling cross-talk between insulin and leptin is likely conveyed by the WNT/β-catenin pathway. Leptin activates WNT/β-catenin signalling, leading to inhibition of glycogen synthase kinase-3β, a key inhibitor of insulin action, thereby facilitating improved insulin signal transduction and sensitisation of insulin action. Interestingly, insights into the roles of insulin and leptin in insects and fish indicate that leptin may have initially evolved as a glucoregulatory hormone and that its anorexigenic and body weight regulatory function was acquired throughout evolution. Furthermore, the regulation of both central and peripheral control of energy homeostasis is tightly controlled by the circadian clock, allowing adaptation of homeostatic processes to environmental cues.
Collapse
Affiliation(s)
- Alisa Boucsein
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kaj Kamstra
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Alexander Tups
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
45
|
Hsueh YC, Hodgkinson CP, Gomez JA. The role of Sfrp and DKK proteins in cardiomyocyte development. Physiol Rep 2021; 9:e14678. [PMID: 33587322 PMCID: PMC7883806 DOI: 10.14814/phy2.14678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we summarize the role of Wnt proteins in cardiomyogenesis. More specifically, we focus on how the development of cardiomyocytes from precursor cells involves a complex interplay between Wnt canonical β-catenin signaling pathways and Wnt noncanonical signaling pathways involving PCP and JNK. We also describe recent literature which suggests that endogenous Wnt inhibitors such as the Sfrp and DKK proteins play important roles in regulating the cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Ying-Chang Hsueh
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, USA
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, USA
| | - Jose A Gomez
- Department of Medicine, Clinical Pharmacology Division, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
46
|
Mulford AJ, Wing C, Dolan ME, Wheeler HE. Genetically regulated expression underlies cellular sensitivity to chemotherapy in diverse populations. Hum Mol Genet 2021; 30:305-317. [PMID: 33575800 DOI: 10.1093/hmg/ddab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 11/14/2022] Open
Abstract
Most cancer chemotherapeutic agents are ineffective in a subset of patients; thus, it is important to consider the role of genetic variation in drug response. Lymphoblastoid cell lines (LCLs) in 1000 Genomes Project populations of diverse ancestries are a useful model for determining how genetic factors impact the variation in cytotoxicity. In our study, LCLs from three 1000 Genomes Project populations of diverse ancestries were previously treated with increasing concentrations of eight chemotherapeutic drugs, and cell growth inhibition was measured at each dose with half-maximal inhibitory concentration (IC50) or area under the dose-response curve (AUC) as our phenotype for each drug. We conducted both genome-wide association studies (GWAS) and transcriptome-wide association studies (TWAS) within and across ancestral populations. We identified four unique loci in GWAS and three genes in TWAS to be significantly associated with the chemotherapy-induced cytotoxicity within and across ancestral populations. In the etoposide TWAS, increased STARD5 predicted expression associated with decreased etoposide IC50 (P = 8.5 × 10-8). Functional studies in A549, a lung cancer cell line, revealed that knockdown of STARD5 expression resulted in the decreased sensitivity to etoposide following exposure for 72 (P = 0.033) and 96 h (P = 0.0001). By identifying loci and genes associated with cytotoxicity across ancestral populations, we strive to understand the genetic factors impacting the effectiveness of chemotherapy drugs and to contribute to the development of future cancer treatment.
Collapse
Affiliation(s)
- Ashley J Mulford
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA.,Program in Bioinformatics, Loyola University Chicago, Chicago, IL 60660, USA
| | - Claudia Wing
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - M Eileen Dolan
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Heather E Wheeler
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA.,Program in Bioinformatics, Loyola University Chicago, Chicago, IL 60660, USA
| |
Collapse
|
47
|
Gao L, Gou N, Yao M, Amakye WK, Ren J. Food-derived natural compounds in the management of chronic diseases via Wnt signaling pathway. Crit Rev Food Sci Nutr 2021; 62:4769-4799. [PMID: 33554630 DOI: 10.1080/10408398.2021.1879001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Wnt signaling pathway is an evolutionarily conserved pathway that control embryonic development, adult tissue homeostasis, and pathological processes of organisms throughout life. However, dysregulation of the Wnt signaling is associated with the occurrence of chronic diseases. In comparison with the application of chemical drugs as traditional treatment for chronic diseases, dietary agents have unique advantages, such as less side effects, multiple targets, convenience in accessibility and higher acceptability in long-term intervention. In this review, we summarized current progress in manipulating the Wnt signaling using food components and its benefits in managing chronic diseases. The underlying mechanisms of bioactive food components in the management of the disease progression via the Wnt signaling was illustrated. Then, the review focused on the function of dietary pattern (which might act via combination of foods with multiple nutrients or food ingredients) on targeting Wnt signaling at multiple level. The potential caveats and challenges in developing new strategy via modulating Wnt-associated diseases with food-based agents and appropriate dietary pattern are also discussed in detail. This review shed light on the understanding of the regulatory effect of food bioactive components on chronic diseases management through the Wnt signaling, which can be expanded to other specific signaling pathway associated with disease.
Collapse
Affiliation(s)
- Li Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Na Gou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Maojin Yao
- Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Research Institute for Food Nutrition and Human Health, Guangzhou, China
| |
Collapse
|
48
|
Low Protein Expression of both ATRX and ZNRF3 as Novel Negative Prognostic Markers of Adult Adrenocortical Carcinoma. Int J Mol Sci 2021; 22:ijms22031238. [PMID: 33513905 PMCID: PMC7866180 DOI: 10.3390/ijms22031238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy that is associated with a dismal prognosis. Pan-genomic studies have demonstrated the involvement of ATRX and ZNRF3 genes in adrenocortical tumorigenesis. Our aims were to evaluate the protein expression of ATRX and ZNRF3 in a cohort of 82 adults with ACC and to establish their prognostic value. Two pathologists analyzed immuno-stained slides of a tissue microarray. The low protein expression of ATRX and ZNRF3 was associated with a decrease in overall survival (OS) (p = 0.045, p = 0.012, respectively). The Cox regression for ATRX protein expression of >1.5 showed a hazard ratio (HR) for OS of 0.521 (95% CI 0.273-0.997; p = 0.049) when compared with ≤1.5; for ZNRF3 expression >2, the HR for OS was 0.441 (95% CI, 0.229-0.852; p = 0.015) when compared with ≤2. High ATRX and ZNRF3 protein expressions were associated with optimistic recurrence-free survival (RFS) (p = 0.027 and p = 0.005, respectively). The Cox regression of RFS showed an HR of 0.332 (95%CI, 0.111-0.932) for ATRX expression >2.7 (p = 0.037), and an HR of 0.333 (95%CI, 0.140-0.790) for ZNRF3 expression >2 (p = 0.013). In conclusion, low protein expression of ATRX and ZNRF3 are negative prognostic markers of ACC; however, different cohorts should be evaluated to validate these findings.
Collapse
|
49
|
Rahman M, Almalki WH, Alrobaian M, Iqbal J, Alghamdi S, Alharbi KS, Alruwaili NK, Hafeez A, Shaharyar A, Singh T, Waris M, Kumar V, Beg S. Nanocarriers-loaded with natural actives as newer therapeutic interventions for treatment of hepatocellular carcinoma. Expert Opin Drug Deliv 2021; 18:489-513. [PMID: 33225771 DOI: 10.1080/17425247.2021.1854223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cancer has always been a menace for the society. Hepatocellular carcinoma (HCC) is one of the most lethal and 3rdlargest causes of deaths around the world.Area covered: The emergence of natural actives is considered as the greatest boon for fighting cancer. The natural actives take precedence over the traditional chemotherapeutic drugs in terms of their multi-target, multi-level and coordinated effects in the treatment of HCC. Literature reports have indicated the tremendous potential of bioactive natural products in inhibiting the HCC via molecular drug targeting, augmented bioavailability, and the ability for both passive or active targeting and stimulus-responsive drug release characteristics. This review provides a newer treatment approaches involved in the mechanism of action of different natural actives used for the HCC treatment via different molecular pathways. Besides, the promising advantage of natural bioactive-loaded nanocarriers in HCC treatment has also been also presented in this review. Expert opinion: The remarkable outcomes have been observed with therapeutic efficacy of the nanocarriers of natural actives in the treatment of HCC.Furthermore, it requires a thorough assessment of the safety and efficacy evaluation of the nanocarriers for the delivery of targeted natural active ingredients in HCC.].
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-qura University, Saudi Arabia
| | - Majed Alrobaian
- Department of Pharmaceutics & and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Jawed Iqbal
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Khalid S Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Adil Shaharyar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Tanuja Singh
- Department of Botany, T.P.S College, Patna, Bihar, India
| | - Mohammad Waris
- Department of Botany, T.P.S College, Patna, Bihar, India
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Nanomedicine Research Lab, Jamia Hamdard, New Delhi, India
| |
Collapse
|
50
|
Liang W, Chen X, Zhang S, Fang J, Chen M, Xu Y, Chen X. Mesenchymal stem cells as a double-edged sword in tumor growth: focusing on MSC-derived cytokines. Cell Mol Biol Lett 2021; 26:3. [PMID: 33472580 PMCID: PMC7818947 DOI: 10.1186/s11658-020-00246-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/27/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) show homing capacity towards tumor sites. Numerous reports indicate that they are involved in multiple tumor-promoting processes through several mechanisms, including immunosuppression; stimulation of angiogenesis; transition to cancer-associated fibroblasts; inhibition of cancer cell apoptosis; induction of epithelial-mesenchymal transition (EMT); and increase metastasis and chemoresistance. However, other studies have shown that MSCs suppress tumor growth by suppressing angiogenesis, incrementing inflammatory infiltration, apoptosis and cell cycle arrest, and inhibiting the AKT and Wnt signaling pathways. In this review, we discuss the supportive and suppressive impacts of MSCs on tumor progression and metastasis. We also discuss MSC-based therapeutic strategies for cancer based on their potential for homing to tumor sites.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China.
| | - Xiaozhen Chen
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Jian Fang
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Meikai Chen
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Yifan Xu
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| |
Collapse
|