1
|
Mukai Y, Okubo TS, Lazarus M, Ono D, Tanaka KF, Yamanaka A. Prostaglandin E 2 Induces Long-Lasting Inhibition of Noradrenergic Neurons in the Locus Coeruleus and Moderates the Behavioral Response to Stressors. J Neurosci 2023; 43:7982-7999. [PMID: 37734949 PMCID: PMC10669809 DOI: 10.1523/jneurosci.0353-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Neuronal activity is modulated not only by inputs from other neurons but also by various factors, such as bioactive substances. Noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons) are involved in diverse physiological functions, including sleep/wakefulness and stress responses. Previous studies have identified various substances and receptors that modulate LC-NA neuronal activity through techniques including electrophysiology, calcium imaging, and single-cell RNA sequencing. However, many substances with unknown physiological significance have been overlooked. Here, we established an efficient screening method for identifying substances that modulate LC-NA neuronal activity through intracellular calcium ([Ca2+]i) imaging using brain slices. Using both sexes of mice, we screened 53 bioactive substances, and identified five novel substances: gastrin-releasing peptide, neuromedin U, and angiotensin II, which increase [Ca2+]i, and pancreatic polypeptide and prostaglandin D2, which decrease [Ca2+]i Among them, neuromedin U induced the greatest response in female mice. In terms of the duration of [Ca2+]i change, we focused on prostaglandin E2 (PGE2), since it induces a long-lasting decrease in [Ca2+]i via the EP3 receptor. Conditional knock-out of the receptor in LC-NA neurons resulted in increased depression-like behavior, prolonged wakefulness in the dark period, and increased [Ca2+]i after stress exposure. Our results demonstrate the effectiveness of our screening method for identifying substances that modulate a specific neuronal population in an unbiased manner and suggest that stress-induced prostaglandin E2 can suppress LC-NA neuronal activity to moderate the behavioral response to stressors. Our screening method will contribute to uncovering previously unknown physiological functions of uncharacterized bioactive substances in specific neuronal populations.SIGNIFICANCE STATEMENT Bioactive substances modulate the activity of specific neuronal populations. However, since only a limited number of substances with predicted effects have been investigated, many substances that may modulate neuronal activity have gone unrecognized. Here, we established an unbiased method for identifying modulatory substances by measuring the intracellular calcium signal, which reflects neuronal activity. We examined noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons), which are involved in diverse physiological functions. We identified five novel substances that modulate LC-NA neuronal activity. We also found that stress-induced prostaglandin E2 (PGE2) may suppress LC-NA neuronal activity and influence behavioral outcomes. Our screening method will help uncover previously overlooked functions of bioactive substances and provide insight into unrecognized roles of specific neuronal populations.
Collapse
Affiliation(s)
- Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tatsuo S Okubo
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Chinese Institute for Brain Research, Beijing 102206, China
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
2
|
Birdogan A, Salur E, Tuzcu F, Gokmen RC, Ozturk Bintepe M, Aypar B, Keser A, Balkan B, Koylu EO, Kanit L, Gozen O. Chronic oral nicotine administration and withdrawal regulate the expression of neuropeptide Y and its receptors in the mesocorticolimbic system. Neuropeptides 2021; 90:102184. [PMID: 34425507 DOI: 10.1016/j.npep.2021.102184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/06/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y (NPY) and its receptors are involved in the regulation of mood, stress, and anxiety. In parallel, NPY signaling may play a vital role in the negative affective state induced by drug withdrawal. This study examined the changes in the transcript levels of NPY, Y1, Y2, and Y5 receptors in the mesocorticolimbic system during chronic nicotine exposure and withdrawal. Rats were administered with nicotine (initial dose: 25 μg/ml, maintenance dose: 50 μg/ml, free base) in drinking water for 12 weeks. Control group received only tap water. In the final week of the study, some of the nicotine-treated animals continued to receive nicotine (0-W), whereas some were withdrawn for either 24 (24-W) or 48 (48-W) h. All animals were decapitated after the evaluation of somatic signs (frequency of gasps, eye blinks, ptosis, shakes, teeth chatter) and the duration of locomotor activity and immobility. mRNA levels of NPY, Y1, Y2, and Y5 receptors in the mesocorticolimbic system were measured by quantitative real-time PCR (qRT-PCR). Results showed that nicotine withdrawal increased overall somatic signs. Moreover, chronic nicotine treatment increased the duration of locomotor activity, whereas withdrawal increased the duration of immobility. qRT-PCR analysis revealed that chronic nicotine treatment increased NPY mRNA levels in the hippocampus. On the other hand, 24- and 48-h withdrawals increased NPY mRNA levels in the amygdala and medial prefrontal cortex (mPFC), Y1 and Y2 mRNA levels in the nucleus accumbens and mPFC, and Y5 mRNA levels in the mPFC. These findings suggest that nicotine withdrawal enhances NPY signaling in the mesocorticolimbic system, which could be an important mechanism involved in regulating the negative affective state triggered during nicotine withdrawal.
Collapse
Affiliation(s)
- Ali Birdogan
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey
| | - Elif Salur
- Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey
| | - Fulya Tuzcu
- Ege University, School of Medicine, Department of Physiology, Izmir, Turkey
| | - Ramazan C Gokmen
- Ege University, School of Medicine, Department of Physiology, Izmir, Turkey
| | | | - Buket Aypar
- Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey
| | - Aysegul Keser
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey; Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey; Ege University, Center for Brain Research, Izmir, Turkey
| | - Burcu Balkan
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey; Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey; Ege University, Center for Brain Research, Izmir, Turkey
| | - Ersin O Koylu
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey; Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey; Ege University, Center for Brain Research, Izmir, Turkey
| | - Lutfiye Kanit
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey; Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey; Ege University, Center for Brain Research, Izmir, Turkey
| | - Oguz Gozen
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey; Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey; Ege University, Center for Brain Research, Izmir, Turkey.
| |
Collapse
|
3
|
Zimmer MR, Schmitz AE, Dietrich MO. Activation of Agrp neurons modulates memory-related cognitive processes in mice. Pharmacol Res 2019; 141:303-309. [PMID: 30610962 PMCID: PMC6400640 DOI: 10.1016/j.phrs.2018.12.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 01/05/2023]
Abstract
Hypothalamic Agrp neurons are critical regulators of food intake in adult mice. In addition to food intake, these neurons have been involved in other cognitive processes, such as the manifestation of stereotyped behaviors. Here, we evaluated the extent to which Agrp neurons modulate mouse behavior in spatial memory-related tasks. We found that activation of Agrp neurons did not affect spatial learning but altered behavioral flexibility using a modified version of the Barnes Maze task. Furthermore, using the Y-maze test to probe working memory, we found that chemogenetic activation of Agrp neurons reduced spontaneous alternation behavior mediated by the neuropeptide Y receptor-5 signaling. These findings suggest novel functional properties of Agrp neurons in memory-related cognitive processes.
Collapse
Affiliation(s)
- Marcelo R Zimmer
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035, Brazil
| | - Ariana E Schmitz
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040, Brazil
| | - Marcelo O Dietrich
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA; Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035, Brazil.
| |
Collapse
|
4
|
Hwang YG, Lee HS. Neuropeptide Y (NPY) or cocaine- and amphetamine-regulated transcript (CART) fiber innervation on central and medial amygdaloid neurons that project to the locus coeruleus and dorsal raphe in the rat. Brain Res 2018; 1689:75-88. [DOI: 10.1016/j.brainres.2018.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/15/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
|
5
|
Sullivan EL, Rivera HM, True CA, Franco JG, Baquero K, Dean TA, Valleau JC, Takahashi DL, Frazee T, Hanna G, Kirigiti MA, Bauman LA, Grove KL, Kievit P. Maternal and postnatal high-fat diet consumption programs energy balance and hypothalamic melanocortin signaling in nonhuman primate offspring. Am J Physiol Regul Integr Comp Physiol 2017; 313:R169-R179. [PMID: 28404581 PMCID: PMC5582949 DOI: 10.1152/ajpregu.00309.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/21/2017] [Accepted: 03/17/2017] [Indexed: 01/02/2023]
Abstract
Maternal high-fat-diet (HFD) consumption during pregnancy decreased fetal body weight and impacted development of hypothalamic melanocortin neural circuitry in nonhuman primate offspring. We investigated whether these impairments during gestation persisted in juvenile offspring and examined the interaction between maternal and early postnatal HFD consumption. Adult dams consumed either a control diet (CTR; 15% calories from fat) or a high-saturated-fat diet (HFD; 37% calories from fat) during pregnancy. Offspring were weaned onto a CTR or HFD at ~8 mo of age. Offspring from HFD-fed dams displayed early catch-up growth and elevated body weight at 6 and 13 mo of age. Maternal and postnatal HFD exposure reduced the amount of agouti-related peptide fibers in the paraventricular nucleus of the hypothalamus. Postnatal HFD consumption also decreased the amount of agouti-related peptide fibers in the arcuate nucleus of the hypothalamus. Postnatal HFD was associated with decreased food intake and increased activity. These results support and extend our previous findings of maternal diet effects on fetal development and reveal, for the first time in a nonhuman primate model, that maternal HFD-induced disturbances in offspring body weight regulation extended past gestation into the juvenile period. Maternal HFD consumption increases the risk for offspring developing obesity, with the developmental timing of HFD exposure differentially impacting the melanocortin system and energy balance regulation. The present findings provide translational insight into human clinical populations, suggesting that profound health consequences may await individuals later in life following intrauterine and postnatal HFD exposure.
Collapse
Affiliation(s)
- Elinor L Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
- Department of Biology, University of Portland, Portland, Oregon; and
| | - Heidi M Rivera
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Cadence A True
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Juliana G Franco
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Karalee Baquero
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Tyler A Dean
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Jeanette C Valleau
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Diana L Takahashi
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Tim Frazee
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Genevieve Hanna
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Melissa A Kirigiti
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Leigh A Bauman
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Kevin L Grove
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Paul Kievit
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| |
Collapse
|
6
|
Domin H, Szewczyk B, Pochwat B, Woźniak M, Śmiałowska M. Antidepressant-like activity of the neuropeptide Y Y5 receptor antagonist Lu AA33810: behavioral, molecular, and immunohistochemical evidence. Psychopharmacology (Berl) 2017; 234:631-645. [PMID: 27975125 PMCID: PMC5263200 DOI: 10.1007/s00213-016-4495-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022]
Abstract
RATIONALE It has recently been found that chronic treatment with the highly selective, brain-penetrating Y5 receptor antagonist, Lu AA33810 [N-[[trans-4-[(4,5-dihydro [1] benzothiepino[5,4-d] thiazol-2-yl) amino] cyclohexyl]methyl]-methanesulfonamide], produces antidepressant-like effects in the rat chronic mild stress model. OBJECTIVE In the present study, we investigated the possible antidepressant-like activity of Lu AA33810 in rats subjected to glial ablation in the prefrontal cortex (PFC) by the gliotoxin L-AAA, which is an astroglial degeneration model of depression. RESULTS We observed that Lu AA33810 administered intraperitoneally at a single dose of 10 mg/kg both reversed depressive-like behavioral changes in the forced swim test (FST) and prevented degeneration of astrocytes in the mPFC. The mechanism of antidepressant and glioprotective effects of Lu AA33810 has not been studied, so far. We demonstrated the contribution of the noradrenergic rather than the serotonergic pathway to the antidepressant-like action of Lu AA33810 in the FST. Moreover, we found that antidepressant-like effect of Lu AA33810 was connected with the influence on brain-derived neurotrophic factor (BDNF) protein expression. We also demonstrated the antidepressant-like effect of Lu AA33810 in the FST in rats which did not receive the gliotoxin. We found that intracerebroventricular injection of the selective MAPK/ERK inhibitor U0126 (5 μg/2 μl) and the selective PI3K inhibitor LY294002 (10 nmol/2 μl) significantly inhibited the anti-immobility effect of Lu AA33810 in the FST in rats, suggesting that MAPK/ERK and PI3K signaling pathways could be involved in the antidepressant-like effect of Lu AA33810. CONCLUSION Our results indicate that Lu AA33810 exerts an antidepressant-like effect and suggest the Y5 receptors as a promising target for antidepressant therapy.
Collapse
Affiliation(s)
- Helena Domin
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland
| | - Bernadeta Szewczyk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland
| | - Bartłomiej Pochwat
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland
| | - Monika Woźniak
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland
| | - Maria Śmiałowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland.
| |
Collapse
|
7
|
Domin H, Przykaza Ł, Jantas D, Kozniewska E, Boguszewski PM, Śmiałowska M. Neuropeptide Y Y2 and Y5 receptors as promising targets for neuroprotection in primary neurons exposed to oxygen-glucose deprivation and in transient focal cerebral ischemia in rats. Neuroscience 2017; 344:305-325. [PMID: 28057538 DOI: 10.1016/j.neuroscience.2016.12.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/08/2023]
Abstract
It was postulated that neuropeptide Y (NPY)-ergic system could be involved in the ischemic pathophysiology, however, the role of particular subtypes of NPY receptors (YRs) in neuroprotection against ischemia is still not well known. Therefore, we investigated the effect of NPY and YR ligands using in vitro and in vivo experimental ischemic stroke models. Our in vitro findings showed that NPY (0.5-1μM) and specific agonists of Y2R (0.1-1μM) and Y5R (0.5-1μM) but not that of Y1R produced neuroprotective effects against oxygen-glucose deprivation (OGD)-induced neuronal cell death, being also effective when given 30min after the end of OGD. The neuroprotective effects of Y2R and Y5R agonists were reversed by appropriate antagonists. Neuroprotection mediated by NPY, Y2R and Y5R agonists was accompanied by the inhibition of both OGD-induced calpain activation and glutamate release. Data from in vivo studies demonstrated that Y2R agonist (10μg/6μl; i.c.v.) not only diminished the infarct volume in rats subjected to transient middle cerebral artery occlusion (MCAO) but also improved selected gait parameters in CatWalk behavioral test, being also effective after delayed treatment. Moreover, we found that a Y5R agonist (10μg/6μl; i.c.v.) did not reduce MCAO-evoked brain damage but improved stride length, when it was given 30min after starting the occlusion. In conclusion, our studies indicate that Y5 and especially Y2 receptors may be promising targets for neuroprotection against ischemic damage.
Collapse
Affiliation(s)
- Helena Domin
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna Street 12, Poland.
| | - Łukasz Przykaza
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Department of Neurosurgery, Laboratory of Experimental Neurosurgery, Pawińskiego Street 5, 02-106 Warsaw, Poland
| | - Danuta Jantas
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Kraków, Smętna Street 12, Poland
| | - Ewa Kozniewska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Department of Neurosurgery, Laboratory of Experimental Neurosurgery, Pawińskiego Street 5, 02-106 Warsaw, Poland; Medical University of Warsaw, Department of Experimental and Clinical Physiology, Pawińskiego Street 3C, 02-106 Warsaw, Poland
| | - Paweł M Boguszewski
- Laboratory of Animal Models, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Maria Śmiałowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna Street 12, Poland
| |
Collapse
|
8
|
Thompson JR, Valleau JC, Barling AN, Franco JG, DeCapo M, Bagley JL, Sullivan EL. Exposure to a High-Fat Diet during Early Development Programs Behavior and Impairs the Central Serotonergic System in Juvenile Non-Human Primates. Front Endocrinol (Lausanne) 2017; 8:164. [PMID: 28785241 PMCID: PMC5519527 DOI: 10.3389/fendo.2017.00164] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/27/2017] [Indexed: 12/29/2022] Open
Abstract
Perinatal exposure to maternal obesity and high-fat diet (HFD) consumption not only poses metabolic risks to offspring but also impacts brain development and mental health. Using a non-human primate model, we observed a persistent increase in anxiety in juvenile offspring exposed to a maternal HFD. Postweaning HFD consumption also increased anxiety and independently increased stereotypic behaviors. These behavioral changes were associated with modified cortisol stress response and impairments in the development of the central serotonin synthesis, with altered tryptophan hydroxylase-2 mRNA expression in the dorsal and median raphe. Postweaning HFD consumption decreased serotonergic immunoreactivity in area 10 of the prefrontal cortex. These results suggest that perinatal exposure to HFD consumption programs development of the brain and endocrine system, leading to behavioral impairments associated with mental health and neurodevelopmental disorders. Also, an early nutritional intervention (consumption of the control diet at weaning) was not sufficient to ameliorate many of the behavioral changes, such as increased anxiety, that were induced by maternal HFD consumption. Given the level of dietary fat consumption and maternal obesity in developed nations these findings have important implications for the mental health of future generations.
Collapse
Affiliation(s)
- Jacqueline R. Thompson
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Jeanette C. Valleau
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Ashley N. Barling
- Department of Biology, University of Portland, Portland, OR, United States
| | - Juliana G. Franco
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Madison DeCapo
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Jennifer L. Bagley
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Elinor L. Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Biology, University of Portland, Portland, OR, United States
- *Correspondence: Elinor L. Sullivan,
| |
Collapse
|
9
|
Bari A, Dec A, Lee AW, Lee J, Song D, Dale E, Peterson J, Zorn S, Huang X, Campbell B, Robbins TW, West AR. Enhanced inhibitory control by neuropeptide Y Y5 receptor blockade in rats. Psychopharmacology (Berl) 2015; 232:959-73. [PMID: 25194952 DOI: 10.1007/s00213-014-3730-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/24/2014] [Indexed: 12/25/2022]
Abstract
RATIONALE The neuropeptide Y (NPY) system acts in synergy with the classic neurotransmitters to regulate a large variety of functions including autonomic, affective, and cognitive processes. Research on the effects of NPY in the central nervous system has focused on food intake control and affective processes, but growing evidence of NPY involvement in attention-deficit/hyperactivity disorder (ADHD) and other psychiatric conditions motivated the present study. OBJECTIVES We tested the effects of the novel and highly selective NPY Y5 receptor antagonist Lu AE00654 on impulsivity and the underlying cortico-striatal circuitry in rats to further explore the possible involvement of the NPY system in pathologies characterized by inattention and impulsive behavior. RESULTS A low dose of Lu AE00654 (0.03 mg/kg) selectively facilitated response inhibition as measured by the stop-signal task, whereas no effects were found at higher doses (0.3 and 3 mg/kg). Systemic administration of Lu AE00654 also enhanced the inhibitory influence of the dorsal frontal cortex on neurons in the caudate-putamen, this fronto-striatal circuitry being implicated in the executive control of behavior. Finally, by locally injecting a Y5 agonist, we observed reciprocal activation between dorsal frontal cortex and caudate-putamen neurons. Importantly, the effects of the Y5 agonist were attenuated by pretreatment with Lu AE00654, confirming the presence of Y5 binding sites modulating functional interactions within frontal-subcortical circuits. CONCLUSIONS These results suggest that the NPY system modulates inhibitory neurotransmission in brain areas important for impulse control, and may be relevant for the treatment of pathologies such as ADHD and drug abuse.
Collapse
Affiliation(s)
- A Bari
- Behavioral and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Enman NM, Sabban EL, McGonigle P, Van Bockstaele EJ. Targeting the Neuropeptide Y System in Stress-related Psychiatric Disorders. Neurobiol Stress 2015; 1:33-43. [PMID: 25506604 PMCID: PMC4260418 DOI: 10.1016/j.ynstr.2014.09.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Repeated, extreme, or traumatic stressors can elicit pathological effects leading to many negative physical and psychological outcomes. Stressors can precipitate the onset of psychiatric diseases, or exacerbate pre-existing disorders including various anxiety and mood disorders. As stressors can negatively impact human psychiatric health, it is essential to identify neurochemicals that may confer protection from the negative sequelae of repeated or extreme stress exposure. Elucidating the neurobiological underpinnings of stress resilience will enhance our ability to promote resilience to, or recovery from, stress-related psychiatric disease. Herein, we will review the evidence for neuropeptide Y as an endogenous mediator of resilience and its potential relevance for the treatment of stress-related psychiatric diseases. Overview of neuropeptide Y and receptor subtypes in the central nervous system. Alterations of neuropeptide Y in human stress-related psychiatric disorders. Evidence for neuropeptide Y in resilience to stress-related emotionality in rodent behavioral models. Pharmacotherapeutic implications for neuropeptide Y in the treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Nicole M Enman
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, 19102, USA
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Paul McGonigle
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, 19102, USA
| | | |
Collapse
|
11
|
Pérez-Fernández J, Megías M, Pombal MA. Cloning, phylogeny, and regional expression of a Y5 receptor mRNA in the brain of the sea lamprey (Petromyzon marinus). J Comp Neurol 2014; 522:1132-54. [PMID: 24127055 DOI: 10.1002/cne.23481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
The NPY receptors known as Y receptors are classified into three subfamilies, Y1, Y2, and Y5, and are involved in different physiological functions. The Y5 receptor is the only member of the Y5 subfamily, and it is present in all vertebrate groups, except for teleosts. Both molecular and pharmacological studies show that Y5 receptor is highly conserved during vertebrate evolution. Furthermore, this receptor is widely expressed in the mammalian brain, including the hypothalamus, where it is thought to take part in feeding and homeostasis regulation. Lampreys belong to the agnathan lineage, and they are thought to have branched out between the two whole-genome duplications that occurred in vertebrates. Therefore, they are in a key position for studies on the evolution of gene families in vertebrates. Here we report the cloning, phylogeny, and brain expression pattern of the sea lamprey Y5 receptor. In phylogenetic studies, the lamprey Y5 receptor clusters in a basal position, together with Y5 receptors of other vertebrates. The mRNA of this receptor is broadly expressed in the lamprey brain, being especially abundant in hypothalamic areas. Its expression pattern is roughly similar to that reported for other vertebrates and parallels the expression pattern of the Y1 receptor subtype previously described by our group, as it occurs in mammals. Altogether, these results confirm that a Y5 receptor is present in lampreys, thus being highly conserved during the evolution of vertebrates, and suggest that it is involved in many brain functions, the only known exception being teleosts.
Collapse
Affiliation(s)
- Juan Pérez-Fernández
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, 36310-Vigo, Spain
| | | | | |
Collapse
|
12
|
Burstein SR, Williams TJ, Lane DA, Knudsen MG, Pickel VM, McEwen BS, Waters EM, Milner TA. The influences of reproductive status and acute stress on the levels of phosphorylated delta opioid receptor immunoreactivity in rat hippocampus. Brain Res 2013; 1518:71-81. [PMID: 23583481 DOI: 10.1016/j.brainres.2013.03.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/07/2013] [Accepted: 03/31/2013] [Indexed: 12/20/2022]
Abstract
In the hippocampus, ovarian hormones and sex can alter the trafficking of delta opioid receptors (DORs) and the proportion of DORs that colocalize with the stress hormone, corticotropin releasing factor. Here, we assessed the effects of acute immobilization stress (AIS) and sex on the phosphorylation of DORs in the rat hippocampus. We first localized an antibody to phosphorylated DOR (pDOR) at the SER363 carboxy-terminal residue, and demonstrated its response to an opioid agonist. By light microscopy, pDOR-immunoreactivity (ir) was located predominantly in CA2/CA3a pyramidal cell apical dendrites and in interneurons in CA1-3 stratum oriens and the dentate hilus. By electron microscopy, pDOR-ir primarily was located in somata and dendrites, associated with endomembranes, or in dendritic spines. pDOR-ir was less frequently found in mossy fibers terminals. Quantitative light microscopy revealed a significant increase in pDOR-ir in the CA2/CA3a region of male rats 1h following an injection of the opioid agonist morphine (20mg/kg, I.P). To look at the effects of stress on pDOR, we compared pDOR-ir in males and cycling females after AIS. The level of pDOR-ir in stratum radiatum of CA2/CA3a was increased in control estrus (elevated estrogen and progesterone) females compared to proestrus and diestrus females and males. However, immediately following 30min of AIS, no significant differences in pDOR levels were seen across estrous cycle phase or sex. These findings suggest that hippocampal levels of phosphorylated DORs vary with estrous cycle phase and that acute stress may dampen the differential effects of hormones on DOR activation in females.
Collapse
Affiliation(s)
- Suzanne R Burstein
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Neuropeptide Y Y5 receptor antagonism causes faster extinction and attenuates reinstatement in cocaine-induced place preference. Pharmacol Biochem Behav 2013; 105:151-6. [PMID: 23454535 DOI: 10.1016/j.pbb.2013.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 02/03/2023]
Abstract
Several studies have suggested a role for neuropeptide Y (NPY) in addiction to drugs of abuse, including cocaine. Recently, our group showed a role for the NPY Y5 receptor in the modulation of acute reinforcing effects of cocaine using self-administration and hyperlocomotion paradigms. In the present study, we further explored potential anti-addiction-related effects of Y5 antagonism in another murine model of cocaine addiction-related behavior: conditioned place-preference (CPP). Using this model, it was tested whether blockade or deficiency of the NPY Y5 receptor could influence the induction, extinction or reinstatement of a conditioned cocaine response. We found that the Y5 antagonist L-152,804 causes faster extinction and reduced reinstatement of cocaine-induced CPP but did not reduce the ability of cocaine to induce CPP. Similarly, Y5-KO mice displayed faster extinction, and reinstatement of cocaine-induced CPP was absent. The development of CPP for cocaine was similar between Y5-KO and WT mice. Taken together, the present data show that Y5 antagonism attenuates relapse to cocaine addiction-related behavior. Prevention of relapse is considered to be of pivotal importance for the development of an effective treatment against cocaine addiction and therefore Y5 receptors could be a potential future therapeutic target in cocaine addiction.
Collapse
|
14
|
Gonçalves J, Ribeiro CF, Malva JO, Silva AP. Protective role of neuropeptide Y Y2receptors in cell death and microglial response following methamphetamine injury. Eur J Neurosci 2012; 36:3173-83. [DOI: 10.1111/j.1460-9568.2012.08232.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Rietman ML, Sommeijer JP, Levelt CN, Heimel JA. Candidate genes in ocular dominance plasticity. Front Neurosci 2012; 6:11. [PMID: 22347157 PMCID: PMC3269753 DOI: 10.3389/fnins.2012.00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 01/16/2012] [Indexed: 11/16/2022] Open
Abstract
Many studies have been devoted to the identification of genes involved in experience-dependent plasticity in the visual cortex. To discover new candidate genes, we have reexamined data from one such study on ocular dominance (OD) plasticity in recombinant inbred BXD mouse strains. We have correlated the level of plasticity with the gene expression data in the neocortex that have become available for these same strains. We propose that genes with a high correlation are likely to play a role in OD plasticity. We have tested this hypothesis for genes whose inactivation is known to affect OD plasticity. The expression levels of these genes indeed correlated with OD plasticity if their levels showed strong differences between the BXD strains. To narrow down our candidate list of correlated genes, we have selected only those genes that were previously found to be regulated by visual experience and associated with pathways implicated in OD plasticity. This resulted in a list of 32 candidate genes. The list contained unproven, but not unexpected candidates such as the genes for IGF-1, NCAM1, NOGO-A, the gamma2 subunit of the GABA(A) receptor, acetylcholine esterase, and the catalytic subunit of cAMP-dependent protein kinase A. This demonstrates the viability of our approach. More interestingly, the following novel candidate genes were identified: Akap7, Akt1, Camk2d, Cckbr, Cd44, Crim1, Ctdsp2, Dnajc5, Gnai1, Itpka, Mapk8, Nbea, Nfatc3, Nlk, Npy5r, Phf21a, Phip, Ppm1l, Ppp1r1b, Rbbp4, Slc1a3, Slit2, Socs2, Spock3, St8sia1, Zfp207. Whether all these novel candidates indeed function in OD plasticity remains to be established, but possible roles of some of them are discussed in the article.
Collapse
Affiliation(s)
- M Liset Rietman
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
16
|
Dubois CJ, Ramamoorthy P, Whim MD, Liu SJ. Activation of NPY type 5 receptors induces a long-lasting increase in spontaneous GABA release from cerebellar inhibitory interneurons. J Neurophysiol 2011; 107:1655-65. [PMID: 22190627 DOI: 10.1152/jn.00755.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neuropeptide Y (NPY), a widely distributed neuropeptide in the central nervous system, can transiently suppress inhibitory synaptic transmission and alter membrane excitability via Y2 and Y1 receptors (Y2rs and Y1rs), respectively. Although many GABAergic neurons express Y5rs, the functional role of these receptors in inhibitory neurons is not known. Here, we investigated whether activation of Y5rs can modulate inhibitory transmission in cerebellar slices. Unexpectedly, application of NPY triggered a long-lasting increase in the frequency of miniature inhibitory postsynaptic currents in stellate cells. NPY also induced a sustained increase in spontaneous GABA release in cultured cerebellar neurons. When cerebellar cultures were examined for Y5r immunoreactivity, the staining colocalized with that of VGAT, a presynaptic marker for GABAergic cells, suggesting that Y5rs are located in the presynaptic terminals of inhibitory neurons. RT-PCR experiments confirmed the presence of Y5r mRNA in the cerebellum. The NPY-induced potentiation of GABA release was blocked by Y5r antagonists and mimicked by application of a selective peptide agonist for Y5r. Thus Y5r activation is necessary and sufficient to trigger an increase in GABA release. Finally, the potentiation of inhibitory transmission could not be reversed by a Y5r antagonist once it was initiated, consistent with the development of a long-term potentiation. These results indicate that activation of presynaptic Y5rs induces a sustained increase in spontaneous GABA release from inhibitory neurons in contrast to the transient suppression of inhibitory transmission that is characteristic of Y1r and Y2r activation. Our findings thus reveal a novel role of presynaptic Y5rs in inhibitory interneurons in regulating GABA release and suggest that these receptors could play a role in shaping neuronal network activity in the cerebellum.
Collapse
Affiliation(s)
- C J Dubois
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
17
|
Yulyaningsih E, Zhang L, Herzog H, Sainsbury A. NPY receptors as potential targets for anti-obesity drug development. Br J Pharmacol 2011; 163:1170-202. [PMID: 21545413 DOI: 10.1111/j.1476-5381.2011.01363.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The neuropeptide Y system has proven to be one of the most important regulators of feeding behaviour and energy homeostasis, thus presenting great potential as a therapeutic target for the treatment of disorders such as obesity and at the other extreme, anorexia. Due to the initial lack of pharmacological tools that are active in vivo, functions of the different Y receptors have been mainly studied in knockout and transgenic mouse models. However, over recent years various Y receptor selective peptidic and non-peptidic agonists and antagonists have been developed and tested. Their therapeutic potential in relation to treating obesity and other disorders of energy homeostasis is discussed in this review.
Collapse
Affiliation(s)
- Ernie Yulyaningsih
- Neuroscience Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
18
|
Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J Neurosci 2010; 30:3826-30. [PMID: 20220017 DOI: 10.1523/jneurosci.5560-09.2010] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Childhood obesity is associated with increased risk of behavioral/psychological disorders including depression, anxiety, poor learning, and attention deficient disorder. As the majority of women of child-bearing age are overweight or obese and consume a diet high in dietary fat, it is critical to examine the consequences of maternal overnutrition on the development of brain circuitry that regulates offspring behavior. Using a nonhuman primate model of diet-induced obesity, we found that maternal high-fat diet (HFD) consumption caused perturbations in the central serotonergic system of fetal offspring. In addition, female infants from HFD-fed mothers exhibited increased anxiety in response to threatening novel objects. These findings have important clinical implications as they demonstrate that exposure to maternal HFD consumption during gestation, independent of obesity, increases the risk of developing behavioral disorders such as anxiety.
Collapse
|
19
|
Grayson BE, Levasseur PR, Williams SM, Smith MS, Marks DL, Grove KL. Changes in melanocortin expression and inflammatory pathways in fetal offspring of nonhuman primates fed a high-fat diet. Endocrinology 2010; 151:1622-32. [PMID: 20176722 PMCID: PMC2850229 DOI: 10.1210/en.2009-1019] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The hypothalamic melanocortin system, which controls appetite and energy expenditure, develops during the third trimester in primates. Thus, maternal nutrition and health may have a profound influence on the development of this system. To study the effects of chronic maternal high-fat diet (HFD) on the development of the melanocortin system in the fetal nonhuman primate, we placed adult female macaques on either a control (CTR) diet or a HFD for up to 4 yr. A subgroup of adult female HFD animals was also switched to CTR diet during the fifth year of the study (diet reversal). Third-trimester fetuses from mothers on HFD showed increases in proopiomelanocortin mRNA expression, whereas agouti-related protein mRNA and peptide levels were decreased in comparison with CTR fetuses. Proinflammatory cytokines, including IL-1beta and IL-1 type 1 receptor, and markers of activated microglia were elevated in the hypothalamus, suggesting an activation of the local inflammatory response. Fetuses of diet-reversal mothers had normal melanocortin levels. These results raise the concern that chronic consumption of a HFD during pregnancy, independent of maternal obesity and diabetes, can lead to widespread activation of proinflammatory cytokines that may alter the development of the melanocortin system. The abnormalities in the fetal POMC system, if maintained into the postnatal period, could impact several systems, including body weight homeostasis, stress responses, and cardiovascular function. Indeed, the HFD offspring develop early-onset excess weight gain. These abnormalities may be prevented by healthful nutrient consumption during pregnancy even in obese and severely insulin-resistant individuals.
Collapse
Affiliation(s)
- B E Grayson
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | |
Collapse
|
20
|
Xu J, Kirigiti MA, Cowley MA, Grove KL, Smith MS. Suppression of basal spontaneous gonadotropin-releasing hormone neuronal activity during lactation: role of inhibitory effects of neuropeptide Y. Endocrinology 2009; 150:333-40. [PMID: 18719019 PMCID: PMC2630892 DOI: 10.1210/en.2008-0962] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Increased neuropeptide Y (NPY) activity drives the chronic hyperphagia of lactation and may contribute to the suppression of GnRH activity. The majority of GnRH neurons are contacted by NPY fibers, and GnRH cells express NPY Y5 receptor (Y5R). Therefore, NPY provides a neurocircuitry for information about food intake/energy balance to be directly transmitted to GnRH neurons. To investigate the effects of lactation on GnRH neuronal activity, hypothalamic slices were prepared from green fluorescent protein-GnRH transgenic rats. Extracellular loose-patch recordings determined basal GnRH neuronal activity from slices of ovariectomized control and lactating rats. Compared with controls, hypothalamic slices from lactating rats had double the number of quiescent GnRH neurons (14.51 +/- 2.86 vs. 7.04 +/- 2.84%) and significantly lower firing rates of active GnRH neurons (0.25 +/- 0.02 vs. 0.37 +/- 0.03 Hz). To study the NPY-postsynaptic Y5R system, whole-cell current-clamp recordings were performed in hypothalamic slices from control rats to examine NPY/Y5R antagonist effects on GnRH neuronal resting membrane potential. Under tetrodotoxin treatment, NPY hyperpolarized GnRH neurons from -56.7 +/- 1.94 to -62.1 +/- 1.83 mV; NPY's effects were blocked by Y5R antagonist. To determine whether increased endogenous NPY tone contributes to GnRH neuronal suppression during lactation, hypothalamic slices were treated with Y5R antagonist. A significantly greater percentage of GnRH cells were activated in slices from lactating rats (52%) compared with controls (28%). These results suggest that: 1) basal GnRH neuronal activity is suppressed during lactation; 2) NPY can hyperpolarize GnRH neurons via postsynaptic Y5R; and 3) increased inhibitory NPY tone during lactation is a component of the mechanisms responsible for suppression of GnRH neuronal activity.
Collapse
Affiliation(s)
- Jing Xu
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | | | | | |
Collapse
|
21
|
Walker MW, Wolinsky TD, Jubian V, Chandrasena G, Zhong H, Huang X, Miller S, Hegde LG, Marsteller DA, Marzabadi MR, Papp M, Overstreet DH, Gerald CPG, Craig DA. The Novel Neuropeptide Y Y5 Receptor Antagonist Lu AA33810 [N-[[trans-4-[(4,5-Dihydro[1]benzothiepino[5,4-d]thiazol-2-yl)amino]cyclohexyl]methyl]-methanesulfonamide] Exerts Anxiolytic- and Antidepressant-Like Effects in Rat Models of Stress Sensitivity. J Pharmacol Exp Ther 2008; 328:900-11. [DOI: 10.1124/jpet.108.144634] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Morris MJ, Gannan E, Stroud LM, Beck-Sickinger AG, O'Brien TJ. Neuropeptide Y suppresses absence seizures in a genetic rat model primarily through effects on Y2 receptors. Eur J Neurosci 2007; 25:1136-43. [PMID: 17331209 DOI: 10.1111/j.1460-9568.2007.05348.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuropeptide Y (NPY) potently suppresses absence seizures in a model of genetic generalized epilepsy, genetic absence epilepsy rats of Strasbourg (GAERS). Here we investigated the Y-receptor subtype(s) on which NPY exerts this anti-absence effect. A dual in vivo approach was used: the cumulative duration of seizures was quantified in adult male GAERS in 90-min electroencephalogram recordings following intracerebroventricular (i.c.v.) injection of: (i) subtype-selective agonists of Y1 ([Leu31Pro34]NPY, 2.5 nmol), Y2 (Ac[Leu(28,31)]NPY24-36, 3 nmol), Y5 receptors [hPP1(-17),Ala31,Aib32]NPY, 4 nmol), NPY (3 nmol) or vehicle; and following (ii) i.c.v. injection of antagonists of Y1 (BIBP3226, 20 nmol), Y2 (BIIE0246, 20 nmol) and Y5 (NPY5RA972, 20 nmol) receptors or vehicle, followed by NPY (3 nmol). Injection of the Y1- and Y5-selective agonists resulted in significantly less mean seizure suppression (37.4% and 53.9%, respectively) than NPY (83.2%; P < 0.05), while the Y2 agonist had similar effects to NPY (62.3% suppression, P = 0.57). Food intake was not increased following injection of the Y2 agonist, while significant increases in food intake were seen following NPY and the other Y-subtype agonists. Compared with vehicle, NPY injection suppressed seizures following the Y1 and Y5 antagonists (45.3% and 80.1%, respectively, P < 0.05), but not following the Y2 antagonist (5.1% suppression, P = 0.46). We conclude that NPY Y2 receptors are more important than Y1 and Y5 receptors in mediating the effect of NPY to suppress absence seizures in a genetic rat model. Y2 receptor agonists may represent targets for novel drugs against genetic generalized epilepsies without resulting in appetite stimulation.
Collapse
Affiliation(s)
- Margaret J Morris
- Department of Physiology and Pharmacology, University of New South Wales, Kensington, New South Wales, Australia, 2052.
| | | | | | | | | |
Collapse
|
23
|
Grayson BE, Allen SE, Billes SK, Williams SM, Smith MS, Grove KL. Prenatal development of hypothalamic neuropeptide systems in the nonhuman primate. Neuroscience 2006; 143:975-86. [PMID: 17029798 DOI: 10.1016/j.neuroscience.2006.08.055] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 08/16/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
In the rodent, arcuate nucleus of the hypothalamus (ARH)-derived neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons have efferent projections throughout the hypothalamus that do not fully mature until the second and third postnatal weeks. Since this process is likely completed by birth in primates we characterized the ontogeny of NPY and melanocortin systems in the fetal Japanese macaque during the late second (G100), early third (G130) and late third trimesters (G170). NPY mRNA was expressed in the ARH, paraventricular nucleus (PVH), and dorsomedial nucleus of the hypothalamus (DMH) as early as G100. ARH-derived NPY projections to the PVH were initiated at G100 but were limited and variable; however, there was a modest increase in density and number by G130. ARH-NPY/agouti-related peptide (AgRP) fiber projections to efferent target sites were completely developed by G170, but the density continued to increase in the postnatal period. In contrast to NPY/AgRP projections, alphaMSH fibers were minimal at G100 and G130 but were moderate at G170. This study also revealed several significant species differences between rodent and the nonhuman primate (NHP). There were few NPY/catecholamine projections to the PVH and ARH prior to birth, while projections were increased in the adult. A substantial proportion of the catecholamine fibers did not coexpress NPY. In addition, cocaine and amphetamine-related transcript (CART) and alpha-melanocyte stimulating hormone (alphaMSH) were not colocalized in fibers or cell bodies. As a consequence of the prenatal development of these neuropeptide systems in the NHP, the maternal environment may critically influence these circuits. Additionally, because differences exist in the neuroanatomy of NPY and melanocortin circuitry the regulation of these systems may be different in primates than in rodents.
Collapse
Affiliation(s)
- B E Grayson
- Division of Neuroscience, Oregon Health and Science University, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | | | | | | | | | |
Collapse
|
24
|
Ryabinin AE, Weitemier AZ. The urocortin 1 neurocircuit: Ethanol-sensitivity and potential involvement in alcohol consumption. ACTA ACUST UNITED AC 2006; 52:368-80. [PMID: 16766036 DOI: 10.1016/j.brainresrev.2006.04.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 04/26/2006] [Accepted: 04/29/2006] [Indexed: 11/27/2022]
Abstract
One of the hallmarks of alcoholism is continued excessive consumption of alcohol-containing beverages despite the negative consequences of such behavior. The neurocircuitry regulating alcohol consumption is not well understood. Recent studies have shown that the neuropeptide urocortin 1 (Ucn1), a member of the corticotropin-releasing factor (CRF) family of peptides, could be an important player in the regulation of alcohol consumption. This evidence is accumulated along three directions of research: (1) Ucn 1-containing neurons are extremely sensitive to alcohol; (2) the Ucn1 neurocircuit may contribute to the genetic predisposition to high alcohol intake in mice and rats; (3) manipulation of the Ucn1 system alters alcohol consumption and sensitivity. This paper reviews the current knowledge of the Ucn1 neurocircuit and the evidence for its involvement in alcohol-related behaviors, and proposes a mechanism for its involvement in the regulation of alcohol consumption.
Collapse
Affiliation(s)
- Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health and Science University, L470, 3181 SW Sam Jackson Park Road, Portland, 97239, USA.
| | | |
Collapse
|
25
|
Gaszner B, Korosi A, Palkovits M, Roubos EW, Kozicz T. Neuropeptide Y activates urocortin 1 neurons in the nonpreganglionic Edinger-Westphal nucleus. J Comp Neurol 2006; 500:708-19. [PMID: 17154253 DOI: 10.1002/cne.21177] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Central regulatory pathways promoting stress adaptation utilize various neurotransmitters/neuropeptides, such as urocortin 1 (Ucn1) and neuropeptide Y (NPY). Ucn1 is abundantly expressed in the nonpreganglionic Edinger-Westphal nucleus (npEW), where it is codistributed with NPY-immunoreactive (ir) terminals. A special role for both neuropeptides has been postulated in stress adaptation. Using double-labeling immunohistochemistry, we observed close appositions between NPY-ir terminals and neurons immunoreactive for Ucn1 in the rat, as well as in the human npEW. Therefore, we hypothesized that NPY might control the activity of Ucn1-positive neurons in the npEW. To test this hypothesis, NPY was injected into the lateral cerebral ventricle of rats, resulting in a strong activation of npEW Ucn1 neurons as revealed by Fos immunohistochemistry. Ucn1 mRNA was also upregulated in the npEW 2 hours after the injection of NPY. In a search for the type of NPY receptor that mediates this NPY-induced recruitment of npEW-Ucn1 cells, we found that the great majority of Ucn1 cells exhibited NPY Y5 receptor immunoreactivity, and only a few of the Ucn1 cells coexpressed the Y1 receptor. We concluded that NPY, via NPY Y5 and to a lesser extent via the Y1 receptors, exerts a stimulatory action on Ucn1 cells in the npEW. Further studies are currently in progress to elucidate the significance of this NPY-Ucn1 interaction in the npEW.
Collapse
Affiliation(s)
- Balázs Gaszner
- Department of Anatomy, Medical Faculty, Pécs University and Neurohumoral Regulations Research Group of Hungarian Academy of Sciences, H-7643 Pécs, Szigeti út 12, Hungary
| | | | | | | | | |
Collapse
|
26
|
Dumont Y, Quirion R. An overview of neuropeptide Y: pharmacology to molecular biology and receptor localization. EXS 2006:7-33. [PMID: 16382995 DOI: 10.1007/3-7643-7417-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Yvan Dumont
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, 6875 Boul. LaSalle, Montreal, QC H4H 1R3, Canada.
| | | |
Collapse
|
27
|
Benmaamar R, Richichi C, Gobbi M, Daniels AJ, Beck-Sickinger AG, Vezzani A. Neuropeptide Y Y5 receptors inhibit kindling acquisition in rats. ACTA ACUST UNITED AC 2005; 125:79-83. [PMID: 15582717 DOI: 10.1016/j.regpep.2004.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 07/15/2004] [Accepted: 07/26/2004] [Indexed: 11/27/2022]
Abstract
Neuropeptide Y inhibits neuronal excitability and seizures in various experimental models. This peptide delays kindling epileptogenesis but the receptors involved in this action are unknown. We have studied the role of Y5 receptors in kindling using the selective antagonist GW438014A (IC50=210 nM), a small heterocycle molecule that crosses the blood-brain barrier, and the selective peptide agonist Ala31Aib34 NPY (IC50=6.0 nM). Intraperitoneal injection of GW438014A (10 mg/kg), 30 min before the beginning of a rapid-kindling protocol, significantly accelerated the rate of kindling acquisition as compared to vehicle-injected rats. Thus, the number of electrical stimuli required to reach stages 3 and 4-5 of kindling were reduced by 50% and 25%, respectively. The average afterdischarge duration in the stimulated hippocampus was prolonged by 2-fold. Conversely, kindling rate was delayed by intracerebroventricular administration of 24 nmol Ala31Aib32 NPY. Thus, the number of stimuli necessary to reach stages 2 and 3 of kindling was increased by 3- and 4-fold, respectively. During the stimulation protocol (40 stimuli) none of the rats treated with the Y5 agonist showed stages 4-5 seizures. Twenty-four hours after the last kindling stimulation, thus during the re-test session, Y5 agonist- or antagonist-treated rats had stages 4-5 seizures as their controls. In rats treated with both the antagonist and the agonist, kindling rate was similar to vehicle-injected rats. These data indicate that Y5 receptors mediate inhibitory effects of NPY in kindling and display anticonvulsant rather then antiepileptogenic effects upon agonist stimulation.
Collapse
Affiliation(s)
- R Benmaamar
- Laboratoire de Neuropharmacologie des Epilepsies, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
28
|
D'Angelo I, Brecha NC. Y2 receptor expression and inhibition of voltage-dependent Ca2+ influx into rod bipolar cell terminals. Neuroscience 2004; 125:1039-49. [PMID: 15120863 DOI: 10.1016/j.neuroscience.2003.10.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2003] [Indexed: 11/21/2022]
Abstract
Neuropeptide Y (NPY) is a potent inhibitory neuropeptide expressed by amacrine cells in the rat retina. NPY modulates the release of multiple neurotransmitters in mammalian retina, yet the mechanisms mediating this regulation are not well defined. To further understand the action of NPY in the retina, Y receptor coupling to voltage-dependent Ca(2+) channels was investigated using Ca(2+) imaging with fura-2 AM to measure [Ca(2+)](i) increases in rod bipolar cell terminals. Y receptor expression was studied in rat retinal tissue with reverse transcription-polymerase chain reaction (RT-PCR). NPY inhibited the depolarization-evoked Ca(2+) influx into rod bipolar cell axon terminals and caused a dose-dependent reduction and an average maximal inhibition of 72% at 1 microM, which was reversed upon washout. K(+)-evoked Ca(2+) increases were also inhibited by the selective Y2 receptor agonists, C2-NPY and NPY(13-36), at concentrations of 1 microM, but not by the selective Y1 receptor agonist, [Leu(31)Pro(34)]NPY, selective Y4 receptor agonist, rPP, or the selective Y5 receptor agonist, [d-Trp32]-NPY. Y receptor expression was determined using RT-PCR for all known Y receptor subtypes. Y2 receptor mRNA, as well as Y1, Y4, and Y5 receptor mRNAs, are present in the rat retina. Like the rod bipolar cell, other studies in central neurons have shown that the Y2 receptor is expressed predominantly as a presynaptic receptor and that it modulates transmitter release. Together, these findings suggest that NPY activates presynaptic Y2 receptors to inhibit voltage-dependent Ca(2+) influx into rod bipolar cell terminals, and establishes one mechanism by which NPY may reduce l-glutamate release from the rod bipolar cell synapse.
Collapse
Affiliation(s)
- I D'Angelo
- Department of Neurobiology, Box 951763, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
29
|
Dumont Y, Thakur M, Beck-Sickinger A, Fournier A, Quirion R. Characterization of a new neuropeptide Y Y5 agonist radioligand: [125I][cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP. Neuropeptides 2004; 38:163-74. [PMID: 15337369 DOI: 10.1016/j.npep.2004.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 04/24/2004] [Indexed: 11/21/2022]
Abstract
In order to optimally characterize a class of neuropeptide Y (NPY) receptors expressed in a tissue enriched with multiple subtypes (Y1, Y2, Y4 and Y5) and to establish its detailed distribution, it is critical to use highly selective and specific probes that possess very low non-specific binding. In that context, we recently reported on the development of [125I][hPP(1-17), Ala31, Aib32]NPY as Y5 receptor radioligand. However, the non-specific binding obtained with this radioligand was too high to allow for detailed receptor autoradiography studies [Br. J. Pharmacol. 139 (2003) 1360]. Iodinated [cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP may represent a better Y5 radioligand in that regard. Accordingly, [125I][cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP binding was investigated in rat brain membrane homogenates and its specificity and selectivity established in rat Y1, Y2, Y4 and Y5 transfected HEK293 cells. No specific binding was detected in HEK293 cells transfected with the rat Y1, Y2 or Y4 receptors, while saturable binding was observed in cells transfected with the rat Y5 receptor cDNA and in rat brain membrane homogenates (KD of 0.5-0.7 nM). Competition binding experiments performed in rat brain membrane homogenates demonstrated that specific [125I][cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP binding was competed with nanomolar affinities by Y5 agonists and antagonists such as [Leu31,Pro34]PYY, PYY(3-36), [cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP, [Ala31, Aib32]NPY, [hPP(1-17), Ala31, Aib32]NPY, CGP71683A and JCF109, but not by Y1 (BIBP3226 and BIBO3304), Y2 (BIIE0246) and Y4 (GR231118) ligands. Non-specific binding was also lower than that reported for [125I][hPP(1-17), Ala31, Aib32]NPY. Interestingly, detailed analysis of competition binding curves obtained with [Leu31, Pro34]PYY, hPP, PYY(3-36) and [cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP against specific [125I][cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP sites were best fitted to a two-site model. Additionally, receptor autoradiography studies revealed the presence of specific [125I][cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP binding sites in the lateral septum and area postrema while other brain regions contained much lower levels of specific binding. Taken together, these data suggest that [125I][cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP represents a useful tool to study the unique feature of the Y5 receptor subtype.
Collapse
Affiliation(s)
- Yvan Dumont
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, 6875 Boul. LaSalle, Montréal Verdun, Que., Canada H4H 1R3
| | | | | | | | | |
Collapse
|
30
|
Dumont Y, Chabot JG, Quirion R. Receptor autoradiography as mean to explore the possible functional relevance of neuropeptides: focus on new agonists and antagonists to study natriuretic peptides, neuropeptide Y and calcitonin gene-related peptides. Peptides 2004; 25:365-91. [PMID: 15134861 DOI: 10.1016/j.peptides.2004.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Over the past 20 years, receptor autoradiography has proven most useful to provide clues as to the role of various families of peptides expressed in the brain. Early on, we used this method to investigate the possible roles of various brain peptides. Natriuretic peptide (NP), neuropeptide Y (NPY) and calcitonin (CT) peptide families are widely distributed in the peripheral and central nervous system and induced multiple biological effects by activating plasma membrane receptor proteins. The NP family includes atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP). The NPY family is composed of at least three peptides NPY, peptide YY (PYY) and the pancreatic polypeptides (PPs). The CT family includes CT, calcitonin gene-related peptide (CGRP), amylin (AMY), adrenomedullin (AM) and two newly isolated peptides, intermedin and calcitonin receptor-stimulating peptide (CRSP). Using quantitative receptor autoradiography as well as selective agonists and antagonists for each peptide family, in vivo and in vitro assays revealed complex pharmacological responses and radioligand binding profile. The existence of heterogeneous populations of NP, NPY and CT/CGRP receptors has been confirmed by cloning. Three NP receptors have been cloned. One is a single-transmembrane clearance receptor (NPR-C) while the other two known as CG-A (or NPR-A) and CG-B (or NPR-B) are coupled to guanylate cyclase. Five NPY receptors have been cloned designated as Y(1), Y(2), Y(4), Y(5) and y(6). All NPY receptors belong to the seven-transmembrane G-protein coupled receptors family (GPCRs; subfamily type I). CGRP, AMY and AM receptors are complexes which include a GPCR (the CT receptor or CTR and calcitonin receptor-like receptor or CRLR) and a single-transmembrane domain protein known as receptor-activity-modifying-proteins (RAMPs) as well as an intracellular protein named receptor-component-protein (RCP). We review here tools that are currently available in order to target each NP, NPY and CT/CGRP receptor subtype and establish their respective pathophysiological relevance.
Collapse
Affiliation(s)
- Yvan Dumont
- Douglas Hospital Research Centre, Department of Psychiatry, Mcgill University, 6875 Boul LaSalle, Montreal, Que., Canada H4H 1R3
| | | | | |
Collapse
|
31
|
Shaw JL, Gackenheimer SL, Gehlert DR. Functional autoradiography of neuropeptide Y Y1 and Y2 receptor subtypes in rat brain using agonist stimulated [35S]GTPgammaS binding. J Chem Neuroanat 2004; 26:179-93. [PMID: 14615027 DOI: 10.1016/j.jchemneu.2003.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neuropeptide Y, one of the most abundant brain peptides, has been found to modulate several important biological functions via a family of G-protein coupled receptors. To investigate the localization of functional NPY receptor subtypes in the rat brain, we performed agonist-induced [35S]GTPgammaS autoradiography. The Y1/Y4/Y5 agonist Leu(31), Pro(34)-NPY increased [35S]GTPgammaS binding in several brain areas with a regional distribution consistent with that produced when labeling adjacent sections with [125I]-Leu(31), Pro(34)-PYY. The Y1 selective antagonist BIBP3226 antagonized the Leu(31), Pro(34)-NPY stimulated increase in [35S]GTPgammaS binding in all areas examined. The Y2 agonist C2-NPY stimulated [35S]GTPgamma binding in numerous brain areas with a regional distribution similar to the binding observed with [125I]-PYY 3-36. No increase in [35S]GTPgammaS binding above basal was observed in any brain area evaluated using Y4 and Y5 selective agonists. This study demonstrates abundant Y1 and Y2 receptor activation in the rat brain, while evidence for functional Y4 and Y5 receptors was not observed.
Collapse
Affiliation(s)
- Janice L Shaw
- Neuroscience Research, Lilly Research Laboratories, Eli Lilly and Company, Mail Code 0510, Indianapolis, IN 46285, USA
| | | | | |
Collapse
|
32
|
Wolak ML, DeJoseph MR, Cator AD, Mokashi AS, Brownfield MS, Urban JH. Comparative distribution of neuropeptide Y Y1 and Y5 receptors in the rat brain by using immunohistochemistry. J Comp Neurol 2003; 464:285-311. [PMID: 12900925 DOI: 10.1002/cne.10823] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuropeptide Y (NPY) Y1 and Y5 receptor subtypes mediate many of NPY's diverse actions in the central nervous system. The present studies use polyclonal antibodies directed against the Y1 and Y5 receptors to map and compare the relative distribution of these NPY receptor subtypes within the rat brain. Antibody specificity was assessed by using Western analysis, preadsorption of the antibody with peptide, and preimmune serum controls. Immunostaining for the Y1 and Y5 receptor subtypes was present throughout the rostral-caudal aspect of the brain with many regions expressing both subtypes: cerebral cortex, hippocampus, hypothalamus, thalamus, amygdala, and brainstem. Further studies using double-label immunocytochemistry indicate that Y1R immunoreactivity (-ir) and Y5R-ir are colocalized in the cerebral cortex and caudate putamen. Y1 receptor ir was evident in the central amygdala, whereas both Y1- and Y5-immunoreactive cells and fibers were present in the basolateral amygdala. Corresponding with the physiology of NPY in the hypothalamus, both Y1R- and Y5R-ir was present within the paraventricular (PVN), supraoptic, arcuate nuclei, and lateral hypothalamus. In the PVN, Y5R-ir and Y1R-ir were detected in cells and fibers of the parvo- and magnocellular divisions. Intense immunostaining for these receptors was observed within the locus coeruleus, A1-5 and C1-3 nuclei, subnuclei of the trigeminal nerve and nucleus tractus solitarius. These data provide a detailed and comparative mapping of Y1 and Y5 receptor subtypes within cell bodies and nerve fibers in the brain which, together with physiological and electrophysiological studies, provide a better understanding of NPY neural circuitries.
Collapse
Affiliation(s)
- Michael L Wolak
- Department of Physiology and Biophysics, Finch University of Health Sciences/Chicago Medical School, North Chicago, Illinois 60064, USA
| | | | | | | | | | | |
Collapse
|
33
|
Silva AP, Pinheiro PS, Carvalho AP, Carvalho CM, Jakobsen B, Zimmer J, Malva JO. Activation of neuropeptide Y receptors is neuroprotective against excitotoxicity in organotypic hippocampal slice cultures. FASEB J 2003; 17:1118-20. [PMID: 12692082 DOI: 10.1096/fj.02-0885fje] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glutamate and NPY have been implicated in hippocampal neuropathology in temporal lobe epilepsy. Thus, we investigated the involvement of NPY receptors in mediating neuroprotection against excitotoxic insults in organotypic cultures of rat hippocampal slices. Exposure of hippocampal slice cultures to 2 microM AMPA (alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate) induced neuronal degeneration, monitored by propidium iodide uptake, of granule cells and CA1 pyramidal cells. For dentate granule cells, selective activation of Y1, Y2, or Y5 receptors with 1 microM [Leu31,Pro34]NPY, 300 nM NPY13-36 or 1 microM 500 nM NPY(19-23)-(Gly1,Ser3,Gln4,Thr6,Ala31,Aib32,Gln34)-PP, respectively, had a neuroprotective effect against AMPA, whereas only the activation of Y2 receptors was effective for CA1 pyramidal cells. When the slice cultures were exposed to 6 microM kainate, the CA3 pyramidal cells displayed significant degeneration, and in this case the activation of Y1, Y2, and Y5 receptors was neuroprotective. For the kainic acid-induced degeneration of CA1 pyramidal cells, it was again found that only the Y2 receptor activation was effective. Based on the present findings, it was concluded that Y1, Y2, and Y5 receptors effectively can modify glutamate receptor-mediated neurodegeneration in the hippocampus.
Collapse
Affiliation(s)
- Ana P Silva
- Center for Neuroscience of Coimbra, Department of Zoology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|
35
|
Grove KL, Allen S, Grayson BE, Smith MS. Postnatal development of the hypothalamic neuropeptide Y system. Neuroscience 2003; 116:393-406. [PMID: 12559095 DOI: 10.1016/s0306-4522(02)00668-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the adult rat, arcuate-neuropeptide Y/agouti-related protein neurons have efferent projections throughout the hypothalamus and provide a potent orexigenic stimulus. At birth neuropeptide Y fibers are also present throughout the hypothalamus; however, the source of these fibers has been unknown. The present studies determined the postnatal ontogeny of arcuate-neuropeptide Y fibers into the paraventricular nucleus and dorsomedial hypothalamic nucleus, as well as the ontogeny of neuropeptide Y1 receptor expression within these areas. Agouti-related protein messenger RNA and protein expression was present exclusively in cell bodies in the arcuate throughout postnatal development, starting at P2, and was colocalized in the vast majority of arcuate-neuropeptide Y neurons. This exclusive colocalization of agouti-related protein with arcuate-neuropeptide Y neurons makes it an excellent marker for these neurons and their projections. Even though single-label neuropeptide Y fibers were abundant in the dorsomedial hypothalamic nucleus and paraventricular nucleus as early as P2, arcuate-neuropeptide Y/agouti-related protein fibers did not significantly innervate these areas until P5-6 and P10-11, respectively. In contrast, a portion of the neuropeptide Y fibers within the paraventricular nucleus as early as P2 originated from the brainstem, as indicated by their colocalization with dopamine beta hydroxylase. It remains to be determined if local sources of neuropeptide Y-expressing cells within the dorsomedial hypothalamic nucleus and paraventricular nucleus also contribute to the neuropeptide Y-immunoreactive fibers within these regions prior to the development of arcuate-neuropeptide Y/agouti-related protein projections. In addition to the dramatic change in arcuate-neuropeptide Y/agouti-related protein projections, there is also a striking change in Y1 protein expression in the hypothalamus during the first two postnatal weeks. Taken together these data suggest that the early postnatal period, during which there is a dynamic change in the hypothalamic neuropeptide Y system, may constitute a critical period in the development of this important feeding circuit.
Collapse
Affiliation(s)
- K L Grove
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
36
|
Berglund MM, Hipskind PA, Gehlert DR. Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp Biol Med (Maywood) 2003; 228:217-44. [PMID: 12626767 DOI: 10.1177/153537020322800301] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The three peptides pancreatic polypeptide (PP), peptide YY (PYY), and neuropeptide Y (NPY) share a similar structure known as the PP-fold. There are four known human G-protein coupled receptors for the PP-fold peptides, namely Y1, Y2, Y4, and Y5, each of them being able to bind at least two of the three endogenous ligands. All three peptides are found in the circulation acting as hormones. Although NPY is only released from neurons, PYY and PP are primarily found in endocrine cells in the gut, where they exert such effects as inhibition of gall bladder secretion, gut motility, and pancreatic secretion. However, when PYY is administered in an experimental setting to animals, cloned receptors, or tissue preparations, it can mimic the effects of NPY in essentially all studies, making it difficult to study the effects of PP-fold peptides and to delineate what receptor and peptide accounts for a particular effect. Initial studies with transgenic animals confirmed the well-established action of NPY on metabolism, food-intake, vascular systems, memory, mood, neuronal excitability, and reproduction. More recently, using transgenic techniques and novel antagonists for the Y1, Y2, and Y5 receptors, NPY has been found to be a key player in the regulation of ethanol consumption and neuronal development.
Collapse
Affiliation(s)
- Magnus M Berglund
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
| | | | | |
Collapse
|
37
|
Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD, Bloom SR. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 2002; 418:650-4. [PMID: 12167864 DOI: 10.1038/nature00887] [Citation(s) in RCA: 1549] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Food intake is regulated by the hypothalamus, including the melanocortin and neuropeptide Y (NPY) systems in the arcuate nucleus. The NPY Y2 receptor (Y2R), a putative inhibitory presynaptic receptor, is highly expressed on NPY neurons in the arcuate nucleus, which is accessible to peripheral hormones. Peptide YY(3-36) (PYY(3-36)), a Y2R agonist, is released from the gastrointestinal tract postprandially in proportion to the calorie content of a meal. Here we show that peripheral injection of PYY(3-36) in rats inhibits food intake and reduces weight gain. PYY(3-36) also inhibits food intake in mice but not in Y2r-null mice, which suggests that the anorectic effect requires the Y2R. Peripheral administration of PYY(3-36) increases c-Fos immunoreactivity in the arcuate nucleus and decreases hypothalamic Npy messenger RNA. Intra-arcuate injection of PYY(3-36) inhibits food intake. PYY(3-36) also inhibits electrical activity of NPY nerve terminals, thus activating adjacent pro-opiomelanocortin (POMC) neurons. In humans, infusion of normal postprandial concentrations of PYY(3-36) significantly decreases appetite and reduces food intake by 33% over 24 h. Thus, postprandial elevation of PYY(3-36) may act through the arcuate nucleus Y2R to inhibit feeding in a gut-hypothalamic pathway.
Collapse
Affiliation(s)
- Rachel L Batterham
- Imperial College Faculty of Medicine at Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bachtell RK, Tsivkovskaia NO, Ryabinin AE. Alcohol-induced c-Fos expression in the Edinger-Westphal nucleus: pharmacological and signal transduction mechanisms. J Pharmacol Exp Ther 2002; 302:516-24. [PMID: 12130710 DOI: 10.1124/jpet.102.036046] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mapping inducible transcription factors has shown that the Edinger-Westphal nucleus is preferentially sensitive to alcohol intoxication. Herein, we characterize the pharmacological and signal transduction mechanisms related to alcohol-induced c-Fos expression in Edinger-Westphal neurons. Using immunohistochemistry, we show that pretreatment with gamma-aminobutyric acid (GABA)-ergic antagonists (4 mg/kg bicuculline and 45 mg/kg pentylenetetrazole) attenuates induction of c-Fos expression by alcohol (2.4 g/kg, intraperitoneal). In addition, 10 mg/kg 2-(2,3-dihydro-2-methoxy-1,4-benzodioxin-2-yl)4,5-dihydro-1H-imidazole (RX 821002), an alpha(2A/D)-adrenoceptor antagonist, and 20 mg/kg haloperidol, a dopamine antagonist, also block alcohol-induced c-Fos expression in Edinger-Westphal neurons. No effects were seen in alcohol-induced c-Fos after the pretreatment of 20 mg/kg propranolol (beta-adrenoceptor antagonist), 10 mg/kg 2-(2-(4-(2-methoxyphenyl)piperazin-1-yl) ethy)-4,4-dimethyl-1,3-(2H,4H)-isoquinolindione dihydrochloride (ARC 239) (alpha(2B/C)-adrenoceptor antagonist), or 30 mg/kg naltrexone (opioid antagonist). Although positive modulators for the GABA(A) receptor (20 mg/kg 3alpha-hydroxy-5alpha-pregnan-20-one and 10-30 mg/kg chlordiazepoxide) and opioid receptor (10 mg/kg morphine) produced significant elevations, agonists for alpha(2)-adrenoceptors (clonidine) and dopamine receptors (apomorphine) had no effect on Edinger-Westphal c-Fos expression. These findings suggest that alcohol-induced c-Fos expression in Edinger-Westphal results from direct interactions with GABA(A) receptors, which are modified by alpha(2A/D)-adrenoceptors and dopamine receptors. Also using immunohistochemistry to identify potential intracellular mechanisms associated with alcohol-induced c-Fos expression in Edinger-Westphal, we show time-dependent increases in serine 727 phospho-signal transducer and activator of transcription 3 (Stat3) but no changes in phospho-cAMP response element-binding protein and phospho-Elk1. Time-dependent increases in phospho-extracellular signal-regulated kinase (ERK) 1/2 were found to occur simultaneously with increases in serine 727 phospho-Stat3. Finally, blockade of ERK 1/2 phosphorylation with the mitogen-activated protein kinase (MEK) 1/2 inhibitor SL327 blocked alcohol-induced c-Fos expression, suggesting that alcohol induces c-Fos in Edinger-Westphal neurons through activation of the MEK1/2-ERK1/2-Stat3 pathway.
Collapse
Affiliation(s)
- Ryan K Bachtell
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA
| | | | | |
Collapse
|
39
|
Kask A, Harro J, von Hörsten S, Redrobe JP, Dumont Y, Quirion R. The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci Biobehav Rev 2002; 26:259-83. [PMID: 12034130 DOI: 10.1016/s0149-7634(01)00066-5] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review aims to give a brief overview of NPY receptor distribution and physiology in the brain and summarizes series of studies, test by test and region by region, aimed at identification receptor subtypes and neuronal circuitry mediating anxiolytic-like effects of NPY. We conclude that from four known NPY receptor subtypes in the rat (Y(1), Y(2), Y(4), Y(5)), only the NPY Y(1) receptor can be linked to anxiety-regulation with certainty in the forebrain, and that NPY Y(2) receptor may have a role in the pons. Microinjection studies with NPY and NPY receptor antagonists support the hypothesis that the amygdala, the dorsal periaqueductal gray matter, dorsocaudal lateral septum and locus coeruleus form a neuroanatomical substrate that mediates anxiolytic-like effects of NPY. The release of NPY in these areas is likely phasic, as NPY receptor antagonists are silent on their own. However, constant NPY-ergic tone seems to exist in the dorsal periaqueductal gray, the only brain region where NPY Y(1) receptor antagonists had anxiogenic-like effects. We conclude that endogenous NPY has an important role in reducing anxiety and serves as a physiological stabilizer of neural activity in circuits involved in the regulation of arousal and anxiety.
Collapse
Affiliation(s)
- Ants Kask
- Department of Pharmacology, University of Tartu, 50090, Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|
40
|
Lazarov NE. Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. Prog Neurobiol 2002; 66:19-59. [PMID: 11897404 DOI: 10.1016/s0301-0082(01)00021-1] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A characteristic peculiarity of the trigeminal sensory system is the presence of two distinct populations of primary afferent neurons. Most of their cell bodies are located in the trigeminal ganglion (TG) but part of them lie in the mesencephalic trigeminal nucleus (MTN). This review compares the neurochemical content of central versus peripheral trigeminal primary afferent neurons. In the TG, two subpopulations of primary sensory neurons, containing immunoreactive (IR) material, are identified: a number of glutamate (Glu)-, substance P (SP)-, neurokinin A (NKA)-, calcitonin gene-related peptide (CGRP)-, cholecystokinin (CCK)-, somatostatin (SOM)-, vasoactive intestinal polypeptide (VIP)- and galanin (GAL)-IR ganglion cells with small and medium-sized somata, and relatively less numerous larger-sized neuropeptide Y (NPY)- and peptide 19 (PEP 19)-IR trigeminal neurons. In addition, many nitric oxide synthase (NOS)- and parvalbumin (PV)-IR cells of all sizes as well as fewer, mostly large, calbindin D-28k (CB)-containing neurons are seen. The majority of the large ganglion cells are surrounded by SP-, CGRP-, SOM-, CCK-, VIP-, NOS- and serotonin (SER)-IR perisomatic networks. In the MTN, the main subpopulation of large-sized neurons display Glu-immunoreactivity. Additionally, numerous large MTN neurons exhibit PV- and CB-immunostaining. On the other hand, certain small MTN neurons, most likely interneurons, are found to be GABAergic. Furthermore, NOS-containing neurons can be detected in the caudal and the mesencephalic-pontine junction portions of the nucleus. Conversely, no immunoreactivity to any of the examined neuropeptides is observed in the cell bodies of MTN neurons but these are encircled by peptidergic, catecholaminergic, serotonergic and nitrergic perineuronal arborizations in a basket-like manner. Such a discrepancy in the neurochemical features suggests that the differently fated embryonic migration, synaptogenesis, and peripheral and central target field innervation can possibly affect the individual neurochemical phenotypes of trigeminal primary afferent neurons.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy, Faculty of Medicine, Thracian University, 11 Armejska Street, BG-6003 Stara Zagora, Bulgaria.
| |
Collapse
|
41
|
Guo H, Castro PA, Palmiter RD, Baraban SC. Y5 receptors mediate neuropeptide Y actions at excitatory synapses in area CA3 of the mouse hippocampus. J Neurophysiol 2002; 87:558-66. [PMID: 11784771 DOI: 10.1152/jn.00532.2001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuropeptide Y (NPY) is a potent modulator of excitatory synaptic transmission and limbic seizures. NPY is abundantly expressed in the dentate gyrus and is thought to modulate hippocampal excitability via activation of presynaptic Y2 receptors (Y2R). Here we demonstrate that NPY, and commonly used Y2R-preferring (NPY(13-36)) and Y5 receptor (Y5R)-preferring ([D-Trp(32)]NPY and hPP) peptide agonists, evoke similar levels of inhibition at excitatory CA3 synapses in hippocampal slices from wild-type control mice (WT). In contrast, NPYergic inhibition of excitatory CA3 synaptic transmission is absent in mice lacking the Y5R subtype (Y5R KO). In both analyses of evoked population spike activity and spontaneous excitatory postsynaptic synaptic currents (EPSCs), NPY agonists induced powerful inhibitory effects in all hippocampal slices from WT mice, whereas these peptides had no effect in slices from Y5R KO mice. In slices from WT mice, NPY (and NPY receptor-preferring agonists) reduced the frequency of spontaneous EPSCs but had no effect on sEPSC amplitude, rise time, or decay time. Furthermore, NPYergic modulation of spontaneous EPSCs in WT mice was mimicked by bath application of a novel Y5R-selective peptide agonist ([cpp]hPP) but not the selective Y2R agonist ([ahx(5-24)]NPY). In situ hybridization was used to confirm the presence of NPY, Y2, and Y5 mRNA in the hippocampus of WT mice and the absence of Y5R in knockout mice. These results suggest that the Y5 receptor subtype, previously believed to mediate food intake, plays a critical role in modulation of hippocampal excitatory transmission at the hilar-to-CA3 synapse in the mouse.
Collapse
Affiliation(s)
- Hui Guo
- Department of Neurological Surgery, University of California, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|