1
|
Wang M, Hu S, Fu X, Zhou H, Yang S, Yang C. Neurosteroids: A potential target for neuropsychiatric disorders. J Steroid Biochem Mol Biol 2024; 239:106485. [PMID: 38369032 DOI: 10.1016/j.jsbmb.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Neurosteroids are steroids produced by endocrine glands and subsequently entering the brain, and also include steroids synthesis in the brain. It has been widely known that neurosteroids influence many neurological functions, including neuronal signaling, synaptic adaptations, and neuroprotective effects. In addition, abnormality in the synthesis and function of neurosteroids has been closely linked to neuropsychiatric disorders, such as Alzheimer's disease (AD), schizophrenia (SZ), and epilepsy. Given their important role in brain pathophysiology and disorders, neurosteroids offer potential therapeutic targets for a variety of neuropsychiatric diseases, and that therapeutic strategies targeting neurosteroids probably exert beneficial effects. We therefore summarized the role of neurosteroids in brain physiology and neuropsychiatric disorders, and introduced the recent findings of synthetic neurosteroid analogues for potential treatment of neuropsychiatric disorders, thereby providing insights for further research in the future.
Collapse
Affiliation(s)
- Mengyu Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinghuo Fu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huixuan Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
2
|
Guan R, Yang C, Zhang J, Wang J, Chen R, Su P. Dehydroepiandrosterone alleviates hypoxia-induced learning and memory dysfunction by maintaining synaptic homeostasis. CNS Neurosci Ther 2022; 28:1339-1350. [PMID: 35703574 PMCID: PMC9344085 DOI: 10.1111/cns.13869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
AIMS Hypoxia causes plenty of pathologies in the central nervous system (CNS) including impairment of cognitive and memory function. Dehydroepiandrosterone (DHEA) has been proved to have therapeutic effects on CNS injuries by maintaining the homeostasis of synapses, yet its effect on hypoxia-induced CNS damage remains unknown. METHODS In vivo and in vitro models were established. Concentrations of glutamate and γ GABA were tested by ELISA. Levels of synapse-associated proteins were measured by western blotting. Density of dendritic protrusions of hippocampal neurons was assessed by Golgi staining. Immunofluorescence was adopted to observe the morphology of primary neurons. The novel object recognition test (NORT) and shuttle box test were used to evaluate cognition. RESULTS Dehydroepiandrosterone reversed abnormal elevation of glutamate levels, shortenings of neuronal processes, decreases in the density of dendritic protrusions, downregulation of synaptosome-associated protein (SNAP25), and impaired cognition caused by hypoxia. Hypoxia also resulted in notably downregulation of syntaxin 1A (Stx-1A). Overexpression of Stx-1A dramatically attenuated hypoxia-induced elevation of glutamate. Treatment with DHEA reversed the Stx-1A downregulation caused by hypoxic exposure. CONCLUSION Dehydroepiandrosterone may exert a protective effect on hypoxia-induced memory impairment by maintaining synaptic homeostasis. These findings offer a novel understanding of the therapeutic effect of DHEA on hypoxia-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Ruili Guan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Changhao Yang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jianbin Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jianyu Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Souza-Teodoro LH, Andrade LHS, Carvalho LA. Could be dehydroepiandrosterone (DHEA) a novel target for depression? JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
4
|
Xu J, Zhou Y, Yan C, Wang X, Lou J, Luo Y, Gao S, Wang J, Wu L, Gao X, Shao A. Neurosteroids: A novel promise for the treatment of stroke and post-stroke complications. J Neurochem 2021; 160:113-127. [PMID: 34482541 DOI: 10.1111/jnc.15503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023]
Abstract
Stroke is the primary reason for death and disability worldwide, with few treatment strategies to date. Neurosteroids, which are natural molecules in the brain, have aroused great interest in the field of stroke. Neurosteroids are a kind of steroid that acts on the nervous system, and are synthesized in the mitochondria of neurons or glial cells using cholesterol or other steroidal precursors. Neurosteroids mainly include estrogen, progesterone (PROG), allopregnanolone, dehydroepiandrosterone (DHEA), and vitamin D (VD). Most of the preclinical studies have confirmed that neurosteroids can decrease the risk of stroke, and improve stroke outcomes. In the meantime, neurosteroids have been shown to have a positive therapeutic significance in some post-stroke complications, such as epilepsy, depression, anxiety, cardiac complications, movement disorders, and post-stroke pain. In this review, we report the historical background, modulatory mechanisms of neurosteroids in stroke and post-stroke complications, and emphasize on the application prospect of neurosteroids in stroke therapy.
Collapse
Affiliation(s)
- Jiawei Xu
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Caochong Yan
- The Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianyao Lou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Luo
- The Second Affiliated Hospital of Zhejiang University School of Medicine (Changxing Branch), Changxing, Huzhou, Zhejiang, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangfu Gao
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Vahidinia Z, Karimian M, Joghataei MT. Neurosteroids and their receptors in ischemic stroke: From molecular mechanisms to therapeutic opportunities. Pharmacol Res 2020; 160:105163. [DOI: 10.1016/j.phrs.2020.105163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
|
6
|
Bianchi VE, Rizzi L, Bresciani E, Omeljaniuk RJ, Torsello A. Androgen Therapy in Neurodegenerative Diseases. J Endocr Soc 2020; 4:bvaa120. [PMID: 33094209 PMCID: PMC7568521 DOI: 10.1210/jendso/bvaa120] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer disease (AD), Parkinson disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington disease, are characterized by the loss of neurons as well as neuronal function in multiple regions of the central and peripheral nervous systems. Several studies in animal models have shown that androgens have neuroprotective effects in the brain and stimulate axonal regeneration. The presence of neuronal androgen receptors in the peripheral and central nervous system suggests that androgen therapy might be useful in the treatment of neurodegenerative diseases. To illustrate, androgen therapy reduced inflammation, amyloid-β deposition, and cognitive impairment in patients with AD. As well, improvements in remyelination in MS have been reported; by comparison, only variable results are observed in androgen treatment of PD. In ALS, androgen administration stimulated motoneuron recovery from progressive damage and regenerated both axons and dendrites. Only a few clinical studies are available in human individuals despite the safety and low cost of androgen therapy. Clinical evaluations of the effects of androgen therapy on these devastating diseases using large populations of patients are strongly needed.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Department of Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, Falciano, San Marino
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
7
|
GABAergic system's Injuries Induced by Sodium Sulfite in Caenorhabditis elegans Were Prevented by the Anti-Oxidative Properties of Dehydroepiandrosterone Sulfate. Neurotox Res 2020; 38:447-460. [PMID: 32410195 DOI: 10.1007/s12640-020-00207-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/10/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022]
Abstract
Several pathophysiological processes involve Hypoxia conditions, where the nervous system is affected as well. We postulate that the GABAergic system is especially sensitive. Furthermore, drugs improving the resistance to hypoxia have been investigated, such as the neurosteroid dehydroepiandrosterone sulfate (DHEAS) which has shown beneficial effects in hypoxic processes in mammals; however, at the cellular level, its exact mechanism of action has yet to be fully elucidated. Here, we used a chemical hypoxia model through sodium sulfite (SS) exposure in Caenorhabditis elegans (C. elegans), a nematode whose response to hypoxia involves pathways and cellular processes conserved in mammals, and that allows study the direct effect of DHEAS without its conversion to sex hormones. This work aimed to determine the effect of DHEAS on damage to the GABAergic system associated with SS exposure in C. elegans. Worms were subjected to nose touch response (Not Assay) and observed in epifluorescence microscopy. DHEAS decreased the shrinkage response of Not Assay and the level of damage in GABAergic neurons on SS-exposed worms. Also, the enhanced nuclear localization of DAF-16 and consequently the overexpression of chaperone HSP-16.2 by hypoxia were significantly reduced in SS + DHEAS exposed worms. As well, DHEAS increased the survival rate of worms exposed to hydrogen peroxide. These results suggest that hypoxia-caused damage over the GABAergic system was prevented at least partially by DHEAS, probably through non-genomic mechanisms that involve its antioxidant properties related to its chemical structure.
Collapse
|
8
|
Strac DS, Konjevod M, Perkovic MN, Tudor L, Erjavec GN, Pivac N. Dehydroepiandrosterone (DHEA) and its Sulphate (DHEAS) in Alzheimer's Disease. Curr Alzheimer Res 2020; 17:141-157. [PMID: 32183671 DOI: 10.2174/1567205017666200317092310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Neurosteroids Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone Sulphate (DHEAS) are involved in many important brain functions, including neuronal plasticity and survival, cognition and behavior, demonstrating preventive and therapeutic potential in different neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease. OBJECTIVE The aim of the article was to provide a comprehensive overview of the literature on the involvement of DHEA and DHEAS in Alzheimer's disease. METHODS PubMed and MEDLINE databases were searched for relevant literature. The articles were selected considering their titles and abstracts. In the selected full texts, lists of references were searched manually for additional articles. RESULTS We performed a systematic review of the studies investigating the role of DHEA and DHEAS in various in vitro and animal models, as well as in patients with Alzheimer's disease, and provided a comprehensive discussion on their potential preventive and therapeutic applications. CONCLUSION Despite mixed results, the findings of various preclinical studies are generally supportive of the involvement of DHEA and DHEAS in the pathophysiology of Alzheimer's disease, showing some promise for potential benefits of these neurosteroids in the prevention and treatment. However, so far small clinical trials brought little evidence to support their therapy in AD. Therefore, large-scale human studies are needed to elucidate the specific effects of DHEA and DHEAS and their mechanisms of action, prior to their applications in clinical practice.
Collapse
Affiliation(s)
- Dubravka S Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Matea N Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Gordana N Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
9
|
Duncan KA. Estrogen Formation and Inactivation Following TBI: What we Know and Where we Could go. Front Endocrinol (Lausanne) 2020; 11:345. [PMID: 32547495 PMCID: PMC7272601 DOI: 10.3389/fendo.2020.00345] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/04/2020] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injury (TBI) is responsible for various neuronal and cognitive deficits as well as psychosocial dysfunction. Characterized by damage inducing neuroinflammation, this response can cause an acute secondary injury that leads to widespread neurodegeneration and loss of neurological function. Estrogens decrease injury induced neuroinflammation and increase cell survival and neuroprotection and thus are a potential target for use following TBI. While much is known about the role of estrogens as a neuroprotective agent following TBI, less is known regarding their formation and inactivation following damage to the brain. Specifically, very little is known surrounding the majority of enzymes responsible for the production of estrogens. These estrogen metabolizing enzymes (EME) include aromatase, steroid sulfatase (STS), estrogen sulfotransferase (EST/SULT1E1), and some forms of 17β-hydroxysteroid dehydrogenase (HSD17B) and are involved in both the initial conversion and interconversion of estrogens from precursors. This article will review and offer new prospective and ideas on the expression of EMEs following TBI.
Collapse
|
10
|
Cheng WW, Budelier MM, Sugasawa Y, Bergdoll L, Queralt-Martín M, Rosencrans W, Rostovtseva TK, Chen ZW, Abramson J, Krishnan K, Covey DF, Whitelegge JP, Evers AS. Multiple neurosteroid and cholesterol binding sites in voltage-dependent anion channel-1 determined by photo-affinity labeling. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1269-1279. [PMID: 31176038 PMCID: PMC6681461 DOI: 10.1016/j.bbalip.2019.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/23/2019] [Accepted: 06/02/2019] [Indexed: 12/31/2022]
Abstract
Voltage-dependent anion channel-1 (VDAC1) is a mitochondrial porin that is implicated in cellular metabolism and apoptosis, and modulated by numerous small molecules including lipids. VDAC1 binds sterols, including cholesterol and neurosteroids such as allopregnanolone. Biochemical and computational studies suggest that VDAC1 binds multiple cholesterol molecules, but photolabeling studies have identified only a single cholesterol and neurosteroid binding site at E73. To identify all the binding sites of neurosteroids in VDAC1, we apply photo-affinity labeling using two sterol-based photolabeling reagents with complementary photochemistry: 5α-6-AziP which contains an aliphatic diazirine, and KK200 which contains a trifluoromethyl-phenyldiazirine (TPD) group. 5α-6-AziP and KK200 photolabel multiple residues within an E73 pocket confirming the presence of this site and mapping sterol orientation within this pocket. In addition, KK200 photolabels four other sites consistent with the finding that VDAC1 co-purifies with five cholesterol molecules. Both allopregnanolone and cholesterol competitively prevent photolabeling at E73 and three other sites indicating that these are common sterol binding sites shared by both neurosteroids and cholesterol. Binding at the functionally important residue E73 suggests a possible role for sterols in regulating VDAC1 signaling and interaction with partner proteins.
Collapse
Affiliation(s)
- Wayland W.L. Cheng
- Department of Anesthesiology, Washington University in St. Louis, MO 63110, USA
| | - Melissa M. Budelier
- Department of Anesthesiology, Washington University in St. Louis, MO 63110, USA,Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, MO 63110, USA
| | - Yusuke Sugasawa
- Department of Anesthesiology, Washington University in St. Louis, MO 63110, USA
| | - Lucie Bergdoll
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - María Queralt-Martín
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - William Rosencrans
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tatiana K. Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zi-Wei Chen
- Department of Anesthesiology, Washington University in St. Louis, MO 63110, USA,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, MO 63110, USA
| | - Jeff Abramson
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University in St. Louis, MO 63110, USA
| | - Douglas F. Covey
- Department of Anesthesiology, Washington University in St. Louis, MO 63110, USA,Department of Developmental Biology, Washington University in St. Louis, MO 63110, USA,Department of Psychiatry, Washington University in St. Louis, MO 63110, USA,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, MO 63110, USA
| | - Julian P. Whitelegge
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Alex S. Evers
- Department of Anesthesiology, Washington University in St. Louis, MO 63110, USA,Department of Developmental Biology, Washington University in St. Louis, MO 63110, USA,Department of Psychiatry, Washington University in St. Louis, MO 63110, USA,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, MO 63110, USA,Corresponding author at: Department of Anesthesiology, Washington University School of Medicine, Campus Box 8054, St. Louis, MO 63110, USA. (A.S. Evers)
| |
Collapse
|
11
|
Powrie YSL, Smith C. Central intracrine DHEA synthesis in ageing-related neuroinflammation and neurodegeneration: therapeutic potential? J Neuroinflammation 2018; 15:289. [PMID: 30326923 PMCID: PMC6192186 DOI: 10.1186/s12974-018-1324-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023] Open
Abstract
It is a well-known fact that DHEA declines on ageing and that it is linked to ageing-related neurodegeneration, which is characterised by gradual cognitive decline. Although DHEA is also associated with inflammation in the periphery, the link between DHEA and neuroinflammation in this context is less clear. This review drew from different bodies of literature to provide a more comprehensive picture of peripheral vs central endocrine shifts with advanced age—specifically in terms of DHEA. From this, we have formulated the hypothesis that DHEA decline is also linked to neuroinflammation and that increased localised availability of DHEA may have both therapeutic and preventative benefit to limit neurodegeneration. We provide a comprehensive discussion of literature on the potential for extragonadal DHEA synthesis by neuroglial cells and reflect on the feasibility of therapeutic manipulation of localised, central DHEA synthesis.
Collapse
Affiliation(s)
- Y S L Powrie
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - C Smith
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
12
|
Protective effects of effective ingredients of Danshen (Radix Salviae Miltiorrhizae) and Honghua (Flos Carthami) compatibility after rat hippocampal neurons induced by hypoxia injury. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30907-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Quinn T, Greaves R, Badoer E, Walker D. DHEA in Prenatal and Postnatal Life: Implications for Brain and Behavior. VITAMINS AND HORMONES 2018; 108:145-174. [PMID: 30029725 DOI: 10.1016/bs.vh.2018.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its sulfated congener (DHEAS) are the principal C19 steroid produced by the adrenal gland in many mammals, including humans. It is secreted in high concentrations during fetal life, but synthesis decreases after birth until, in humans and some other primates, there is a prepubertal surge of DHEA production by the adrenal gland-a phenomenon known as adrenarche. There remains considerable uncertainty about the physiological role of DHEA and DHEAS. Moreover, the origin of the trophic drives that determine the waxing and waning of DHEA synthesis are poorly understood. These gaps in knowledge arise in some measure from the difficulty of understanding mechanistic determinants from observations made opportunistically in humans and primates, and have stimulated a search for other suitable species that exhibit adrenarche- and adrenopause-like changes of adrenal function. DHEA and DHEAS are clearly neuroactive steroids with actions at several neurotransmitter receptors; indeed, DHEA is now known to be also synthesized by many parts of the brain, and this capacity undergoes ontogenic changes, but whether this is dependent or independent of the changes in adrenal synthesis is unknown. In this chapter we review key contributions to this field over the last 50+ years, and speculate on the importance of DHEA for the brain, both during development and for maturation and aging of cerebral function and behavior.
Collapse
Affiliation(s)
- Tracey Quinn
- The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC, Australia
| | - Ronda Greaves
- School of Health & Biomedical Sciences, RMIT University-Bundoora Campus, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Parkville, Melbourne, VIC, Australia
| | - Emilio Badoer
- School of Health & Biomedical Sciences, RMIT University-Bundoora Campus, Melbourne, VIC, Australia
| | - David Walker
- School of Health & Biomedical Sciences, RMIT University-Bundoora Campus, Melbourne, VIC, Australia.
| |
Collapse
|
14
|
Arbo BD, Ribeiro FS, Ribeiro MF. Astrocyte Neuroprotection and Dehydroepiandrosterone. VITAMINS AND HORMONES 2018; 108:175-203. [PMID: 30029726 DOI: 10.1016/bs.vh.2018.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) are the most abundant steroid hormones in the systemic circulation of humans. Due to their abundance and reduced production during aging, these hormones have been suggested to play a role in many aspects of health and have been used as drugs for a multiple range of therapeutic actions, including hormonal replacement and the improvement of aging-related diseases. In addition, several studies have shown that DHEA and DHEAS are neuroprotective under different experimental conditions, including models of ischemia, traumatic brain injury, spinal cord injury, glutamate excitotoxicity, and neurodegenerative diseases. Since astrocytes are responsible for the maintenance of neural tissue homeostasis and the control of neuronal energy supply, changes in astrocytic function have been associated with neuronal damage and the progression of different pathologies. Therefore, the aim of this chapter is to discuss the neuroprotective effects of DHEA against different types of brain and spinal cord injuries and how the modulation of astrocytic function by DHEA could represent an interesting therapeutic approach for the treatment of these conditions.
Collapse
Affiliation(s)
- Bruno D Arbo
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Felipe S Ribeiro
- Laboratório de Interação Neuro-Humoral, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria F Ribeiro
- Laboratório de Interação Neuro-Humoral, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
15
|
Yue XH, Tong JQ, Wang ZJ, Zhang J, Liu X, Liu XJ, Cai HY, Qi JS. Steroid sulfatase inhibitor DU-14 protects spatial memory and synaptic plasticity from disruption by amyloid β protein in male rats. Horm Behav 2016; 83:83-92. [PMID: 27222435 DOI: 10.1016/j.yhbeh.2016.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 02/01/2023]
Abstract
Alzheimer's disease (AD) is an age-related mental disorder characterized by progressive loss of memory and multiple cognitive impairments. The overproduction and aggregation of Amyloid β protein (Aβ) in the brain, especially in the hippocampus, are closely involved in the memory loss in the patients with AD. Accumulating evidence indicates that the Aβ-induced imbalance of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) in the brain plays an important role in the AD pathogenesis and progression. The level of DHEA is elevated, while DHEAS is dramatically decreased in the AD brain. The present study tried to restore the balance between DHEA and DHEAS by using a non-steroidal sulfatase inhibitor DU-14, which increases endogenous DHEAS through preventing DHEAS converted back into DHEA. We found that: (1) DU-14 effectively attenuated the Aβ1-42-induced cognitive deficits in spatial learning and memory of rats in Morris water maze test; (2) DU-14 prevented Aβ1-42-induced decrease in the cholinergic theta rhythm of hippocampal local field potential (LFP) in the CA1 region; (3) DU-14 protected hippocampal synaptic plasticity against Aβ1-42-induced suppression of long term potentiation (LTP). These results provide evidence for the neuroprotective action of DU-14 against neurotoxic Aβ, suggesting that up-regulation of endogenous DHEAS by DU-14 could be beneficial to the alleviation of Aβ-induced impairments in spatial memory and synaptic plasticity.
Collapse
Affiliation(s)
- Xing-Hua Yue
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, PR China; Department of Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300100, PR China
| | - Jia-Qing Tong
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, PR China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, PR China
| | - Jun Zhang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xu Liu
- Department of Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300100, PR China
| | - Xiao-Jie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hong-Yan Cai
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, PR China
| | - Jin-Shun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
16
|
Vieira-Marques C, Arbo BD, Ruiz-Palmero I, Ortiz-Rodriguez A, Ghorbanpoor S, Kucharski LC, Arevalo MA, Garcia-Segura LM, Ribeiro MFM. Dehydroepiandrosterone protects male and female hippocampal neurons and neuroblastoma cells from glucose deprivation. Brain Res 2016; 1644:176-82. [PMID: 27174000 DOI: 10.1016/j.brainres.2016.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/28/2016] [Accepted: 05/08/2016] [Indexed: 01/01/2023]
Abstract
Dehydroepiandrosterone (DHEA) modulates neurogenesis, neuronal function, neuronal survival and metabolism, enhancing mitochondrial oxidative capacity. Glucose deprivation and hypometabolism have been implicated in the mechanisms that mediate neuronal damage in neurological disorders, and some studies have shown that these mechanisms are sexually dimorphic. It was also demonstrated that DHEA is able to attenuate the hypometabolism that is related to some neurodegenerative diseases, eliciting neuroprotective effects in different experimental models of neurodegeneration. The aim of this study was to evaluate the effect of DHEA on the viability of male and female hippocampal neurons and SH-SY5Y neuroblastoma cells exposed to glucose deprivation. It was observed that after 12h of pre-treatment, DHEA was able to protect SH-SY5Y cells from glucose deprivation for 6h (DHEA 10(-12), 10(-8) and 10(-6)M) and 8h (DHEA 10(-8)M). In contrast, DHEA was not neuroprotective against glucose deprivation for 12 or 24h. DHEA (10(-8)M) also protected SH-SY5Y cells when added together or even 1h after the beginning of glucose deprivation (6h). Furthermore, DHEA (10(-8)M) also protected primary neurons from both sexes against glucose deprivation. In summary, our findings indicate that DHEA is neuroprotective against glucose deprivation in human neuroblastoma cells and in male and female mouse hippocampal neurons. These results suggest that DHEA could be a promising candidate to be used in clinical studies aiming to reduce neuronal damage in people from both sexes.
Collapse
Affiliation(s)
- Claudia Vieira-Marques
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil; Instituto Cajal, CSIC, Avenida Doctor Arce, 37, 28002 Madrid, Spain.
| | - Bruno Dutra Arbo
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil; Instituto Cajal, CSIC, Avenida Doctor Arce, 37, 28002 Madrid, Spain
| | | | | | | | - Luiz Carlos Kucharski
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Maria A Arevalo
- Instituto Cajal, CSIC, Avenida Doctor Arce, 37, 28002 Madrid, Spain
| | | | - Maria Flávia M Ribeiro
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Rahmani B, Ghasemi R, Dargahi L, Ahmadiani A, Haeri A. Neurosteroids; potential underpinning roles in maintaining homeostasis. Gen Comp Endocrinol 2016; 225:242-250. [PMID: 26432100 DOI: 10.1016/j.ygcen.2015.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022]
Abstract
The neuroactive steroids which are synthesized in the brain and nervous system are known as "Neurosteroids". These steroids have crucial functions such as contributing to the myelination and organization of the brain connectivity. Under the stressful circumstances, the concentrations of neurosteroid products such as allopregnanolone (ALLO) and allotetrahydrodeoxycorticosterone (THDOC) alter. It has been suggested that these stress-derived neurosteroids modulate the physiological response to stress. Moreover, it has been demonstrated that the hypothalamic-pituitary-adrenal (HPA) axis mediates the physiological adaptation following stress in order to maintain homeostasis. Although several regulatory pathways have been introduced, the exact role of neurosteroids in controlling HPA axis is not clear to date. In this review, we intend to discern specific pathways associated with regulation of HPA axis in which neuroactive steroids have the main role. In this respect, we propose pathways that may be initiated after neurosteroidogenesis in different brain subregions following acute stress which are potentially capable of activating or inhibiting the HPA axis.
Collapse
Affiliation(s)
- Behrouz Rahmani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Haeri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Vieira M, Fernandes J, Carreto L, Anuncibay-Soto B, Santos M, Han J, Fernández-López A, Duarte C, Carvalho A, Santos A. Ischemic insults induce necroptotic cell death in hippocampal neurons through the up-regulation of endogenous RIP3. Neurobiol Dis 2014; 68:26-36. [DOI: 10.1016/j.nbd.2014.04.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022] Open
|
19
|
Beyazyüz M, Albayrak Y, Beyazyüz E, Unsal C, Göka E. Increased serum dehydroepiandrosterone sulfate in the first episode but not in subsequent episodes in male patients with schizophrenia. Neuropsychiatr Dis Treat 2014; 10:687-93. [PMID: 24812513 PMCID: PMC4011925 DOI: 10.2147/ndt.s61406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Many studies have investigated the relationship between blood levels of dehydroepiandrosterone (DHEA) and its sulfate ester (DHEA-S), cortisol, progesterone, and testosterone and the onset, prognosis, symptom severity, and treatment response of schizophrenia. In the present study, we assessed potential differences in blood levels of neurosteroids between drug-naïve first-episode patients with schizophrenia (FES), and drug-free patients with schizophrenia who were not in the first episode but were in a phase of acute exacerbation (DFP). MATERIALS AND METHODS The present study included 32 male FES, 28 male DFP, and 24 male healthy controls (HC). Groups were compared in terms of blood levels of adrenocorticotropic hormone (ACTH), cortisol, testosterone, progesterone, and DHEA-S. RESULTS Blood levels of ACTH, cortisol, testosterone, and progesterone were similar among the groups. The mean value of serum DHEA-S was significantly different among the groups (P<0.001). The value of serum DHEA-S was higher in the FES group than in the DFP and HC groups (both P<0.001). The mean values of serum DHEA-S in the HC and DFP groups were found to be similar (P=0.33). CONCLUSION We suggest that higher values of DHEA-S in the FES group compared with both the DFP and HC groups indicate that this neurosteroid response is unique to first-episode schizophrenia patients. Further studies are needed to investigate the difference in blood levels of neurosteroids in different groups in terms of age of diagnosis.
Collapse
Affiliation(s)
- Murat Beyazyüz
- Department of Psychiatry, Gölbaşı Hasvak State Hospital, Ankara, Turkey
| | - Yakup Albayrak
- Department of Psychiatry, School of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Elmas Beyazyüz
- Department of Psychiatry, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Cüneyt Unsal
- Department of Psychiatry, School of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Erol Göka
- Department of Psychiatry, Ankara Numune Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
20
|
Manca P, Caria MA, Blasi J, Martín-Satué M, Mameli O. Cytochrome P450 17α-hydroxylase/C(17,20)-lyase immunoreactivity and molecular expression in the cerebellar nuclei of adult male rats. J Chem Neuroanat 2012; 45:18-25. [PMID: 22800812 DOI: 10.1016/j.jchemneu.2012.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/15/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022]
Abstract
Several probes have been developed to identify steroidogenic activity in the brain of vertebrates. However, the presence of the cytochrome P450 17α-hydroxylase/C(17,20)-lyase (P450C(17)), an enzyme that converts pregnenolone and progesterone into dehydroepiandrosterone and androstenedione, in specific areas of the cerebellum such as the deep cerebellar nuclei, remains virtually unexplored. Using Western blot analysis and immunohistochemistry, we found molecular expression of P450C(17) in the lateral, interposed and medial deep cerebellar nuclei. Moreover, double immunofluorescence procedures enabled localization of P450C(17) mainly in neurons, axons and glutamatergic synapses. Taken together, these data demonstrate the occurrence of P450C(17) in the deep cerebellar nuclei, and enable the chemical characterization of the cells that express the cytochrome.
Collapse
Affiliation(s)
- Paolo Manca
- Department of Clinical and Experimental Medicine, Human Physiology, University of Sassari, Italy.
| | | | | | | | | |
Collapse
|
21
|
Taylor MK, Padilla GA, Stanfill KE, Markham AE, Khosravi JY, Ward MDD, Koehler MM. Effects of dehydroepiandrosterone supplementation during stressful military training: a randomized, controlled, double-blind field study. Stress 2012; 15:85-96. [PMID: 21790446 DOI: 10.3109/10253890.2011.585189] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) are anabolic prehormones involved in the synthesis of testosterone. Both have been shown to exert neuroprotective effects during stress. In this randomized, controlled, double-blind field study, we examined the effects of a 12-day DHEA regimen on stress indices in military men undergoing survival training. Forty-eight men were randomized to either a DHEA treatment group or placebo control group. The treatment group received 50 mg of oral DHEA supplementation daily for 5 days during classroom training followed by 7 days of 75 mg during stressful field operations. Control subjects received identical placebo pills. Salivary assays (DHEA[S], testosterone, and cortisol) were conducted at four time points: distal pre-stress (T1), proximal pre-stress (T2), mock-captivity stress (T3), and 24 h recovery (T4). Subjective distress was also assessed at T1, T3, and T4. As expected, DHEA treatment resulted in higher salivary concentrations of DHEA and DHEAS during daily living, mock-captivity stress, and recovery. Similar patterns were observed for salivary markers of anabolic balance: DHEA/cortisol, DHEAS/cortisol, and testosterone/cortisol concentration ratios. Despite notable time effects, no group differences emerged for subjective distress. A brief, low dose DHEA regimen yielded large increases in salivary DHEA(S) concentrations and enhanced anabolic balance throughout sustained military stress. These physiological changes did not extrapolate to subjective distress.
Collapse
Affiliation(s)
- Marcus K Taylor
- Operational Stress and Resilience Program, Aeromedical Research Directorate, Naval Aerospace Medical Research Laboratory, Pensacola, FL 32508, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Aloisi AM, Buonocore M, Merlo L, Galandra C, Sotgiu A, Bacchella L, Ungaretti M, Demartini L, Bonezzi C. Chronic pain therapy and hypothalamic-pituitary-adrenal axis impairment. Psychoneuroendocrinology 2011; 36:1032-9. [PMID: 21256679 DOI: 10.1016/j.psyneuen.2010.12.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/23/2010] [Accepted: 12/27/2010] [Indexed: 11/28/2022]
Abstract
Opiates and/or nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most effective therapies for chronic pain, but their prolonged time of use can affect health conditions through physical and psychological side effects. They include the very common gastrointestinal effects and changes that can induce osteoporosis, depression, impaired cognition and a generally poor quality of life, which per se can induce and maintain a chronic painful condition. For this reason it is becoming imperative to expand our knowledge of the interaction of these substances with body functions apparently not directly involved in nociception and pain, such as neuroendocrine functions. The purpose of this study was to determine, in male and female patients suffering from chronic pain, the effect of conventional pain therapy (opiates, NSAIDs) on hypothalamic-pituitary-adrenal (HPA) axis function. This was assessed by measuring the blood levels of adrenal-related hormones (adrenocorticotrophin hormone, ACTH; cortisol; dehydroepiandrosterone, DHEA and dehydroepiandrosterone sulfate, DHEAS). The second purpose of the study was to test the hypothesis that these hormones are associated with the psychological profile shown by the chronic pain patients. The results showed significant changes induced by pain therapy on the HPA axis: ACTH, cortisol, DHEA and DHEAS blood levels decreased in all subjects taking opiates or NSAIDs to treat pain. Moreover these changes showed significant correlations with psychological features of the subjects depending on age and sex.
Collapse
Affiliation(s)
- Anna Maria Aloisi
- Pain Physiopathology and Therapy Centre, IRCCS Salvatore Maugeri Foundation, Via Maugeri 10, 27100 Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li ZJ, Ren HY, Cui MC, Deuther-Conrad W, Tang RK, Steinbach J, Brust P, Liu BL, Jia HM. Synthesis and biological evaluation of novel 4-benzylpiperazine ligands for sigma-1 receptor imaging. Bioorg Med Chem 2011; 19:2911-7. [PMID: 21481592 DOI: 10.1016/j.bmc.2011.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
Abstract
We report the synthesis and evaluation of 4-benzylpiperazine ligands (BP-CH(3), BP-F, BP-Br, BP-I, and BP-NO(2)) as potential σ(1) receptor ligands. The X-ray crystal structure of BP-Br, which crystallized with monoclinic space group P2(1)/c, has been determined. In vitro competition binding assays showed that all the five ligands exhibit low nanomolar affinity for σ(1) receptors (K(i)=0.43-0.91nM) and high subtype selectivity (σ(2) receptor: K(i)=40-61nM; K(i)σ(2)/K(i)σ(1)=52-94). [(125)I]BP-I (1-(1,3-benzodioxol-5-ylmethyl)-4-(4-iodobenzyl)piperazine) was prepared in 53±10% isolated radiochemical yield, with radiochemical purity of >99% by HPLC analysis after purification, via iododestannylation of the corresponding tributyltin precursor. The logD value of [(125)I]BP-I was found to be 2.98±0.17, which is within the range expected to give high brain uptake. Biodistribution studies in mice demonstrated relatively high concentration of radiolabeled substances in organs known to contain σ(1) receptors, including the brain, lung, kidney, heart, and spleen. Administration of haloperidol 5min prior to injection of [(125)I]BP-I significantly reduced the concentration of radioactivity in the above-mentioned organs. The accumulation of radiolabeled substance in the thyroid was quite low suggesting that [(125)I]BP-I is relatively stable to in vivo deiodination. These findings suggest that the binding of [(125)I]BP-I to σ(1) receptors in vivo is specific.
Collapse
Affiliation(s)
- Zi-Jing Li
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mirzatoni A, Dong SM, Guerra M, Zhen Y, Katz A, Schlinger BA. Steroidal and gonadal effects on neural cell proliferation in vitro in an adult songbird. Brain Res 2010; 1351:41-49. [PMID: 20637746 DOI: 10.1016/j.brainres.2010.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 01/16/2023]
Abstract
Neurogenesis in the adult songbird brain occurs along the ventricular zone (VZ), a specialized cell layer surrounding the lateral ventricles. To examine the acute effects of sex steroids on VZ cell proliferation, male and female adult zebra finch brain slices containing the VZ were exposed to 5-bromo-2'-deoxyuridine-5'-monophosphate (BrdU) in vitro. Slices from one hemisphere served as the control, while contralateral slices were treated with steroids, steroidogenic enzyme inhibitors or gonadal tissue itself. There were no significant effects on VZ cell proliferation in either sexes by acute exposure to 17beta-estradiol (E2), dihydrotestosterone (DHT), a cocktail of four sex steroids, and inhibitors of sex steroid synthesis (aminoglutethimide, ketoconazole, and fadrozole), or by activation of a mitochondrial cholesterol transporter. By contrast, dehydroepiandrosterone (DHEA) suppressed VZ cell proliferation in males, but not females, replicating previous observations involving treatments with corticosterone and RU-486. This suggests that DHEA suppresses proliferation in males via a glucocorticoid receptor-related mechanism. These results suggest that neurosteroidogenesis per se has little effect on acute VZ cell proliferation. Co-incubation with an ovary of female, but not male, slices significantly increased VZ cell proliferation; testicular tissue had no impact on proliferation in males or females. This suggests a role for a non-steroidal ovarian factor on adult female VZ cell proliferation. We also have evidence that previously reported sex-differences in BrdU-labeling along the adult VZ (males>females) result from a more rapid loss of cells in females. Sex differences in steroid action and cell death along the VZ may contribute to the maintenance of the sexually dimorphic song system.
Collapse
Affiliation(s)
- Anahid Mirzatoni
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, California, 90095, USA.
| | - Stephanie M Dong
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, California, 90095, USA
| | - Marjorie Guerra
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, California, 90095, USA
| | - Yin Zhen
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, California, 90095, USA
| | - Amnon Katz
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, California, 90095, USA
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, California, 90095, USA
| |
Collapse
|
25
|
Sorwell KG, Urbanski HF. Dehydroepiandrosterone and age-related cognitive decline. AGE (DORDRECHT, NETHERLANDS) 2010; 32:61-7. [PMID: 19711196 PMCID: PMC2829637 DOI: 10.1007/s11357-009-9113-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 08/03/2009] [Indexed: 05/15/2023]
Abstract
In humans the circulating concentrations of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) decrease markedly during aging, and have been implicated in age-associated cognitive decline. This has led to the hypothesis that DHEA supplementation during aging may improve memory. In rodents, a cognitive anti-aging effect of DHEA and DHEAS has been observed but it is unclear whether this effect is mediated indirectly through conversion of these steroids to estradiol. Moreover, despite the demonstration of correlations between endogenous DHEA concentrations and cognitive ability in certain human patient populations, such correlations have yet to be convincingly demonstrated during normal human aging. This review highlights important differences between rodents and primates in terms of their circulating DHEA and DHEAS concentrations, and suggests that age-related changes within the human DHEA metabolic pathway may contribute to the relative inefficacy of DHEA replacement therapies in humans. The review also highlights the value of using nonhuman primates as a pragmatic animal model for testing the therapeutic potential of DHEA for age-associate cognitive decline in humans.
Collapse
Affiliation(s)
- Krystina G. Sorwell
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
| |
Collapse
|
26
|
Hoyk Z, Csákvári E, Szájli A, Kóti J, Paragi G, Gyenes A, Wölfling J, Pfoh R, Rühl S, Párducz A. Computer-aided structure analysis of an epimerized dehydroepiandrosterone derivative and its biological effect in a model of reactive gliosis. Steroids 2010; 75:265-71. [PMID: 20064537 DOI: 10.1016/j.steroids.2010.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 11/06/2009] [Accepted: 01/03/2010] [Indexed: 11/28/2022]
Abstract
The naturally occurring steroid dehydroepiandrosterone (DHEA) is reported to reduce glial fibrillary acidic protein (GFAP) overexpression in a model of reactive gliosis due to its conversion to estradiol by the enzyme aromatase. In the present study we examined the biological effect of a new epimerized derivative of DHEA, 16alpha-iodomethyl-13alpha-dehydroepiandrosterone derivative (16alpha-iodomethyl-13alpha-DHEAd, 16alpha-iodomethyl-13alpha-androst-5-en-3beta,17beta-diol), using the same model system, and compared the 3D structure of this molecule with that of DHEA and two steroidal type aromatase inhibitors, formestane and exemestane. The synthetic compound, in contrast to the reported effect of DHEA, was able to reduce GFAP overexpression only if the enzyme aromatase was inhibited. Data obtained from computational calculations fortified by X-ray crystallography revealed that contrary to the nearly planar sterane framework of DHEA, the synthetic derivative 16alpha-iodomethyl-13alpha-DHEAd has a bent sterane skeleton, resulting in a 3D structure that is similar to that of formestane or exemestane. Moreover, 16alpha-iodomethyl-13alpha-DHEAd resulted to be metabolically more stable than DHEA. The results suggest that epimerization of the sterane skeleton of DHEA inclines the plane of the D ring, leading to a significantly altered biological activity. The synthetic molecule has a DHEA-like effect on GFAP overexpression when the enzyme aromatase is inhibited and the naturally occurring DHEA is ineffective in this respect. On the other hand, based on their structural similarity it can be hypothesized that 16alpha-iodomethyl-13alpha-DHEAd applied alone might have a biological effect similar to that of formestane or exemestane.
Collapse
Affiliation(s)
- Zsófia Hoyk
- Institute of Biophysics, Biological Research Center, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Biologic sex and sex steroids are important factors in clinical and experimental stroke and traumatic brain injury (TBI). Laboratory data strongly show that progesterone treatment after TBI reduces edema, improves outcomes, and restores blood-brain barrier function. Clinical studies to date agree with these data, and there are ongoing human trials for progesterone treatment after TBI. Estrogen has accumulated an impressive reputation as a neuroprotectant when evaluated at physiologically relevant doses in laboratory studies of stroke, but translation to patients remains to be shown. The role of androgens in male stroke or TBI is understudied and important to pursue given the epidemiology of stroke and trauma in men. To date, male sex steroids remain largely evaluated at the bench rather than the bedside. This review evaluates key evidence and highlights the importance of the platform on which brain injury occurs (i.e., genetic sex and hormonal modulators).
Collapse
Affiliation(s)
- Paco S Herson
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | | | | |
Collapse
|
28
|
Maninger N, Wolkowitz OM, Reus VI, Epel ES, Mellon SH. Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Neuroendocrinol 2009; 30:65-91. [PMID: 19063914 PMCID: PMC2725024 DOI: 10.1016/j.yfrne.2008.11.002] [Citation(s) in RCA: 524] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 01/12/2023]
Abstract
DHEA and DHEAS are steroids synthesized in human adrenals, but their function is unclear. In addition to adrenal synthesis, evidence also indicates that DHEA and DHEAS are synthesized in the brain, further suggesting a role of these hormones in brain function and development. Despite intensifying research into the biology of DHEA and DHEAS, many questions concerning their mechanisms of action and their potential involvement in neuropsychiatric illnesses remain unanswered. We review and distill the preclinical and clinical data on DHEA and DHEAS, focusing on (i) biological actions and putative mechanisms of action, (ii) differences in endogenous circulating concentrations in normal subjects and patients with neuropsychiatric diseases, and (iii) the therapeutic potential of DHEA in treating these conditions. Biological actions of DHEA and DHEAS include neuroprotection, neurite growth, and antagonistic effects on oxidants and glucocorticoids. Accumulating data suggest abnormal DHEA and/or DHEAS concentrations in several neuropsychiatric conditions. The evidence that DHEA and DHEAS may be fruitful targets for pharmacotherapy in some conditions is reviewed.
Collapse
Affiliation(s)
- Nicole Maninger
- Department of Psychiatry, University of California San Francisco, School of Medicine, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
29
|
Pinnock SB, Lazic SE, Wong HT, Wong IHW, Herbert J. Synergistic effects of dehydroepiandrosterone and fluoxetine on proliferation of progenitor cells in the dentate gyrus of the adult male rat. Neuroscience 2008; 158:1644-51. [PMID: 19068226 DOI: 10.1016/j.neuroscience.2008.10.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/06/2008] [Accepted: 10/15/2008] [Indexed: 11/24/2022]
Abstract
The 5-HT re-uptake inhibitor (SSRI) fluoxetine and the adrenal hormone dehydroepiandrosterone (DHEA) both increase the proliferation of progenitor cells in the adult hippocampus and also have antidepressant activity. This paper explores the combined ability of fluoxetine and DHEA to affect this process in the dentate gyrus of adult rats. We show that DHEA can render an otherwise ineffective dose of fluoxetine (2.5 mg/kg) able to increase progenitor cell proliferation to the same extent as doses four times higher (10 mg/kg). This synergistic action does not appear to be mediated by alterations in brain-derived neurotrophic factor (BDNF) gene expression; or by TrkB, mineralocorticoid, glucocorticoid, or 5-HT (5HT1A) receptor expression in the dentate gyrus; or by altered levels of plasma corticosterone. In a second experiment, the synergism between DHEA and fluoxetine was replicated. Furthermore, flattening the diurnal rhythm of plasma corticosterone by implanting additional corticosterone pellets s.c. prevented the effect of fluoxetine on progenitor cell division. This was not overcome by simultaneous treatment with DHEA, despite the latter's reported anti-glucocorticoid actions. The cellular mechanism for the potentiating action of DHEA on the pro- proliferative effects of fluoxetine in the adult hippocampus remains to be revealed. Since altered neurogenesis has been linked to the onset or recovery from depression, one consequence of these results is to suggest DHEA as a useful adjunct therapy for depression.
Collapse
Affiliation(s)
- S B Pinnock
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | | | | | | |
Collapse
|
30
|
Cheng ZX, Lan DM, Wu PY, Zhu YH, Dong Y, Ma L, Zheng P. Neurosteroid dehydroepiandrosterone sulphate inhibits persistent sodium currents in rat medial prefrontal cortex via activation of sigma-1 receptors. Exp Neurol 2008; 210:128-36. [PMID: 18035354 DOI: 10.1016/j.expneurol.2007.10.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 10/05/2007] [Accepted: 10/12/2007] [Indexed: 12/01/2022]
Abstract
Dehydroepiandrosterone sulphate is one of the most important neurosteroids. In the present paper, we studied the effect of dehydroepiandrosterone sulphate on persistent sodium currents and its mechanism and functional consequence with whole-cell patch clamp recording method combined with a pharmacological approach in the rat medial prefrontal cortex slices. The results showed that dehydroepiandrosterone sulphate inhibited the amplitude of persistent sodium currents and the inhibitory effect was significant at 0.1 microM, reached maximum at 1 microM and decreased with the increase in the concentrations of above 1 microM. The effect of dehydroepiandrosterone sulphate on persistent sodium currents was canceled by the Gi protein inhibitor and the protein kinase C inhibitor, but not by the protein kinase A inhibitor. The effect of dehydroepiandrosterone sulphate on persistent sodium currents was also canceled by the sigma-1 receptor blockers and the sigma-1 receptor agonist could mimic the effect of dehydroepiandrosterone sulphate. Dehydroepiandrosterone sulphate had no significant influence on neuronal excitability but could significantly inhibit chemical inhibition of mitochondria-evoked increase in persistent sodium currents. These results suggest that dehydroepiandrosterone sulphate inhibits persistent sodium currents via the activation of sigma-1 receptors-Gi protein-protein kinase C-coupled signaling pathway, and the main functional consequence of this effect of DHEAS is presumably to protect neurons under ischemia.
Collapse
Affiliation(s)
- Zheng-Xiang Cheng
- State Key Laboratory of Medical Neurobiology, Fudan University Shanghai Medical College, Institutes of Brain Science of Fudan University, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Adrenarche, the prepubertal onset of adrenal production of dehydroepiandrosterone sulfate (DHEAS), is a distinctive aspect of the human life course. Yet its evolutionary origins remain unexplained. Production of DHEAS is associated with the development of the zona reticularis, a novel histological layer within the adrenal gland, derived from the fetal adrenal gland, and associated with primates more generally. Evidence that DHEAS is a neurosteroid, together with the fact that increases in DHEAS parallel patterns of cortical maturation from approximately age 6 years to the mid-20s, suggests that DHEAS may play an important role in extended brain maturation among humans. DHEAS has demonstrated effects on mood in humans, and acts at neuron receptor sites. I suggest three ways in which DHEAS may play a role in human brain maturation: 1) increasing activity of the amgydala; 2) increasing activity of the hippocampus; and 3) promoting synaptogenesis within the cortex. I propose that associated changes in fearfulness and anxiety, and memory, could act to increase social interaction with nonfamiliar individuals and shape cognitive development. Comparison with the African apes suggests that the timing of adrenarche in chimpanzees may be similar to that in humans, though the full course of age-related changes in DHEAS and their relationship to reproductive and brain maturation are not clear. The role of DHEAS as a physiological mechanism supporting increased brain development, extended life span, and decreased sexual dimorphism is most compatible with Kaplan et al.'s (2000) theory of the evolution of human life history and intergenerational transfers.
Collapse
Affiliation(s)
- Benjamin Campbell
- Department of Anthropology, Boston University, Boston, Massachusetts 02215, USA.
| |
Collapse
|
32
|
Safiulina D, Peet N, Seppet E, Zharkovsky A, Kaasik A. Dehydroepiandrosterone inhibits complex I of the mitochondrial respiratory chain and is neurotoxic in vitro and in vivo at high concentrations. Toxicol Sci 2006; 93:348-56. [PMID: 16849397 DOI: 10.1093/toxsci/kfl064] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dehydroepiandrosterone (DHEA) is widely used as a food supplement and considered to be relatively safe. In animal studies, however, additions of high concentrations of DHEA to the diet have led to hepatotoxicity as well as liver mitochondrial dysfunction. This study was therefore designed to find out whether DHEA is able to inhibit the respiratory activity also in neuronal mitochondria and to reveal whether this leads to functional disturbance in the brain. Using different mitochondrial substrates, we show here that DHEA suppresses the mitochondrial respiration in permeabilized neurons (half maximal inhibitory concentration 13 microM) by inhibiting complex I of the mitochondrial electron transport chain. Treatment with DHEA was associated with increased glucose expenditure in intact cultures and led to neuronal death. The latter was most prominent in hypoglycemic conditions. Mice fed with pellet containing 0.6% DHEA for 3 months showed a significant neuronal loss in the cerebral cortex and hippocampus, a slightly decreased dopamine/dihydroxyphenylacetic acid ratio, as well as motor impairment. The main conclusion of the present study is that high concentrations of DHEA inhibit complex I of the mitochondrial respiratory chain and are neurotoxic in vitro and in vivo.
Collapse
Affiliation(s)
- Dzhamilja Safiulina
- Department of Pharmacology, Centre of Molecular and Clinical Medicine, University of Tartu, 51014 Tartu, Estonia
| | | | | | | | | |
Collapse
|
33
|
Ha BJ, Lee SH, Kim HJ, Lee JY. The Role of Salicornia herbacea in Ovariectomy-Induced Oxidative Stress. Biol Pharm Bull 2006; 29:1305-9. [PMID: 16819158 DOI: 10.1248/bpb.29.1305] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ovarian hormone deficiency increases the generation of reactive oxygen species. Their excess induces oxidative stress, which results in the cell damage or death. It causes the aging diseases-atherosclerosis, rheumatoid arthritis, osteoporosis, etc. Ovariectomized rats are used as oxidative stress models. We verified the effects of ovariectomy-induced oxidative stress on free radical production as evaluated by DPPH elimination, lipoperoxidation evaluated by malondialdehyde levels, and antioxidant activation of superoxide dismutase, catalase, glutathione peroxidase, and estradiol in the liver and sera. Ovariectomized rats were given Salicornia herbacea (SH) intraperitoneally at the dose of 100 mg/kg daily for 2 months. Free radical-scavenging activity of SH was measured in comparison with that of L-ascorbic acid. The histopathology of liver tissue was also investigated. Antioxidative values in the ovariectomized group decreased, but those in the SH-treated group increased due to the free radical-scavenging activity of SH. Moreover, inflammation and cirrhosis in the liver tissue of SH-treated rats decreased significantly. These results suggest that SH may be a potential candidate for an antioxidative reagent.
Collapse
Affiliation(s)
- Bae Jin Ha
- Department of Bioscience and Biotechnology, Silla University, Busan, Korea.
| | | | | | | |
Collapse
|
34
|
Mulholland PJ, Stepanyan TD, Self RL, Hensley AK, Harris BR, Kowalski A, Littleton JM, Prendergast MA. Corticosterone and dexamethasone potentiate cytotoxicity associated with oxygen-glucose deprivation in organotypic cerebellar slice cultures. Neuroscience 2005; 136:259-67. [PMID: 16182452 DOI: 10.1016/j.neuroscience.2005.07.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 07/15/2005] [Accepted: 07/19/2005] [Indexed: 11/17/2022]
Abstract
Many patients display elevated levels of serum cortisol following acute ischemic stroke. Given that glucocorticoids may potentiate some forms of insult, these studies examined the effects of corticosterone or dexamethasone exposure on cytotoxicity following oxygen-glucose deprivation in the cerebellum, a brain region susceptible to stroke. In organotypic cerebellar slice cultures prepared from neonatal rat pups, 90-min of oxygen-glucose deprivation at 15 days in vitro resulted in significant cytotoxicity at 24-, 48-, and 72-h post-oxygen-glucose deprivation, as measured by uptake of propidium iodide. Exposure of cultures following oxygen-glucose deprivation to the antioxidant trolox (500 microM), but not to the glucocorticoid receptor antagonist RU486 (10 microM), completely blocked oxygen-glucose deprivation-induced cytotoxicity. Corticosterone (1 microM) or dexamethasone (10 microM) exposure alone did not significantly increase propidium iodide uptake above levels observed in control cultures. However, corticosterone or dexamethasone exposure after oxygen-glucose deprivation potentiated oxygen-glucose deprivation-mediated propidium iodide uptake at each time point. Trolox, as well as RU486, co-exposure of cultures to corticosterone or dexamethasone after oxygen-glucose deprivation abolished all cytotoxicity. In conclusion, these data demonstrated that glucocorticoid exposure modulated oxygen-glucose deprivation-mediated propidium iodide uptake, which likely involved glucocorticoid receptor activation and pro-oxidant effects.
Collapse
Affiliation(s)
- P J Mulholland
- Department of Psychology, University of Kentucky, 115 Kastle Hall, Lexington, KY 40506-0044, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kaasik A, Rikk T, Piirsoo A, Zharkovsky T, Zharkovsky A. Up-regulation of lysosomal cathepsin L and autophagy during neuronal death induced by reduced serum and potassium. Eur J Neurosci 2005; 22:1023-31. [PMID: 16176344 DOI: 10.1111/j.1460-9568.2005.04279.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serum and potassium deprivation-induced neuronal death on the primary culture of rat cerebellar granule neurons is being widely used as an in vitro model of neurodegeneration and neuronal apoptosis. In our experiments, serum and potassium deprivation for 12 h induced neuronal death in approximately 20% of cerebellar granule neurons as demonstrated by Trypan Blue assay. Neuronal death was accompanied by a transient increase in the intralysosomal cathepsin L activity, which preceded neuronal death. During this time, the lysosomal membrane integrity remained preserved and no leakage of cathepsin L into the cytosol was seen. Ultrastructural analysis revealed the appearance of multiple vacuoles and autophagosomes in the cytoplasmatic compartment of serum- and potassium-deprived granule neurons. Addition of selective cathepsin L inhibitors or of the autophagy inhibitor 3-methyladenine provided partial protection against serum and potassium deprivation-induced death. Our data also show that combining cathepsin L inhibitors and caspase-3 inhibitors leads to a synergistic neuroprotective effect against serum and potassium deprivation. The results of the current study suggest that activation of the autophagosomal--lysosomal compartment plays an important role in neuronal death induced by serum and potassium deprivation in cultured cerebellar granule cells.
Collapse
Affiliation(s)
- Allen Kaasik
- Department of Pharmacology, Centre of Excellence for Molecular and Clinical Medicine, University of Tartu, Ravila 19, 51014 Tartu, Estonia
| | | | | | | | | |
Collapse
|
36
|
Bucolo C, Drago F. Effects of neurosteroids on ischemia-reperfusion injury in the rat retina: role of sigma1 recognition sites. Eur J Pharmacol 2005; 498:111-4. [PMID: 15363983 DOI: 10.1016/j.ejphar.2004.06.067] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 06/17/2004] [Indexed: 11/28/2022]
Abstract
The effects of neurosteroids, 17beta-estradiol and dehydroepiandrosterone-sulfate (DHEA-S), were investigated on retinal degeneration using a rat model of ischemia-reperfusion injury. The animals were anaesthetized and retinal ischemia was induced by elevating the intraocular pressure to 120 mm Hg for 45 min. Neurosteroids were injected intraperitoneally before ischemia and immediately after reperfusion. Retinal biochemical changes such as increase of lactate content and decrease of glucose and ATP were significantly inhibited by neurosteroids compared to the control ischemic group. The effects of 17beta-estradiol and DHEA-S were antagonized by pre-treatment with the sigma1 site antagonist. These findings suggest that 17beta-estradiol and dehydroepiandrosterone-sulfate may affect the metabolic state of surviving neurons and glial cells after ischemic injury and that they act, at least in part, through involvement of sigma1 recognition sites.
Collapse
Affiliation(s)
- Claudio Bucolo
- Department of Experimental and Clinical Pharmacology, School of Medicine, University of Catania, Viale A. Doria 6, Catania I-95125, Italy
| | | |
Collapse
|
37
|
Prediger ME, Siqueira IR, Gamaro GD, Silva MS, Netto CA, Dalmaz C. Protective effect of pregnanolone against lipoperoxidation and free radicals generation induced in hypothalamus of ovariectomized rats submitted to CO2 exposure. Pharmacol Biochem Behav 2004; 78:191-7. [PMID: 15219758 DOI: 10.1016/j.pbb.2004.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 03/02/2004] [Accepted: 03/11/2004] [Indexed: 11/24/2022]
Abstract
Several studies support an association between gonadal hormones and oxidative state. This study aimed to determine the consequence of the absence of ovarian hormones on the oxidative status of animals submitted to acute stress induced by CO(2) inhalation. We also evaluated the effect of pregnanolone administration upon the oxidative status in distinct brain structures of ovariectomized (OVX) rats exposed to CO(2). Female rats were divided into intact and OVX and exposed or unexposed to CO(2). Oxidative status was evaluated by 2',7'-dichlorofluorescein (DCF) assay, assessment of malondialdehyde (MDA), as an indicator of lipoperoxidation (through the thiobarbituric acid-reactive substances assay, TBARS), and the total antioxidant reactivity (TAR). Both DCF and TBARS were increased in the hypothalamus of animals submitted to OVX and stress. Nevertheless, free radical production and MDA levels were not affected in either condition alone. In the cerebral cortex, lower MDA levels were observed in OVX animals. Pregnanolone administered to rats submitted to CO(2)+OVX resulted in reduced MDA levels and free radicals production in hypothalamus. We suggest that ovarian hormones may protect the hypothalamus against oxidative stress, particularly when the animals are submitted to challenges. Pregnanolone may protect, at least in part, the hypothalamus of OVX rats from oxidative stress.
Collapse
Affiliation(s)
- Martha E Prediger
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Estradiol, in addition to its participation in neuroendocrine regulation and sexual behavior, has neuroprotective properties. Different types of brain injury induce the expression of the enzyme aromatase in reactive astroglia. This enzyme catalyzes the conversion of testosterone and other C19 steroids to estradiol. Genetic or pharmacological inhibition of brain aromatase results in marked neurodegeneration after different forms of mild neurodegenerative stimuli that do not compromise neuronal survival under control conditions. Furthermore, aromatase mediates neuroprotective effects of precursors of estradiol such as pregnenolone, dehydroepiandrosterone (DHEA) and testosterone. These findings strongly suggest that local formation of estradiol in the brain is neuroprotective and that the induction of aromatase and the consecutive increase in the local production of estradiol are part of the program triggered by the neural tissue to cope with neurodegenerative insults. Aromatase may thus represent an important pharmacological target for therapies conducted to prevent aging-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), Avenida Doctor Arce 37, E-28002 Madrid, Spain.
| | | | | | | | | |
Collapse
|
39
|
Lu SF, Mo Q, Hu S, Garippa C, Simon NG. Dehydroepiandrosterone upregulates neural androgen receptor level and transcriptional activity. ACTA ACUST UNITED AC 2003; 57:163-71. [PMID: 14556282 DOI: 10.1002/neu.10260] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanism of action of dehydroepiandrosterone (DHEA), a neuroactive neurosteroid synthesized in the brains of humans and other mammals, has not been fully characterized in the adult brain. Although well known for modulatory effects on GABA(A), NMDA, and sigma(1) receptors, studies in both CNS and peripheral target cells suggest that DHEA also may exert genomic effects via the androgen receptor (AR). The current study tested the hypothesis that DHEA was capable of producing androgenic effects in the CNS by assaying its ability to induce three characteristic effects of an androgenic compound. These included the ability to upregulate neural AR protein level in mouse brain and immortalized GT1-7 hypothalamic cells, the capacity to induce transcriptional activity through AR in CV-1 cells transfected with an MMTV-ARE-CAT reporter, and competition for recombinant AR binding in a radioligand binding assay. The results showed that DHEA treatment significantly augmented AR both in vivo and in vitro, and that this effect was not blocked by trilostane (TRIL), a known 3beta-hydroxysteroid dehydrogenase (3beta-HSD) inhibitor. DHEA also promoted AR-mediated CAT reporter expression and competed with dihydrotestosterone (DHT) for binding to recombinant AR in a cell-free system. These data indicate that DHEA possesses intrinsic androgenic activity that is potentially independent of metabolic conversion to other androgens, and that it can affect gene function through the AR. In combination with its modulation of neurotransmitter receptors at the cell membrane level, the findings suggest that the mechanism of action of DHEA in the brain can involve a "crosstalk" cellular signaling system that involves both nongenomic and genomic components.
Collapse
Affiliation(s)
- Shi-Fang Lu
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | | | | | | | | |
Collapse
|
40
|
Kaasik A, Safiulina D, Kalda A, Zharkovsky A. Dehydroepiandrosterone with other neurosteroids preserve neuronal mitochondria from calcium overload. J Steroid Biochem Mol Biol 2003; 87:97-103. [PMID: 14630095 DOI: 10.1016/s0960-0760(03)00389-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This current study was designed to test whether the dehydroepiandrosterone (DHEA) and other neurosteroids could improve mitochondrial resistance to ischemic damage and cytoplasmic Ca(2+) overload. To imitate these mechanisms at mitochondrial level we treated the saponin permeabilized neurons either with the respiratory chain inhibitor, 1-methyl-4-phenylpyridinium or raised free extra-mitochondrial [Ca(2+)]. Loss of mitochondrial membrane potential (as an indicator of loss of function) was detected by JC-1. The results demonstrate that DHEA partly prevented Ca(2+) overload induced loss of mitochondrial membrane potential but not the loss of potential induced by the inhibitor of the respiratory chain. A similar effect was observed in the presence of other neurosteroids, pregnenolone, pregnanolone and allopregnanolone. DHEA inhibited also the Ca(2+) accumulation to the mitochondria in the presence of Ca(2+) efflux inhibitors. Thus, in the present work we provide evidence that DHEA with several other neurosteroids protect the mitochondria against intracellular Ca(2+) overload by inhibiting Ca(2+) influx into the mitochondrial matrix.
Collapse
Affiliation(s)
- Allen Kaasik
- Department of Pharmacology, University of Tartu, Ravila 19, 50411 Tartu, Estonia.
| | | | | | | |
Collapse
|
41
|
Veiga S, Garcia-Segura LM, Azcoitia I. Neuroprotection by the steroids pregnenolone and dehydroepiandrosterone is mediated by the enzyme aromatase. JOURNAL OF NEUROBIOLOGY 2003; 56:398-406. [PMID: 12918023 DOI: 10.1002/neu.10249] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pregnenolone and dehydroepiandrosterone (DHEA) are sex hormone precursors and neuroprotective steroids. Effects of pregnenolone and DHEA may be in part mediated by their conversion to testosterone and by the consecutive conversion of testosterone to estradiol by the enzyme aromatase. This enzyme is induced in reactive astrocytes after different forms of neurodegenerative lesions and the resultant local production of estradiol in the brain has been shown to be neuroprotective. The participation of aromatase in the neuroprotective effect of pregnenolone and DHEA has been assessed in this study. The protective effect of different doses (12.5, 25, 50, and 100 mg/kg) of pregnenolone or DHEA, against systemic kainic acid (7 mg/kg b.w.), was assessed on hippocampal hilar neurons in gonadectomized Wistar male rats. To determine whether the neuroprotective effect of pregnenolone and DHEA was dependent on their conversion to estradiol, the aromatase inhibitor fadrozole (4.16 mg/ml) was administered using subcutaneous osmotic minipumps. The number of Nissl-stained neurons in the hilus of the dentate gyrus of the hippocampal formation was estimated by the optical disector method. The administration of kainic acid resulted in a significant decrease in the number of hilar neurons compared to rats injected with vehicles. Pregnenolone and DHEA showed a dose-dependent protective effect of hilar neurons against kainic acid. The administration of the aromatase inhibitor fadrozole blocked the neuroprotective effect of pregnenolone and DHEA. These findings suggest that estradiol formation by aromatase mediates neuroprotective effects of pregnenolone and DHEA against excitotoxic-induced neuronal death in the hippocampus.
Collapse
Affiliation(s)
- Sergio Veiga
- Instituto Cajal, C.S.I.C., E-28002 Madrid, Spain
| | | | | |
Collapse
|
42
|
Pringle AK, Schmidt W, Deans JK, Wulfert E, Reymann KG, Sundstrom LE. 7-Hydroxylated epiandrosterone (7-OH-EPIA) reduces ischaemia-induced neuronal damage both in vivo and in vitro. Eur J Neurosci 2003; 18:117-24. [PMID: 12859344 DOI: 10.1046/j.1460-9568.2003.02734.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent evidence suggests that steroids such as oestradiol reduce ischaemia-induced neurodegeneration in both in vitro and in vivo models. A cytochrome P450 enzyme termed cyp7b that 7-hydroxylates many steroids is expressed at high levels in brain, although the role of 7-hydroxylated steroids is unknown. We have tested the hypothesis that the steroid-mediated neuroprotection is dependent on the formation of 7-hydroxy metabolites. Organotypic hippocampal slice cultures were prepared from Wistar rat pups and maintained in vitro for 14 days. Cultures were then exposed to 3 h hypoxia and neuronal damage assessed 24 h later using propidium iodide fluorescence as a marker of cell damage. Neurodegeneration occurred primarily in the CA1 pyramidal cell layer. The steroids oestradiol, dehydroepiandrosterone and epiandrosterone (EPIA) were devoid of neuroprotective efficacy when present at 100 nM pre-, during and post-hypoxia. The 7-hydroxy metabolites of EPIA, 7alpha-OH-EPIA and 7beta-OH-EPIA significantly reduced neurotoxicity at 100 nM and 10 nM. 7beta-OH-EPIA was also neuroprotective in two in vivo rat models of cerebral ischaemia: 0.1 mg/kg 7beta-OH-EPIA significantly reduced hippocampal cell loss in a model of global forebrain ischaemia, whereas 0.03 mg/kg was neuroprotective in a model of focal ischaemia even when administration was delayed until 6 h after the onset of ischaemia. Taken together, these data demonstrate that 7-hydroxylation of steroids confers neuroprotective efficacy, and that 7beta-OH-epiandrosterone represents a novel class of neuroprotective compounds with potential for use in acute neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashley K Pringle
- Centre for Neurosciences, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, Southampton SO16 7PX, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Mir C, Clotet J, Aledo R, Durany N, Argemí J, Lozano R, Cervós-Navarro J, Casals N. CDP-choline prevents glutamate-mediated cell death in cerebellar granule neurons. J Mol Neurosci 2003; 20:53-60. [PMID: 12663935 DOI: 10.1385/jmn:20:1:53] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Accepted: 08/02/2002] [Indexed: 01/18/2023]
Abstract
Cytidine 5'-diphosphocholine (CDP-choline) has been shown to reduce neuronal degeneration induced in central nervous system (CNS) injury. However, the precise mechanism underlying the neuroprotective properties of this molecule is still unknown. Excitotoxicity causes cell death in CNS injury (trauma or ischemia) and has also been involved in neurodegenerative diseases. We have examined whether CDP-choline prevents glutamate-mediated cell death, determined by trypan blue exclusion and lactate dehydrogenase activity assays. Pretreatment of rat cerebellar granule cells (CGCs) with CDP-choline causes a dose- and time-dependent reduction of glutamate-induced excitotoxicity. Cell death is prevented >50% when 100 microM CDP-choline is added 6 d before the glutamate excitotoxic insult but less than 20% when added concomitantly with glutamate. Pretreatment of CGCs with CDP-choline reduces almost completely (>80%) the number of apoptotic cells analyzed by flow cytometry, suggesting that CDP-choline exerts a neuroprotective effect by inhibiting the apoptotic pathway induced by glutamate.
Collapse
Affiliation(s)
- Cecilia Mir
- Unit of Molecular and Cellular Biology, Faculty of Health Sciences, International University of Catalonia, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Silvagno F, Guarnieri V, Capizzi A, Pescarmona GP. Synergistic effect of retinoic acid and dehydroepiandrosterone on differentiation of human neuroblastoma cells. FEBS Lett 2002; 532:153-8. [PMID: 12459481 DOI: 10.1016/s0014-5793(02)03667-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Retinoic acid (RA) affects many cell types by either promoting their survival or inducing their differentiation. Dehydroepiandrosterone (DHEA), a precursor for both androgenic and estrogenic steroids and abundantly produced by brain, is known as an inhibitor of cell proliferation. Differentiation of a human neuroblastoma cell line (SK-N-BE) was evaluated measuring growth rate, motility, neurite extension and GAP-43 expression. We report that DHEA enhances the differentiating effect of RA on neuroblastoma cells via a signalling that is not RA receptor-mediated. Instead, we show a differential expression of matrix metalloproteinases: RA enhances the activity of MMP-2, whereas MMP-9 expression is up-regulated by DHEA. The concerted modulation of these proteinases may support the neurite outgrowth observed after co-treatment with the two drugs.
Collapse
Affiliation(s)
- Francesca Silvagno
- Dipartimento di Genetica, Biologia e Biochimica, Facolta' di Medicina e Chirurgia, Universita' di Torino, Sezione di Biochimica, Via Santena 5 bis, 10126 Turin, Italy.
| | | | | | | |
Collapse
|
45
|
Canonaco M, Facciolo RM, Alo R. Neuroactive steroid mechanisms and GABA type A receptor subunit assembly in hypothalamic and extrahypothalamic regions. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 214:63-101. [PMID: 11893168 DOI: 10.1016/s0074-7696(02)14003-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Gonadal- and neuronal-derived steroids are capable of altering brain functions through two basic mechanisms: slow (genomic) and rapid (novel nongenomic membrane) types of activities. The genomic activities that are circumscribed to the numerous neuronal and glial expressed receptor actions involve transcriptional processes regulated largely by classical steroids. On the other hand, rapid nongenomic activities are linked to the stereoselective interactions of potent neuroactive steroids. It appears that both of these steroid mechanisms can be successfully evoked at the ligand-gated heteroligomeric GABA type A receptor. However, the precise structural prerequisites and type of molecular steroid interactions implicated in this neuronal target have not been fully investigated. This article reviews the most common subunits (alpha, beta, and gamma) of the native GABA type A receptor involved in signaling pathways of slow and rapid steroidal mechanisms. Different beta-containing compositions (alpha1beta1-3gamma2) are necessary for the slow type of mechanism, whereas different alpha-containing constructs (alpha2-6beta 1/2 gamma2/2L) are linked to the rapid type. Because of the major role played by neuroactive steroids in GABA-dependent neuroendocrine and sociosexual events, distinction of the specific subunit combination is essential not only for elucidating neuronal communicative expressions during such events but also for elucidating their potential neuroprotective role in neurodegenerative disorders.
Collapse
Affiliation(s)
- Marcello Canonaco
- Ecology Department, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | | | | |
Collapse
|