1
|
Nakajima R, Laskaris N, Rhee JK, Baker BJ, Kosmidis EK. GEVI cell-type specific labelling and a manifold learning approach provide evidence for lateral inhibition at the population level in the mouse hippocampal CA1 area. Eur J Neurosci 2021; 53:3019-3038. [PMID: 33675122 DOI: 10.1111/ejn.15177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
The CA1 area in the mammalian hippocampus is essential for spatial learning. Pyramidal cells are the hippocampus output neurons and their activities are regulated by inhibition exerted by a diversified population of interneurons. Lateral inhibition has been suggested as the mechanism enabling the reconfiguration of pyramidal cell assembly activity observed during spatial learning tasks in rodents. However, lateral inhibition in the CA1 lacks the overwhelming evidence reported in other hippocampal areas such as the CA3 and the dentate gyrus. The use of genetically encoded voltage indicators and fast optical recordings permits the construction of cell-type specific response maps of neuronal activity. Here, we labelled mouse CA1 pyramidal neurons with the genetically encoded voltage indicator ArcLight and optically recorded their response to Schaffer Collaterals stimulation in vitro. By undertaking a manifold learning approach, we report a hyperpolarization-dominated area focused in the perisomatic region of pyramidal cells receiving late excitatory synaptic input. Functional network organization metrics revealed that information transfer was higher in this area. The localized hyperpolarization disappeared when GABAA receptors were pharmacologically blocked. This is the first report where the spatiotemporal pattern of lateral inhibition is visualized in the CA1 by expressing a genetically encoded voltage indicator selectively in principal neurons. Our analysis suggests a fundamental role of lateral inhibition in CA1 information processing.
Collapse
Affiliation(s)
- Ryuichi Nakajima
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Nikolaos Laskaris
- AIIA Lab, Informatics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece.,NeuroInformatics GRoup, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jun Kyu Rhee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Bradley J Baker
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Efstratios K Kosmidis
- NeuroInformatics GRoup, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Medicine, Laboratory of Physiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Kolbaev SN, Mohapatra N, Chen R, Lombardi A, Staiger JF, Luhmann HJ, Jedlicka P, Kilb W. NKCC-1 mediated Cl - uptake in immature CA3 pyramidal neurons is sufficient to compensate phasic GABAergic inputs. Sci Rep 2020; 10:18399. [PMID: 33110147 PMCID: PMC7591924 DOI: 10.1038/s41598-020-75382-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Activation of GABAA receptors causes in immature neurons a functionally relevant decrease in the intracellular Cl- concentration ([Cl-]i), a process termed ionic plasticity. Amount and duration of ionic plasticity depends on kinetic properties of [Cl-]i homeostasis. In order to characterize the capacity of Cl- accumulation and to quantify the effect of persistent GABAergic activity on [Cl-]i, we performed gramicidin-perforated patch-clamp recordings from CA3 pyramidal neurons of immature (postnatal day 4-7) rat hippocampal slices. These experiments revealed that inhibition of NKCC1 decreased [Cl-]i toward passive distribution with a time constant of 381 s. In contrast, active Cl- accumulation occurred with a time constant of 155 s, corresponding to a rate of 15.4 µM/s. Inhibition of phasic GABAergic activity had no significant effect on steady state [Cl-]i. Inhibition of tonic GABAergic currents induced a significant [Cl-]i increase by 1.6 mM, while activation of tonic extrasynaptic GABAA receptors with THIP significantly reduced [Cl-]i.. Simulations of neuronal [Cl-]i homeostasis supported the observation, that basal levels of synaptic GABAergic activation do not affect [Cl-]i. In summary, these results indicate that active Cl--uptake in immature hippocampal neurons is sufficient to maintain stable [Cl-]i at basal levels of phasic and to some extent also to compensate tonic GABAergic activity.
Collapse
Affiliation(s)
- Sergey N Kolbaev
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.,Research Center of Neurology, Volokolamskoyeshosse, 80, Moscow, Russia, 125367
| | - Namrata Mohapatra
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Rongqing Chen
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.,Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Aniello Lombardi
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Jochen F Staiger
- Institute of Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.,ICAR3R-Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Rudolf-Buchheim-Str. 6, 35392, Giessen, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
3
|
Semilunar Granule Cells Are the Primary Source of the Perisomatic Excitatory Innervation onto Parvalbumin-Expressing Interneurons in the Dentate Gyrus. eNeuro 2020; 7:ENEURO.0323-19.2020. [PMID: 32571963 PMCID: PMC7340841 DOI: 10.1523/eneuro.0323-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 11/21/2022] Open
Abstract
We analyzed the origin and relevance of the perisomatic excitatory inputs on the parvalbumin interneurons of the granule cell layer in mouse. Confocal analysis of the glutamatergic innervation showed that it represents ∼50% of the perisomatic synapses that parvalbumin cells receive. This excitatory input may originate from granule cell collaterals, the mossy cells, or even supramammillary nucleus. First, we assessed the input from the mossy cells on parvalbumin interneurons. Axon terminals of mossy cells were visualized by their calretinin content. Using multicolor confocal microscopy, we observed that less than 10% of perisomatic excitatory innervation of parvalbumin cells could originate from mossy cells. Correlative light and electron microscopy revealed that innervation from mossy cells, although present, was indeed infrequent, except for those parvalbumin cells whose somata were located in the inner molecular layer. Second, we investigated the potential input from supramammillary nucleus on parvalbumin cell somata using anterograde tracing or immunocytochemistry against vesicular glutamate transporter 2 (VGLUT2) and found only occasional contacts. Third, we intracellularly filled dentate granule cells in acute slice preparations using whole-cell recording and examined whether their axon collaterals target parvalbumin interneurons. We found that typical granule cells do not innervate the perisomatic region of these GABAergic cells. In sharp contrast, semilunar granule cells (SGCs), a scarce granule cell subtype often contacted the parvalbumin cell soma and proximal dendrites. Our data, therefore, show that perisomatic excitatory drive of parvalbumin interneurons in the granular layer of the dentate gyrus is abundant and originates primarily from SGCs.
Collapse
|
4
|
Tamura H, Shiosaka S, Morikawa S. Trophic modulation of gamma oscillations: The key role of processing protease for Neuregulin-1 and BDNF precursors. Neurochem Int 2018; 119:2-10. [DOI: 10.1016/j.neuint.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/11/2017] [Accepted: 12/08/2017] [Indexed: 12/26/2022]
|
5
|
Radwan B, Dvorak D, Fenton AA. Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice. Neurobiol Dis 2016; 88:125-38. [PMID: 26792400 PMCID: PMC4758895 DOI: 10.1016/j.nbd.2016.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/31/2015] [Accepted: 01/07/2016] [Indexed: 12/21/2022] Open
Abstract
Fragile X syndrome (FXS) patients do not make the fragile X mental retardation protein (FMRP). The absence of FMRP causes dysregulated translation, abnormal synaptic plasticity and the most common form of inherited intellectual disability. But FMRP loss has minimal effects on memory itself, making it difficult to understand why the absence of FMRP impairs memory discrimination and increases risk of autistic symptoms in patients, such as exaggerated responses to environmental changes. While Fmr1 knockout (KO) and wild-type (WT) mice perform cognitive discrimination tasks, we find abnormal patterns of coupling between theta and gamma oscillations in perisomatic and dendritic hippocampal CA1 local field potentials of the KO. Perisomatic CA1 theta-gamma phase-amplitude coupling (PAC) decreases with familiarity in both the WT and KO, but activating an invisible shock zone, subsequently changing its location, or turning it off, changes the pattern of oscillatory events in the LFPs recorded along the somato-dendritic axis of CA1. The cognition-dependent changes of this pattern of neural activity are relatively constrained in WT mice compared to KO mice, which exhibit abnormally weak changes during the cognitive challenge caused by changing the location of the shock zone and exaggerated patterns of change when the shock zone is turned off. Such pathophysiology might explain how dysregulated translation leads to intellectual disability in FXS. These findings demonstrate major functional abnormalities after the loss of FMRP in the dynamics of neural oscillations and that these impairments would be difficult to detect by steady-state measurements with the subject at rest or in steady conditions.
Collapse
Affiliation(s)
- Basma Radwan
- Center for Neural Science, New York University, USA
| | - Dino Dvorak
- Center for Neural Science, New York University, USA; Joint Graduate Program in Biomedical Engineering State University of New York, Downstate Medical Center and New York University/Polytechnic University, USA
| | - André A Fenton
- Center for Neural Science, New York University, USA; Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural & Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
6
|
Vereczki VK, Veres JM, Müller K, Nagy GA, Rácz B, Barsy B, Hájos N. Synaptic Organization of Perisomatic GABAergic Inputs onto the Principal Cells of the Mouse Basolateral Amygdala. Front Neuroanat 2016; 10:20. [PMID: 27013983 PMCID: PMC4779893 DOI: 10.3389/fnana.2016.00020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/18/2016] [Indexed: 12/27/2022] Open
Abstract
Spike generation is most effectively controlled by inhibitory inputs that target the perisomatic region of neurons. Despite the critical importance of this functional domain, very little is known about the organization of the GABAergic inputs contacting the perisomatic region of principal cells (PCs) in the basolateral amygdala. Using immunocytochemistry combined with in vitro single-cell labeling we determined the number and sources of GABAergic inputs of PCs at light and electron microscopic levels in mice. We found that the soma and proximal dendrites of PCs were innervated primarily by two neurochemically distinct basket cell types expressing parvalbumin (PVBC) or cholecystokinin and CB1 cannabinoid receptors (CCK/CB1BC). The innervation of the initial segment of PC axons was found to be parceled out by PVBCs and axo-axonic cells (AAC), as the majority of GABAergic inputs onto the region nearest to the soma (between 0 and 10 μm) originated from PVBCs, while the largest portion of the axon initial segment was innervated by AACs. Detailed morphological investigations revealed that the three perisomatic region-targeting interneuron types significantly differed in dendritic and axonal arborization properties. We found that, although individual PVBCs targeted PCs via more terminals than CCK/CB1BCs, similar numbers (15–17) of the two BC types converge onto single PCs, whereas fewer (6–7) AACs innervate the axon initial segment of single PCs. Furthermore, we estimated that a PVBC and a CCK/CB1BC may target 800–900 and 700–800 PCs, respectively, while an AAC can innervate 600–650 PCs. Thus, BCs and AACs innervate ~10 and 20% of PC population, respectively, within their axonal cloud. Our results collectively suggest, that these interneuron types may be differently affiliated within the local amygdalar microcircuits in order to fulfill specific functions in network operation during various brain states.
Collapse
Affiliation(s)
- Viktória K Vereczki
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis UniversityBudapest, Hungary
| | - Judit M Veres
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis UniversityBudapest, Hungary
| | - Kinga Müller
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Gergö A Nagy
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Bence Rácz
- Department of Anatomy and Histology, Szent István UniversityBudapest, Hungary; Electronmicroscopy Research Group, Faculty of Veterinary Science, Szent István UniversityBudapest, Hungary
| | - Boglárka Barsy
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Norbert Hájos
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| |
Collapse
|
7
|
Koelbl C, Helmstaedter M, Lübke J, Feldmeyer D. A barrel-related interneuron in layer 4 of rat somatosensory cortex with a high intrabarrel connectivity. Cereb Cortex 2015; 25:713-25. [PMID: 24076498 PMCID: PMC4318534 DOI: 10.1093/cercor/bht263] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic connections between identified fast-spiking (FS), parvalbumin (PV)-positive interneurons, and excitatory spiny neurons in layer 4 (L4) of the barrel cortex were investigated using patch-clamp recordings and simultaneous biocytin fillings. Three distinct clusters of FS L4 interneurons were identified based on their axonal morphology relative to the barrel column suggesting that these neurons do not constitute a homogeneous interneuron population. One L4 FS interneuron type had an axonal domain strictly confined to a L4 barrel and was therefore named "barrel-confined inhibitory interneuron" (BIn). BIns established reliable inhibitory synaptic connections with L4 spiny neurons at a high connectivity rate of 67%, of which 69% were reciprocal. Unitary IPSPs at these connections had a mean amplitude of 0.9 ± 0.8 mV with little amplitude variation and weak short-term synaptic depression. We found on average 3.7 ± 1.3 putative inhibitory synaptic contacts that were not restricted to perisomatic areas. In conclusion, we characterized a novel type of barrel cortex interneuron in the major thalamo-recipient layer 4 forming dense synaptic networks with L4 spiny neurons. These networks constitute an efficient and powerful inhibitory feedback system, which may serve to rapidly reset the barrel microcircuitry following sensory activation.
Collapse
Affiliation(s)
- Christian Koelbl
- Department of Cell Physiology, Max Planck Institute of Medical Research, Jahnstr. 20, D-69120 Heidelberg, Germany
- Current address: Section of Cardiovascular Medicine, Boston University Medical Center, 88 East Newton Street, Boston, MA 02118, USA
| | - Moritz Helmstaedter
- Department of Cell Physiology, Max Planck Institute of Medical Research, Jahnstr. 20, D-69120 Heidelberg, Germany
- Current address: Structure of Neocortical Circuits Group, Max Planck Institute of Neurobiology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Joachim Lübke
- Institute for Neuroscience and Medicine, INM-2, Research Centre Jülich, Leo-Brandt-Str., D-52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelstr. 30, D-52074 Aachen, Germany
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA-Brain), D-52074, Aachen, Germany
| | - Dirk Feldmeyer
- Institute for Neuroscience and Medicine, INM-2, Research Centre Jülich, Leo-Brandt-Str., D-52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelstr. 30, D-52074 Aachen, Germany
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA-Brain), D-52074, Aachen, Germany
| |
Collapse
|
8
|
Lett TA, Voineskos AN, Kennedy JL, Levine B, Daskalakis ZJ. Treating working memory deficits in schizophrenia: a review of the neurobiology. Biol Psychiatry 2014; 75:361-70. [PMID: 24011822 DOI: 10.1016/j.biopsych.2013.07.026] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 01/06/2023]
Abstract
Cognitive deficits are a core feature of schizophrenia. Among these deficits, working memory impairment is considered a central cognitive impairment in schizophrenia. The prefrontal cortex, a region critical for working memory performance, has been demonstrated as a critical liability region in schizophrenia. As yet, there are no standardized treatment options for working memory deficits in schizophrenia. In this review, we summarize the neuronal basis for working memory impairment in schizophrenia, including dysfunction in prefrontal signaling pathways (e.g., γ-aminobutyric acid transmission) and neural network synchrony (e.g., gamma/theta oscillations). We discuss therapeutic strategies for working memory dysfunction such as pharmacological agents, cognitive remediation therapy, and repetitive transcranial magnetic stimulation. Despite the drawbacks of current approaches, the advances in neurobiological and translational treatment strategies suggest that clinical application of these methods will occur in the near future.
Collapse
Affiliation(s)
- Tristram A Lett
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, Toronto, Ontario, Canada
| | - Aristotle N Voineskos
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, Toronto, Ontario, Canada; Department of Psychiatry, Toronto, Ontario, Canada
| | - James L Kennedy
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, Toronto, Ontario, Canada; Department of Psychiatry, Toronto, Ontario, Canada
| | - Brian Levine
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Rotman Research Institute, Baycrest Centre Toronto, Toronto, Ontario, Canada
| | - Zafiris J Daskalakis
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, Toronto, Ontario, Canada; Department of Psychiatry, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Helgager J, Liu G, McNamara JO. The cellular and synaptic location of activated TrkB in mouse hippocampus during limbic epileptogenesis. J Comp Neurol 2013; 521:499-521, Spc1. [PMID: 22987780 DOI: 10.1002/cne.23225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/18/2012] [Accepted: 09/07/2012] [Indexed: 01/07/2023]
Abstract
Understanding the mechanisms of limbic epileptogenesis in cellular and molecular terms may provide novel therapeutic targets for its prevention. The neurotrophin receptor tropomyosin-related kinase B (TrkB) is thought to be critical for limbic epileptogenesis. Enhanced activation of TrkB, revealed by immunodetection of enhanced phosphorylated TrkB (pTrkB), a surrogate measure of its activation, has been identified within the hippocampus in multiple animal models. Knowledge of the cellular locale of activated TrkB is necessary to elucidate its functional consequences. Using an antibody selective to pTrkB in conjunction with confocal microscopy and cellular markers, we determined the cellular and subcellular locale of enhanced pTrkB induced by status epilepticus (SE) evoked by infusion of kainic acid into the amygdala of adult mice. SE induced enhanced pTrkB immunoreactivity in two distinct populations of principal neurons within the hippocampus-the dentate granule cells and CA1 pyramidal cells. Enhanced immunoreactivity within granule cells was found within mossy fiber axons and giant synaptic boutons. By contrast, enhanced immunoreactivity was found within apical dendritic shafts and spines of CA1 pyramidal cells. A common feature of this enhanced pTrkB at these cellular locales is its localization to excitatory synapses between excitatory neurons, presynaptically in the granule cells and postsynaptically in CA1 pyramidal cells. Long-term potentiation (LTP) is one cellular consequence of TrkB activation at these excitatory synapses that may promote epileptogenesis.
Collapse
Affiliation(s)
- Jeffrey Helgager
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
10
|
Bhowmik D, Shanahan M. Metastability and inter-band frequency modulation in networks of oscillating spiking neuron populations. PLoS One 2013; 8:e62234. [PMID: 23614040 PMCID: PMC3628585 DOI: 10.1371/journal.pone.0062234] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/19/2013] [Indexed: 11/18/2022] Open
Abstract
Groups of neurons firing synchronously are hypothesized to underlie many cognitive functions such as attention, associative learning, memory, and sensory selection. Recent theories suggest that transient periods of synchronization and desynchronization provide a mechanism for dynamically integrating and forming coalitions of functionally related neural areas, and that at these times conditions are optimal for information transfer. Oscillating neural populations display a great amount of spectral complexity, with several rhythms temporally coexisting in different structures and interacting with each other. This paper explores inter-band frequency modulation between neural oscillators using models of quadratic integrate-and-fire neurons and Hodgkin-Huxley neurons. We vary the structural connectivity in a network of neural oscillators, assess the spectral complexity, and correlate the inter-band frequency modulation. We contrast this correlation against measures of metastable coalition entropy and synchrony. Our results show that oscillations in different neural populations modulate each other so as to change frequency, and that the interaction of these fluctuating frequencies in the network as a whole is able to drive different neural populations towards episodes of synchrony. Further to this, we locate an area in the connectivity space in which the system directs itself in this way so as to explore a large repertoire of synchronous coalitions. We suggest that such dynamics facilitate versatile exploration, integration, and communication between functionally related neural areas, and thereby supports sophisticated cognitive processing in the brain.
Collapse
Affiliation(s)
- David Bhowmik
- Department of Computing, Imperial College London, London, United Kingdom.
| | | |
Collapse
|
11
|
Tonini R, Ferraro T, Sampedro-Castañeda M, Cavaccini A, Stocker M, Richards CD, Pedarzani P. Small-conductance Ca2+-activated K+ channels modulate action potential-induced Ca2+ transients in hippocampal neurons. J Neurophysiol 2013; 109:1514-24. [PMID: 23255726 PMCID: PMC3602936 DOI: 10.1152/jn.00346.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 12/17/2012] [Indexed: 12/12/2022] Open
Abstract
In hippocampal pyramidal neurons, voltage-gated Ca(2+) channels open in response to action potentials. This results in elevations in the intracellular concentration of Ca(2+) that are maximal in the proximal apical dendrites and decrease rapidly with distance from the soma. The control of these action potential-evoked Ca(2+) elevations is critical for the regulation of hippocampal neuronal activity. As part of Ca(2+) signaling microdomains, small-conductance Ca(2+)-activated K(+) (SK) channels have been shown to modulate the amplitude and duration of intracellular Ca(2+) signals by feedback regulation of synaptically activated Ca(2+) sources in small distal dendrites and dendritic spines, thus affecting synaptic plasticity in the hippocampus. In this study, we investigated the effect of the activation of SK channels on Ca(2+) transients specifically induced by action potentials in the proximal processes of hippocampal pyramidal neurons. Our results, obtained by using selective SK channel blockers and enhancers, show that SK channels act in a feedback loop, in which their activation by Ca(2+) entering mainly through L-type voltage-gated Ca(2+) channels leads to a reduction in the subsequent dendritic influx of Ca(2+). This underscores a new role of SK channels in the proximal apical dendrite of hippocampal pyramidal neurons.
Collapse
Affiliation(s)
- Raffaella Tonini
- Research Dept. of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Keimpema E, Straiker A, Mackie K, Harkany T, Hjerling-Leffler J. Sticking out of the crowd: the molecular identity and development of cholecystokinin-containing basket cells. J Physiol 2012; 590:703-14. [PMID: 22219340 DOI: 10.1113/jphysiol.2011.224386] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Certain essential cognitive processes require the precise temporal interplay between glutamatergic (excitatory) pyramidal cells and γ-aminobutyric acid (GABA)-releasing inhibitory interneurons in the hippocampus. Basket cells, the main class of interneurons, target pyramidal cell somata and proximal dendrites and thus are poised to modify network oscillations. Though only present in limited numbers, the impaired development of basket cells can result in changes in the hippocampal circuitry leading to neurological disorders, such as schizophrenia. The diversity of the spatial origins, neurochemical make-up, cytoarchitecture and network contributions amongst basket cells is a provocative example of interneuron heterogeneity in the hippocampus. This review discusses recent data concerned with the developmental trajectories of one subclass, the cholecystokinin-containing basket cell, and emphasizes the significance of the short-range intercellular guidance cues that have recently emerged to impact the formation and function of their inhibitory synapses.
Collapse
Affiliation(s)
- Erik Keimpema
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
13
|
Santini E, Klann E. Dysregulated mTORC1-Dependent Translational Control: From Brain Disorders to Psychoactive Drugs. Front Behav Neurosci 2011; 5:76. [PMID: 22073033 PMCID: PMC3210466 DOI: 10.3389/fnbeh.2011.00076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/21/2011] [Indexed: 01/09/2023] Open
Abstract
In the last decade, a plethora of studies utilizing pharmacological, biochemical, and genetic approaches have shown that precise translational control is required for long-lasting synaptic plasticity and the formation of long-term memory. Moreover, more recent studies indicate that alterations in translational control are a common pathophysiological feature of human neurological disorders, including developmental disorders, neuropsychiatric disorders, and neurodegenerative diseases. Finally, translational control mechanisms are susceptible to modification by psychoactive drugs. Taken together, these findings point to a central role for translational control in the regulation of synaptic function and behavior.
Collapse
Affiliation(s)
- Emanuela Santini
- Center for Neural Science, New York University New York, NY, USA
| | | |
Collapse
|
14
|
Ma XM, Huang JP, Kim EJ, Zhu Q, Kuchel GA, Mains RE, Eipper BA. Kalirin-7, an important component of excitatory synapses, is regulated by estradiol in hippocampal neurons. Hippocampus 2010; 21:661-77. [PMID: 20333733 DOI: 10.1002/hipo.20780] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2010] [Indexed: 12/13/2022]
Abstract
Estradiol enhances the formation of dendritic spines and excitatory synapses in hippocampal neurons in vitro and in vivo, but the underlying mechanisms are not fully understood. Kalirin-7 (Kal7), the major isoform of Kalirin in the adult hippocampus, is a Rho GDP/GTP exchange factor localized to postsynaptic densities. In the hippocampus, both Kal7 and estrogen receptor α (ERα) are highly expressed in a subset of interneurons. Over-expression of Kal7 caused an increase in spine density and size in hippocampal neurons. To determine whether Kalirin might play a role in the effects of estradiol on spine formation, Kal7 expression was examined in the hippocampus of ovariectomized rats. Estradiol replacement increased Kal7 staining in both CA1 pyramidal neurons and interneurons in ovariectomized rats. Estradiol treatment of cultured hippocampal neurons increased Kal7 levels at the postsynaptic side of excitatory synapses and increased the number of excitatory synapses along the dendrites of pyramidal neurons. These increases were mediated via ERα because a selective ERα agonist, but not a selective ERβ agonist, caused a similar increase in both Kal7 levels and excitatory synapse number in cultured hippocampal neurons. When Kal7 expression was reduced using a Kal7-specific shRNA, the density of excitatory synapses was reduced and estradiol was no longer able to increase synapse formation. Expression of exogenous Kal7 in hippocampal interneurons resulted in decreased levels of GAD65 staining. Inhibition of GABAergic transmission with bicuculline produced a robust increase in Kal7 expression. These studies suggest Kal7 plays a key role in the mechanisms of estradiol-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health Center, Farmington, 06030, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Synchronous neural activity and memory formation. Curr Opin Neurobiol 2010; 20:150-5. [PMID: 20303255 DOI: 10.1016/j.conb.2010.02.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/17/2010] [Indexed: 11/23/2022]
Abstract
Accumulating evidence suggests that the synchronization of neuronal activity plays an important role in memory formation. In particular, several recent studies have demonstrated that enhanced synchronous activity within and among medial temporal lobe structures is correlated with increased memory performance in humans and animals. Modulations in rhythmic synchronization in the gamma-frequency (30-100 Hz) and theta-frequency (4-8 Hz) bands have been related to memory performance, and interesting relationships have been described between these oscillations that suggest a mechanism for inter-areal coupling. Neuronal synchronization has also been linked to spike timing-dependent plasticity, a cellular mechanism thought to underlie learning and memory. The available evidence suggests that neuronal synchronization modulates memory performance as well as potential cellular mechanisms of memory storage.
Collapse
|
16
|
Cell type-specific control of neuronal responsiveness by gamma-band oscillatory inhibition. J Neurosci 2010; 30:2150-9. [PMID: 20147542 DOI: 10.1523/jneurosci.4818-09.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neocortical networks are composed of diverse populations of cells that differ in their chemical content, electrophysiological characteristics, and connectivity. Gamma-frequency oscillatory activity of inhibitory subnetworks has been hypothesized to regulate information processing in the cortex as a whole. Inhibitory neurons in these subnetworks synchronize their firing and selectively innervate the perisomatic compartments of their target neurons, generating both tonic and rapidly fluctuating inhibition. How do different types of cortical neurons respond to changes in the level and structure of perisomatic inhibition? What accounts for response heterogeneity between cell types, and are these response properties fixed or flexible? To answer these questions, we use in vitro whole-cell recording and dynamic-clamp somatic current injection to study six distinct types of cortical neurons. We demonstrate that different types of neurons systematically vary in their receptiveness to fast changes in the structure of inhibition and the range over which changes in inhibitory tone affect their output. Using simple neuron models and model neuron hybrids (dynamic clamp), we determine which intrinsic differences between cell types lead to these variations in receptiveness. These results suggest important differences in the way cell types are affected by gamma-frequency inhibition, which may have important circuit level implications. Although intrinsic differences observed in vitro are useful for the elucidation of basic cellular properties and differences between cell types, we also investigate how the integrative properties of neurons are likely to be rapidly modulated in the context of active networks in vivo.
Collapse
|
17
|
Gonzalez-Burgos G. GABA transporter GAT1: a crucial determinant of GABAB receptor activation in cortical circuits? ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 58:175-204. [PMID: 20655483 DOI: 10.1016/s1054-3589(10)58008-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The GABA transporter 1 (GAT1), the main plasma membrane GABA transporter in brain tissue, mediates translocation of GABA from the extracellular to the intracellular space. Whereas GAT1-mediated uptake could generally terminate the synaptic effects of GABA, recent studies suggest a more complex physiological role. This chapter reviews evidence suggesting that in hippocampal and neocortical circuits, GAT1-mediated GABA transport regulates the electrophysiological effects of GABA(B) receptor (GABA(B)R) activation by synaptically-released GABA. Contrasting with synaptic GABA(A) receptors, GABA(B)Rs display high GABA binding affinity, slow G protein-coupled mediated signaling, and a predominantly extrasynaptic localization. Such GABA(B)R properties determine production of slow inhibitory postsynaptic potentials (IPSPs) and slow presynaptic effects. Such effects possibly require diffusion of GABA far away from the release sites, and consequently both GABA(B)R-mediated IPSPs and presynaptic effects are strongly enhanced when GAT1-mediated uptake is blocked. Studies are reviewed here which indicate that GABA(B)R-mediated IPSPs seem to be produced by dendrite-targeting GABA neurons including specifically, although perhaps not exclusively, the neurogliaform cell class. In contrast, the GABA interneuron subtypes that synapse onto the perisomatic membrane of pyramidal cells mostly signal via synaptic GABA(A)Rs. This chapter reviews data suggesting that neurogliaform cells produce electrophysiological effects onto other neurons in the cortical cell network via GABA(B)R-mediated volume transmission that is highly regulated by GAT1 activity. Therefore, the role of GAT1 in controlling GABA(B)R-mediated signaling is markedly different from its regulation of GABA(A)R-mediated fast synaptic transmission.
Collapse
Affiliation(s)
- Guillermo Gonzalez-Burgos
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 2009; 32:209-24. [PMID: 19400723 DOI: 10.1146/annurev.neuro.051508.135603] [Citation(s) in RCA: 1122] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuronal gamma-band synchronization is found in many cortical areas, is induced by different stimuli or tasks, and is related to several cognitive capacities. Thus, it appears as if many different gamma-band synchronization phenomena subserve many different functions. I argue that gamma-band synchronization is a fundamental process that subserves an elemental operation of cortical computation. Cortical computation unfolds in the interplay between neuronal dynamics and structural neuronal connectivity. A core motif of neuronal connectivity is convergence, which brings about both selectivity and invariance of neuronal responses. However, those core functions can be achieved simultaneously only if converging neuronal inputs are functionally segmented and if only one segment is selected at a time. This segmentation and selection can be elegantly achieved if structural connectivity interacts with neuronal synchronization. I propose that this process is at least one of the fundamental functions of gamma-band synchronization, which then subserves numerous higher cognitive functions.
Collapse
Affiliation(s)
- Pascal Fries
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Marchionni I, Maccaferri G. Quantitative dynamics and spatial profile of perisomatic GABAergic input during epileptiform synchronization in the CA1 hippocampus. J Physiol 2009; 587:5691-708. [PMID: 19840998 DOI: 10.1113/jphysiol.2009.179945] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Perisomatic GABAergic input appears spared or even increased in intractable temporal lobe epilepsy, and has been suggested to contribute to the generation of pathological discharges. Nevertheless, its degree of functional activity during epileptiform synchronization has not been thoroughly investigated. Thus, it remains unclear how structural preservation or loss of domain-specific GABAergic input may affect the network. Here, we have taken advantage of a model of epileptiform activity in vitro to quantify the charge transfer provided by perisomatic GABA(A) receptor-mediated input to CA1 pyramidal neurons during interictal-like bursts. By recording both firing in GABAergic interneurons and the charge transfer generated by unitary postsynaptic currents to target pyramidal cells, we have estimated the charge transfer that would be dynamically generated by the recruitment of the entire pool of perisomatic-targeting interneurons and the number of perisomatic-targeting interneurons that would be required to generate the experimentally observed GABAergic input. In addition, we have recorded and compared the dynamics and charge density of GABAergic input recorded at different membrane compartments such as the soma vs. the proximal dendrite. Our results suggest that GABA(A) receptor-mediated perisomatic input is massively activated during burst synchronization and that its kinetic properties and charge density are similar at the soma and proximal dendrite. These functional results match structural data published by other laboratories very well and strengthen the hypothesis that the potential preservation of perisomatic GABAergic input in intractable epilepsies may be a key factor in the generation of pathological network activity.
Collapse
Affiliation(s)
- Ivan Marchionni
- Department of Physiology, Feinberg School of Medicine, 303 E Chicago Ave, Tarry Blg Rm 5-707 M211, Chicago, IL 60611, USA
| | | |
Collapse
|
20
|
Gonzalez-Burgos G, Rotaru DC, Zaitsev AV, Povysheva NV, Lewis DA. GABA transporter GAT1 prevents spillover at proximal and distal GABA synapses onto primate prefrontal cortex neurons. J Neurophysiol 2008; 101:533-47. [PMID: 19073797 DOI: 10.1152/jn.91161.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The plasma membrane GABA transporter GAT1 is thought to mediate uptake of synaptically released GABA. In the primate dorsolateral prefrontal cortex (DLPFC), GAT1 expression changes significantly during development and in schizophrenia. The consequences of such changes, however, are not well understood because GAT1's role has not been investigated in primate neocortical circuits. We thus studied the effects of the GAT1 blocker 1,2,5,6-tetrahydro-1-[2-[[(diphenylmethylene)amino]oxy]ethyl]-3-pyridinecarboxylic acid hydrochloride (NO711) on GABA transmission onto pyramidal neurons of monkey DLPFC. As in rat cortex, in monkey DLPFC NO711 did not substantially alter miniature GABA transmission, suggesting that GAT1 does not regulate single-synapse transmission. In rat cortical circuits, between-synapse GABA spillover produced by NO711 clearly prolongs the inhibitory postsynaptic currents, but whether NO711 also prolongs the inhibitory postsynaptic potentials (IPSPs) is unclear. Moreover, whether spillover differentially affects perisomatic versus dendritic inputs has not been examined. Here we found that NO711 prolonged the GABAA receptor-mediated IPSPs (GABAAR-IPSPs) evoked by stimulating perisomatic synapses. Dendritic, but not perisomatic, synapse stimulation often elicited a postsynaptic GABAB receptor-mediated IPSP that was enhanced by NO711. Blocking GABAB receptors revealed that NO711 prolonged the GABAAR-IPSPs evoked by stimulation of dendrite-targeting inputs. We conclude that a major functional role for GAT1 in primate cortical circuits is to prevent the effects of GABA spillover when multiple synapses are simultaneously active. Furthermore, we report that, at least in monkey DLPFC, GAT1 similarly restricts GABA spillover onto perisomatic or dendritic inputs, critically controlling the spatiotemporal specificity of inhibitory inputs onto proximal or distal compartments of the pyramidal cell membrane.
Collapse
Affiliation(s)
- Guillermo Gonzalez-Burgos
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, W1651 Biomedical Science Tower, 200 Lothrop St., Pittsburgh, PA 15261, USA.
| | | | | | | | | |
Collapse
|
21
|
Zheng F, Khanna S. Intra-hippocampal tonic inhibition influences formalin pain-induced pyramidal cell suppression, but not excitation in dorsal field CA1 of rat. Brain Res Bull 2008; 77:374-81. [PMID: 18852032 DOI: 10.1016/j.brainresbull.2008.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/12/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
Abstract
It has been hypothesized that intra-hippocampal GABAergic inhibitory interneurons mediate formalin pain-induced suppression of dorsal hippocampal CA1 pyramidal cell discharge. The present study performed on anaesthetized rats tested the hypothesis by disrupting GABAergic mechanisms with intra-hippocampal administration of the GABA(A) receptor antagonist bicuculline methiodide, applied either dorsally into the pyramidal cell layer and stratum oriens (dorsal-bicuculline) or ventrally into the region of apical dendrites (ventral-bicuculline). It was found that ventral-, but not dorsal-bicuculline attenuated formalin-induced suppression of pyramidal cell extracellular discharge. The antagonism was selective in such a way that the excitation of pyramidal cell was unaffected. Interestingly, ventral-bicuculline strongly disinhibited CA1 pyramidal cells and shifted the distribution of their spontaneous discharge to values higher than the control group. However, dorsal-bicuculline disinhibited the local CA1 interneurons that were strongly excited on injection of formalin. Overall, the findings favour the notion that tonic GABA(A) receptor mechanisms located in the region of apical dendrites facilitate formalin-induced pyramidal cell suppression by masking the background excitatory drive impinging on the pyramidal cells. Interestingly, both the attenuation of formalin-induced inhibition and facilitation of basal discharge of CA1 pyramidal cells by ventral-bicuculline are similar to the effects seen previously with the destruction of medial septal cholinergic neurons. This convergence of effects strengthens the proposal that the network of medial septal cholinergic neurons and hippocampal GABAergic interneurons influence formalin pain-induced CA1 pyramidal cell suppression. In addition, the data point to a non-overlapping excitatory drive whose strength is unaffected by the inhibitory drive that underpins formalin suppression.
Collapse
Affiliation(s)
- F Zheng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD9, 2 Medical Drive, Singapore 117597, Singapore.
| | | |
Collapse
|
22
|
Liagkouras I, Michaloudi H, Batzios C, Psaroulis D, Georgiadis M, Künzle H, Papadopoulos GC. Pyramidal neurons in the septal and temporal CA1 field of the human and hedgehog tenrec hippocampus. Brain Res 2008; 1218:35-46. [DOI: 10.1016/j.brainres.2008.04.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 04/17/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
|
23
|
Shemer I, Brinne B, Tegnér J, Grillner S. Electrotonic signals along intracellular membranes may interconnect dendritic spines and nucleus. PLoS Comput Biol 2008; 4:e1000036. [PMID: 18369427 PMCID: PMC2266990 DOI: 10.1371/journal.pcbi.1000036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 02/13/2008] [Indexed: 11/20/2022] Open
Abstract
Synapses on dendritic spines of pyramidal neurons show a remarkable ability to induce phosphorylation of transcription factors at the nuclear level with a short latency, incompatible with a diffusion process from the dendritic spines to the nucleus. To account for these findings, we formulated a novel extension of the classical cable theory by considering the fact that the endoplasmic reticulum (ER) is an effective charge separator, forming an intrinsic compartment that extends from the spine to the nuclear membrane. We use realistic parameters to show that an electrotonic signal may be transmitted along the ER from the dendritic spines to the nucleus. We found that this type of signal transduction can additionally account for the remarkable ability of the cell nucleus to differentiate between depolarizing synaptic signals that originate from the dendritic spines and back-propagating action potentials. This study considers a novel computational role for dendritic spines, and sheds new light on how spines and ER may jointly create an additional level of processing within the single neuron. Our study incorporates the fact that the endoplasmic reticulum (ER) forms a complete continuum from the spine head to the nuclear envelope and suggests that electrical current flow in a neuron may be better described by a cable-within-a-cable system, where synaptic current flows simultaneously in the medium between the cell membrane and the ER, and within the ER (the internal cable). Our paper provides a novel extension to the classical cable theory (namely, cable-within-cable theory) and presents several interesting predictions. We show that some of these predictions are supported by recent experiments, whereas the principal hypothesis may shed new light on some puzzling observations related to signaling from synapse-to-nucleus. Overall, we show that intracellular-level electrophysiology may introduce principles that appear counter-intuitive with views originating from conventional cellular-level electrophysiology.
Collapse
Affiliation(s)
- Isaac Shemer
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
24
|
Abstract
Recent evidence supports the hypothesis of a functional dichotomy of perisomatic inhibition in the cerebral cortex: the parvalbumin- and cholecystokinin-containing basket cells that are specialized to control rhythm (as a clockwork) and "mood" (as a fine-tuning device), respectively, of network oscillations. Pathology extends this conclusion further, as the former is implicated in epilepsy and the latter in anxiety. The well-balanced cooperation of the two inhibitory systems is required for the normal network operations underlying the cognitive functions of the cerebral cortex.
Collapse
Affiliation(s)
- Tamás F Freund
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | |
Collapse
|
25
|
Leung LS, Peloquin P. GABA(B) receptors inhibit backpropagating dendritic spikes in hippocampal CA1 pyramidal cells in vivo. Hippocampus 2006; 16:388-407. [PMID: 16411229 DOI: 10.1002/hipo.20168] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spike backpropagation has been proposed to enhance dendritic depolarization and synaptic plasticity. However, relatively little is known about the inhibitory control of spike backpropagation in vivo. In this study, the backpropagation of the antidromic spike into the dendrites of CA1 pyramidal cells was studied by extracellular recording in urethane-anesthetized rats. The population antidromic spike (pAS) in CA1 following stimulation of the alveus was recorded simultaneously with a 16-channel silicon probe and analyzed as current source density (CSD). The pAS current sink was shown to sequentially invade the soma and then the apical and basal dendrites. When the pAS was preceded <400 ms by a conditioning orthodromic CA3 stimulus, the apical and basal dendritic spike sinks were reduced and delayed. Dendritic spike suppression was large after a high-intensity CA3 conditioning stimulus that evoked a population spike, small after a low-intensity CA3 conditioning stimulus, and weak after conditioning by another pAS. The late (150-400 ms latency) inhibition of the backpropagating pAS at the apical and basal dendrites was partially relieved by a GABA(B) receptor antagonist, CGP35348 or CGP56999A, given intracerebroventricularly (icv). CGP35348 icv also decreased the latency of the antidromic spike sinks at all depths. A compartment cable model of a CA1 pyramidal cell with excitable dendrites, combined with a model of extracellular potential generation, confirms that GABA(B) receptor activation delays a backpropagating spike and blocks distal dendritic spikes. GABA(B) receptor-mediated conductance increase and hyperpolarization, amplified by removing dendritic I(A) inactivation, contribute to conditioned dendritic spike suppression. In addition, the model shows that slow Na(+) channel inactivation also participates in conditioned spike suppression, which may partly explain the small dendritic spike suppression after conditioning with a weak orthodromic stimulus or another antidromic spike. Thus, both theory and experiment confirm an important role of the GABA(B) receptors in controlling dendritic spike backpropagation.
Collapse
Affiliation(s)
- L Stan Leung
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
| | | |
Collapse
|
26
|
Axmacher N, Winterer J, Stanton PK, Draguhn A, Müller W. Two-photon imaging of spontaneous vesicular release in acute brain slices and its modulation by presynaptic GABAA receptors. Neuroimage 2004; 22:1014-21. [PMID: 15193633 DOI: 10.1016/j.neuroimage.2004.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 01/20/2004] [Accepted: 02/04/2004] [Indexed: 11/16/2022] Open
Abstract
Action potential-independent spontaneous vesicular release of gamma-aminobutyric acid (GABA) in the CNS mediates miniature inhibitory postsynaptic currents (mIPSCs) and exerts an important control on central excitability. Using dual-photon laser scan microscopy and hyperosmotic loading of the readily releasable vesicle pool with the fluorescent styryl dye FM1-43 in hippocampal slice, we demonstrate action potential-independent release of vesicles (fluorescence destaining) from proximal perisomatic, presumed GABAergic terminals and significant inhibition of this release by the specific GABA(A) receptor agonist muscimol in the presence of tetrodotoxin and glutamate receptor antagonists CNQX and AP5. These data agree with reduction of mIPSCs by muscimol in whole-cell recordings from CA3 pyramidal neurons. In contrast, rate of vesicle release from distal, presumably glutamatergic terminals, was significantly lower and not changed by muscimol. The effect of muscimol on mIPSCs was not blocked but rather enhanced in the absence of external calcium. Our data directly demonstrate a potent disinhibitory reduction of GABA release by GABA(A) receptor activation. Those novel methods should be well suited to study pathophysiological changes in inhibition in resections obtained from neurosurgical treatment of epilepsy patients.
Collapse
Affiliation(s)
- Nikolai Axmacher
- Johannes-Müller-Institut für Physiologie, Humboldt Universität Berlin, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
27
|
Alonso-Nanclares L, White EL, Elston GN, DeFelipe J. Synaptology of the proximal segment of pyramidal cell basal dendrites. Eur J Neurosci 2004; 19:771-6. [PMID: 14984428 DOI: 10.1111/j.0953-816x.2003.03166.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyramidal neurons are covered with dendritic spines, the main postsynaptic targets of excitatory (asymmetrical) synapses. However, the proximal portion of both the apical and basal dendrites is devoid of spines, suggesting a lack of excitatory inputs to this region. In the present study we used electron microscopy to analyse the proximal region of the basal dendrites of supra- and infragranular pyramidal cells to determine if this is the case. The proximal region of 80 basal dendrites sampled from the rat hindlimb representation in the primary somatosensory cortex was studied by electron microscopy. A total of 317 synapses were found within this region of the dendrites, all of which were of the symmetrical type. These results suggest that glutamate receptors, although present in the cytoplasm, are not involved in synaptic junctions in the proximal portion of the dendrites. These data further support the idea that inhibitory terminals exclusively innervate the proximal region of basal dendrites.
Collapse
|
28
|
Isomura Y, Sugimoto M, Fujiwara-Tsukamoto Y, Yamamoto-Muraki S, Yamada J, Fukuda A. Synaptically activated Cl- accumulation responsible for depolarizing GABAergic responses in mature hippocampal neurons. J Neurophysiol 2004; 90:2752-6. [PMID: 14534278 DOI: 10.1152/jn.00142.2003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is known that GABA, a major inhibitory transmitter in the CNS, acts as an excitatory (or depolarizing) transmitter transiently after intense GABAA receptor activation in adult brains. The depolarizing effect is considered to be dependent on two GABAA receptor-permeable anions, chloride (Cl-) and bicarbonate (HCO3-). However, little is known about their spatial and temporal profiles during the GABAergic depolarization in postsynaptic neurons. In the present study, we show that the amplitude of synaptically induced depolarizing response was correlated with intracellular Cl- accumulation in the soma of mature hippocampal CA1 pyramidal cells, by using whole cell patch-clamp recording and Cl- imaging technique with a Cl- indicator 6-methoxy-N-ethylquinolinium iodide (MEQ). The synaptically activated Cl- accumulation was mediated dominantly through GABAA receptors. Basket cells, a subclass of fast-spiking interneurons innervating the somatic portion of the pyramidal cells, actually fired at high frequency during the Cl- accumulation accompanying the depolarizing responses. These results suggest synaptically activated GABAA-mediated Cl- accumulation may play a critical role in generation of an excitatory GABAergic response in the mature pyramidal cells receiving intense synaptic inputs. This may be the first demonstration of microscopic visualization of intracellular Cl- accumulation during synaptic activation.
Collapse
Affiliation(s)
- Y Isomura
- Department of System Neuroscience, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Gamma frequency (30-80 Hz) oscillations are recordable from human and rodent entorhinal cortex. A number of mechanisms used by neuronal networks to generate such oscillations in the hippocampus have been characterized. However, it is as yet unclear as to whether these mechanisms apply to other anatomically disparate brain regions. Here we show that the medial entorhinal cortex (mEC) in isolation in vitro generates gamma frequency oscillations in response to kainate receptor agonists. Oscillations had the same horizontal and laminar spatiotemporal distribution as seen in vivo and in the isolated whole-brain preparation. Oscillations occurred in the absence of input from the hippocampal formation and did not spread to lateral entorhinal regions. Pharmacological similarities existed between oscillations in the hippocampus and mEC in that the latter were also sensitive to GABAA receptor blockade, barbiturates, AMPA receptor blockade, and reduction in gap junctional conductance. Stellate and pyramidal neuron recordings revealed a large GABAergic input consisting of gamma frequency IPSP trains. Fast spiking interneurons in the superficial mEC generated action potentials at gamma frequencies phase locked to the local field. Stellate cells also demonstrated a subthreshold membrane potential oscillation at theta frequencies that was temporally correlated with a theta-frequency modulation in field gamma power. Disruption in this stellate theta frequency oscillation by the hyperpolarisation activated current (Ih) blocker ZD7288 also disrupted theta modulation of field gamma frequency oscillations. We propose that similar cellular and network mechanisms to those seen in the hippocampus generate and modulate persistent gamma oscillations in the entorhinal cortex.
Collapse
|
30
|
Abstract
Research of cannabinoid actions was boosted in the 1990s by remarkable discoveries including identification of endogenous compounds with cannabimimetic activity (endocannabinoids) and the cloning of their molecular targets, the CB1 and CB2 receptors. Although the existence of an endogenous cannabinoid signaling system has been established for a decade, its physiological roles have just begun to unfold. In addition, the behavioral effects of exogenous cannabinoids such as delta-9-tetrahydrocannabinol, the major active compound of hashish and marijuana, await explanation at the cellular and network levels. Recent physiological, pharmacological, and high-resolution anatomical studies provided evidence that the major physiological effect of cannabinoids is the regulation of neurotransmitter release via activation of presynaptic CB1 receptors located on distinct types of axon terminals throughout the brain. Subsequent discoveries shed light on the functional consequences of this localization by demonstrating the involvement of endocannabinoids in retrograde signaling at GABAergic and glutamatergic synapses. In this review, we aim to synthesize recent progress in our understanding of the physiological roles of endocannabinoids in the brain. First, the synthetic pathways of endocannabinoids are discussed, along with the putative mechanisms of their release, uptake, and degradation. The fine-grain anatomical distribution of the neuronal cannabinoid receptor CB1 is described in most brain areas, emphasizing its general presynaptic localization and role in controlling neurotransmitter release. Finally, the possible functions of endocannabinoids as retrograde synaptic signal molecules are discussed in relation to synaptic plasticity and network activity patterns.
Collapse
Affiliation(s)
- Tamas F Freund
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 8, Szigony u.43, H-1083 Hungary.
| | | | | |
Collapse
|
31
|
Abstract
Oblique dendrites of CA1 pyramidal neurons predominate in stratum radiatum and receive approximately 80% of the synaptic input from Schaffer collaterals. Despite this fact, most of our understanding of dendritic signal processing in these neurons comes from studies of the main apical dendrite. Using a combination of Ca2+ imaging and whole-cell recording techniques in rat hippocampal slices, we found that the properties of the oblique dendrites differ markedly from those of the main dendrites. These different properties tend to equalize the Ca2+ rise from single action potentials as they backpropagate into the oblique dendrites from the main trunk. Evidence suggests that this normalization of Ca2+ signals results from a higher density of a transient, A-type K+ current [I(K(A))] in the oblique versus the main dendrites. The higher density of I(K(A)) may have important implications for our understanding of synaptic integration and plasticity in these structures.
Collapse
|
32
|
Reagan LP, McEwen BS. Diabetes, but not stress, reduces neuronal nitric oxide synthase expression in rat hippocampus: implications for hippocampal synaptic plasticity. Neuroreport 2002; 13:1801-4. [PMID: 12395127 DOI: 10.1097/00001756-200210070-00022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) plays an important role in synaptic plasticity and learning and memory. Since deficits in long-term potentiation (LTP) and learning are observed in diabetic rats and following stress, we examined the expression of nNOS mRNA and protein in the hippocampus of streptozotocin (STZ) diabetic rats and rats subjected to restraint stress. Stress did not modulate nNOS expression, while nNOS mRNA and protein levels were significantly decreased in the hippocampus of STZ diabetic rats. These results suggest that: (1) decreased expression of nNOS mRNA and protein may contribute to deficits in hippocampal dependent learning and LTP in diabetic rats; and (2) other mechanisms may be involved in stress mediated decreases in hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Lawrence P Reagan
- Haroldand Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
33
|
Gillies MJ, Traub RD, LeBeau FEN, Davies CH, Gloveli T, Buhl EH, Whittington MA. A model of atropine-resistant theta oscillations in rat hippocampal area CA1. J Physiol 2002; 543:779-93. [PMID: 12231638 PMCID: PMC2290530 DOI: 10.1113/jphysiol.2002.024588] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Theta frequency oscillations are a predominant feature of rhythmic activity in the hippocampus. We demonstrate that hippocampal area CA1 generates atropine-resistant theta population oscillations in response to metabotropic glutamate receptor activation under conditions of reduced AMPA receptor activation. This activity occurred in the absence of inputs from area CA3 and extra-ammonic areas. Field theta oscillations were co-expressed with pyramidal distal apical dendritic burst spiking and were temporally related to trains of IPSPs with slow kinetics. Pyramidal somatic responses showed theta oscillations consisted of compound inhibitory synaptic potentials with initial IPSPs with slow kinetics followed by trains of smaller, faster IPSPs. Pharmacological modulation of IPSPs altered the theta oscillation suggesting an inhibitory network origin. Somatic IPSPs, dendritic burst firing and stratum pyramidale interneuron activity were all temporally correlated with spiking in stratum oriens interneurons demonstrating intrinsic theta-frequency oscillations. Disruption of spiking in these interneurons was accompanied by a loss of both field theta and theta frequency IPSP trains. We suggest that population theta oscillations can be generated as a consequence of intrinsic theta frequency spiking activity in a subset of stratum oriens interneurons controlling electrogenesis in pyramidal cell apical dendrites.
Collapse
Affiliation(s)
- M J Gillies
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9NQ, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Van Sickle BJ, Cox AS, Schak K, Greenfield LJ, Tietz EI. Chronic benzodiazepine administration alters hippocampal CA1 neuron excitability: NMDA receptor function and expression(1). Neuropharmacology 2002; 43:595-606. [PMID: 12367605 DOI: 10.1016/s0028-3908(02)00152-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rats are tolerant to benzodiazepine (BZ) anticonvulsant actions two days after ending one-week administration of the BZ, flurazepam (FZP). Concurrently, GABA(A) receptor-mediated inhibition is reduced and AMPA receptor-mediated excitation is selectively enhanced in CA1 pyramidal neurons in hippocampal slices. In the present study, the effects of chronic FZP exposure on NMDA receptor (NMDAR) currents were examined in CA1 pyramidal neurons in hippocampal slices and following acute dissociation. In CA1 neurons from chronic FZP-treated rats, evoked NMDAR EPSC amplitude was significantly decreased (52%) in slices, and the maximal current amplitude of NMDA-induced currents in dissociated neurons was also significantly reduced (58%). Evoked NMDAR EPSCs were not altered following acute desalkyl-FZP treatment. Using in situ hybridization and immunohistochemical techniques, a selective reduction in NR2B subunit mRNA and protein expression was detected in the CA1 and CA2 regions following FZP treatment. However, total hippocampal NMDAR number, as assessed by autoradiography with the NMDAR antagonist, [(3)H]MK-801, was unchanged by FZP treatment. These findings suggest that reduced NMDAR-mediated currents associated with chronic BZ treatment may be related to reduced NR2B subunit-containing NMDARs in the CA1 and CA2 regions. Altered NMDAR function and expression after chronic BZ exposure may contribute to BZ anticonvulsant tolerance or dependence.
Collapse
Affiliation(s)
- B J Van Sickle
- Department of Pharmacology, Medical College of Ohio, Block Health Science Building, 3035 Arlington Ave, Toledo 43614, USA
| | | | | | | | | |
Collapse
|
35
|
Van Sickle BJ, Tietz EI. Selective enhancement of AMPA receptor-mediated function in hippocampal CA1 neurons from chronic benzodiazepine-treated rats. Neuropharmacology 2002; 43:11-27. [PMID: 12213255 DOI: 10.1016/s0028-3908(02)00065-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two days following one-week administration of the benzodiazepine, flurazepam (FZP), rats exhibit anticonvulsant tolerance in vivo, while reduced GABA(A) receptor-mediated inhibition and enhanced EPSP amplitude are present in CA1 pyramidal neurons in vitro. AMPA receptor (AMPAR)-mediated synaptic transmission in FZP-treated rats was examined using electrophysiological techniques in in vitro hippocampal slices. In CA1 pyramidal neurons from FZP-treated rats, the miniature excitatory postsynaptic current (mEPSC) amplitude was significantly increased (33%) without change in frequency, rise time or decay time. Moreover, mEPSC amplitude was not elevated in dentate granule neurons following 1-week FZP treatment or in CA1 pyramidal neurons following acute desalkyl-FZP treatment. Regulation of AMPAR number was assessed by quantitative autoradiography with the AMPAR antagonist, [(3)H]Ro48-8587. Specific binding was significantly increased in stratum pyramidale of hippocampal areas CA1 and CA2 and in proximal dendritic fields of CA1 pyramidal neurons. Regulation of AMPAR subunit proteins was examined using immunological techniques. Neither abundance nor distribution of GluR1-3 subunit proteins was different in the CA1 region following FZP treatment. These findings suggest that enhanced AMPAR currents, mediated at least in part by increased AMPAR number, may contribute to BZ anticonvulsant tolerance. Furthermore, these studies suggest an interaction between GABAergic and glutamatergic systems in the CA1 region which may provide novel therapeutic strategies for restoring BZ effectiveness.
Collapse
|
36
|
Morozov Y, Khalilov I, Ben-Ari Y, Represa A. Correlative fluorescence and electron microscopy of biocytin-filled neurons with a preservation of the postsynaptic ultrastructure. J Neurosci Methods 2002; 117:81-5. [PMID: 12084567 DOI: 10.1016/s0165-0270(02)00076-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several techniques enable to inject intracellularly neurons with dyes and to use light and electron microscopy to correlate the physiological data with the morphological properties of the neuron. However, the ultrastructure of the neuron is usually obscured by the injected dye thus notably precluding the analysis of the postsynaptic specialisation and that of the other organelles. To overcome this problem, we have developed a technique based on fluorophore- and ultra small gold-conjugated streptavidins. We report, that this method facilitates the identification of intracellular organelles of the biocytin-filled neuron and of postsynaptic densities. This method is valid for the study of early postnatal neurons that are particularly refractory to this type of analysis. The procedure introduced here consists of the following steps: (1) injection of biocytin into the neuron by a patch-clamp pipette, (2) aldehyde fixation, (3) reaction with a fluorophore-conjugated streptavidin, (4) analysis with a fluorescence microscope, (5) formation of avidin-biotin complexes (ABC), (6) reaction with an ultra small gold-conjugated streptavidin, (7) silver enhancement of gold, (8) postfixation with osmium tetroxide and embedding in resin, (9) ultrathin sectioning and analysis with an electron microscope. Using this method, we show that in early postnatal hippocampal neurons, that have been injected with biocytine, it is possible to determine the morphology of the dendritic and axonal trees (including very thin details such as spines and filopodia) and to identify the localisation of the symmetric and asymmetric synapses on dendrites of the injected neuron.
Collapse
Affiliation(s)
- Youri Morozov
- INMED/INSERM U29, 163 Route de Luminy, BP 13, 13009 Marseille, France
| | | | | | | |
Collapse
|
37
|
|
38
|
|