1
|
Activation of the mGlu 1 metabotropic glutamate receptor has antipsychotic-like effects and is required for efficacy of M 4 muscarinic receptor allosteric modulators. Mol Psychiatry 2020; 25:2786-2799. [PMID: 30116027 PMCID: PMC6588501 DOI: 10.1038/s41380-018-0206-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/01/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
Abstract
Recent clinical and preclinical studies suggest that selective activators of the M4 muscarinic acetylcholine receptor have potential as a novel treatment for schizophrenia. M4 activation inhibits striatal dopamine release by mobilizing endocannabinoids, providing a mechanism for local effects on dopamine signaling in the striatum but not in extrastriatal areas. G protein-coupled receptors (GPCRs) typically induce endocannabinoid release through activation of Gαq/11-type G proteins whereas M4 transduction occurs through Gαi/o-type G proteins. We now report that the ability of M4 to inhibit dopamine release and induce antipsychotic-like effects in animal models is dependent on co-activation of the Gαq/11-coupled mGlu1 subtype of metabotropic glutamate (mGlu) receptor. This is especially interesting in light of recent findings that multiple loss of function single nucleotide polymorphisms (SNPs) in the human gene encoding mGlu1 (GRM1) are associated with schizophrenia, and points to GRM1/mGlu1 as a gene within the "druggable genome" that could be targeted for the treatment of schizophrenia. Herein, we report that potentiation of mGlu1 signaling following thalamo-striatal stimulation is sufficient to inhibit striatal dopamine release, and that a novel mGlu1 positive allosteric modulator (PAM) exerts robust antipsychotic-like effects through an endocannabinoid-dependent mechanism. However, unlike M4, mGlu1 does not directly inhibit dopamine D1 receptor signaling and does not reduce motivational responding. Taken together, these findings highlight a novel mechanism of cross talk between mGlu1 and M4 and demonstrate that highly selective mGlu1 PAMs may provide a novel strategy for the treatment of positive symptoms associated with schizophrenia.
Collapse
|
2
|
mGlu1 receptor as a drug target for treatment of substance use disorders: time to gather stones together? Psychopharmacology (Berl) 2017; 234:1333-1345. [PMID: 28285325 DOI: 10.1007/s00213-017-4581-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
Abstract
Modulation of the mGlu1 receptor was repeatedly shown to inhibit various phenomena associated with exposure to abused drugs. Efficacy in preclinical models was observed with both positive and negative allosteric modulators (PAMs and NAMs, respectively) using essentially non-overlapping sets of experimental methods. Taken together, these data indicate that the mGlu1 receptor certainly plays a significant role in the plasticity triggered by the exposure to abused drugs and is involved in the maintenance of drug-seeking and drug-taking behaviors. Understanding whether modulation of the mGlu1 receptor activity can also affect drug-seeking and drug-taking in humans could have a significant impact on the future development of medications in this field. We argue that the mGlu1 receptor NAMs have a significant value as potential tools for human experimental pharmacology that could help to validate methods used in preclinical research. Compared with the PAMs, the mGlu1 receptor NAMs appear to be better candidates for this role due to the following: (1) a number of highly potent, selective, and chemically diverse mGlu1 receptor NAMs to choose from; (2) availability of high-quality PET ligands to monitor target exposure; and (3) a rich pharmacological profile with a number of effects that can complement anti-addictive action (e.g., anxiolytic/antidepressant) and may also serve as additional pharmacodynamic readouts during the preclinical-to-clinical translation. We believe that the mGlu1 receptor NAMs have a significant value as potential tools for human experimental pharmacology that could help to validate methods used in preclinical research.
Collapse
|
3
|
Lum JS, Fernandez F, Matosin N, Andrews JL, Huang XF, Ooi L, Newell KA. Neurodevelopmental Expression Profile of Dimeric and Monomeric Group 1 mGluRs: Relevance to Schizophrenia Pathogenesis and Treatment. Sci Rep 2016; 6:34391. [PMID: 27721389 PMCID: PMC5056358 DOI: 10.1038/srep34391] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022] Open
Abstract
Group 1 metabotropic glutamate receptors (mGluR1/mGluR5) play an integral role in neurodevelopment and are implicated in psychiatric disorders, such as schizophrenia. mGluR1 and mGluR5 are expressed as homodimers, which is important for their functionality and pharmacology. We examined the protein expression of dimeric and monomeric mGluR1α and mGluR5 in the prefrontal cortex (PFC) and hippocampus throughout development (juvenile/adolescence/adulthood) and in the perinatal phencyclidine (PCP) model of schizophrenia. Under control conditions, mGluR1α dimer expression increased between juvenile and adolescence (209-328%), while monomeric levels remained consistent. Dimeric mGluR5 was steadily expressed across all time points; monomeric mGluR5 was present in juveniles, dramatically declining at adolescence and adulthood (-97-99%). The mGluR regulators, Homer 1b/c and Norbin, significantly increased with age in the PFC and hippocampus. Perinatal PCP treatment significantly increased juvenile dimeric mGluR5 levels in the PFC and hippocampus (37-50%) but decreased hippocampal mGluR1α (-50-56%). Perinatal PCP treatment also reduced mGluR1α dimer levels in the PFC at adulthood (-31%). These results suggest that Group 1 mGluRs have distinct dimeric and monomeric neurodevelopmental patterns, which may impact their pharmacological profiles at specific ages. Perinatal PCP treatment disrupted the early expression of Group 1 mGluRs which may underlie neurodevelopmental alterations observed in this model.
Collapse
Affiliation(s)
- Jeremy S. Lum
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
| | - Francesca Fernandez
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
- School of Psychology, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Natalie Matosin
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10 Munich Germany
| | - Jessica L. Andrews
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Kelly A. Newell
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
| |
Collapse
|
4
|
Hutson PH, Tarazi FI, Madhoo M, Slawecki C, Patkar AA. Preclinical pharmacology of amphetamine: Implications for the treatment of neuropsychiatric disorders. Pharmacol Ther 2014; 143:253-64. [DOI: 10.1016/j.pharmthera.2014.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/14/2014] [Indexed: 11/28/2022]
|
5
|
Achat-Mendes C, Platt DM, Spealman RD. Antagonism of metabotropic glutamate 1 receptors attenuates behavioral effects of cocaine and methamphetamine in squirrel monkeys. J Pharmacol Exp Ther 2012; 343:214-24. [PMID: 22815535 DOI: 10.1124/jpet.112.196295] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Within the group I family of metabotropic glutamate receptors (mGluRs), substantial evidence points to a role for mGluR5 mechanisms in cocaine's abuse-related behavioral effects, but less is understood about the contribution of mGluR1, which also belongs to the group I mGluR family. The selective mGluR1 antagonist JNJ16259685 [(3,4-dihydro-2H-pyrano-[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone] was used to investigate the role of mGluR1 in the behavioral effects of cocaine and methamphetamine. In drug discrimination experiments, squirrel monkeys were trained to discriminate cocaine from saline by using a two-lever, food-reinforced operant procedure. JNJ16259685 (0.56 mg/kg) pretreatments significantly attenuated cocaine's discriminative stimulus effects and the cocaine-like discriminative stimulus effects of methamphetamine. In monkeys trained to self-administer cocaine or methamphetamine under a second-order schedule of intravenous drug injection, JNJ16259685 (0.56 mg/kg) significantly reduced drug-reinforced responding, resulting in a downward displacement of dose-response functions. In reinstatement studies, intravenous priming with cocaine accompanied by restoration of a cocaine-paired stimulus reinstated extinguished cocaine-seeking behavior, which was significantly attenuated by JNJ16259685 (0.56 mg/kg). Finally, in experiments involving food rather than drug self-administration, cocaine and methamphetamine increased the rate of responding, and the rate-increasing effects of both psychostimulants were significantly attenuated by JNJ16259685 (0.3 mg/kg). At the doses tested, JNJ16259685 did not significantly suppress food-reinforced behavior (drug discrimination or fixed-interval schedule of food delivery), but did significantly reduce species-typical locomotor activity in observational studies. To the extent that the psychostimulant-antagonist effects of JNJ16259685 are independent of motor function suppression, further research is warranted to investigate other mGluR1 antagonists for potential therapeutic value in psychostimulant abuse.
Collapse
Affiliation(s)
- Cindy Achat-Mendes
- Division of Neuroscience, New England Primate Research Center, Harvard Medical School, Southborough, MA 01772, USA.
| | | | | |
Collapse
|
6
|
Herman EJ, Bubser M, Conn PJ, Jones CK. Metabotropic glutamate receptors for new treatments in schizophrenia. Handb Exp Pharmacol 2012:297-365. [PMID: 23027420 DOI: 10.1007/978-3-642-25758-2_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) represent exciting targets for the development of novel therapeutic agents for schizophrenia. Recent studies indicate that selective activation of specific mGluR subtypes may provide potential benefits for not only the positive symptoms, but also the negative symptoms and cognitive impairments observed in individuals with schizophrenia. Although optimization of traditional orthosteric agonists may still offer a feasible approach for the activation of mGluRs, important progress has been made in the discovery of novel subtype-selective allosteric ligands, including positive allosteric modulators (PAMs) of mGluR2 and mGluR5. These allosteric mGluR ligands have improved properties for clinical development and have served as key preclinical tools for a more in-depth understanding of the potential roles of these different mGluR subtypes for the treatment of schizophrenia.
Collapse
Affiliation(s)
- E J Herman
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
7
|
Metabotropic Glutamate Receptor–Dopamine Interactions in the Basal Ganglia Motor Circuit. ACTA ACUST UNITED AC 2011. [DOI: 10.1201/b11284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
8
|
Lesage A, Steckler T. Metabotropic glutamate mGlu1 receptor stimulation and blockade: therapeutic opportunities in psychiatric illness. Eur J Pharmacol 2010; 639:2-16. [PMID: 20371230 DOI: 10.1016/j.ejphar.2009.12.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 12/15/2009] [Accepted: 12/18/2009] [Indexed: 12/26/2022]
Abstract
Metabotropic glutamate mGlu(1) receptors play a modulatory role in the nervous system. They enhance cell excitability, modulate synaptic neurotransmission and are involved in synaptic plasticity. During the last 10 years, several selective metabotropic glutamate mGlu(1) receptor competitive antagonists and potentiators have been discovered. These pharmacological tools, together with early and later work in metabotropic glutamate mGlu(1) receptor mutant mice have allowed studying the role of the receptor in various aspects of psychiatric illnesses such as anxiety, depression and schizophrenia. We here review the data on selective metabotropic glutamate mGlu(1) receptor antagonists in support of their potential as anxiolytic and antidepressant treatments. We propose a rationale for the development of metabotropic glutamate mGlu(1) receptor positive allosteric modulators for the treatment of schizophrenia. Potential side effects of blockade and activation of metabotropic glutamate mGlu(1) receptors are addressed, with special focus on the differential effects of metabotropic glutamate mGlu(1) receptor antagonists in cognition models with positive reinforcement versus those that use aversive learning procedures. Further development of negative allosteric modulators and more drug-like positive allosteric modulators will be required in order to decipher the therapeutic efficacy and safety margin of these compounds in the clinic.
Collapse
Affiliation(s)
- Anne Lesage
- Department of CNS-Neuroscience, Research and Early Development, Johnson and Johnson Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | | |
Collapse
|
9
|
van den Buuse M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 2010; 36:246-70. [PMID: 19900963 PMCID: PMC2833124 DOI: 10.1093/schbul/sbp132] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, there have been huge advances in the use of genetically modified mice to study pathophysiological mechanisms involved in schizophrenia. This has allowed rapid progress in our understanding of the role of several proposed gene mechanisms in schizophrenia, and yet this research has also revealed how much still remains unresolved. Behavioral studies in genetically modified mice are reviewed with special emphasis on modeling psychotic-like behavior. I will particularly focus on observations on locomotor hyperactivity and disruptions of prepulse inhibition (PPI). Recommendations are included to address pharmacological and methodological aspects in future studies. Mouse models of dopaminergic and glutamatergic dysfunction are then discussed, reflecting the most important and widely studied neurotransmitter systems in schizophrenia. Subsequently, psychosis-like behavior in mice with modifications in the most widely studied schizophrenia susceptibility genes is reviewed. Taken together, the available studies reveal a wealth of available data which have already provided crucial new insight and mechanistic clues which could lead to new treatments or even prevention strategies for schizophrenia.
Collapse
Affiliation(s)
- Maarten van den Buuse
- Mental Health Research Institute of Victoria, Parkville, Melbourne, Victoria 3052, Australia.
| |
Collapse
|
10
|
Group I Metabotropic Glutamate Receptor-mediated Gene Expression in Striatal Neurons. Neurochem Res 2008; 33:1920-4. [DOI: 10.1007/s11064-008-9654-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
|
11
|
Agari T, Yasuhara T, Matsui T, Kuramoto S, Kondo A, Miyoshi Y, Shingo T, Borlongan CV, Date I. Intrapallidal metabotropic glutamate receptor activation in a rat model of Parkinson's disease: behavioral and histological analyses. Brain Res 2008; 1203:189-96. [PMID: 18313647 DOI: 10.1016/j.brainres.2008.01.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 01/13/2008] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) have been recently implicated as robust therapeutic targets for Parkinson's disease (PD). Here, we explored how activation of mGluRs in globus pallidus (GP) affected the amphetamine-induced rotational behavior in the unilateral 6-hydroxydopamine (6-OHDA) lesion rat model of PD. The amphetamine-induced rotations were completely suppressed by the ipsilateral intrapallidal injection of the non-selective mGluR agonist, 1-aminocyclopentane-1S,3R-dicarboxylic acid (ACPD) and the selective group I mGluR agonist, (R,S)-3,5-dihydroxyphenylglycine (DHPG), but not the selective group III mGluR agonist, l-2-amino-4-phosphonobutyric acid (l-AP4). The suppressive effects were detected at 2, 4, 6, 8, and 12 h after ACPD injection, but returned to the control level at 24 h. A remarkable c-fos expression was found in the lesioned side of GP, subthalamic nucleus (STN), and substantia nigra pars reticulata (SNr) of rats that received the ACPD or DHPG injection, compared to rats treated with L-AP-4 or phosphate buffer-injection. The results indicate that the blockade of amphetamine-induced rotations might be at least partially mediated by group I mGluR activation. This study advances the use of selective group I mGluRs directed toward the GP for PD treatment.
Collapse
Affiliation(s)
- Takashi Agari
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, Japan, 700-8558
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Parelkar NK, Wang JQ. Upregulation of metabotropic glutamate receptor 8 mRNA expression in the rat forebrain after repeated amphetamine administration. Neurosci Lett 2008; 433:250-4. [PMID: 18255232 DOI: 10.1016/j.neulet.2008.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 12/30/2007] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are G-protein-coupled receptors and are densely expressed in the forebrain of adult rats. Accumulative evidence suggests a critical role of mGluRs in the regulation of normal physiological activity of neurons and pathogenesis of mental illnesses such as schizophrenia, depression, and substance addiction. In this study, we investigated alterations in mGluR8 subtype mRNA expression in the rat forebrain in response to repeated intraperitoneal administration of amphetamine (twice daily for 12 days, 5mg/kg per injection) using quantitative in situ hybridization. We found that mGluR8 mRNA levels were profoundly increased in the dorsal (caudate putamen) and ventral (nucleus accumbens) striatum 1 day after the discontinuation of amphetamine treatments. Such increases were sustained up to 21 days of withdrawal. Increases in mGluR8 mRNAs were also found in the cerebral cortex, including the cingulate and sensory cortex but not the piriform cortex, at 1 and 21 days. These data demonstrate a positive response of mGluR8 in mRNA abundance in most forebrain regions to repeated stimulant exposure.
Collapse
Affiliation(s)
- Nikhil K Parelkar
- Division of Pharmacology, School of Pharmacy, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | | |
Collapse
|
13
|
Phillips TJ, Kamens HM, Wheeler JM. Behavioral genetic contributions to the study of addiction-related amphetamine effects. Neurosci Biobehav Rev 2007; 32:707-59. [PMID: 18207241 PMCID: PMC2360482 DOI: 10.1016/j.neubiorev.2007.10.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 09/28/2007] [Accepted: 10/28/2007] [Indexed: 11/24/2022]
Abstract
Amphetamines, including methamphetamine, pose a significant cost to society due to significant numbers of amphetamine-abusing individuals who suffer major health-related consequences. In addition, methamphetamine use is associated with heightened rates of violent and property-related crimes. The current paper reviews the existing literature addressing genetic differences in mice that impact behavioral responses thought to be relevant to the abuse of amphetamine and amphetamine-like drugs. Summarized are studies that used inbred strains, selected lines, single-gene knockouts and transgenics, and quantitative trait locus (QTL) mapping populations. Acute sensitivity, neuroadaptive responses, rewarding and conditioned effects are among those reviewed. Some gene mapping work has been accomplished, and although no amphetamine-related complex trait genes have been definitively identified, translational work leading from results in the mouse to studies performed in humans is beginning to emerge. The majority of genetic investigations have utilized single-gene knockout mice and have concentrated on dopamine- and glutamate-related genes. Genes that code for cell support and signaling molecules are also well-represented. There is a large behavioral genetic literature on responsiveness to amphetamines, but a considerably smaller literature focused on genes that influence the development and acceleration of amphetamine use, withdrawal, relapse, and behavioral toxicity. Also missing are genetic investigations into the effects of amphetamines on social behaviors. This information might help to identify at-risk individuals and in the future to develop treatments that take advantage of individualized genetic information.
Collapse
|
14
|
Hubert GW, Kuhar MJ. Colocalization of CART peptide with prodynorphin and dopamine D1 receptors in the rat nucleus accumbens. Neuropeptides 2006; 40:409-15. [PMID: 17064765 DOI: 10.1016/j.npep.2006.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/01/2006] [Accepted: 09/02/2006] [Indexed: 10/24/2022]
Abstract
CART peptide is a peptidergic neurotransmitter that is expressed in brain regions involved in critical biological processes such as feeding and stress, and in areas associated with drug reward and abuse including the dopamine-rich nucleus accumbens (NAcc), which can be considered part of the basal ganglia. Because CART has been shown to colocalize with substance P, a marker of the basal ganglia direct pathway, we now test for colocalization with other markers of the direct pathway to determine if CART colocalizes with dynorphin and dopamine D1 receptors. In the NAcc, CART peptide immunoreactivity (IR) was colocalized with prodynorphin-IR in neurons. Approximately 80.1% of CART-IR cells colocalized with prodynorphin-IR, while only 27.6% of prodynorphin-IR neurons contained CART-IR, suggesting that CART cells are a subset of dynorphin cells. In contrast, only about 25% of CART-IR cell bodies demonstrated dopamine D1 receptor-IR. Because dynorphin and D1 receptors are markers for the basal ganglia direct pathway, from the NAcc to the basal ganglia output nuclei, and because CART significantly colocalizes with these markers, some CART neurons are part of the direct pathway or some comparable pathway in the accumbens. The presence of CART in NAcc neurons and the fact that NAcc projection neurons have extensive local collaterals suggest that CART may have effects in both terminal and cell body regions of the accumbens and may therefore affect information processing in the NAcc by modulating accumbal neurons.
Collapse
Affiliation(s)
- George W Hubert
- Division of Neuroscience, Yerkes National Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA.
| | | |
Collapse
|
15
|
|
16
|
Dravolina OA, Danysz W, Bespalov AY. Effects of group I metabotropic glutamate receptor antagonists on the behavioral sensitization to motor effects of cocaine in rats. Psychopharmacology (Berl) 2006; 187:397-404. [PMID: 16896963 DOI: 10.1007/s00213-006-0440-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 05/14/2006] [Indexed: 11/25/2022]
Abstract
RATIONALE Metabotropic glutamate receptors (mGluRs) were reported to regulate various behavioral effects of addictive drugs. OBJECTIVE The present study evaluated the role of group I mGluRs in the progressive augmentation ("sensitization") of the behavioral effects observed after repeated, intermittent cocaine exposure. MATERIALS AND METHODS After habituation to handling and baseline activity measurement (days 1-2), rats received eight injections of cocaine (10 mg/kg) or saline on days 3-6, 8-11, and then, were tested twice with acute saline and cocaine given in a counterbalanced manner on days 13 and 15. Before the test sessions, subjects were pretreated with mGluR1 antagonist EMQMCM (JNJ16567083, (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate) and mGluR5 antagonist MTEP ([(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine). RESULTS Pretreatment with EMQMCM (2.5-10 mg/kg) but not MTEP (2.5-10 mg/kg) significantly reduced expression of the sensitized ambulatory motor activity of the cocaine-experienced animals acutely challenged with cocaine. Both EMQMCM and MTEP significantly reduced vertical motor activity across all cocaine/saline treatment conditions. CONCLUSIONS These findings indicate that the expression of behavioral sensitization to cocaine-induced stimulation of locomotor activity may be modulated by group I mGluR antagonists (mGluR1 rather than mGluR5), but these effects occur at the dose levels that attenuate vertical activity.
Collapse
Affiliation(s)
- Olga A Dravolina
- Laboratory of Behavioral Pharmacology, Institute of Pharmacology, Pavlov Medical University, 6/8 Lev Tolstoy Street, St Petersburg, Russia.
| | | | | |
Collapse
|
17
|
Hara Y, Yakovleva T, Bakalkin G, Pickel VM. Dopamine D1 receptors have subcellular distributions conducive to interactions with prodynorphin in the rat nucleus accumbens shell. Synapse 2006; 60:1-19. [PMID: 16575853 DOI: 10.1002/syn.20273] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activation of dopamine (DA) D1 receptors (D1Rs) in the nucleus accumbens (Acb) markedly affects the levels of prodynorphin, the precursor of aversion-associated dynorphin peptides. The location of prodynorphin, specifically as related to the dopaminergic inputs and D1Rs in the Acb, is fundamental for establishing the physiologically relevant sites. To determine these sites, we examined the electron microscopic dual-immunolabeling of prodynorphin and D1R or tyrosine hydroxylase (TH), a marker of catecholamine terminals in the rat Acb shell. This subregion is targeted by mesolimbic dopaminergic inputs affecting reward-aversion responses and locomotor activity. Prodynorphin was prominently localized to large (100-200 nm) granular aggregates in somatodendritic and axonal profiles, some of which expressed dynorphin A/B. In somata and dendrites, prodynorphin was often found in punctate clusters in the cytoplasm. Of the total prodynorphin-labeled dendrites, approximately 63% expressed D1Rs, which were largely located on the plasma membranes. In comparison with dendrites, many more axon terminals contained prodynorphin, although only 15% of these terminals contained D1R-labeling. Prodynorphin terminals formed symmetric synapses with D1R-labeled or unlabeled dendrites, and also apposed TH-containing axon terminals. Our results provide ultrastructural evidence that in the Acb shell, the prodynorphin is available for cleavage to physiologically active peptides in both dendrites and terminals of neurons that express D1Rs. They also indicate that dynorphin peptides have distributions that would enable their participation in modulation of DA release or D1R-mediated postsynaptic responses in Acb shell neurons.
Collapse
Affiliation(s)
- Yuko Hara
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
18
|
Nistri A, Ostroumov K, Sharifullina E, Taccola G. Tuning and playing a motor rhythm: how metabotropic glutamate receptors orchestrate generation of motor patterns in the mammalian central nervous system. J Physiol 2006; 572:323-34. [PMID: 16469790 PMCID: PMC1779665 DOI: 10.1113/jphysiol.2005.100610] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Repeated motor activities like locomotion, mastication and respiration need rhythmic discharges of functionally connected neurons termed central pattern generators (CPGs) that cyclically activate motoneurons even in the absence of descending commands from higher centres. For motor pattern generation, CPGs require integration of multiple processes including activation of ion channels and transmitter receptors at strategic locations within motor networks. One emerging mechanism is activation of glutamate metabotropic receptors (mGluRs) belonging to group I, while group II and III mGluRs appear to play an inhibitory function on sensory inputs. Group I mGluRs generate neuronal membrane depolarization with input resistance increase and rapid fluctuations in intracellular Ca(2+), leading to enhanced excitability and rhythmicity. While synchronicity is probably due to modulation of inhibitory synaptic transmission, these oscillations occurring in coincidence with strong afferent stimuli or application of excitatory agents can trigger locomotor-like patterns. Hence, mGluR-sensitive spinal oscillators play a role in accessory networks for locomotor CPG activation. In brainstem networks supplying tongue muscle motoneurons, group I receptors facilitate excitatory synaptic inputs and evoke synchronous oscillations which stabilize motoneuron firing at regular, low frequency necessary for rhythmic tongue contractions. In this case, synchronicity depends on the strong electrical coupling amongst motoneurons rather than inhibitory transmission, while cyclic activation of K(ATP) conductances sets its periodicity. Activation of mGluRs is therefore a powerful strategy to trigger and recruit patterned discharges of motoneurons.
Collapse
Affiliation(s)
- Andrea Nistri
- Neurobiology Sector, CNR-INFM DEMOCRITOS National Simulation Center, International School for Advanced Studies (SISSA), Trieste, Italy.
| | | | | | | |
Collapse
|
19
|
Rodriguez VM, Thiruchelvam M, Cory-Slechta DA. Sustained exposure to the widely used herbicide atrazine: altered function and loss of neurons in brain monoamine systems. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:708-15. [PMID: 15929893 PMCID: PMC1257595 DOI: 10.1289/ehp.7783] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The widespread use of atrazine (ATR) and its persistence in the environment have resulted in documented human exposure. Alterations in hypothalamic catecholamines have been suggested as the mechanistic basis of the toxicity of ATR to hormonal systems in females and the reproductive tract in males. Because multiple catecholamine systems are present in the brain, however, ATR could have far broader effects than are currently understood. Catecholaminergic systems such as the two major long-length dopaminergic tracts of the central nervous system play key roles in mediating a wide array of critical behavioral functions. In this study we examined the hypothesis that ATR would adversely affect these brain dopaminergic systems. Male rats chronically exposed to 5 or 10 mg/kg ATR in the diet for 6 months exhibited persistent hyperactivity and altered behavioral responsivity to amphetamine. Moreover, when measured 2 weeks after the end of exposure, the levels of various monoamines and the numbers of tyrosine hydroxylase-positive (TH+) and -negative (TH-) cells measured using unbiased stereology were reduced in both dopaminergic tracts. Acute exposures to 100 or 200 mg/kg ATR given intraperitoneally to evaluate potential mechanisms reduced both basal and potassium-evoked striatal dopamine release. Collectively, these studies demonstrate that ATR can produce neurotoxicity in dopaminergic systems that are critical to the mediation of movement as well as cognition and executive function. Therefore, ATR may be an environmental risk factor contributing to dopaminergic system disorders, underscoring the need for further investigation of its mechanism(s) of action and corresponding assessment of its associated human health risks.
Collapse
Affiliation(s)
- Veronica M Rodriguez
- Environmental and Occupational Health Sciences Institute, and Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
20
|
Yap JJ, Covington HE, Gale MC, Datta R, Miczek KA. Behavioral sensitization due to social defeat stress in mice: antagonism at mGluR5 and NMDA receptors. Psychopharmacology (Berl) 2005; 179:230-9. [PMID: 15517195 DOI: 10.1007/s00213-004-2023-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 08/31/2004] [Indexed: 11/29/2022]
Abstract
RATIONALE Repeated administration of psychostimulants progressively augments the behavioral response to and increases self-administration behavior of these drugs. Experience of repeated intermittent social defeat stress episodes also leads to a sensitized locomotor response following psychostimulant challenge. Both metabotropic and ionotropic glutamate receptors have been shown to be critical in the induction and expression of stimulant sensitization, but their role in sensitization due to social defeat stress remains unclear. OBJECTIVE We evaluated the role of mGluR5 and NMDA glutamate receptors in the development of amphetamine-induced and social defeat stress-induced sensitization, using the non-competitive mGluR5 antagonist, MPEP, and the non-competitive NMDA antagonist, dizocilpine (MK-801). METHODS In adult, male CFW mice, sensitization was induced by either ten daily injections of D-amphetamine (1 mg/kg) or ten daily brief episodes of social defeat. Mice were pretreated with MPEP (3 mg/kg or 10 mg/kg) or dizocilpine (0.1 mg/kg) prior to amphetamine injections. Mice subjected to social defeat were pretreated with MPEP (10 mg/kg) or dizocilpine (0.1 mg/kg). Ten days after induction, the expression of locomotor sensitization to amphetamine was determined. RESULTS The induction of sensitization due to social defeat stress was prevented by MPEP, yet MPEP did not inhibit the development of behavioral sensitization to amphetamine. Confirming and extending earlier results, dizocilpine pretreatment blocked both amphetamine-induced and stress-induced sensitization. CONCLUSIONS These data indicate that behavioral sensitization to social defeat stress is dependent on mGluR5 receptors, whereas low-dose amphetamine sensitization may not be.
Collapse
Affiliation(s)
- Jasmine J Yap
- Department of Psychology, Tufts University, Medford, Mass., USA
| | | | | | | | | |
Collapse
|
21
|
Mao L, Wang JQ. Contribution of ionotropic glutamate receptors to acute amphetamine-stimulated preproenkephalin mRNA expression in the rat striatum in vivo. Neurosci Lett 2003; 346:17-20. [PMID: 12850537 DOI: 10.1016/s0304-3940(03)00542-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study evaluated the possible role of ionotropic glutamate receptors in mediating the inducible preproenkephalin (PPE) mRNA expression in the rat striatum in response to systemic administration of a psychostimulant amphetamine. A single injection of amphetamine (5 mg/kg, i.p.) increased PPE mRNA levels in the dorsal striatum as revealed via quantitative in situ hybridization. Pretreatment with the NMDA receptor antagonist, MK801 (0.5 mg/kg, i.p.) or 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (10 mg/kg, i.p.), attenuated the amphetamine-induced PPE mRNA expression. A similar attenuation of the amphetamine-induced PPE expression, although to a lesser extent, was also observed following pretreatment with a kainate/AMPA receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (100-200 mg/kg, i.p.). Three antagonists alone had no significant effect on basal levels of PPE mRNAs in the dorsal striatum. These data indicate that both NMDA and kainate/AMPA receptors are involved in coupling extracellular signals evoked by acute stimulant exposure to PPE mRNA expression in striatal neurons.
Collapse
Affiliation(s)
- Limin Mao
- Division of Pharmacology, School of Pharmacy, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | | |
Collapse
|
22
|
Parelkar NK, Wang JQ. Preproenkephalin mRNA expression in rat dorsal striatum induced by selective activation of metabotropic glutamate receptor subtype-5. Synapse 2003; 47:255-61. [PMID: 12539198 DOI: 10.1002/syn.10174] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Group I metabotropic glutamate receptors (mGluR1 and mGluR5 subtypes) are positively coupled to phosphoinositide hydrolysis through G-proteins and are densely expressed in medium-sized projection neurons of striatum. Selective activation of Group I mGluRs upregulates preproenkephalin (PPE) mRNA expression in the rat dorsal striatum. This study investigated the role of one subtype of Group I receptors, mGluR5, in the regulation of PPE mRNA expression in the rat dorsal striatum using quantitative in situ hybridization. Unilateral injection of the mGluR5 selective agonist (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG) into the dorsal striatum (caudoputamen) of chronically cannulated rats at doses of 50 and 200 nmol elevated basal levels of PPE mRNA in the injected dorsal striatum. The induction of PPE mRNA was evident at 1 h, remained at 3 h, and returned to normal level 6 h after CHPG injection. Pretreatment with an mGluR5 selective antagonist 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP) at a dose of 10 mg/kg (i.p.) blocked CHPG-stimulated PPE expression. MPEP also attenuated PPE expression induced by dopamine D(2) receptor blockade with eticlopride (0.5 mg/kg, i.p.). Administration of MPEP alone had no significant effects on basal levels of PPE mRNA in the striatum. The results from the present study demonstrate that glutamatergic tone on mGluR5 possesses the ability to positively regulate PPE gene expression in striatal neurons in vivo. Moreover, activation of mGluR5 participates in the mediation of D(2) antagonist-induced PPE expression.
Collapse
Affiliation(s)
- Nikhil K Parelkar
- Division of Pharmacology, University of Missouri Kansas City, School of Pharmacy, Kansas City, Missouri 64108, USA
| | | |
Collapse
|
23
|
Micheli F, Fabio RD, Cavanni P, Rimland JM, Capelli AM, Chiamulera C, Corsi M, Corti C, Donati D, Feriani A, Ferraguti F, Maffeis M, Missio A, Ratti E, Paio A, Pachera R, Quartaroli M, Reggiani A, Sabbatini FM, Trist DG, Ugolini A, Vitulli G. Synthesis and pharmacological characterisation of 2,4-dicarboxy-pyrroles as selective non-competitive mGluR1 antagonists. Bioorg Med Chem 2003; 11:171-83. [PMID: 12470711 DOI: 10.1016/s0968-0896(02)00424-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are an unusual family of G-protein coupled receptor (GPCR), and are characterised by a large extracellular N-terminal domain that contains the glutamate binding site. We have identified a new class of non-competitive metabotropic glutamate receptor 1 (mGluR1) antagonists, 2,4-dicarboxy-pyrroles which are endowed with nanomolar potency. They interact within the 7 transmembrane (7TM) domain of the receptor and show antinociceptive properties when tested in a number of different animal models.
Collapse
Affiliation(s)
- Fabrizio Micheli
- GlaxoSmithkline Medicine Research Centre, Via Fleming, 4-37135 Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
This paper is the twenty-fourth installment of the annual review of research concerning the opiate system. It summarizes papers published during 2001 that studied the behavioral effects of the opiate peptides and antagonists. The particular topics covered this year include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology(Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
25
|
Abstract
Drugs of abuse are able to elicit compulsive drug-seeking behaviors upon repeated administration, which ultimately leads to the phenomenon of addiction. Evidence indicates that the susceptibility to develop addiction is influenced by sources of reinforcement, variable neuroadaptive mechanisms, and neurochemical changes that together lead to altered homeostasis of the brain reward system. Addiction is hypothesized to be a cycle of progressive dysregulation of the brain reward system that results in the compulsive use and loss of control over drug taking and the initiation of behaviors associated with drug seeking. The view that addiction represents a pathological state of reward provides an approach to identifying the factors that contribute to vulnerability, addiction, and relapse in genetic animal models.
Collapse
Affiliation(s)
- Aki Laakso
- Howard Hughes Medical Institute Laboratories, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
26
|
Mao L, Conquet F, Wang JQ. Impaired preprodynorphin, but not preproenkephalin, mRNA induction in the striatum of mGluR1 mutant mice in response to acute administration of the full dopamine D(1) agonist SKF-82958. Synapse 2002; 44:86-93. [PMID: 11891880 DOI: 10.1002/syn.10061] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metabotropic glutamate receptor 1 (mGluR1) is highly expressed in striatonigral projection neurons of rat striatum. To define the role of mGluR1 in the regulation of striatal gene expression, the responsiveness of the three neuropeptide gene expression to a single injection of the dopamine D(1) agonist SKF-82958 was compared between mGluR1 mutant and wild-type control mice. We found that acute injection of SKF-82958 increased preprodynorphin (PPD), substance P (SP), and preproenkephalin (PPE) mRNAs in the dorsal and ventral striatum of mutant and wild-type mice in a dose-dependent manner (0.125, 0.5, and 2 mg/kg, i.p.) as revealed by quantitative in situ hybridization. However, the induction of PPD mRNA in both the dorsal and ventral striatum of mGluR1 minus sign/minus sign mice was significantly less than that of wild-type +/+ mice in response to the two higher doses of SKF-82958. In contrast to PPD, SP and PPE in the dorsal and ventral striatum of mGluR1 mutant mice were elevated to a similar level as that of wild-type mice. There were no differences in basal levels and distribution patterns of all three mRNAs between the two genotypes of mice treated with saline. These results indicate that mGluR1 selectively participates in striatonigral PPD induction in response to D(1) receptor stimulation.
Collapse
Affiliation(s)
- Limin Mao
- Division of Pharmacology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | | | | |
Collapse
|