1
|
Parent MB. Using Postmeal Measures and Manipulations to Investigate Hippocampal Mnemonic Control of Eating Behavior. Neuroscience 2022; 497:228-238. [PMID: 34998891 PMCID: PMC9256844 DOI: 10.1016/j.neuroscience.2021.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Episodic meal-related memories provide the brain with a powerful mechanism for tracking and controlling eating behavior because they contain a detailed record of recent energy intake that likely outlasts the physiological signals generated by feeding bouts. This review briefly summarizes evidence from human participants showing that episodic meal-related memory limits later eating behavior and then describes our research aimed at investigating whether hippocampal neurons mediate the inhibitory effects of meal-related memory on subsequent feeding. Our approach has been inspired by pioneering work conducted by Ivan Izquierdo and others who used posttraining manipulations to investigate memory consolidation. This review describes the rationale and value of posttraining manipulations, how Izquierdo used them to demonstrate that dorsal hippocampal (dHC) neurons are critical for memory consolidation, and how we have adapted this strategy to investigate whether dHC neurons are necessary for mnemonic control of energy intake. I describe our evidence showing that ingestion activates the molecular processes necessary for synaptic plasticity and memory during the early postprandial period, when the memory of the meal would be undergoing consolidation, and then summarize our findings showing that neural activity in dHC neurons is critical during the early postprandial period for limiting future intake. Collectively, our evidence supports the hypothesis that dHC neurons mediate the inhibitory effects of ingestion-related memory on future intake and demonstrates that post-experience memory modulation is not confined to artificial laboratory memory tasks.
Collapse
Affiliation(s)
- M B Parent
- Neuroscience Institute & Department of Psychology, Georgia State University, PO Box 5030, Atlanta, GA 30303, USA.
| |
Collapse
|
2
|
Parent MB, Higgs S, Cheke LG, Kanoski SE. Memory and eating: A bidirectional relationship implicated in obesity. Neurosci Biobehav Rev 2022; 132:110-129. [PMID: 34813827 PMCID: PMC8816841 DOI: 10.1016/j.neubiorev.2021.10.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023]
Abstract
This paper reviews evidence demonstrating a bidirectional relationship between memory and eating in humans and rodents. In humans, amnesia is associated with impaired processing of hunger and satiety cues, disrupted memory of recent meals, and overconsumption. In healthy participants, meal-related memory limits subsequent ingestive behavior and obesity is associated with impaired memory and disturbances in the hippocampus. Evidence from rodents suggests that dorsal hippocampal neural activity contributes to the ability of meal-related memory to control future intake, that endocrine and neuropeptide systems act in the ventral hippocampus to provide cues regarding energy status and regulate learned aspects of eating, and that consumption of hypercaloric diets and obesity disrupt these processes. Collectively, this evidence indicates that diet-induced obesity may be caused and/or maintained, at least in part, by a vicious cycle wherein excess intake disrupts hippocampal functioning, which further increases intake. This perspective may advance our understanding of how the brain controls eating, the neural mechanisms that contribute to eating-related disorders, and identify how to treat diet-induced obesity.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute & Department of Psychology, Georgia State University, Box 5030, Atlanta, GA 30303-5030, United States.
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, BI5 2TT, United Kingdom.
| | - Lucy G Cheke
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom.
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, 90089-0371, United States.
| |
Collapse
|
3
|
mRNA Trafficking in the Nervous System: A Key Mechanism of the Involvement of Activity-Regulated Cytoskeleton-Associated Protein (Arc) in Synaptic Plasticity. Neural Plast 2021; 2021:3468795. [PMID: 34603440 PMCID: PMC8486535 DOI: 10.1155/2021/3468795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/15/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Synaptic activity mediates information storage and memory consolidation in the brain and requires a fast de novo synthesis of mRNAs in the nucleus and proteins in synapses. Intracellular localization of a protein can be achieved by mRNA trafficking and localized translation. Activity-regulated cytoskeleton-associated protein (Arc) is a master regulator of synaptic plasticity and plays an important role in controlling large signaling networks implicated in learning, memory consolidation, and behavior. Transcription of the Arc gene may be induced by a short behavioral event, resulting in synaptic activation. Arc mRNA is exported into the cytoplasm and can be trafficked into the dendrite of an activated synapse where it is docked and translated. The structure of Arc is similar to the viral GAG (group-specific antigen) protein, and phylogenic analysis suggests that Arc may originate from the family of Ty3/Gypsy retrotransposons. Therefore, Arc might evolve through “domestication” of retroviruses. Arc can form a capsid-like structure that encapsulates a retrovirus-like sentence in the 3′-UTR (untranslated region) of Arc mRNA. Such complex can be loaded into extracellular vesicles and transported to other neurons or muscle cells carrying not only genetic information but also regulatory signals within neuronal networks. Therefore, Arc mRNA inter- and intramolecular trafficking is essential for the modulation of synaptic activity required for memory consolidation and cognitive functions. Recent studies with single-molecule imaging in live neurons confirmed and extended the role of Arc mRNA trafficking in synaptic plasticity.
Collapse
|
4
|
Briggs SB, Hannapel R, Ramesh J, Parent MB. Inhibiting ventral hippocampal NMDA receptors and Arc increases energy intake in male rats. ACTA ACUST UNITED AC 2021; 28:187-194. [PMID: 34011515 PMCID: PMC8139633 DOI: 10.1101/lm.053215.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/02/2021] [Indexed: 11/24/2022]
Abstract
Research into the neural mechanisms that underlie higher-order cognitive control of eating behavior suggests that ventral hippocampal (vHC) neurons, which are critical for emotional memory, also inhibit energy intake. We showed previously that optogenetically inhibiting vHC glutamatergic neurons during the early postprandial period, when the memory of the meal would be undergoing consolidation, caused rats to eat their next meal sooner and to eat more during that next meal when the neurons were no longer inhibited. The present research determined whether manipulations known to interfere with synaptic plasticity and memory when given pretraining would increase energy intake when given prior to ingestion. Specifically, we tested the effects of blocking vHC glutamatergic N-methyl-D-aspartate receptors (NMDARs) and activity-regulated cytoskeleton-associated protein (Arc) on sucrose ingestion. The results showed that male rats consumed a larger sucrose meal on days when they were given vHC infusions of the NMDAR antagonist APV or Arc antisense oligodeoxynucleotides than on days when they were given control infusions. The rats did not accommodate for that increase by delaying the onset of their next sucrose meal (i.e., decreased satiety ratio) or by eating less during the next meal. These data suggest that vHC NMDARs and Arc limit meal size and inhibit meal initiation.
Collapse
Affiliation(s)
- Sherri B Briggs
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA
| | - Reilly Hannapel
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA
| | - Janavi Ramesh
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA.,Department of Psychology, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
5
|
Salery M, Godino A, Nestler EJ. Drug-activated cells: From immediate early genes to neuronal ensembles in addiction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 90:173-216. [PMID: 33706932 DOI: 10.1016/bs.apha.2020.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Beyond their rapid rewarding effects, drugs of abuse can durably alter an individual's response to their environment as illustrated by the compulsive drug seeking and risk of relapse triggered by drug-associated stimuli. The persistence of these associations even long after cessation of drug use demonstrates the enduring mark left by drugs on brain reward circuits. However, within these circuits, neuronal populations are differently affected by drug exposure and growing evidence indicates that relatively small subsets of neurons might be involved in the encoding and expression of drug-mediated associations. The identification of sparse neuronal populations recruited in response to drug exposure has benefited greatly from the study of immediate early genes (IEGs) whose induction is critical in initiating plasticity programs in recently activated neurons. In particular, the development of technologies to manipulate IEG-expressing cells has been fundamental to implicate broadly distributed neuronal ensembles coincidently activated by either drugs or drug-associated stimuli and to then causally establish their involvement in drug responses. In this review, we summarize the literature regarding IEG regulation in different learning paradigms and addiction models to highlight their role as a marker of activity and plasticity. As the exploration of neuronal ensembles in addiction improves our understanding of drug-associated memory encoding, it also raises several questions regarding the cellular and molecular characteristics of these discrete neuronal populations as they become incorporated in drug-associated neuronal ensembles. We review recent efforts towards this goal and discuss how they will offer a more comprehensive understanding of addiction pathophysiology.
Collapse
Affiliation(s)
- Marine Salery
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
6
|
McQuail JA, Dunn AR, Stern Y, Barnes CA, Kempermann G, Rapp PR, Kaczorowski CC, Foster TC. Cognitive Reserve in Model Systems for Mechanistic Discovery: The Importance of Longitudinal Studies. Front Aging Neurosci 2021; 12:607685. [PMID: 33551788 PMCID: PMC7859530 DOI: 10.3389/fnagi.2020.607685] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
The goal of this review article is to provide a resource for longitudinal studies, using animal models, directed at understanding and modifying the relationship between cognition and brain structure and function throughout life. We propose that forthcoming longitudinal studies will build upon a wealth of knowledge gleaned from prior cross-sectional designs to identify early predictors of variability in cognitive function during aging, and characterize fundamental neurobiological mechanisms that underlie the vulnerability to, and the trajectory of, cognitive decline. Finally, we present examples of biological measures that may differentiate mechanisms of the cognitive reserve at the molecular, cellular, and network level.
Collapse
Affiliation(s)
- Joseph A. McQuail
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Amy R. Dunn
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Carol A. Barnes
- Departments of Psychology and Neuroscience, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Gerd Kempermann
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers (HZ), Dresden, Germany
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, Baltimore, MD, United States
| | | | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Sauvage M, Kitsukawa T, Atucha E. Single-cell memory trace imaging with immediate-early genes. J Neurosci Methods 2019; 326:108368. [DOI: 10.1016/j.jneumeth.2019.108368] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022]
|
8
|
Pilarzyk K, Klett J, Pena EA, Porcher L, Smith AJ, Kelly MP. Loss of Function of Phosphodiesterase 11A4 Shows that Recent and Remote Long-Term Memories Can Be Uncoupled. Curr Biol 2019; 29:2307-2321.e5. [PMID: 31303492 DOI: 10.1016/j.cub.2019.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/06/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
Systems consolidation is a process by which memories initially require the hippocampus for recent long-term memory (LTM) but then become increasingly independent of the hippocampus and more dependent on the cortex for remote LTM. Here, we study the role of phosphodiesterase 11A4 (PDE11A4) in systems consolidation. PDE11A4, which degrades cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), is preferentially expressed in neurons of CA1, the subiculum, and the adjacently connected amygdalohippocampal region. In male and female mice, deletion of PDE11A enhances remote LTM for social odor recognition and social transmission of food preference (STFP) despite eliminating or silencing recent LTM for those same social events. Measurement of a surrogate marker of neuronal activation (i.e., Arc mRNA) suggests the recent LTM deficits observed in Pde11 knockout mice correspond with decreased activation of ventral CA1 relative to wild-type littermates. In contrast, the enhanced remote LTM observed in Pde11a knockout mice corresponds with increased activation and altered functional connectivity of anterior cingulate cortex, frontal association cortex, parasubiculum, and the superficial layer of medial entorhinal cortex. The apparent increased neural activation observed in prefrontal cortex of Pde11a knockout mice during remote LTM retrieval may be related to an upregulation of the N-methyl-D-aspartate receptor subunits NR1 and NR2A. Viral restoration of PDE11A4 to vCA1 alone is sufficient to rescue both the LTM phenotypes and upregulation of NR1 exhibited by Pde11a knockout mice. Together, our findings suggest remote LTM can be decoupled from recent LTM, which may have relevance for cognitive deficits associated with aging, temporal lobe epilepsy, or transient global amnesia.
Collapse
Affiliation(s)
- Katy Pilarzyk
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| | - Jennifer Klett
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| | - Edsel A Pena
- Department of Statistics, University of South Carolina, 1523 Green Street, Columbia, SC 29201, USA
| | - Latarsha Porcher
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| | - Abigail J Smith
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| | - Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA.
| |
Collapse
|
9
|
Ross A, Barnett N, Faulkner A, Hannapel R, Parent MB. Sucrose ingestion induces glutamate AMPA receptor phosphorylation in dorsal hippocampal neurons: Increased sucrose experience prevents this effect. Behav Brain Res 2019; 359:792-798. [PMID: 30076854 PMCID: PMC6594687 DOI: 10.1016/j.bbr.2018.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022]
Abstract
Evidence suggests that meal-related memory influences later eating behavior. Memory can serve as a powerful mechanism for controlling eating behavior because it provides a record of recent intake that likely outlasts most physiological signals generated by ingestion. Dorsal (dHC) and ventral hippocampal (vHC) neurons are critical for memory, and we demonstrated previously that they limit energy intake during the postprandial period. If dHC or vHC neurons control intake through a process that requires memory, then ingestion should increase events necessary for synaptic plasticity in dHC and vHC during the postprandial period. To test this, we determined whether ingesting a sucrose solution induced posttranslational events critical for hippocampal synaptic plasticity: phosphorylation of AMPAR GluA1 subunits at 1) serine 831 (pSer831) and 2) serine 845 (pSer845). We also examined whether increasing the amount of previous experience with the sucrose solution, which would be expected to decrease the mnemonic demand involved in an ingestion bout, would also attenuate sucrose-induced phosphorylation. Quantitative immunoblotting of dHC and vHC membrane fractions demonstrated that sucrose ingestion increased postprandial pSer831 in dHC but not vHC. Increased previous sucrose experience prevented sucrose-induced dHC pSer831. Sucrose ingestion did not affect pSer845 in either dHC or vHC. Thus, the present findings show that ingestion activates a postranslational event necessary for synaptic plasticity in an experience-dependent manner, which is consistent with the hypothesis that dHC neurons form a memory of a meal during the postprandial period.
Collapse
Affiliation(s)
- Amy Ross
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States
| | - Nicolette Barnett
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States
| | - Alexa Faulkner
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States
| | - Reilly Hannapel
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States; Department of Psychology, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States.
| |
Collapse
|
10
|
Lesuis SL, Hoeijmakers L, Korosi A, de Rooij SR, Swaab DF, Kessels HW, Lucassen PJ, Krugers HJ. Vulnerability and resilience to Alzheimer's disease: early life conditions modulate neuropathology and determine cognitive reserve. Alzheimers Res Ther 2018; 10:95. [PMID: 30227888 PMCID: PMC6145191 DOI: 10.1186/s13195-018-0422-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a high prevalence among the elderly and a huge personal and societal impact. Recent epidemiological studies have indicated that the incidence and age of onset of sporadic AD can be modified by lifestyle factors such as education, exercise, and (early) stress exposure. Early life adversity is known to promote cognitive decline at a later age and to accelerate aging, which are both primary risk factors for AD. In rodent models, exposure to 'negative' or 'positive' early life experiences was recently found to modulate various measures of AD neuropathology, such as amyloid-beta levels and cognition at later ages. Although there is emerging interest in understanding whether experiences during early postnatal life also modulate AD risk in humans, the mechanisms and possible substrates underlying these long-lasting effects remain elusive. METHODS We review literature and discuss the role of early life experiences in determining later age and AD-related processes from a brain and cognitive 'reserve' perspective. We focus on rodent studies and the identification of possible early determinants of later AD vulnerability or resilience in relation to early life adversity/enrichment. RESULTS Potential substrates and mediators of early life experiences that may influence the development of AD pathology and cognitive decline are: programming of the hypothalamic-pituitary-adrenal axis, priming of the neuroinflammatory response, dendritic and synaptic complexity and function, overall brain plasticity, and proteins such as early growth response protein 1 (EGR1), activity regulated cytoskeleton-associated protein (Arc), and repressor element-1 silencing transcription factor (REST). CONCLUSIONS We conclude from these rodent studies that the early postnatal period is an important and sensitive phase that influences the vulnerability to develop AD pathology. Yet translational studies are required to investigate whether early life experiences also modify AD development in human studies, and whether similar molecular mediators can be identified in the sensitivity to develop AD in humans.
Collapse
Affiliation(s)
- Sylvie L. Lesuis
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lianne Hoeijmakers
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Aniko Korosi
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Susanne R. de Rooij
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics & Bio informatics, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Dick F. Swaab
- The Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, KNAW, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Helmut W. Kessels
- The Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, KNAW, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Department of Cellular and Computational Neuroscience, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Paul J. Lucassen
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Harm J. Krugers
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
11
|
Ivanova TN, Gross C, Mappus RC, Kwon YJ, Bassell GJ, Liu RC. Familiarity with a vocal category biases the compartmental expression of Arc/Arg3.1 in core auditory cortex. Learn Mem 2017; 24:612-621. [PMID: 29142056 PMCID: PMC5688959 DOI: 10.1101/lm.046086.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/01/2017] [Indexed: 01/18/2023]
Abstract
Learning to recognize a stimulus category requires experience with its many natural variations. However, the mechanisms that allow a category's sensorineural representation to be updated after experiencing new exemplars are not well understood, particularly at the molecular level. Here we investigate how a natural vocal category induces expression in the auditory system of a key synaptic plasticity effector immediate early gene, Arc/Arg3.1, which is required for memory consolidation. We use the ultrasonic communication system between mouse pups and adult females to study whether prior familiarity with pup vocalizations alters how Arc is engaged in the core auditory cortex after playback of novel exemplars from the pup vocal category. A computerized, 3D surface-assisted cellular compartmental analysis, validated against manual cell counts, demonstrates significant changes in the recruitment of neurons expressing Arc in pup-experienced animals (mothers and virgin females "cocaring" for pups) compared with pup-inexperienced animals (pup-naïve virgins), especially when listening to more familiar, natural calls compared to less familiar but similarly recognized tonal model calls. Our data support the hypothesis that the kinetics of Arc induction to refine cortical representations of sensory categories is sensitive to the familiarity of the sensory experience.
Collapse
Affiliation(s)
- Tamara N Ivanova
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Christina Gross
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30322, USA
| | - Rudolph C Mappus
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Yong Jun Kwon
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
- Graduate Program in Neuroscience, Laney Graduate School, Emory University, Atlanta, Georgia 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30322, USA
| | - Robert C Liu
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
12
|
Yiannakas A, Rosenblum K. The Insula and Taste Learning. Front Mol Neurosci 2017; 10:335. [PMID: 29163022 PMCID: PMC5676397 DOI: 10.3389/fnmol.2017.00335] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022] Open
Abstract
The sense of taste is a key component of the sensory machinery, enabling the evaluation of both the safety as well as forming associations regarding the nutritional value of ingestible substances. Indicative of the salience of the modality, taste conditioning can be achieved in rodents upon a single pairing of a tastant with a chemical stimulus inducing malaise. This robust associative learning paradigm has been heavily linked with activity within the insular cortex (IC), among other regions, such as the amygdala and medial prefrontal cortex. A number of studies have demonstrated taste memory formation to be dependent on protein synthesis at the IC and to correlate with the induction of signaling cascades involved in synaptic plasticity. Taste learning has been shown to require the differential involvement of dopaminergic GABAergic, glutamatergic, muscarinic neurotransmission across an extended taste learning circuit. The subsequent activation of downstream protein kinases (ERK, CaMKII), transcription factors (CREB, Elk-1) and immediate early genes (c-fos, Arc), has been implicated in the regulation of the different phases of taste learning. This review discusses the relevant neurotransmission, molecular signaling pathways and genetic markers involved in novel and aversive taste learning, with a particular focus on the IC. Imaging and other studies in humans have implicated the IC in the pathophysiology of a number of cognitive disorders. We conclude that the IC participates in circuit-wide computations that modulate the interception and encoding of sensory information, as well as the formation of subjective internal representations that control the expression of motivated behaviors.
Collapse
Affiliation(s)
- Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
13
|
Representation of environmental shape in the hippocampus of domestic chicks (Gallus gallus). Brain Struct Funct 2017; 223:941-953. [DOI: 10.1007/s00429-017-1537-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
|
14
|
Somatic Arc protein expression in hippocampal granule cells is increased in response to environmental change but independent of task-specific learning. Sci Rep 2017; 7:12477. [PMID: 28963515 PMCID: PMC5622137 DOI: 10.1038/s41598-017-12583-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/08/2017] [Indexed: 01/04/2023] Open
Abstract
Activated neurons express immediate-early genes, such as Arc. Expression of Arc in the hippocampal granule cell layer, an area crucial for spatial learning and memory, is increased during acquisition of spatial learning; however, it is unclear whether this effect is related to the task-specific learning process or to nonspecific aspects of the testing procedure (e.g. exposure to the testing apparatus and exploration of the environment). Herein, we show that Arc-positive cells numbers are increased to the same extent in the granule cell layer after both acquisition of a single spatial learning event in the active place avoidance task and exploration of the testing environment, as compared to naïve (i.e. caged) mice. Repeated exposure the testing apparatus and environment did not reduce Arc expression. Furthermore, Arc expression did not correlate with performance in both adult and aged animals, suggesting that exploration of the testing environment, rather than the specific acquisition of the active place avoidance task, induces Arc expression in the dentate granule cell layer. These findings thus suggest that Arc is an experience-induced immediate-early gene.
Collapse
|
15
|
Parent MB. Dorsal Hippocampal–Dependent Episodic Memory Inhibits Eating. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2016. [DOI: 10.1177/0963721416665103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research regarding how the brain regulates eating behavior has focused largely on homeostatic (i.e., need-based) and hedonic (i.e., pleasure-based) controls. By contrast, there is a large gap in our understanding of how brain areas involved in cognitive processes, such as memory, impact energy intake. Moreover, compared to meal size and satiety, little is known about how the brain controls meal timing and frequency. My research team and I hypothesize that dorsal hippocampal neurons, which are critical for episodic memory of personal experiences, form a memory of a meal, inhibit meal initiation during the period following that meal, and limit the amount ingested at the next meal. I review evidence supporting this hypothesis and raise the possibility that impaired dorsal hippocampal function contributes to diet-induced obesity.
Collapse
Affiliation(s)
- Marise B. Parent
- Neuroscience Institute and Department of Psychology, Georgia State University
| |
Collapse
|
16
|
Immunohistochemistry of aberrant neuronal development induced by 6-propyl-2-thiouracil in rats. Toxicol Lett 2016; 261:59-71. [DOI: 10.1016/j.toxlet.2016.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/03/2016] [Accepted: 08/19/2016] [Indexed: 11/20/2022]
|
17
|
Parent MB. Cognitive control of meal onset and meal size: Role of dorsal hippocampal-dependent episodic memory. Physiol Behav 2016; 162:112-9. [PMID: 27083124 DOI: 10.1016/j.physbeh.2016.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/17/2022]
Abstract
There is a large gap in our understanding of how top-down cognitive processes, such as memory, influence energy intake. Similarly, there is limited knowledge regarding how the brain controls the timing of meals and meal frequency. Understanding how cognition influences ingestive behavior and how the brain controls meal frequency will provide a more complete explanation of the neural mechanisms that regulate energy intake and may also increase our knowledge of the factors that contribute to diet-induced obesity. We hypothesize that dorsal hippocampal neurons, which are critical for memory of personal experiences (i.e., episodic memory), form a memory of a meal, inhibit meal onset during the period following a meal, and limit the amount ingested at the next meal. In support, we describe evidence from human research suggesting that episodic memory of a meal inhibits intake and review data from human and non-human animals showing that impaired hippocampal function is associated with increased intake. We then describe evidence from our laboratory showing that inactivation of dorsal hippocampal neurons decreases the interval between sucrose meals and increases intake at the next meal. We also describe our evidence suggesting that sweet orosensation is sufficient to induce synaptic plasticity in dorsal hippocampal neurons and raise the possibility that impaired dorsal hippocampal function and episodic memory deficits contribute to the development and/or maintenance of diet-induced obesity. Finally, we raise some critical questions that need to be addressed in future research.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute, Department of Psychology, Georgia State University, PO Box 5030, Atlanta, GA 30303-5030, United States.
| |
Collapse
|
18
|
Inberg S, Jacob E, Elkobi A, Edry E, Rappaport A, Simpson TI, Armstrong JD, Shomron N, Pasmanik-Chor M, Rosenblum K. Fluid consumption and taste novelty determines transcription temporal dynamics in the gustatory cortex. Mol Brain 2016; 9:13. [PMID: 26856319 PMCID: PMC4746785 DOI: 10.1186/s13041-016-0188-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/07/2016] [Indexed: 12/31/2022] Open
Abstract
Background Novel taste memories, critical for animal survival, are consolidated to form long term memories which are dependent on translation regulation in the gustatory cortex (GC) hours following acquisition. However, the role of transcription regulation in the process is unknown. Results Here, we report that transcription in the GC is necessary for taste learning in rats, and that drinking and its consequences, as well as the novel taste experience, affect transcription in the GC during taste memory consolidation. We show differential effects of learning on temporal dynamics in set of genes in the GC, including Arc/Arg3.1, known to regulate the homeostasis of excitatory synapses. Conclusions We demonstrate that in taste learning, transcription programs were activated following the physiological responses (i.e., fluid consumption following a water restriction regime, reward, arousal of the animal, etc.) and the specific information about a given taste (i.e., taste novelty). Moreover, the cortical differential prolonged kinetics of mRNA following novel versus familiar taste learning may represent additional novelty related molecular response, where not only the total amount, but also the temporal dynamics of transcription is modulated by sensory experience of novel information. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0188-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sharon Inberg
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Haifa, 3498838, Israel
| | - Eyal Jacob
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Haifa, 3498838, Israel
| | - Alina Elkobi
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Haifa, 3498838, Israel
| | - Efrat Edry
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Haifa, 3498838, Israel.,Center for Gene Manipulation in the Brain, University of Haifa, Haifa, 3498838, Israel
| | - Akiva Rappaport
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Haifa, 3498838, Israel
| | - T Ian Simpson
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, UK.,Biomathematics and Statistics Scotland, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK
| | - J Douglas Armstrong
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Noam Shomron
- Sackler Faculty of Medicine, Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Metsada Pasmanik-Chor
- Sackler Faculty of Medicine, Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Haifa, 3498838, Israel. .,Center for Gene Manipulation in the Brain, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
19
|
Henderson YO, Nalloor R, Vazdarjanova A, Parent MB. Sweet orosensation induces Arc expression in dorsal hippocampal CA1 neurons in an experience-dependent manner. Hippocampus 2015; 26:405-13. [PMID: 26386270 DOI: 10.1002/hipo.22532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/20/2015] [Accepted: 09/16/2015] [Indexed: 01/09/2023]
Abstract
There is limited knowledge regarding how the brain controls the timing of meals. Similarly, there is a large gap in our understanding of how top-down cognitive processes, such as memory influence energy intake. We hypothesize that dorsal hippocampal (dHC) neurons, which are critical for episodic memory, form a memory of a meal and inhibit meal onset during the postprandial period. In support, we showed previously that reversible inactivation of these neurons during the period following a sucrose meal accelerates the onset of the next meal. If dHC neurons form a memory of a meal, then consumption should induce synaptic plasticity in dHC neurons. To test this, we determined (1) whether a sucrose meal increases the expression of the synaptic plasticity marker activity-regulated cytoskeleton-associated protein (Arc) in dHC CA1 neurons, (2) whether previous experience with sucrose influences sucrose-induced Arc expression, and (3) whether the orosensory stimulation produced by the noncaloric sweetener saccharin is sufficient to induce Arc expression. Male Sprague-Dawley rats were trained to consume a sweetened solution at a scheduled time daily. On the experimental day, they were given a solution for 7 min, euthanized, and then fluorescence in situ hybridization procedures were used to measure meal-induced Arc mRNA. Compared to caged control rats, Arc expression was significantly higher in rats that consumed sucrose or saccharin. Interestingly, rats given additional experience with sucrose had less Arc expression than rats with less sucrose experience, even though both groups consumed similar amounts on the experimental day. Thus, this study is the first to suggest that orosensory stimulation produced by consuming a sweetened solution and possibly the hedonic value of that sweet stimulation induces synaptic plasticity in dHC CA1 neurons in an experience-dependent manner. Collectively, these findings are consistent with our hypothesis that dHC neurons form a memory of a meal.
Collapse
Affiliation(s)
- Yoko O Henderson
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Rebecca Nalloor
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Almira Vazdarjanova
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA, United States.,VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Department of Psychology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
20
|
Head west or left, east or right: interactions between memory systems in neurocognitive aging. Neurobiol Aging 2015; 36:3067-3078. [PMID: 26281759 DOI: 10.1016/j.neurobiolaging.2015.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/17/2015] [Accepted: 07/18/2015] [Indexed: 11/20/2022]
Abstract
Cognitive aging is accompanied by decline in multiple domains of memory. Here, we developed a T-maze task that required rats to learn competing hippocampal, and striatal navigation strategies in succession, across days. A final session increased demands on cognitive flexibility and required within-day switching between strategies, emphasizing capacities that engage the prefrontal cortex. Background characterization in young and aged rats used a water maze protocol optimized for individual differences in hippocampal integrity. Consistent with earlier work, young adults acquired place strategies in the T-maze faster than response, whereas the opposite was observed in aged rats with impaired spatial memory. The novel result was that aged animals with preserved spatial memory displayed a qualitatively distinct pattern, acquiring place and response strategies equally rapidly, without disruption when switching between them. Subsequent in situ hybridization for the plasticity-related immediate-early gene Arc revealed that while increasing demands on cognitive flexibility and within-day strategy switching potently engaged the prefrontal cortex in young adult and aged-impaired rats, Arc expression was insensitive in aged rats with normal spatial memory and superior switching abilities. Together, the results indicate that cognitive aging is an emergent property of the interactions between memory systems, and that successful cognitive outcomes reflect a distinct neuroadaptive process rather than a slower rate of aging.
Collapse
|
21
|
Mosher J, Zhang W, Blumhagen RZ, D'Alessandro A, Nemkov T, Hansen KC, Hesselberth JR, Reis T. Coordination between Drosophila Arc1 and a specific population of brain neurons regulates organismal fat. Dev Biol 2015. [PMID: 26209258 DOI: 10.1016/j.ydbio.2015.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The brain plays a critical yet incompletely understood role in regulating organismal fat. We performed a neuronal silencing screen in Drosophila larvae to identify brain regions required to maintain proper levels of organismal fat. When used to modulate synaptic activity in specific brain regions, the enhancer-trap driver line E347 elevated fat upon neuronal silencing, and decreased fat upon neuronal activation. Unbiased sequencing revealed that Arc1 mRNA levels increase upon E347 activation. We had previously identified Arc1 mutations in a high-fat screen. Here we reveal metabolic changes in Arc1 mutants consistent with a high-fat phenotype and an overall shift toward energy storage. We find that Arc1-expressing cells neighbor E347 neurons, and manipulating E347 synaptic activity alters Arc1 expression patterns. Elevating Arc1 expression in these cells decreased fat, a phenocopy of E347 activation. Finally, loss of Arc1 prevented the lean phenotype caused by E347 activation, suggesting that Arc1 activity is required for E347 control of body fat. Importantly, neither E347 nor Arc1 manipulation altered energy-related behaviors. Our results support a model wherein E347 neurons induce Arc1 in specific neighboring cells to prevent excess fat accumulation.
Collapse
Affiliation(s)
- Jeremy Mosher
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Medical School, Aurora, CO 80045, United States
| | - Wei Zhang
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Medical School, Aurora, CO 80045, United States
| | - Rachel Z Blumhagen
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Medical School, Aurora, CO 80045, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Medical School, Aurora, CO 80045, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Medical School, Aurora, CO 80045, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Medical School, Aurora, CO 80045, United States
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado Medical School, Aurora, CO 80045, United States
| | - Tânia Reis
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Medical School, Aurora, CO 80045, United States.
| |
Collapse
|
22
|
Pathak G, Ibrahim BA, McCarthy SA, Baker K, Kelly MP. Amphetamine sensitization in mice is sufficient to produce both manic- and depressive-related behaviors as well as changes in the functional connectivity of corticolimbic structures. Neuropharmacology 2015; 95:434-47. [PMID: 25959066 DOI: 10.1016/j.neuropharm.2015.04.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
It has been suggested that amphetamine abuse and withdrawal mimics the diverse nature of bipolar disorder symptomatology in humans. Here, we determined if a single paradigm of amphetamine sensitization would be sufficient to produce both manic- and depressive-related behaviors in mice. CD-1 mice were subcutaneously dosed for 5 days with 1.8 mg/kg d-amphetamine or vehicle. On days 6-31 of withdrawal, amphetamine-sensitized (AS) mice were compared to vehicle-treated (VT) mice on a range of behavioral and biochemical endpoints. AS mice demonstrated reliable mania- and depression-related behaviors from day 7 to day 28 of withdrawal. Relative to VT mice, AS mice exhibited long-lasting mania-like hyperactivity following either an acute 30-min restraint stress or a low-dose 1 mg/kg d-amphetamine challenge, which was attenuated by the mood-stabilizers lithium and quetiapine. In absence of any challenge, AS mice showed anhedonia-like decreases in sucrose preference and depression-like impairments in the off-line consolidation of motor memory, as reflected by the lack of spontaneous improvement across days of training on the rotarod. AS mice also demonstrated a functional impairment in nest building, an ethologically-relevant activity of daily living. Western blot analyses revealed a significant increase in methylation of histone 3 at lysine 9 (H3K9), but not lysine 4 (H3K4), in hippocampus of AS mice relative to VT mice. In situ hybridization for the immediate-early gene activity-regulated cytoskeleton-associated protein (Arc) further revealed heightened activation of corticolimbic structures, decreased functional connectivity between frontal cortex and striatum, and increased functional connectivity between the amygdala and hippocampus of AS mice. The effects of amphetamine sensitization were blunted in C57BL/6J mice relative to CD-1 mice. These results show that a single amphetamine sensitization protocol is sufficient to produce behavioral, functional, and biochemical phenotypes in mice that are relevant to bipolar disorder.
Collapse
Affiliation(s)
- G Pathak
- University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - B A Ibrahim
- University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | | | - K Baker
- Pfizer, Neuroscience, Groton, CT 06340, USA
| | - M P Kelly
- University of South Carolina School of Medicine, Columbia, SC 29209, USA.
| |
Collapse
|
23
|
McReynolds JR, Anderson KM, Donowho KM, McIntyre CK. Noradrenergic actions in the basolateral complex of the amygdala modulate Arc expression in hippocampal synapses and consolidation of aversive and non-aversive memory. Neurobiol Learn Mem 2014; 115:49-57. [PMID: 25196704 DOI: 10.1016/j.nlm.2014.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022]
Abstract
The basolateral complex of the amygdala (BLA) plays a role in the modulation of emotional memory consolidation through its interactions with other brain regions. In rats, memory enhancing infusions of the β-adrenergic receptor agonist clenbuterol into the BLA immediately after training enhances expression of the protein product of the immediate early gene Arc in the dorsal hippocampus and memory-impairing intra-BLA treatments reduce hippocampal Arc expression. We have proposed that the BLA may modulate memory consolidation through an influence on the local translation of synaptic plasticity proteins, like Arc, in recently active synapses in efferent brain regions. To date, all work related to this hypothesis is based on aversive memory tasks such as inhibitory avoidance (IA). To determine whether BLA modulation of hippocampal Arc protein expression is specific to plasticity associated with inhibitory avoidance memory, or a common mechanism for multiple types of memory, we tested the effect of intra-BLA infusions of clenbuterol on memory and hippocampal synaptic Arc expression following IA or object recognition training. Results indicate that intra-BLA infusions of clenbuterol enhance memory for both tasks; however, Arc expression in hippocampal synaptoneurosomes was significantly elevated only in rats trained on the aversive IA task. These findings suggest that regulation of Arc expression in hippocampal synapses may depend on co-activation of arousal systems. To test this hypothesis, a "high arousal" version of the OR task was used where rats were not habituated to the testing conditions. Posttraining intra-BLA infusions of clenbuterol enhanced consolidation of the high-arousing version of the task and significantly increased Arc protein levels in dorsal hippocampus synaptic fractions. These findings suggest that the BLA modulates multiple forms of memory and affects the synaptic plasticity-associated protein Arc in synapses of the dorsal hippocampus when emotional arousal is elevated.
Collapse
Affiliation(s)
- Jayme R McReynolds
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201-1881, United States
| | - Kelly M Anderson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9004, United States
| | - Kyle M Donowho
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080-3021, United States
| | - Christa K McIntyre
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080-3021, United States.
| |
Collapse
|
24
|
Akane H, Saito F, Shiraki A, Takeyoshi M, Imatanaka N, Itahashi M, Murakami T, Shibutani M. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol. Toxicol Appl Pharmacol 2014; 279:150-62. [DOI: 10.1016/j.taap.2014.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 05/05/2014] [Accepted: 05/28/2014] [Indexed: 11/26/2022]
|
25
|
Williamson LL, Bilbo SD. Neonatal infection modulates behavioral flexibility and hippocampal activation on a Morris Water Maze task. Physiol Behav 2014; 129:152-9. [PMID: 24576680 PMCID: PMC4005787 DOI: 10.1016/j.physbeh.2014.02.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/29/2013] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
Neonatal infection has enduring effects on the brain, both at the cellular and behavioral levels. We determined the effects of peripheral infection with Escherichia coli at postnatal day (P) 4 in rats on a water maze task in adulthood, and assessed neuronal activation in the dentate gyrus (DG) following the memory test. Rats were trained and tested on one of 3 distinct water maze task paradigms: 1) minimal training (18 trials/3days), 2) extended training (50 trials/10days) or 3) reversal training (extended training followed by 30 trials/3days with a new platform location). Following a 48h memory test, brains were harvested to assess neuronal activation using activity-regulated cytoskeleton-associated (Arc) protein in the DG. Following minimal training, rats treated neonatally with E. coli had improved performance and paradoxically reduced Arc expression during the memory test compared to control rats treated with PBS early in life. However, neonatally-infected rats did not differ from control rats in behavior or neuronal activation during the memory test following extended training. Furthermore, rats treated neonatally with E. coli were significantly impaired during the 48h memory test for a reversal platform location, unlike controls. Specifically, whereas neonatally-infected rats were able to acquire the new location at the same rate as controls, they spent significantly less time in the target quadrant for the reversal platform during a memory test. However, neonatally-infected and control rats had similar levels of Arc expression following the 48h memory test for reversal. Together, these data indicate that neonatal infection may improve the rate of acquisition on hippocampal-dependent tasks while impairing flexibility on the same tasks; in addition, network activation in the DG during learning may be predictive of future cognitive flexibility on a hippocampal-dependent task.
Collapse
Affiliation(s)
- Lauren L Williamson
- Department of Psychology & Neuroscience, Duke University, Durham, NC 27708, United States.
| | - Staci D Bilbo
- Department of Psychology & Neuroscience, Duke University, Durham, NC 27708, United States
| |
Collapse
|
26
|
Cheng X, Wu J, Geng M, Xiong J. Role of synaptic activity in the regulation of amyloid beta levels in Alzheimer's disease. Neurobiol Aging 2013; 35:1217-32. [PMID: 24368087 DOI: 10.1016/j.neurobiolaging.2013.11.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 11/03/2013] [Accepted: 11/24/2013] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Accumulation of amyloid-beta (Aβ) peptides is regarded as the critical component associated with AD pathogenesis, which is derived from the amyloid precursor protein (APP) cleavage. Recent studies suggest that synaptic activity is one of the most important factors that regulate Aβ levels. It has been found that synaptic activity facilitates APP internalization and influences APP cleavage. Glutamatergic, cholinergic, serotonergic, leptin, adrenergic, orexin, and gamma-amino butyric acid receptors, as well as the activity-regulated cytoskeleton-associated protein (Arc) are all involved in these processes. The present review summarizes the evidence for synaptic activity-modulated Aβ levels and the mechanisms underlying this regulation. Interestingly, the immediate early gene product Arc may also be the downstream signaling molecule of several receptors in the synaptic activity-modulated Aβ levels. Elucidating how Aβ levels are regulated by synaptic activity may provide new insights in both the understanding of the pathogenesis of AD and in the development of therapies to slow down the progression of AD.
Collapse
Affiliation(s)
- Xiaofang Cheng
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jian Wu
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Miao Geng
- Institute of Geriatrics, General Hospital of Chinese PLA, Beijing, China
| | - Jiaxiang Xiong
- Department of Physiology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
27
|
Kelly MP, Adamowicz W, Bove S, Hartman AJ, Mariga A, Pathak G, Reinhart V, Romegialli A, Kleiman RJ. Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Cell Signal 2013; 26:383-97. [PMID: 24184653 DOI: 10.1016/j.cellsig.2013.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/13/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022]
Abstract
3',5'-cyclic nucleotide phosphodiesterases (PDEs) are the only known enzymes to compartmentalize cAMP and cGMP, yet little is known about how PDEs are dynamically regulated across the lifespan. We mapped mRNA expression of all 21 PDE isoforms in the adult rat and mouse central nervous system (CNS) using quantitative polymerase chain reaction (qPCR) and in situ hybridization to assess conservation across species. We also compared PDE mRNA and protein in the brains of old (26 months) versus young (5 months) Sprague-Dawley rats, with select experiments replicated in old (9 months) versus young (2 months) BALB/cJ mice. We show that each PDE isoform exhibits a unique expression pattern across the brain that is highly conserved between rats, mice, and humans. PDE1B, PDE1C, PDE2A, PDE4A, PDE4D, PDE5A, PDE7A, PDE8A, PDE8B, PDE10A, and PDE11A showed an age-related increase or decrease in mRNA expression in at least 1 of the 4 brain regions examined (hippocampus, cortex, striatum, and cerebellum). In contrast, mRNA expression of PDE1A, PDE3A, PDE3B, PDE4B, PDE7A, PDE7B, and PDE9A did not change with age. Age-related increases in PDE11A4, PDE8A3, PDE8A4/5, and PDE1C1 protein expression were confirmed in hippocampus of old versus young rodents, as were age-related increases in PDE8A3 protein expression in the striatum. Age-related changes in PDE expression appear to have functional consequences as, relative to young rats, the hippocampi of old rats demonstrated strikingly decreased phosphorylation of GluR1, CaMKIIα, and CaMKIIβ, decreased expression of the transmembrane AMPA regulatory proteins γ2 (a.k.a. stargazin) and γ8, and increased trimethylation of H3K27. Interestingly, expression of PDE11A4, PDE8A4/5, PDE8A3, and PDE1C1 correlate with these functional endpoints in young but not old rats, suggesting that aging is not only associated with a change in PDE expression but also a change in PDE compartmentalization.
Collapse
Affiliation(s)
- Michy P Kelly
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology & Neuroscience, 6439 Garners Ferry Rd, Columbia, SC 29209, USA.
| | - Wendy Adamowicz
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| | - Susan Bove
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| | - Alexander J Hartman
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology & Neuroscience, 6439 Garners Ferry Rd, Columbia, SC 29209, USA
| | - Abigail Mariga
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| | - Geetanjali Pathak
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology & Neuroscience, 6439 Garners Ferry Rd, Columbia, SC 29209, USA
| | - Veronica Reinhart
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA
| | - Alison Romegialli
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| | - Robin J Kleiman
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| |
Collapse
|
28
|
Mapping memory function in the medial temporal lobe with the immediate-early gene Arc. Behav Brain Res 2013; 254:22-33. [DOI: 10.1016/j.bbr.2013.04.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 04/27/2013] [Indexed: 12/29/2022]
|
29
|
Iacono G, Altafini C, Torre V. Early phase of plasticity-related gene regulation and SRF dependent transcription in the hippocampus. PLoS One 2013; 8:e68078. [PMID: 23935853 PMCID: PMC3720722 DOI: 10.1371/journal.pone.0068078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/25/2013] [Indexed: 02/07/2023] Open
Abstract
Hippocampal organotypic cultures are a highly reliable in vitro model for studying neuroplasticity: in this paper, we analyze the early phase of the transcriptional response induced by a 20 µM gabazine treatment (GabT), a GABA-Ar antagonist, by using Affymetrix oligonucleotide microarray, RT-PCR based time-course and chromatin-immuno-precipitation. The transcriptome profiling revealed that the pool of genes up-regulated by GabT, besides being strongly related to the regulation of growth and synaptic transmission, is also endowed with neuro-protective and pro-survival properties. By using RT-PCR, we quantified a time-course of the transient expression for 33 of the highest up-regulated genes, with an average sampling rate of 10 minutes and covering the time interval [10∶90] minutes. The cluster analysis of the time-course disclosed the existence of three different dynamical patterns, one of which proved, in a statistical analysis based on results from previous works, to be significantly related with SRF-dependent regulation (p-value<0.05). The chromatin immunoprecipitation (chip) assay confirmed the rich presence of working CArG boxes in the genes belonging to the latter dynamical pattern and therefore validated the statistical analysis. Furthermore, an in silico analysis of the promoters revealed the presence of additional conserved CArG boxes upstream of the genes Nr4a1 and Rgs2. The chip assay confirmed a significant SRF signal in the Nr4a1 CArG box but not in the Rgs2 CArG box.
Collapse
Affiliation(s)
- Giovanni Iacono
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
| | - Claudio Altafini
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
| | - Vincent Torre
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
- IIT Italian Institute of Technology, Genova, Italy
- * E-mail:
| |
Collapse
|
30
|
Hippocampal Arc (Arg3.1) expression is induced by memory recall and required for memory reconsolidation in trace fear conditioning. Neurobiol Learn Mem 2013; 106:48-55. [PMID: 23872190 DOI: 10.1016/j.nlm.2013.06.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/24/2013] [Accepted: 06/27/2013] [Indexed: 01/17/2023]
Abstract
Mounting evidence suggests that long-lasting, protein synthesis-dependent changes in synaptic strength accompany both the initial acquisition and subsequent recall of specific memories. Within brain areas thought to be important for learning and memory, including the hippocampus, learning-related plasticity is likely mediated in part by NMDA receptor activation and experience-dependent changes in gene expression. In the present study, we examined the role of activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) expression in the acquisition, recall, and reconsolidation of memory in a trace fear conditioning paradigm. First, we show that the expression of Arc protein in ventral hippocampus (VH) is dramatically enhanced by memory recall 24h after the acquisition of trace fear conditioning, and that both memory recall and the associated recall-induced enhancement of Arc expression are blocked by pre-training administration of 2-amino-5-phosphonovaleric acid (APV). Next, we show that while infusion of Arc antisense oligodeoxynucleotides (ODNs) into VH prior to testing had little effect on memory recall, it significantly reduced both Arc protein expression and freezing behavior during subsequent testing sessions. Collectively, these results suggest that Arc/Arg3.1 protein plays an important functional role in both the initial acquisition of hippocampal-dependent memory and the reconsolidation of these memories after recall.
Collapse
|
31
|
The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats. PLoS One 2013; 8:e57247. [PMID: 23516401 PMCID: PMC3596376 DOI: 10.1371/journal.pone.0057247] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/18/2013] [Indexed: 01/15/2023] Open
Abstract
Tinnitus is proposed to be caused by decreased central input from the cochlea, followed by increased spontaneous and evoked subcortical activity that is interpreted as compensation for increased responsiveness of central auditory circuits. We compared equally noise exposed rats separated into groups with and without tinnitus for differences in brain responsiveness relative to the degree of deafferentation in the periphery. We analyzed (1) the number of CtBP2/RIBEYE-positive particles in ribbon synapses of the inner hair cell (IHC) as a measure for deafferentation; (2) the fine structure of the amplitudes of auditory brainstem responses (ABR) reflecting differences in sound responses following decreased auditory nerve activity and (3) the expression of the activity-regulated gene Arc in the auditory cortex (AC) to identify long-lasting central activity following sensory deprivation. Following moderate trauma, 30% of animals exhibited tinnitus, similar to the tinnitus prevalence among hearing impaired humans. Although both tinnitus and no-tinnitus animals exhibited a reduced ABR wave I amplitude (generated by primary auditory nerve fibers), IHCs ribbon loss and high-frequency hearing impairment was more severe in tinnitus animals, associated with significantly reduced amplitudes of the more centrally generated wave IV and V and less intense staining of Arc mRNA and protein in the AC. The observed severe IHCs ribbon loss, the minimal restoration of ABR wave size, and reduced cortical Arc expression suggest that tinnitus is linked to a failure to adapt central circuits to reduced cochlear input.
Collapse
|
32
|
Burgos-Robles A, Bravo-Rivera H, Quirk GJ. Prelimbic and infralimbic neurons signal distinct aspects of appetitive instrumental behavior. PLoS One 2013; 8:e57575. [PMID: 23460877 PMCID: PMC3583875 DOI: 10.1371/journal.pone.0057575] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 01/22/2013] [Indexed: 12/02/2022] Open
Abstract
It is thought that discrete subregions of the medial prefrontal cortex (mPFC) regulate different aspects of appetitive behavior, however, physiological support for this hypothesis has been lacking. In the present study, we used multichannel single-unit recording to compare the response of neurons in the prelimbic (PL) and infralimbic (IL) subregions of the mPFC, in rats pressing a lever to obtain sucrose pellets on a variable interval schedule of reinforcement (VI-60). Approximately 25% of neurons in both structures exhibited prominent excitatory responses during rewarded, but not unrewarded, lever presses. The time courses of reward responses in PL and IL, however, were markedly different. Most PL neurons exhibited fast and transient responses at the delivery of sucrose pellets, whereas most IL neurons exhibited delayed and prolonged responses associated with the collection of earned sucrose pellets. We further examined the functional significance of reward responses in IL and PL with local pharmacological inactivation. IL inactivation significantly delayed the collection of earned sucrose pellets, whereas PL inactivation produced no discernible effects. These findings support the hypothesis that PL and IL signal distinct aspects of appetitive behavior, and suggest that IL signaling facilitates reward collection.
Collapse
Affiliation(s)
- Anthony Burgos-Robles
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Hector Bravo-Rivera
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Gregory J. Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
- * E-mail:
| |
Collapse
|
33
|
Stephenson DT, Coskran TM, Kelly MP, Kleiman RJ, Morton D, O'neill SM, Schmidt CJ, Weinberg RJ, Menniti FS. The distribution of phosphodiesterase 2A in the rat brain. Neuroscience 2012; 226:145-55. [PMID: 23000621 PMCID: PMC4409981 DOI: 10.1016/j.neuroscience.2012.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 09/01/2012] [Accepted: 09/04/2012] [Indexed: 11/18/2022]
Abstract
The phosphodiesterases (PDEs) are a superfamily of enzymes that regulate spatio-temporal signaling by the intracellular second messengers cAMP and cGMP. PDE2A is expressed at high levels in the mammalian brain. To advance our understanding of the role of this enzyme in regulation of neuronal signaling, we here describe the distribution of PDE2A in the rat brain. PDE2A mRNA was prominently expressed in glutamatergic pyramidal cells in cortex, and in pyramidal and dentate granule cells in the hippocampus. Protein concentrated in the axons and nerve terminals of these neurons; staining was markedly weaker in the cell bodies and proximal dendrites. In addition, in both hippocampus and cortex, small populations of non-pyramidal cells, presumed to be interneurons, were strongly immunoreactive. PDE2A mRNA was expressed in medium spiny neurons in neostriatum. Little immunoreactivity was observed in cell bodies, whereas dense immunoreactivity was found in the axon tracts of these neurons and their terminal regions in globus pallidus and substantia nigra pars reticulata. Immunostaining was dense in the medial habenula, but weak in other diencephalic regions. In midbrain and hindbrain, immunostaining was restricted to discrete regions of the neuropil or clusters of cell bodies. These results suggest that PDE2A may modulate cortical, hippocampal and striatal networks at several levels. Preferential distribution of PDE2A into axons and terminals of the principal neurons suggests roles in regulation of axonal excitability or transmitter release. The enzyme is also in forebrain interneurons, and in mid- and hindbrain neurons that may modulate forebrain networks and circuits.
Collapse
Affiliation(s)
- D. T. Stephenson
- Neuroscience Biology, Pfizer Global Research & Development, Eastern Point Road, Groton, CT 06340, USA
| | - T. M. Coskran
- Investigative Pathology, Pfizer Global Research & Development, Eastern Point Road, Groton, CT 06340, USA
| | - M. P. Kelly
- Neuroscience Biology, Pfizer Global Research & Development, Eastern Point Road, Groton, CT 06340, USA
| | - R. J. Kleiman
- Neuroscience Biology, Pfizer Global Research & Development, Eastern Point Road, Groton, CT 06340, USA
| | - D. Morton
- Toxologic Pathology, Pfizer Global Research & Development, Eastern Point Road, Groton, CT 06340, USA
| | - S. M. O'neill
- Neuroscience Biology, Pfizer Global Research & Development, Eastern Point Road, Groton, CT 06340, USA
| | - C. J. Schmidt
- Neuroscience Biology, Pfizer Global Research & Development, Eastern Point Road, Groton, CT 06340, USA
| | - R. J. Weinberg
- Department of Cell Biology & Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - F. S. Menniti
- Neuroscience Biology, Pfizer Global Research & Development, Eastern Point Road, Groton, CT 06340, USA
| |
Collapse
|
34
|
Cerebral antioxidant enzyme increase associated with learning deficit in type 2 diabetes rats. Brain Res 2012; 1481:97-106. [PMID: 22981416 DOI: 10.1016/j.brainres.2012.08.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/29/2012] [Accepted: 08/30/2012] [Indexed: 11/22/2022]
Abstract
In this study, we examined alterations in the enzymatic antioxidant defenses associated with learning deficits induced by type 2 diabetes, and studied the effects of the peroxisome proliferator-activated receptor γ agonist pioglitazone on these learning deficits. Learning ability was assessed by visual discrimination tasks in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, as a model of spontaneous type 2 diabetes. Levels of the antioxidant enzymes glutathione peroxidase (GPx), Cu(2+)-Zn(2+) superoxide dismutase (CuZn-SOD) and manganese SOD were measured in the cortex, hippocampus and striatum. Half the rats received oral pioglitazone (20mg/kg/day) from the early stage of diabetes (22 weeks old) to 27 weeks old. OLETF rats showed learning deficits compared with control, Long-Evans Tokushima Otsuka (LETO) rats. GPx levels in the cortex and hippocampus were increased in OLETF rats compared with LETO rats, with an inverse correlation between GPx in the hippocampus and learning score. CuZn-SOD levels were also increased in the hippocampus in OLETF rats. Pioglitazone reduced blood glucose and increased serum adiponectin levels, but had no effect on learning tasks or antioxidant enzymes, except for CuZn-SOD. These results suggest that an oxidative imbalance reflected by increased brain antioxidant enzymes plays an important role in the development of learning deficits in type 2 diabetes. Early pioglitazone administration partly ameliorated diabetic symptoms, but was unable to completely recover cerebral oxidative imbalance and functions. These results suggest that diabetes-induced brain impairment, which results in learning deficits, may have occurred before the appearance of the symptoms of overt diabetes.
Collapse
|
35
|
Figge DA, Rahman I, Dougherty PJ, Rademacher DJ. Retrieval of contextual memories increases activity-regulated cytoskeleton-associated protein in the amygdala and hippocampus. Brain Struct Funct 2012; 218:1177-96. [PMID: 22945419 DOI: 10.1007/s00429-012-0453-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/17/2012] [Indexed: 01/16/2023]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) integrates information from multiple intracellular signaling cascades and, in turn, regulates cytoskeletal proteins involved in structural synaptic modifications. The purposes of the present study were: (1) to determine if the retrieval of contextual memories would induce Arc in hippocampal and amygdalar neurons; (2) use unbiased stereology at the ultrastructural level to quantify synapses contacting Arc-labeled (Arc+) and unlabeled (Arc-) postsynaptic structures in brain regions in which the amount of Arc integrated density (ID) correlated strongly with the degree of amphetamine conditioned place preference (AMPH CPP). The retrieval of contextual memories increased the Arc ID in the dentate gyrus, cornu ammonis (CA)1, and CA3 fields of the hippocampus and the basolateral, lateral, and central nuclei of the amygdala but not the primary auditory cortex, a control region. Stereological quantification of Arc+ and Arc- synapses in the basolateral nucleus of the amygdala (BLA) was undertaken because the strongest relationship between the amount of Arc ID and AMPH CPP was observed in the BLA. The retrieval of contextual memories increased the number and density of asymmetric (presumed excitatory) synapses contacting Arc+ spines and dendrites of BLA neurons, symmetric (presumed inhibitory or modulatory) synapses contacting Arc+ dendrites of BLA neurons, and multisynaptic boutons contacting Arc+ postsynaptic structures. Thus, the retrieval of contextual memories increases Arc in the amygdala and hippocampus, an effect that could be important for approach behavior to a drug-associated context.
Collapse
Affiliation(s)
- David A Figge
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | | | | | |
Collapse
|
36
|
Nikbakht N, Zarei B, Shirani E, Moshtaghian J, Esmaeili A, Habibian S. Experience-dependent expression of rat hippocampal Arc and Homer 1a after spatial learning on 8-arm and 12-arm radial mazes. Neuroscience 2012; 218:49-55. [DOI: 10.1016/j.neuroscience.2012.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
|
37
|
Holloway-Erickson CM, McReynolds JR, McIntyre CK. Memory-enhancing intra-basolateral amygdala infusions of clenbuterol increase Arc and CaMKIIα protein expression in the rostral anterior cingulate cortex. Front Behav Neurosci 2012; 6:17. [PMID: 22529784 PMCID: PMC3329795 DOI: 10.3389/fnbeh.2012.00017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/31/2012] [Indexed: 11/13/2022] Open
Abstract
Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA) modulates memory through interactions with multiple memory systems. The cellular mechanisms for this interaction remain unresolved. Memory-modulating BLA manipulations influence expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc) in the dorsal hippocampus, and hippocampal expression of Arc protein is critically involved in memory consolidation and long-term potentiation. The present studies examined whether this influence of the BLA is specific to the hippocampus and to Arc protein. Like the hippocampus, the rostral portion of the anterior cingulate cortex (rACC) is involved in the consolidation of inhibitory avoidance (IA) memory, and IA training increases Arc protein in the rACC. Because the BLA interacts with the rACC in the consolidation of IA memory, the rACC is a potential candidate for further studies of BLA modulation of synaptic plasticity. The alpha isoform of the Calcium/Calmodulin-dependent protein kinase II (CaMKIIα) and the immediate early gene c-Fos are involved in long-term potentiation and memory. Both Arc and CaMKIIα proteins can be translated in isolated synapses, where the mRNA is localized, but c-Fos protein remains in the soma. To examine the influence of memory-modulating manipulations of the BLA on expression of these memory and plasticity-associated proteins in the rACC, male Sprague-Dawley rats were trained on an IA task and given intra-BLA infusions of either clenbuterol or lidocaine immediately after training. Findings suggest that noradrenergic stimulation of the BLA may modulate memory consolidation through effects on both synaptic proteins Arc and CaMKIIα, but not the somatic protein c-Fos. Furthermore, protein changes observed in the rACC following BLA manipulations suggest that the influence of the BLA on synaptic proteins is not limited to those in the dorsal hippocampus.
Collapse
|
38
|
Caffino L, Racagni G, Fumagalli F. Stress and cocaine interact to modulate Arc/Arg3.1 expression in rat brain. Psychopharmacology (Berl) 2011; 218:241-8. [PMID: 21590283 DOI: 10.1007/s00213-011-2331-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/26/2011] [Indexed: 02/05/2023]
Abstract
RATIONALE The interaction between stress and drugs of abuse is a critical component of drug addiction, but the underlying molecular mechanisms remain elusive. Arc/Arg3.1 is an effector immediate early gene that may represent a bridge connecting short- and long-term neuronal modifications associated with exposure to stress and drugs of abuse. OBJECTIVES This research aims to study the modulation of Arc/Arg3.1 expression as a marker of neuronal changes associated with exposure to stress and cocaine. MATERIALS AND METHODS Rats exposed to either single or repeated stress sessions were subjected to a single intraperitoneal injection of cocaine hydrochloride (10 mg/kg) and sacrificed 2 h later. RNase protection assay was used to determine changes in Arc/Arg3.1 gene expression in different brain regions. RESULTS We found significant stress-cocaine interactions in the prefrontal cortex (p < 0.001) and hypothalamus (p < 0.05). In the prefrontal cortex, acute stress potentiated cocaine-induced Arc/Arg3.1 mRNA elevation, whereas prolonged stress attenuated the response to cocaine. In the hypothalamus, although markedly reduced by acute stress, Arc/Arg3.1 gene expression was still increased by cocaine. No interaction was observed following repeated stress. Notably, cocaine-induced Arc/Arg3.1 mRNA levels were not influenced by stress in striatum and hippocampus. CONCLUSIONS In our experimental model, stress interacted with cocaine to alter Arc/Arg3.1 expression in a regionally selective fashion and in a way that depended on whether stress was acute or repeated. These results point to Arc/Arg3.1 as a potential molecular target modulated by stress to alter cellular sensitivity to cocaine.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological Sciences, Center of Neuropharmacology, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | | | | |
Collapse
|
39
|
The importance of having Arc: expression of the immediate-early gene Arc is required for hippocampus-dependent fear conditioning and blocked by NMDA receptor antagonism. J Neurosci 2011; 31:11200-7. [PMID: 21813681 DOI: 10.1523/jneurosci.2211-11.2011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Long-lasting, experience-dependent changes in synaptic strength are widely thought to underlie the formation of memories. Many forms of learning-related plasticity are likely mediated by NMDA receptor activation and plasticity-related gene expression in brain areas thought to be important for learning and memory, including the hippocampus. Here, we examined the putative role of activity-regulated cytoskeletal-associated protein (Arc), an immediate-early gene (IEG) whose expression is tightly linked to the induction and maintenance of some forms of neuronal plasticity, in hippocampus-dependent and hippocampus-independent forms of learning. The extent to which learning-induced Arc expression may depend on NMDA receptor activation was also assessed. First, we observed an increase in Arc gene and protein products in both dorsal hippocampus (DH) and ventral hippocampus (VH) of male Sprague Dawley rats after hippocampus-dependent trace and contextual fear conditioning, but not after hippocampus-independent delay fear conditioning. Specific knockdown of Arc using antisense oligodeoxynucleotides (ODNs) in DH or VH attenuated the learning-related expression of Arc protein, and resulted in a dramatic impairment in trace and contextual, but not delay, fear conditioning. Finally, pretraining infusions of the NMDA receptor antagonist APV into the DH or VH blocked the learning-induced enhancement of Arc in a regionally selective manner, suggesting that NMDA receptor activation and Arc translation are functionally coupled to support hippocampus-dependent memory for fear conditioning. Collectively these results provide the first evidence suggesting that NMDA receptor-dependent expression of the IEG Arc in both DH and VH likely underlies the consolidation of a variety of forms of hippocampus-dependent learning.
Collapse
|
40
|
Korb E, Finkbeiner S. Arc in synaptic plasticity: from gene to behavior. Trends Neurosci 2011; 34:591-8. [PMID: 21963089 DOI: 10.1016/j.tins.2011.08.007] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
The activity-regulated cytoskeletal (Arc) gene encodes a protein that is critical for memory consolidation. Arc is one of the most tightly regulated molecules known: neuronal activity controls Arc mRNA induction, trafficking and accumulation, and Arc protein production, localization and stability. Arc regulates synaptic strength through multiple mechanisms and is involved in essentially every known form of synaptic plasticity. It also mediates memory formation and is implicated in multiple neurological diseases. In this review, we will discuss how Arc is regulated and used as a tool to study neuronal activity. We will also attempt to clarify how its molecular functions correspond to its requirement in various forms of plasticity, discuss Arc's role in behavior and disease, and highlight critical unresolved questions.
Collapse
Affiliation(s)
- Erica Korb
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | |
Collapse
|
41
|
Morin JP, Quiroz C, Mendoza-Viveros L, Ramirez-Amaya V, Bermudez-Rattoni F. Familiar taste induces higher dendritic levels of activity-regulated cytoskeleton-associated protein in the insular cortex than a novel one. Learn Mem 2011; 18:610-6. [PMID: 21921210 DOI: 10.1101/lm.2323411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The immediate early gene (IEG) Arc is known to play an important role in synaptic plasticity; its protein is locally translated in the dendrites where it has been involved in several types of plasticity mechanisms. Because of its tight coupling with neuronal activity, Arc has been widely used as a tool to tag behaviorally activated networks. However, studies examining the modulation of Arc expression during and after learning have yielded somewhat contradictory results. Although some have reported that higher levels of Arc were induced by initial acquisition of a task rather than by reinstating a learned behavior, others have failed to observe such habituation of Arc transcription. Moreover, most of these studies have focused on the mRNA and, surprisingly, relatively little is known about how learning can affect Arc protein expression levels. Here we used taste recognition memory and examined Arc protein expression in the insular cortex of rats at distinct times during taste memory formation. Interestingly, we found that more Arc protein was induced by a familiar rather than by a novel taste. Moreover, this increase was inhibited by post-trial intrahippocampal anisomycin injections, a treatment known to inhibit safe-taste memory consolidation. In addition, confocal microscopy analysis of immunofluorescence stained tissue revealed that the proportion of IC neurons expressing Arc was the same in animals exposed to novel and familiar taste, but Arc immunoreactivity in dendrites was dramatically higher in rats exposed to the familiar taste. These results provide novel insights on how experience affects cortical plasticity.
Collapse
Affiliation(s)
- Jean-Pascal Morin
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México
| | | | | | | | | |
Collapse
|
42
|
Rapanelli M, Frick LR, Zanutto BS. Learning an operant conditioning task differentially induces gliogenesis in the medial prefrontal cortex and neurogenesis in the hippocampus. PLoS One 2011; 6:e14713. [PMID: 21364751 PMCID: PMC3041768 DOI: 10.1371/journal.pone.0014713] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 01/31/2011] [Indexed: 11/18/2022] Open
Abstract
Circuit modification associated with learning and memory involves multiple events, including the addition and remotion of newborn cells trough adulthood. Adult neurogenesis and gliogenesis were mainly described in models of voluntary exercise, enriched environments, spatial learning and memory task; nevertheless, it is unknown whether it is a common mechanism among different learning paradigms, like reward dependent tasks. Therefore, we evaluated cell proliferation, neurogenesis, astrogliogenesis, survival and neuronal maturation in the medial prefrontal cortex (mPFC) and the hippocampus (HIPP) during learning an operant conditioning task. This was performed by using endogenous markers of cell proliferation, and a bromodeoxiuridine (BrdU) injection schedule in two different phases of learning. Learning an operant conditioning is divided in two phases: a first phase when animals were considered incompletely trained (IT, animals that were learning the task) when they performed between 50% and 65% of the responses, and a second phase when animals were considered trained (Tr, animals that completely learned the task) when they reached 100% of the responses with a latency time lower than 5 seconds. We found that learning an operant conditioning task promoted cell proliferation in both phases of learning in the mPFC and HIPP. Additionally, the results presented showed that astrogliogenesis was induced in the medial prefrontal cortex (mPFC) in both phases, however, the first phase promoted survival of these new born astrocytes. On the other hand, an increased number of new born immature neurons was observed in the HIPP only in the first phase of learning, whereas, decreased values were observed in the second phase. Finally, we found that neuronal maturation was induced only during the first phase. This study shows for the first time that learning a reward-dependent task, like the operant conditioning, promotes neurogenesis, astrogliogenesis, survival and neuronal maturation depending on the learning phase in the mPFC-HIPP circuit.
Collapse
Affiliation(s)
- Maximiliano Rapanelli
- Laboratorio de Biología del Comportamiento, IBYME-CONICET, Ciudad de Buenos Aires, Buenos Aires, Argentina.
| | | | | |
Collapse
|
43
|
Holloway CM, McIntyre CK. Post-training disruption of Arc protein expression in the anterior cingulate cortex impairs long-term memory for inhibitory avoidance training. Neurobiol Learn Mem 2011; 95:425-32. [PMID: 21315825 DOI: 10.1016/j.nlm.2011.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/24/2011] [Accepted: 02/02/2011] [Indexed: 12/28/2022]
Abstract
The activity-regulated-cytoskeletal-associated protein (Arc) has a well established role in memory consolidation and synaptic plasticity in the hippocampus and amygdala. However the role of Arc within the anterior cingulate cortex (ACC), an area of the brain involved in processing memory for pain, has yet to be examined. Here we sought to determine if Arc protein within neurons of the rat ACC is necessary for the consolidation of a single-trial, contextual inhibitory avoidance (IA) task. Immunohistochemistry and western blotting revealed an increase in Arc protein within the ACC following IA training in a shock-specific manner, suggesting that ACC Arc expression may play a critical role in the consolidation of the aversive task. To directly test this hypothesis, male Sprague-Dawley rats were trained on the IA task and given post-training intra-ACC infusions of Arc antisense oligodeoxynucleotides (ODNs), designed to suppress Arc translation, or control scrambled ODNs that do not suppress Arc translation. Memory retention was tested 48h after training. Arc antisense-induced disruption of Arc protein expression in the ACC impaired long-term memory for the IA task as compared to rats given intra-ACC infusions of the scrambled control ODNS, suggesting that Arc expression in the ACC is important for the consolidation of emotional memory. Results further indicate that knock down of Arc 6h after training impairs IA memory. This is consistent with time course findings indicating elevated Arc expression at 3 and 6h after IA training but not 12 or 48h. Taken together, these findings support the hypothesis that Arc expression in the ACC participates in synaptic plasticity that underlies long-term memory.
Collapse
Affiliation(s)
- Crystal M Holloway
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, USA.
| | | |
Collapse
|
44
|
Affiliation(s)
- Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| | | |
Collapse
|
45
|
Yamada K, Homma C, Tanemura K, Ikeda T, Itohara S, Nagaoka Y. Analyses of fear memory in Arc/Arg3.1-deficient mice: intact short-term memory and impaired long-term and remote memory. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/wjns.2011.11001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Barry DN, Commins S. Imaging spatial learning in the brain using immediate early genes: insights, opportunities and limitations. Rev Neurosci 2011; 22:131-42. [DOI: 10.1515/rns.2011.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Recent and remote memory recalls modulate different sets of stereotypical interlaminar correlations in Arc/Arg3.1 mRNA expression in cortical areas. Brain Res 2010; 1352:118-39. [DOI: 10.1016/j.brainres.2010.06.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 05/21/2010] [Accepted: 06/24/2010] [Indexed: 11/21/2022]
|
48
|
Context-driven cocaine-seeking in abstinent rats increases activity-regulated gene expression in the basolateral amygdala and dorsal hippocampus differentially following short and long periods of abstinence. Neuroscience 2010; 170:570-9. [PMID: 20654701 DOI: 10.1016/j.neuroscience.2010.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/02/2010] [Accepted: 07/14/2010] [Indexed: 01/29/2023]
Abstract
In this study, the expression patterns of zif268 and activity-regulated cytoskeleton-associated gene (arc) were investigated in the basolateral amygdala (BLA) and dorsal hippocampal (dHPC) subregions during context-induced drug-seeking following 22 h or 15 d abstinence from cocaine self-administration. Arc and zif/268 mRNA in BLA and dHPC increased after re-exposure to the cocaine-paired chamber at both timepoints; however, only the BLA increases (with one exception-see below) were differentially affected by the presence or absence of the cocaine-paired lever in the chamber. Following 22 h of abstinence, arc mRNA was significantly increased in the BLA of cocaine-treated rats re-exposed to the chamber only with levers extended, whereas following 15 d of abstinence, arc mRNA in the BLA was increased in cocaine-treated rats returned to the chamber with or without levers extended. In contrast, zif268 mRNA in the BLA was greater in cocaine-treated rats returned to the chamber with levers extended vs. levers retracted only after 15 d of abstinence. In the dentate gyrus (DG) following 22 h of abstinence, zif268 mRNA was greater in rats returned to the chamber where levers were absent regardless of drug treatment whereas arc mRNA was increased in CA1 (cell bodies and dendrites) and CA3 only in cocaine-treated groups. Following 15 d of abstinence, arc mRNA was significantly greater in CA1 and CA3 of both cocaine-treated groups returned to the chamber than in those placed into a familiar, non-salient alternate environment; however, only in CA1 cell bodies the cocaine context-induced increases significantly greater than in yoked-saline controls. In contrast, zif/268 mRNA in all dHPC regions was significantly greater in both cocaine-treated groups returned to the cocaine context than in the cocaine-treated group returned to an alternative environment or saline-treated groups. These data suggest that the temporal dynamics of arc and zif268 gene expression in the BLA and dHPC encode different key elements of drug context-induced cocaine-seeking.
Collapse
|
49
|
Ons S, Rotllant D, Marín-Blasco IJ, Armario A. Immediate-early gene response to repeated immobilization: Fos protein and arc mRNA levels appear to be less sensitive than c-fos mRNA to adaptation. Eur J Neurosci 2010; 31:2043-52. [DOI: 10.1111/j.1460-9568.2010.07242.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Gusev PA, Gubin AN. Arc/Arg3.1 mRNA global expression patterns elicited by memory recall in cerebral cortex differ for remote versus recent spatial memories. Front Integr Neurosci 2010; 4:15. [PMID: 20577636 PMCID: PMC2889723 DOI: 10.3389/fnint.2010.00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 04/23/2010] [Indexed: 11/13/2022] Open
Abstract
The neocortex plays a critical role in the gradual formation and storage of remote declarative memories. Because the circuitry mechanisms of systems-level consolidation are not well understood, the precise cortical sites for memory storage and the nature of enduring memory correlates (mnemonic plasticity) are largely unknown. Detailed maps of neuronal activity underlying recent and remote memory recall highlight brain regions that participate in systems consolidation and constitute putative storage sites, and thus may facilitate detection of mnemonic plasticity. To localize cortical regions involved in the recall of a spatial memory task, we trained rats in a water-maze and then mapped mRNA expression patterns of a neuronal activity marker Arc/Arg3.1 (Arc) upon recall of recent (24 h after training) or remote (1 month after training) memories and compared them with swimming and naive controls. Arc gene expression was significantly more robust 24 h after training compared to 1 month after training. Arc expression diminished in the parietal, cingulate and visual areas, but select segments in the prefrontal, retrosplenial, somatosensory and motor cortical showed similar robust increases in the Arc expression. When Arc expression was compared across select segments of sensory, motor and associative regions within recent and remote memory groups, the overall magnitude and cortical laminar patterns of task-specific Arc expression were similar (stereotypical). Arc mRNA fractions expressed in the upper cortical layers (2/3, 4) increased after both recent and remote recall, while layer 6 fractions decreased only after the recent recall. The data suggest that robust recall of remote memory requires an overall smaller increase in neuronal activity within fewer cortical segments. This activity trend highlights the difficulty in detecting the storage sites and plasticity underlying remote memory. Application of the Arc maps may ameliorate this difficulty.
Collapse
Affiliation(s)
- Pavel A Gusev
- Blanchette Rockefeller Neurosciences Institute Rockville, MD, USA
| | | |
Collapse
|