1
|
Delgado-Zabalza L, Mallet NP, Glangetas C, Dabee G, Garret M, Miguelez C, Baufreton J. Targeting parvalbumin-expressing neurons in the substantia nigra pars reticulata restores motor function in parkinsonian mice. Cell Rep 2023; 42:113287. [PMID: 37843977 DOI: 10.1016/j.celrep.2023.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
The activity of substantia nigra pars reticulata (SNr) neurons, the main output structure of basal ganglia, is altered in Parkinson's disease (PD). However, neither the underlying mechanisms nor the type of neurons responsible for PD-related motor dysfunctions have been elucidated yet. Here, we show that parvalbumin-expressing SNr neurons (SNr-PV+) occupy dorsolateral parts and possess specific electrophysiological properties compared with other SNr cells. We also report that only SNr-PV+ neurons' intrinsic excitability is reduced by downregulation of sodium leak channels in a PD mouse model. Interestingly, in anesthetized parkinsonian mice in vivo, SNr-PV+ neurons display a bursty pattern of activity dependent on glutamatergic tone. Finally, we demonstrate that chemogenetic inhibition of SNr-PV+ neurons is sufficient to alleviate motor impairments in parkinsonian mice. Overall, our findings establish cell-type-specific dysfunction in experimental parkinsonism in the SNr and provide a potential cellular therapeutic target to alleviate motor symptoms in PD.
Collapse
Affiliation(s)
- Lorena Delgado-Zabalza
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France; Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nicolas P Mallet
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | | | - Guillaume Dabee
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | - Maurice Garret
- University Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France
| | - Cristina Miguelez
- Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Jérôme Baufreton
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France.
| |
Collapse
|
2
|
Partanen J, Achim K. Neurons gating behavior—developmental, molecular and functional features of neurons in the Substantia Nigra pars reticulata. Front Neurosci 2022; 16:976209. [PMID: 36148148 PMCID: PMC9485944 DOI: 10.3389/fnins.2022.976209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The Substantia Nigra pars reticulata (SNpr) is the major information output site of the basal ganglia network and instrumental for the activation and adjustment of movement, regulation of the behavioral state and response to reward. Due to both overlapping and unique input and output connections, the SNpr might also have signal integration capacity and contribute to action selection. How the SNpr regulates these multiple functions remains incompletely understood. The SNpr is located in the ventral midbrain and is composed primarily of inhibitory GABAergic projection neurons that are heterogeneous in their properties. In addition, the SNpr contains smaller populations of other neurons, including glutamatergic neurons. Here, we discuss regionalization of the SNpr, in particular the division of the SNpr neurons to anterior (aSNpr) and posterior (pSNpr) subtypes, which display differences in many of their features. We hypothesize that unique developmental and molecular characteristics of the SNpr neuron subtypes correlate with both region-specific connections and notable functional specializations of the SNpr. Variation in both the genetic control of the SNpr neuron development as well as signals regulating cell migration and axon guidance may contribute to the functional diversity of the SNpr neurons. Therefore, insights into the various aspects of differentiation of the SNpr neurons can increase our understanding of fundamental brain functions and their defects in neurological and psychiatric disorders, including movement and mood disorders, as well as epilepsy.
Collapse
|
3
|
Transient Response of Basal Ganglia Network in Healthy and Low-Dopamine State. eNeuro 2022; 9:ENEURO.0376-21.2022. [PMID: 35140075 PMCID: PMC8938981 DOI: 10.1523/eneuro.0376-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 12/30/2022] Open
Abstract
The basal ganglia (BG) are crucial for a variety of motor and cognitive functions. Changes induced by persistent low-dopamine (e.g., in Parkinson’s disease; PD) result in aberrant changes in steady-state population activity (β band oscillations) and the transient response of the BG. Typically, a brief cortical stimulation results in a triphasic response in the substantia nigra pars reticulata (SNr; an output of the BG). The properties of the triphasic responses are shaped by dopamine levels. While mechanisms underlying aberrant steady state activity are well studied, it is still unclear which BG interactions are crucial for the aberrant transient responses in the BG. Moreover, it is also unclear whether mechanisms underlying the aberrant changes in steady-state activity and transient response are the same. Here, we used numerical simulations of a network model of BG to identify the key factors that determine the shape of the transient responses. We show that an aberrant transient response of the SNr in the low-dopamine state involves changes in the direct pathway and the recurrent interactions within the globus pallidus externa (GPe) and between GPe and subthalamic nucleus (STN). However, the connections from D2-type spiny projection neurons (D2-SPN) to GPe are most crucial in shaping the transient response and by restoring them to their healthy level, we could restore the shape of transient response even in low-dopamine state. Finally, we show that the changes in BG that result in aberrant transient response are also sufficient to generate pathologic oscillatory activity in the steady state.
Collapse
|
4
|
Chen Z, Zhang ZY, Zhang W, Xie T, Li Y, Xu XH, Yao H. Direct and indirect pathway neurons in ventrolateral striatum differentially regulate licking movement and nigral responses. Cell Rep 2021; 37:109847. [PMID: 34686331 DOI: 10.1016/j.celrep.2021.109847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Drinking behavior in rodents is characterized by stereotyped, rhythmic licking movement, which is regulated by the basal ganglia. It is unclear how direct and indirect pathways control the lick bout and individual spout contact. We find that inactivating D1 and D2 receptor-expressing medium spiny neurons (MSNs) in the ventrolateral striatum (VLS) oppositely alters the number of licks in a bout. D1- and D2-MSNs exhibit different patterns of lick-sequence-related activity and different phases of oscillation time-locked to the lick cycle. On the timescale of a lick cycle, transient inactivation of D1-MSNs during tongue protrusion reduces spout contact probability, whereas transiently inactivating D2-MSNs has no effect. On the timescale of a lick bout, inactivation of D1-MSNs (D2-MSNs) causes rate increase (decrease) in a subset of basal ganglia output neurons that decrease firing during licking. Our results reveal the distinct roles of D1- and D2-MSNs in regulating licking at both coarse and fine timescales.
Collapse
Affiliation(s)
- Zhaorong Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Yu Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yaping Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
5
|
McElvain LE, Chen Y, Moore JD, Brigidi GS, Bloodgood BL, Lim BK, Costa RM, Kleinfeld D. Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron 2021; 109:1721-1738.e4. [PMID: 33823137 PMCID: PMC8169061 DOI: 10.1016/j.neuron.2021.03.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 01/07/2023]
Abstract
Basal ganglia play a central role in regulating behavior, but the organization of their outputs to other brain areas is incompletely understood. We investigate the largest output nucleus, the substantia nigra pars reticulata (SNr), and delineate the organization and physiology of its projection populations in mice. Using genetically targeted viral tracing and whole-brain anatomical analysis, we identify over 40 SNr targets that encompass a roughly 50-fold range of axonal densities. Retrograde tracing from the volumetrically largest targets indicates that the SNr contains segregated subpopulations that differentially project to functionally distinct brain stem regions. These subpopulations are electrophysiologically specialized and topographically organized and collateralize to common diencephalon targets, including the motor and intralaminar thalamus as well as the pedunculopontine nucleus and the midbrain reticular formation. These findings establish that SNr signaling is organized as dense, parallel outputs to specific brain stem targets concurrent with extensive collateral branches that encompass the majority of SNr axonal boutons.
Collapse
Affiliation(s)
- Lauren E. McElvain
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA,Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA,Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Yuncong Chen
- Department of Computer Science, University of California San Diego, La Jolla, CA 92093, USA,These authors contributed equally
| | - Jeffrey D. Moore
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA 02138, USA,These authors contributed equally
| | - G. Stefano Brigidi
- Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Brenda L. Bloodgood
- Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Byung Kook Lim
- Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Rui M. Costa
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal,Zuckerman Institute and Department of Neuroscience, Columbia University, New York 10027 USA,Correspondence: (DK), (RMC)
| | - David Kleinfeld
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA,Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA,Lead contact,Correspondence: (DK), (RMC)
| |
Collapse
|
6
|
Lintz MJ, Felsen G. Basal ganglia output reflects internally-specified movements. eLife 2016; 5. [PMID: 27377356 PMCID: PMC4970866 DOI: 10.7554/elife.13833] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/04/2016] [Indexed: 01/27/2023] Open
Abstract
How movements are selected is a fundamental question in systems neuroscience. While many studies have elucidated the sensorimotor transformations underlying stimulus-guided movements, less is known about how internal goals - critical drivers of goal-directed behavior - guide movements. The basal ganglia are known to bias movement selection according to value, one form of internal goal. Here, we examine whether other internal goals, in addition to value, also influence movements via the basal ganglia. We designed a novel task for mice that dissociated equally rewarded internally-specified and stimulus-guided movements, allowing us to test how each engaged the basal ganglia. We found that activity in the substantia nigra pars reticulata, a basal ganglia output, predictably differed preceding internally-specified and stimulus-guided movements. Incorporating these results into a simple model suggests that internally-specified movements may be facilitated relative to stimulus-guided movements by basal ganglia processing.
Collapse
Affiliation(s)
- Mario J Lintz
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, United States.,Neuroscience Program, University of Colorado School of Medicine, Aurora, United States.,Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, United States
| | - Gidon Felsen
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, United States.,Neuroscience Program, University of Colorado School of Medicine, Aurora, United States.,Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
7
|
A GABAergic nigrotectal pathway for coordination of drinking behavior. Nat Neurosci 2016; 19:742-748. [PMID: 27043290 PMCID: PMC5014542 DOI: 10.1038/nn.4285] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/10/2016] [Indexed: 12/13/2022]
Abstract
The contribution of basal ganglia outputs to consummatory behavior remains poorly understood. We recorded from the substantia nigra pars reticulata (SNR), the major basal ganglia output nucleus, during self-initiated drinking. The firing rates of many lateral SNR neurons were time-locked to individual licks. These neurons send GABAergic projections to the deep layers of the orofacial region of the lateral tectum (superior colliculus, SC). Many tectal neurons are also time-locked to licking, but their activity is usually antiphase to that of SNR neurons, suggesting inhibitory nigrotectal projections. We used optogenetics to selectively activate the GABAergic nigrotectal afferents in the deep layers of the SC. Photo-stimulation of the nigrotectal projections transiently inhibited the activity of the lick-related tectal neurons, disrupted their licking-related oscillatory pattern, and suppressed self-initiated drinking. These results demonstrate that GABAergic nigrotectal projections play a crucial role in coordinating drinking behavior.
Collapse
|
8
|
Wolf AB, Lintz MJ, Costabile JD, Thompson JA, Stubblefield EA, Felsen G. An integrative role for the superior colliculus in selecting targets for movements. J Neurophysiol 2015. [PMID: 26203103 DOI: 10.1152/jn.00262.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A fundamental goal of systems neuroscience is to understand the neural mechanisms underlying decision making. The midbrain superior colliculus (SC) is known to be central to the selection of one among many potential spatial targets for movements, which represents an important form of decision making that is tractable to rigorous experimental investigation. In this review, we first discuss data from mammalian models-including primates, cats, and rodents-that inform our understanding of how neural activity in the SC underlies the selection of targets for movements. We then examine the anatomy and physiology of inputs to the SC from three key regions that are themselves implicated in motor decisions-the basal ganglia, parabrachial region, and neocortex-and discuss how they may influence SC activity related to target selection. Finally, we discuss the potential for methodological advances to further our understanding of the neural bases of target selection. Our overarching goal is to synthesize what is known about how the SC and its inputs act together to mediate the selection of targets for movements, to highlight open questions about this process, and to spur future studies addressing these questions.
Collapse
Affiliation(s)
- Andrew B Wolf
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Mario J Lintz
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Jamie D Costabile
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Elizabeth A Stubblefield
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - Gidon Felsen
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|
9
|
Inhibitory synaptic transmission from the substantia nigra pars reticulata to the ventral medial thalamus in mice. Neurosci Res 2015; 97:26-35. [PMID: 25887794 DOI: 10.1016/j.neures.2015.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/17/2015] [Accepted: 03/30/2015] [Indexed: 11/20/2022]
Abstract
The cortico-basal ganglia-thalamic loop circuit is involved in variety of motor, association and limbic functions. The basal ganglia receive neural information from various areas of the cerebral cortex and transfer them back to the frontal and motor cortex via the ventral medial (VM), and the anterior-ventral lateral thalamic complex. The projection from the basal ganglia to the thalamus is GABAergic, and, therefore, the output from the basal ganglia cannot directly evoke excitation in the thalamic nuclei. The mechanism underlying the information transfer via the inhibitory projection remains unclear. To address this issue, we recorded electrophysiological properties of nigro-thalamic synapses from the VM neuron. We developed a nigro-thalamic slice preparation, in which the projection from the substantia nigra pars reticulata (SNr) to VM nucleus is stored, to enable the selective activation of the projection from the SNr. We characterized synaptic properties and membrane properties of the VM neuron, and developed a VM neuron model to simulate the impacts of SNr inputs on VM neuron activity. Neural simulation suggested that the inhibitory projection from SNr can control neural activity in two ways: a disinhibition from the spontaneous nigral inhibition and a β-band synchronization evoked by combination of excitation and inhibition of SNr activity.
Collapse
|
10
|
Abstract
The basal ganglia are a series of interconnected subcortical nuclei. The function and dysfunction of these nuclei have been studied intensively in motor control, but more recently our knowledge of these functions has broadened to include prominent roles in cognition and affective control. This review summarizes historical models of basal ganglia function, as well as findings supporting or conflicting with these models, while emphasizing recent work in animals and humans directly testing the hypotheses generated by these models.
Collapse
|
11
|
Control of basal ganglia output by direct and indirect pathway projection neurons. J Neurosci 2014; 33:18531-9. [PMID: 24259575 DOI: 10.1523/jneurosci.1278-13.2013] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The direct and indirect efferent pathways from striatum ultimately reconverge to influence basal ganglia output nuclei, which in turn regulate behavior via thalamocortical and brainstem motor circuits. However, the distinct contributions of these two efferent pathways in shaping basal ganglia output are not well understood. We investigated these processes using selective optogenetic control of the direct and indirect pathways, in combination with single-unit recording in the basal ganglia output nucleus substantia nigra pars reticulata (SNr) in mice. Optogenetic activation of striatal direct and indirect pathway projection neurons produced diverse cellular responses in SNr neurons, with stimulation of each pathway eliciting both excitations and inhibitions. Despite this response heterogeneity, the effectiveness of direct pathway stimulation in producing movement initiation correlated selectively with the subpopulation of inhibited SNr neurons. In contrast, effective indirect pathway-mediated motor suppression was most strongly influenced by excited SNr neurons. Our results support the theory that key basal ganglia output neurons serve as an inhibitory gate over motor output that can be opened or closed by striatal direct and indirect pathways, respectively.
Collapse
|
12
|
Neural signals of extinction in the inhibitory microcircuit of the ventral midbrain. Nat Neurosci 2012; 16:71-8. [PMID: 23222913 PMCID: PMC3563090 DOI: 10.1038/nn.3283] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/16/2012] [Indexed: 11/24/2022]
Abstract
Midbrain dopaminergic (DA) neurons are thought to guide learning via phasic elevations of firing in response to reward predicting stimuli. The circuit mechanism for these signals remains unclear. Using extracellular recording during associative learning we show that inhibitory neurons in the ventral midbrain of mice respond to salient auditory stimuli with a burst of activity that occurs prior to the onset of the phasic response of DA neurons. This population of inhibitory neurons exhibited enhanced responses during extinction and was anti correlated with the phasic response of simultaneously recorded DA neurons. Optogenetic stimulation suggested that this population was in part derived from inhibitory projection neurons of the substantia nigra that provide a robust monosynaptic inhibition of DA neurons. Our results thus elaborate upon the dynamic upstream circuits that shape the phasic activity of DA neurons and suggest that the inhibitory microcircuit of the midbrain is critical for new learning in extinction.
Collapse
|
13
|
Nuckolls AL, Worley C, Leto C, Zhang H, Morris JK, Stanford JA. Tongue force and tongue motility are differently affected by unilateral vs bilateral nigrostriatal dopamine depletion in rats. Behav Brain Res 2012; 234:343-8. [PMID: 22796604 DOI: 10.1016/j.bbr.2012.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 01/05/2023]
Abstract
In addition to its cardinal symptoms of bradykinesia, muscle rigidity, resting tremor and postural disturbances, Parkinson's disease (PD) also affects orolingual motor function. Orolingual motor deficits can contribute to dysphagia, which increases morbidity and mortality in this population. Previous preclinical studies describing orolingual motor deficits in animal models of PD have focused on unilateral nigrostriatal dopamine (DA) depletion. In this study we compared the effects of unilateral vs bilateral 6-hydroxydopamine (6-OHDA)-induced DA depletion in rats trained to lick water from an isometric force-sensing disc. Rats received either unilateral or bilateral 6-OHDA into the medial forebrain bundle and were tested for four weeks post-lesion. Dependent variables included task engagement (the number of licks per session), tongue force (mean and maximum), and tongue motility (the number of licks per second). While both lesion groups exhibited decreased tongue force output, tongue motility deficits were present in only the group that received unilateral nigrostriatal DA depletion. Task engagement was not significantly diminished by 6-OHDA. Analysis of striatal DA tissue content revealed that DA depletion was ∼97% in the unilateral group and ∼90% in the bilateral group. These results suggest that while nigrostriatal DA depletion affects tongue force output, deficits in tongue motility may instead result from a functional imbalance in neural pathways affecting this midline structure.
Collapse
Affiliation(s)
- Andrea L Nuckolls
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | | | | | | | | | | |
Collapse
|
14
|
Murphy-Nakhnikian A, Dorner JL, Fischer BI, Bower-Bir ND, Rebec GV. Abnormal burst patterns of single neurons recorded in the substantia nigra reticulata of behaving 140 CAG Huntington's disease mice. Neurosci Lett 2012; 512:1-5. [PMID: 22327034 DOI: 10.1016/j.neulet.2011.12.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 12/01/2011] [Accepted: 12/22/2011] [Indexed: 11/19/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that causes neurological pathology in the basal ganglia and related circuitry. A key site of HD pathology is striatum, the principal basal ganglia input structure; striatal pathology likely changes basal ganglia output but no existing studies address this issue. In this report, we characterize single-neuron activity in the substantia nigra reticulata (SNr) of awake, freely behaving 140 CAG knock-in (KI) mice at 16-40 weeks. KI mice are a well characterized model of adult HD and are mildly symptomatic in this age range. As the primary basal ganglia output nucleus in rodents, the SNr receives direct innervation from striatum, as well as indirect influence via polysynaptic inputs. We analyzed 32 single neurons recorded from KI animals and 44 from wild-type (WT) controls. We found increased burst rates, without a concordant change in spike discharge rate, in KI animals relative to WTs. Furthermore, although metrics of burst structure, such as the inter-spike interval in bursts, do not differ between groups, burst rate increases with age in KI, but not WT, animals. Our findings suggest that altered basal ganglia output is a physiological feature of early HD pathology.
Collapse
|
15
|
Bryden DW, Johnson EE, Diao X, Roesch MR. Impact of expected value on neural activity in rat substantia nigra pars reticulata. Eur J Neurosci 2011; 33:2308-17. [PMID: 21645133 DOI: 10.1111/j.1460-9568.2011.07705.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The substantia nigra pars reticulata (SNr) is thought to serve as the output of the basal ganglia, whereby associative information from striatum influences behavior via disinhibition of downstream motor areas to motivate behavior. Unfortunately, few studies have examined activity in SNr in rats making decisions based on the value of predicted reward similar to those conducted in primates. To fill this void, we recorded from single neurons in SNr while rats performed a choice task in which different odor cues indicated what reward was available on the left or on the right. The value of reward associated with a leftward or rightward movement was manipulated by varying the size of and delay to reward in separate blocks of trials. Rats were faster or slower depending on whether the expected reward value was high or low, respectively. The number of neurons that increased firing during performance of the task outnumbered those that decreased firing. Both increases and decreases were modulated by expected value and response direction. Neurons that fired more or less strongly for larger reward tended to fire, respectively, more or less strongly for immediate reward, reflecting their common motivational output. Finally, value selectivity was present prior to presentation of cues indicating the nature of the upcoming behavioral response for both increasing- and decreasing-type neurons, reflecting the internal bias or preparatory set of the rat. These results emphasize the importance of increasing-type neurons on behavioral output when animals are making decisions based on predicted reward value.
Collapse
Affiliation(s)
- Daniel W Bryden
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
16
|
Vitay J, Hamker FH. A computational model of Basal Ganglia and its role in memory retrieval in rewarded visual memory tasks. Front Comput Neurosci 2010; 4. [PMID: 20725505 PMCID: PMC2901092 DOI: 10.3389/fncom.2010.00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 04/30/2010] [Indexed: 11/24/2022] Open
Abstract
Visual working memory (WM) tasks involve a network of cortical areas such as inferotemporal, medial temporal and prefrontal cortices. We suggest here to investigate the role of the basal ganglia (BG) in the learning of delayed rewarded tasks through the selective gating of thalamocortical loops. We designed a computational model of the visual loop linking the perirhinal cortex, the BG and the thalamus, biased by sustained representations in prefrontal cortex. This model learns concurrently different delayed rewarded tasks that require to maintain a visual cue and to associate it to itself or to another visual object to obtain reward. The retrieval of visual information is achieved through thalamic stimulation of the perirhinal cortex. The input structure of the BG, the striatum, learns to represent visual information based on its association to reward, while the output structure, the substantia nigra pars reticulata, learns to link striatal representations to the disinhibition of the correct thalamocortical loop. In parallel, a dopaminergic cell learns to associate striatal representations to reward and modulates learning of connections within the BG. The model provides testable predictions about the behavior of several areas during such tasks, while providing a new functional organization of learning within the BG, putting emphasis on the learning of the striatonigral connections as well as the lateral connections within the substantia nigra pars reticulata. It suggests that the learning of visual WM tasks is achieved rapidly in the BG and used as a teacher for feedback connections from prefrontal cortex to posterior cortices.
Collapse
Affiliation(s)
- Julien Vitay
- Institute of Psychology, University of Münster Münster, Germany
| | | |
Collapse
|
17
|
Joshua M, Adler A, Bergman H. Novelty encoding by the output neurons of the Basal Ganglia. Front Syst Neurosci 2010; 3:20. [PMID: 20140267 PMCID: PMC2816172 DOI: 10.3389/neuro.06.020.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 12/16/2009] [Indexed: 11/25/2022] Open
Abstract
Reinforcement learning models of the basal ganglia have focused on the resemblance of the dopamine signal to the temporal difference error. However the role of the network as a whole is still elusive, in particular whether the output of the basal ganglia encodes only the behavior (actions) or it is part of the valuation process. We trained a monkey extensively on a probabilistic conditional task with seven fractal cues predicting rewarding or aversive outcomes (familiar cues). Then in each recording session we added a cue that the monkey had never seen before (new cue) and recorded from single units in the Substantia Nigra pars reticulata (SNpr) while the monkey was engaged in a task with new cues intermingled within the familiar ones. The monkey learned the association between the new cue and outcome and modified its licking and blinking behavior which became similar to responses to the familiar cues with the same outcome. However, the responses of many SNpr neurons to the new cue exceeded their response to familiar cues even after behavioral learning was completed. This dissociation between behavior and neural activity suggests that the BG output code goes beyond instruction or gating of behavior to encoding of novel cues. Thus, BG output can enable learning at the levels of its target neural networks.
Collapse
Affiliation(s)
- Mati Joshua
- Department of Medical Neurobiology, The Hebrew University-Hadassah Medical School Jerusalem, Israel
| | | | | |
Collapse
|
18
|
Gulley JM, Stanis JJ. Adaptations in medial prefrontal cortex function associated with amphetamine-induced behavioral sensitization. Neuroscience 2009; 166:615-24. [PMID: 20035836 DOI: 10.1016/j.neuroscience.2009.12.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 11/25/2022]
Abstract
Neuroadaptations in the prefrontal cortex (PFC) are hypothesized to play an important role in the behavioral changes associated with repeated psychostimulant exposure, but there are few published studies that measure neuronal activity during the development and expression of sensitization. To address this, we recorded single neuron activity in the medial PFC (mPFC) of male rats that were exposed for 5 days to saline or amphetamine (AMPH; 1.0 mg/kg i.p.) and then given saline or AMPH challenges following a three-day withdrawal. We found that rats exposed to AMPH developed locomotor sensitization to the drug that emerged on the fifth treatment session and became statistically significant at AMPH challenge. This was associated with no change in baseline (i.e., pre-injection) activity of mPFC neurons across the treatment or challenge sessions. Following the first AMPH injection, mPFC neurons responded primarily with reductions in firing, with the overall pattern and magnitude of responses remaining largely similar following repeated treatment. The exception was in the minority of cells that respond to AMPH with increases in firing rate. In this population, the magnitude of excitations peaked during the fifth AMPH exposure and was still relatively elevated at the AMPH challenge. Furthermore, these units increased firing during a saline challenge that was given to assess associative conditioning. These results suggest that AMPH-induced adaptations in mPFC function are not as apparent as AMPH-induced adaptations in behavior. When mPFC adaptations do occur, they appear limited to the population of neurons that increase their firing in response to AMPH.
Collapse
Affiliation(s)
- J M Gulley
- Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, 731 Psychology Building MC-716, 603 E Daniel Street, Champaign, IL 61820, USA.
| | | |
Collapse
|
19
|
Abstract
A hallmark of the GABA projection neurons of the substantia nigra pars reticulata (SNr), a key basal ganglia output nucleus, is its depolarized membrane potential and rapid spontaneous spikes that encode the basal ganglia output. Parkinsonian movement disorders are often associated with abnormalities in SNr GABA neuron firing intensity and/or pattern. A fundamental question remains regarding the molecular identity of the ion channels that drive these neurons to a depolarized membrane potential. We show here that SNr GABA projection neurons selectively express type 3 canonical transient receptor potential (TRPC3) channels. These channels are tonically active and mediate an inward, Na+-dependent current, leading to a substantial depolarization in these neurons. Inhibition of TRPC3 channels induces hyperpolarization, decreases firing frequency, and increases firing irregularity. These data demonstrate that TRPC3 channels play important roles in ensuring the appropriate firing intensity and pattern in SNr GABA projection neurons that are crucial to movement control.
Collapse
|
20
|
Zhang H, Bethel CS, Smittkamp SE, Stanford JA. Age-related changes in orolingual motor function in F344 vs F344/BN rats. Physiol Behav 2007; 93:461-6. [PMID: 17980393 DOI: 10.1016/j.physbeh.2007.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/30/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
Abstract
Normal aging is associated with both locomotor and orolingual motor deficits. Preclinical studies of motor function in normal aging, however, have focused primarily on locomotor activity. The purpose of this study was to measure age-related changes in orolingual motor function and compare these changes between two rat strains commonly used in aging studies: Fischer 344 (F344) and Fischer 344/Brown Norway hybrid (F344/BN) rats. Rats (6-, 12-, 18- and 24-months of age) were trained to lick water from an isometric force-sensing operandum so that the number of licks per session, licking rhythm (licks/second) and lick force could be measured. In both strains, the number of licks per session was greatest in the oldest group, while this measure was greater for F344/BN rats at all ages. Peak tongue force increased with age in F344/BN rats, did not change with age in the F344 rats, and was greater for the F344/BN rats at all ages. Both strains exhibited an age-related slowing of licking rhythm beginning with the 18-month-old group. These findings suggest that despite lifespan differences between these two rat strains, diminished tongue motility emerges at the same age.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
21
|
Nevet A, Morris G, Saban G, Arkadir D, Bergman H. Lack of Spike-Count and Spike-Time Correlations in the Substantia Nigra Reticulata Despite Overlap of Neural Responses. J Neurophysiol 2007; 98:2232-43. [PMID: 17699698 DOI: 10.1152/jn.00190.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies of single neurons in the substantia nigra reticulata (SNr) have shown that many of them respond to similar events. These results, as well as anatomical studies, suggest that SNr neurons share inputs and thus may have correlated activity. Different types of correlation can exist between pairs of neurons. These are traditionally classified as either spike-count (“signal” and “noise”) or spike-timing (spike-to-spike and joint peristimulus time histograms) correlations. These measures of neuronal correlation are partially independent and have different implications. Our purpose was to probe the computational characteristics of the basal ganglia output nuclei through an analysis of these different types of correlation in the SNr. We carried out simultaneous multiple-electrode single-unit recordings in the SNr of two monkeys performing a probabilistic delayed visuomotor response task. A total of 113 neurons (yielding 355 simultaneously recorded pairs) were studied. Most SNr neurons responded to one or more task-related events, with instruction cue (69%) and reward (63%) predominating. Response-match analysis, comparing peristimulus time histograms, revealed a significant overlap between response vectors. However, no measure of average correlation differed significantly from zero. The lack of significant SNr spike-count population correlations appears to be an exceptional phenomenon in the brain, perhaps indicating unique event-related processing by basal ganglia output neurons to achieve better information transfer. The lack of spike-timing correlations suggests that the basal high-frequency discharge of SNr neurons is not driven by the common inputs and is probably intrinsic.
Collapse
Affiliation(s)
- Alon Nevet
- Department of Physiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
22
|
Weldon DA, DiNieri JA, Silver MR, Thomas AA, Wright RE. Reward-related neuronal activity in the rat superior colliculus. Behav Brain Res 2007; 177:160-4. [PMID: 17145084 DOI: 10.1016/j.bbr.2006.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 10/30/2006] [Accepted: 11/02/2006] [Indexed: 11/24/2022]
Abstract
The activity of single units in the intermediate and deep layers of the superior colliculus was recorded while rats performed an operant conditioning task. On all trials, each animal pressed a bar and then inserted his snout into a food cup; on half of the trials, food reinforcement was available. To test for tactile sensitivity, on half of the trials the rats received a puff of air to the face when the snout entered the food cup. Activity of most cells was correlated with the motor activity of inserting the snout into the food cup, even when reinforcement was not available. For many cells, a larger burst of activity was seen on the reinforced trials than on trials when rats made the same movements without the presence of reward. There was no evidence that an increase in tactile sensitivity occurred when the animal retrieved the reinforcement. These results suggest that cells in the superior colliculus have an increase in activity associated with reward retrieval, which for some neurons is not dependent on simple sensory or motor factors.
Collapse
Affiliation(s)
- Douglas A Weldon
- Department of Psychology, Hamilton College, Clinton, NY 13323, United States.
| | | | | | | | | |
Collapse
|
23
|
Humphries MD, Stewart RD, Gurney KN. A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 2007; 26:12921-42. [PMID: 17167083 PMCID: PMC6674973 DOI: 10.1523/jneurosci.3486-06.2006] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The basal ganglia (BG) have long been implicated in both motor function and dysfunction. It has been proposed that the BG form a centralized action selection circuit, resolving conflict between multiple neural systems competing for access to the final common motor pathway. We present a new spiking neuron model of the BG circuitry to test this proposal, incorporating all major features and many physiologically plausible details. We include the following: effects of dopamine in the subthalamic nucleus (STN) and globus pallidus (GP), transmission delays between neurons, and specific distributions of synaptic inputs over dendrites. All main parameters were derived from experimental studies. We find that the BG circuitry supports motor program selection and switching, which deteriorates under dopamine-depleted and dopamine-excessive conditions in a manner consistent with some pathologies associated with those dopamine states. We also validated the model against data describing oscillatory properties of BG. We find that the same model displayed detailed features of both gamma-band (30-80 Hz) and slow (approximately 1 Hz) oscillatory phenomena reported by Brown et al. (2002) and Magill et al. (2001), respectively. Only the parameters required to mimic experimental conditions (e.g., anesthetic) or manipulations (e.g., lesions) were changed. From the results, we derive the following novel predictions about the STN-GP feedback loop: (1) the loop is functionally decoupled by tonic dopamine under normal conditions and recoupled by dopamine depletion; (2) the loop does not show pacemaking activity under normal conditions in vivo (but does after combined dopamine depletion and cortical lesion); (3) the loop has a resonant frequency in the gamma-band.
Collapse
Affiliation(s)
- Mark D Humphries
- Adaptive Behaviour Research Group, Department of Psychology, University of Sheffield, Sheffield, S10 2TP, United Kingdom
| | | | | |
Collapse
|
24
|
Abstract
The motor-activating effects of amphetamine and other psychostimulants such as cocaine depend on an increase in dopamine (DA) transmission in the striatum, a key component of the basal ganglia and the forebrain motive circuit. This review focuses on research aimed at using electrophysiological techniques--including extracellular unit recording and iontophoresis--in alert, fully functioning animals to understand how these drugs alter striatal neuronal processing under behaviorally relevant conditions. The data indicate that DA works in conjunction with glutamate (GLU), an excitatory amino acid, to enhance the signal-to-noise ratio of afferent information. This DA-GLU interaction appears to play a critical role in the amphetamine-induced activation of striatal neurons. The pattern of striatal activation, moreover, changes as the behavioral response changes from unfocused locomotion to highly focused, stereotyped behavior, but interestingly, the striatal response pattern is not reflected in substantia nigra reticulata, a primary target of striatal efferents. Although cocaine also activates striatal neurons during behavior, the underlying mechanisms appear to be complicated by factors unique to this drug and deserve further evaluation. Collectively, these findings provide unique insight into the neuronal processes by which the striatum participates in psychostimulant-induced motor behavior.
Collapse
Affiliation(s)
- George V Rebec
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405-7007, USA.
| |
Collapse
|
25
|
Baldi E, Mariottini C, Bucherelli C. Substantia nigra role in fear conditioning consolidation. Neurobiol Learn Mem 2006; 87:133-9. [PMID: 16978887 DOI: 10.1016/j.nlm.2006.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/05/2006] [Accepted: 07/24/2006] [Indexed: 11/16/2022]
Abstract
The substantia nigra (SN) is known to be involved in the memorization of several conditioned responses. To investigate the role of the SN in fear conditioning consolidation this neural site was subjected to fully reversible tetrodotoxin (TTX) inactivation during consolidation in adult male Wistar rats which had undergone fear training to acoustic CS and context. TTX was stereotaxically administered to different groups of rats at increasing intervals after the acquisition session. Memory was assessed as conditioned freezing duration measured during retention testing, always performed 72 and 96 h after TTX administration. In this way there was no interference with normal SN function during either acquisition or retrieval phases, so that any amnesic effect could be due only to consolidation disruption. The results show that SN functional integrity is necessary for contextual fear response consolidation up to the 24-h after-acquisition delay. On the contrary SN functional integrity was shown not to be necessary for the consolidation of acoustic CS fear responses. The present findings help to elucidate the role of the SN in memory consolidation and better define the neural circuits involved in fear memories.
Collapse
Affiliation(s)
- Elisabetta Baldi
- Department of Physiological Sciences, University of Florence, Viale G.B. Morgagni 63, I-50134, Florence, Italy
| | | | | |
Collapse
|
26
|
Rebec GV, Sun W. Neuronal substrates of relapse to cocaine-seeking behavior: role of prefrontal cortex. J Exp Anal Behav 2006; 84:653-66. [PMID: 16596984 PMCID: PMC1389785 DOI: 10.1901/jeab.2005.105-04] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The return to drug seeking, even after prolonged periods of abstinence, is a defining feature of cocaine addiction. The neural circuitry underlying relapse has been identified in neuropharmacological studies of experimental animals, typically rats, and supported in brain imaging studies of human addicts. Although the nucleus accumbens (NAcc), which has long been implicated in goal-directed behavior, plays a critical role in this circuit, the prefrontal cortex (PFC) appears to process the events that directly trigger relapse: exposure to acute stress, cues previously associated with the drug, and the drug itself. In this paper, we review animal models of relapse and what they have revealed about the mechanisms underlying the involvement of the NAcc and PFC in cocaine-seeking behavior. We also present electrophysiological data from PFC illustrating how the hedonic, motor, motivational, and reinforcing effects of cocaine can be analyzed at the neuronal level. Our preliminary findings suggest a role for PFC in processing information related to cocaine seeking but not the hedonic effects of the drug. Further use of this recording technology can help dissect the functions of PFC and other components of the neural circuitry underlying relapse.
Collapse
|
27
|
Zhou FW, Xu JJ, Zhao Y, LeDoux MS, Zhou FM. Opposite Functions of Histamine H1 and H2 Receptors and H3 Receptor in Substantia Nigra Pars Reticulata. J Neurophysiol 2006; 96:1581-91. [PMID: 16738217 DOI: 10.1152/jn.00148.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The substantia nigra pars reticulata (SNr) is a key basal ganglia output nucleus. Inhibitory outputs from SNr are encoded in spike frequency and pattern of the inhibitory SNr projection neurons. SNr output intensity and pattern are often abnormal in movement disorders of basal ganglia origin. In Parkinson’s disease, histamine innervation and histamine H3 receptor expression in SNr may be increased. However, the functional consequences of these alterations are not known. In this study, whole cell patch-clamp recordings were used to elucidate the function of different histamine receptors in SNr. Histamine increased SNr inhibitory projection neuron firing frequency and thus inhibitory output. This effect was mediated by activation of histamine H1 and H2 receptors that induced inward currents and depolarization. In contrast, histamine H3 receptor activation hyperpolarized and inhibited SNr inhibitory projection neurons, thus decreasing the intensity of basal ganglia output. By the hyperpolarization, H3 receptor activation also increased the irregularity of the interspike intervals or changed the pattern of SNr inhibitory neuron firing. H3 receptor–mediated effects were normally dominated by those mediated by H1 and H2 receptors. Furthermore, endogenously released histamine provided a tonic, H1 and H2 receptor–mediated excitation that helped keep SNr inhibitory projection neurons sufficiently depolarized and spiking regularly. These results suggest that H1 and H2 receptors and H3 receptor exert opposite effects on SNr inhibitory projection neurons. Functional balance of these different histamine receptors may contribute to the proper intensity and pattern of basal ganglia output and, as a consequence, exert important effects on motor control.
Collapse
Affiliation(s)
- Fu-Wen Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
28
|
Prescott TJ, Montes González FM, Gurney K, Humphries MD, Redgrave P. A robot model of the basal ganglia: Behavior and intrinsic processing. Neural Netw 2006; 19:31-61. [PMID: 16153803 DOI: 10.1016/j.neunet.2005.06.049] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Accepted: 06/09/2005] [Indexed: 11/20/2022]
Abstract
The existence of multiple parallel loops connecting sensorimotor systems to the basal ganglia has given rise to proposals that these nuclei serve as a selection mechanism resolving competitions between the alternative actions available in a given context. A strong test of this hypothesis is to require a computational model of the basal ganglia to generate integrated selection sequences in an autonomous agent, we therefore describe a robot architecture into which such a model is embedded, and require it to control action selection in a robotic task inspired by animal observations. Our results demonstrate effective action selection by the embedded model under a wide range of sensory and motivational conditions. When confronted with multiple, high salience alternatives, the robot also exhibits forms of behavioral disintegration that show similarities to animal behavior in conflict situations. The model is shown to cast light on recent neurobiological findings concerning behavioral switching and sequencing.
Collapse
Affiliation(s)
- Tony J Prescott
- Adaptive Behavior Research Group, Department of Psychology, University of Sheffield, Sheffield, Western Bank, South Yorkshire, Sheffield S10 2TN, UK.
| | | | | | | | | |
Collapse
|
29
|
Garris PA, Ensman R, Poehlman J, Alexander A, Langley PE, Sandberg SG, Greco PG, Wightman RM, Rebec GV. Wireless transmission of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of principle. J Neurosci Methods 2005; 140:103-15. [PMID: 15589340 DOI: 10.1016/j.jneumeth.2004.04.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 04/19/2004] [Indexed: 11/23/2022]
Abstract
Fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) provides exquisite temporal and spatial resolution for monitoring brain chemistry. The utility of this approach has recently been demonstrated by measuring sub-second dopamine changes associated with behavior. However, one drawback is the cable link between animal and recording equipment that restricts behavior and precludes monitoring in complex environments. As a first step towards developing new instrumentation to overcome this technical limitation, the goal of the present study was to establish proof of principle for the wireless transmission of FSCV at a CFM. Proof of principle was evaluated in terms of measurement stability, fidelity, and susceptibility to ambient electrical noise. Bluetooth digital telemetry provided bi-directional communication between remote and home-base units and stable, high-fidelity data transfer comparable to conventional, wired systems when tested using a dummy cell (i.e., a resistor and capacitor in series simulating electrical properties of a CFM), and dopamine measurements with flow injection analysis and in the anesthetized rat with electrical stimulation. The wireless system was also less susceptible to interference from ambient electrical noise. Taken together, the present findings establish proof of principle for the wireless transmission of FSCV at a CFM.
Collapse
Affiliation(s)
- Paul A Garris
- Cellular and Integrative Physiology Section, Department of Biological Sciences, Illinois State University, 210 Julian Hall, Normal, IL 61791-4120, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Windels F, Kiyatkin EA. GABA, not glutamate, controls the activity of substantia nigra reticulata neurons in awake, unrestrained rats. J Neurosci 2005; 24:6751-4. [PMID: 15282278 PMCID: PMC6729717 DOI: 10.1523/jneurosci.1528-04.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Substantia nigra pars reticulata (SNr) receives both GABAergic and glutamatergic (GLU) inputs that are believed to act together to regulate neuronal activity in this structure. To examine the role of these inputs, single-unit recording was coupled with iontophoresis of GLU and GABA in rats under two conditions: awake, unrestrained and under chloral hydrate anesthesia. Although GABA potently inhibited SNr cells in both conditions, freely moving rats showed lower sensitivity than anesthetized animals. Likewise, GLU effectively induced excitations in most SNr neurons in anesthetized animals but was much less effective in awake, unrestrained animals in terms of both the number of sensitive cells and the magnitude of GLU-induced excitation. These findings, along with consistent excitations induced by bicuculline in awake, unrestrained rats, suggest that modulation of GABA inhibitory input, not the opposing actions of GLU and GABA, is the primary factor that regulates the activity state of SNr neurons.
Collapse
Affiliation(s)
- François Windels
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, USA.
| | | |
Collapse
|
31
|
Wood DA, Kosobud AEK, Rebec GV. Nucleus accumbens single-unit activity in freely behaving male rats during approach to novel and non-novel estrus. Neurosci Lett 2004; 368:29-32. [PMID: 15342128 DOI: 10.1016/j.neulet.2004.06.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 06/18/2004] [Accepted: 06/18/2004] [Indexed: 10/26/2022]
Abstract
To assess the role of nucleus accumbens (NAcc) during approach to novel sexually arousing stimuli, we evaluated NAcc single-unit activity in male rats during the presentation of vaginal estrus extracted from novel and familiar female rats. After control stimulus presentations, animals were exposed to two estrous presentations from a female in the same or separate colony. A significantly larger proportion of units increased firing rate in the novel (11/32; 34%) than the familiar condition (2/28; 7%) during approach to the first but not the second presentation. Response magnitudes to novel but not familiar estrus were also greater than those during control trials. Collectively, these results provide further evidence of a role for the NAcc in the processing of novel sexually arousing information.
Collapse
Affiliation(s)
- David A Wood
- Department of Psychology, Program in Neural Science, Indiana University, 1101 E. Tenth St., Bloomington, IN 47405-7007, USA
| | | | | |
Collapse
|
32
|
Gulley JM, Reed JL, Kuwajima M, Rebec GV. Amphetamine-induced behavioral activation is associated with variable changes in basal ganglia output neurons recorded from awake, behaving rats. Brain Res 2004; 1012:108-18. [PMID: 15158167 DOI: 10.1016/j.brainres.2004.03.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2004] [Indexed: 11/28/2022]
Abstract
Systemic or intra-striatal administration of d-amphetamine (AMPH) elicits a dose-dependent pattern of behavioral activation and neuronal firing in the striatum. To determine if the AMPH-induced striatal firing pattern is expressed in the substantia nigra pars reticulata (SNr), a main target of striatal efferents and the primary output nucleus of the basal ganglia, we recorded the activity of 214 SNr units in alert, behaving rats responding to either systemic (1.0 or 5.0 mg/kg, sc) or intra-striatal (20 microg/microl/min) AMPH. Both routes of administration increased behavior but the strongest effects occurred after systemic injection. A dose of 1.0 mg/kg progressively increased locomotion, head movements, and sniffing, whereas after 5.0 mg/kg behavioral responding became progressively more focused and stereotyped. The collective response of SNr neurons was a net increase in firing rate that was most apparent after the low systemic dose and intra-striatal infusion. Further analysis revealed significant unit populations that were either excited, inhibited or showed no change. Although excitations predominated over inhibitions in all cases, a sizable population of units was unresponsive: approximately 25% to systemic AMPH and almost half to intra-striatal infusion. Subsequent injection of haloperidol (0.5 or 1.0 mg/kg, sc), a dopamine receptor antagonist, reversed both the behavioral and electrophysiological effects of AMPH. Thus, as in striatum, dopamine appears to play a critical role in AMPH-induced changes in SNr activity. Interestingly, however, SNr activity did not closely parallel the striatal response, suggesting that patterns of neuronal responding to AMPH in striatum are not reliably relayed to SNr.
Collapse
Affiliation(s)
- Joshua M Gulley
- Program in Neural Science and Department of Psychology, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405-7007, USA
| | | | | | | |
Collapse
|
33
|
Faingold CL. Emergent properties of CNS neuronal networks as targets for pharmacology: application to anticonvulsant drug action. Prog Neurobiol 2004; 72:55-85. [PMID: 15019176 DOI: 10.1016/j.pneurobio.2003.11.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Accepted: 11/19/2003] [Indexed: 01/13/2023]
Abstract
CNS drugs may act by modifying the emergent properties of complex CNS neuronal networks. Emergent properties are network characteristics that are not predictably based on properties of individual member neurons. Neuronal membership within networks is controlled by several mechanisms, including burst firing, gap junctions, endogenous and exogenous neuroactive substances, extracellular ions, temperature, interneuron activity, astrocytic integration and external stimuli. The effects of many CNS drugs in vivo may critically involve actions on specific brain loci, but this selectivity may be absent when the same neurons are isolated from the network in vitro where emergent properties are lost. Audiogenic seizures (AGS) qualify as an emergent CNS property, since in AGS the acoustic stimulus evokes a non-linear output (motor convulsion), but the identical stimulus evokes minimal behavioral changes normally. The hierarchical neuronal network, subserving AGS in rodents is initiated in inferior colliculus (IC) and progresses to deep layers of superior colliculus (DLSC), pontine reticular formation (PRF) and periaqueductal gray (PAG) in genetic and ethanol withdrawal-induced AGS. In blocking AGS, certain anticonvulsants reduce IC neuronal firing, while other agents act primarily on neurons in other AGS network sites. However, the NMDA receptor channel blocker, MK-801, does not depress neuronal firing in any network site despite potently blocking AGS. Recent findings indicate that MK-801 actually enhances firing in substantia nigra reticulata (SNR) neurons in vivo but not in vitro. Thus, the MK-801-induced firing increases in SNR neurons observed in vivo may involve an indirect effect via disinhibition, involving an action on the emergent properties of this seizure network.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA.
| |
Collapse
|
34
|
Yuan H, Yamada K, Inagaki N. Multiminute oscillations in mouse substantia nigra pars reticulata neurons in vitro. Neurosci Lett 2004; 355:136-40. [PMID: 14729253 DOI: 10.1016/j.neulet.2003.10.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In acute slice of substantia nigra pars reticulata (SNr), a small proportion (6.6%) of GABAergic neurons exhibited abrupt increases in spontaneous firing rate from baseline frequency ( approximately 40 Hz) to peak (>100 Hz) with periods ranging in minutes when GABA(A) receptors were blocked by 20 microM bicuculline. The combination of GABA(B), non-NMDA, and NMDA blockers, SCH50911 (10 microM), 6,7-dinitro-quinoxaline-2,3-dione (20 microM), and DL-2-amino-5-phosphonovalerate (50 microM), respectively, did not affect the incidence or properties of these multiminute oscillations, indicating that disinhibition induced by blockade of GABA(A) receptors is crucial in their generation. Incidence of oscillatory activity was increased to 16% by elevation of the K(+) concentration to 8 mM from basal level (6.24 mM). The SNr neurons exhibiting oscillatory activity with the addition of bicuculline had shown irregular fluctuations in basal firing rate, while the non-oscillatory neurons had shown a more regular baseline firing pattern. This is the first in vitro report of oscillations in firing rate of multiminute range in basal ganglia.
Collapse
Affiliation(s)
- Hongjie Yuan
- Department of Physiology, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | |
Collapse
|
35
|
Ball KT, Budreau D, Rebec GV. Acute effects of 3,4-methylenedioxymethamphetamine on striatal single-unit activity and behavior in freely moving rats: differential involvement of dopamine D1 and D2 receptors. Brain Res 2003; 994:203-15. [PMID: 14642646 DOI: 10.1016/j.brainres.2003.09.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused amphetamine derivative that increases dopamine (DA) and serotonin release via a reverse transport mechanism. Changes in the activity of striatal neurons in response to increased DA transmission may shape the behavioral patterns associated with amphetamine-like stimulants. To determine how the striatum participates in MDMA-induced locomotor activation, we recorded the activity of >100 single units in the striatum of freely moving rats in response to a dose that increased motor activation (5.0 mg/kg). MDMA had a predominantly excitatory effect on neuronal activity that was positively correlated with the magnitude of locomotor activation. Categorizing neurons according to baseline locomotor responsiveness revealed that MDMA excited significantly more neurons showing movement-related increases in activity compared to units that were non-movement-related or associated with movement-related decreases in activity. Further analysis revealed that the drug-induced striatal activation was not simply secondary to the behavioral change, indicating a primary action of MDMA on striatal motor circuits. Prior administration of SCH-23390 (0.2 mg/kg), a D(1) antagonist, resulted in a late onset of MDMA-induced locomotion, which correlated positively with delayed neuronal excitations. Conversely, prior administration of eticlopride (0.2 mg/kg), a D(2) antagonist, completely abolished MDMA-induced locomotion, which paralleled its blockade of MDMA-induced excitatory neuronal responses. Our results highlight the importance of striatal neuronal activity in shaping the behavioral response to MDMA, and suggest that DA D(1) and D(2) receptors have distinct functional roles in the expression of MDMA-induced striatal and locomotor activation.
Collapse
Affiliation(s)
- Kevin T Ball
- Department of Psychology and Program in Neural Science, Psychology Building, Indiana University, 1101 East 10th Street, Bloomington, IN 47405-7007, USA
| | | | | |
Collapse
|
36
|
Correa M, Mingote S, Betz A, Wisniecki A, Salamone JD. Substantia nigra pars reticulata GABA is involved in the regulation of operant lever pressing: pharmacological and microdialysis studies. Neuroscience 2003; 119:759-66. [PMID: 12809696 DOI: 10.1016/s0306-4522(03)00117-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Substantia nigra pars reticulata (SNr) is an important mesencephalic nucleus that functions as a relay area for basal ganglia output. SNr receives GABAergic inputs from the neostriatum and globus pallidus, and in turn sends projections to a variety of motor areas. Although a large number of studies have focused upon the behavioral functions of basal ganglia dopamine, much less is known about the behavioral functions of SNr GABA. The present studies were undertaken to investigate the role of SNr GABA in lever pressing behavior. In the first experiment, the GABA(A) antagonist bicuculline was infused locally into SNr to determine if blockade of GABA receptors interfered with the performance of lever pressing on a fixed ratio 5 schedule. SNr injections of bicuculline produced a dose-related suppression of operant responding. Analysis of interresponse time bins showed that SNr bicuculline produced a response slowing characterized by a relative reduction in the number of fast interresponse times, and an increase in the relative number of pauses. In an additional experiment, microdialysis methods were used to determine if extracellular GABA is elevated during the performance of fixed ratio five lever pressing. During the 30 min lever pressing session, extracellular GABA showed a significant and substantial increase relative to baseline levels. These data support the hypothesis that SNr GABA is involved in the regulation of motor output, and indicate that GABA release in this structure is increased during behavioral stimulation.
Collapse
Affiliation(s)
- M Correa
- Department of Psychology, University of Connecticut, 06269-1020, Storrs, CT, USA
| | | | | | | | | |
Collapse
|
37
|
Gulley JM, Kosobud AEK, Rebec GV. Amphetamine inhibits behavior-related neuronal responses in substantia nigra pars reticulata of rats working for sucrose reinforcement. Neurosci Lett 2002; 322:165-8. [PMID: 11897164 DOI: 10.1016/s0304-3940(02)00064-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changes in activity of basal ganglia neurons, especially those in the striatum, are thought to underlie the characteristic behavioral patterns produced by d-amphetamine (AMPH). To study the role of the substantia nigra pars reticulata (SNr), a major basal ganglia output nucleus, we recorded from SNr neurons before and after a behaviorally activating dose of AMPH (0.5 mg/kg) in rats trained to nosepoke for sucrose reinforcement. Before AMPH, task-related behaviors were associated primarily with increases or both increases and decreases in SNr firing. Although these same behavior-related patterns persisted after AMPH, their relative magnitude was significantly attenuated. Units unresponsive during task events were unaffected by AMPH. Thus, rather than change the overall level of SNr firing, a behaviorally active dose of AMPH exerts context-dependent effects on the activity of SNr neurons.
Collapse
Affiliation(s)
- Joshua M Gulley
- Program in Neural Science, Department of Psychology, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405-7007, USA
| | | | | |
Collapse
|