1
|
Zhu Y, Ma J, Li Y, Gu M, Feng X, Shao Y, Tan L, Lou HF, Sun L, Liu Y, Zeng LH, Qiu Z, Li XM, Duan S, Yu YQ. Adenosine-Dependent Arousal Induced by Astrocytes in a Brainstem Circuit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407706. [PMID: 39494592 DOI: 10.1002/advs.202407706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/20/2024] [Indexed: 11/05/2024]
Abstract
Astrocytes play a crucial role in regulating sleep-wake behavior. However, how astrocytes govern a specific sleep-arousal circuit remains unknown. Here, the authors show that parafacial zone (PZ) astrocytes responded to sleep-wake cycles with state-differential Ca2+ activity, peaking during transitions from sleep to wakefulness. Using chemogenetic and optogenetic approaches, they find that activating PZ astrocytes elicited and sustained wakefulness by prolonging arousal episodes while impeding transitions from wakefulness to non-rapid eye movement (NREM) sleep. Activation of PZ astrocytes specially induced the elevation of extracellular adenosine through the ATP hydrolysis pathway but not equilibrative nucleoside transporter (ENT) mediated transportation. Strikingly, the rise in adenosine levels induced arousal by activating A1 receptors, suggesting a distinct role for adenosine in the PZ beyond its conventional sleep homeostasis modulation observed in the basal forebrain (BF) and cortex. Moreover, at the circuit level, PZ astrocyte activation induced arousal by suppressing the GABA release from the PZGABA neurons, which promote NREM sleep and project to the parabrachial nucleus (PB). Thus, their study unveils a distinctive arousal-promoting effect of astrocytes within the PZ through extracellular adenosine and elucidates the underlying mechanism at the neural circuit level.
Collapse
Affiliation(s)
- Yuwei Zhu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Jiale Ma
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
| | - Yulan Li
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mengyang Gu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiang Feng
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Yujin Shao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lei Tan
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hui-Fang Lou
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Li Sun
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Yijun Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Zilong Qiu
- Department of Neurology, Songjiang Hospital, Songjiang Research Institute, MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao-Ming Li
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Shumin Duan
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
- Department of Neurology, Songjiang Hospital, Songjiang Research Institute, MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Qin Yu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Korkutata M, Lazarus M. Adenosine A 2A receptors and sleep. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:155-178. [PMID: 37741690 DOI: 10.1016/bs.irn.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Adenosine, a known endogenous somnogen, induces sleep via A1 and A2A receptors. In this chapter, we review the current knowledge regarding the role of the adenosine A2A receptor and its agonists, antagonists, and allosteric modulators in sleep-wake regulation. Although many adenosine A2A receptor agonists, antagonists, and allosteric modulators have been identified, only a few have been tested to see if they can promote sleep or wakefulness. In addition, the growing popularity of natural sleep aids has led to an investigation of natural compounds that may improve sleep by activating the adenosine A2A receptor. Finally, we discuss the potential therapeutic advantage of allosteric modulators of adenosine A2A receptors over classic agonists and antagonists for treating sleep and neurologic disorders.
Collapse
Affiliation(s)
- Mustafa Korkutata
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
3
|
Caffeine as an adulterant of coca paste seized samples: preclinical study on the rat sleep-wake cycle. Behav Pharmacol 2019; 29:519-529. [PMID: 30036272 DOI: 10.1097/fbp.0000000000000417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Caffeine is a common active adulterant found in illicit drugs of abuse, including coca paste (CP). CP is a smokable form of cocaine mainly consumed in South America, produced during the cocaine-extraction process. CP has high abuse liability and its chronic consumption induces severe sleep-wake alterations. However, the effect of CP on the sleep-wake cycle and the effect of the presence of caffeine as an adulterant remain unknown. We studied the effect of an acute intraperitoneal injection of 2.5 and 5 mg/kg of a representative CP sample adulterated with caffeine (CP1) on the rat sleep-wake cycle. Compared with saline, administration of CP1 induced an increase in wakefulness and a decrease in light (light sleep) and slow wave sleep that was larger than the effects produced by equivalent doses of cocaine. Compared with CP1, combined treatment with cocaine (5 mg/kg) and caffeine (2.5 mg/kg), a surrogate of CP1, elicited similar effects. In contrast, a nonadulterated CP sample (CP2) produced an effect that was not different from cocaine. Our data indicate that caffeine produces a significant potentiation of the wakefulness-promoting effect of cocaine, suggesting that caffeine should be explored as a causal agent of clinical symptoms observed in CP users.
Collapse
|
4
|
Pagnussat N, Almeida AS, Marques DM, Nunes F, Chenet GC, Botton PHS, Mioranzza S, Loss CM, Cunha RA, Porciúncula LO. Adenosine A(2A) receptors are necessary and sufficient to trigger memory impairment in adult mice. Br J Pharmacol 2015; 172:3831-45. [PMID: 25939452 DOI: 10.1111/bph.13180] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 03/31/2015] [Accepted: 04/13/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer's disease, an effect mimicked by adenosine A2 A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. EXPERIMENTAL APPROACH We determined whether A2 A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2 A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. KEY RESULTS Scopolamine (1.0 mg·kg(-1) , i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2 A receptor antagonist (SCH 58261, 0.1-1.0 mg·kg(-1) , i.p.) and by the A1 receptor antagonist (DPCPX, 0.2-5.0 mg·kg(-1) , i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2 A receptors with CGS 21680 (0.1-0.5 mg·kg(-1) , i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg(-1) , i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. CONCLUSIONS AND IMPLICATIONS These results show that A2 A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment.
Collapse
Affiliation(s)
- N Pagnussat
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A S Almeida
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - D M Marques
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - F Nunes
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - G C Chenet
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - P H S Botton
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - S Mioranzza
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - C M Loss
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - R A Cunha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - L O Porciúncula
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Huang ZL, Zhang Z, Qu WM. Roles of adenosine and its receptors in sleep-wake regulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 119:349-71. [PMID: 25175972 DOI: 10.1016/b978-0-12-801022-8.00014-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This chapter summarizes the current knowledge about the role of adenosine in the sleep-wake regulation with a focus on adenosine in the brain, regulation of adenosine levels, adenosine receptors, and manipulations of the adenosine system by the use of pharmacological and molecular biological tools. Adenosine is neither stored nor released as a classical neurotransmitter and is thought to be formed inside cells or on their surface, mostly by breakdown of adenine nucleotides. The extracellular level of adenosine increases in the cortex and basal forebrain (BF) during prolonged wakefulness and decreases during the sleep-recovery period. Therefore, adenosine is proposed to act as a homeostatic regulator of sleep. The endogenous somnogen prostaglandin (PG) D2 increases the extracellular level of adenosine under the subarachnoid space of the BF and promotes physiological sleep. There are four adenosine receptor subtypes: adenosine A1 receptor (R, A1R), A2AR, A2BR, and A3R. Both the A1R and the A2AR have been reported to be involved in sleep induction. The A2AR plays an important role in the somnogenic effects of PGD2. Activation of A2AR by its agonist infused into the brain potently increases sleep and the arousal effect of caffeine, an A1R and A2AR antagonist, was shown to be dependent on the A2AR. On the other hand, inhibition of wake-promoting neurons via the A1R also mediates the sleep-inducing effects of adenosine, whereas activation of A1R in the lateral preoptic area induces wakefulness. These findings indicate that A2AR plays a predominant role in sleep induction, whereas A1R regulates the sleep-wake cycle in a site-dependent manner.
Collapse
Affiliation(s)
- Zhi-Li Huang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, Institute of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Ze Zhang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, Institute of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, Institute of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Liang CL, Marks GA. GABAA receptors are located in cholinergic terminals in the nucleus pontis oralis of the rat: Implications for REM sleep control. Brain Res 2014; 1543:58-64. [DOI: 10.1016/j.brainres.2013.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/02/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
|
7
|
Porciúncula LO, Sallaberry C, Mioranzza S, Botton PHS, Rosemberg DB. The Janus face of caffeine. Neurochem Int 2013; 63:594-609. [PMID: 24055856 DOI: 10.1016/j.neuint.2013.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022]
Abstract
Caffeine is certainly the psychostimulant substance most consumed worldwide. Over the past years, chronic consumption of caffeine has been associated with prevention of cognitive decline associated to aging and mnemonic deficits of brain disorders. While its preventive effects have been reported extensively, the cognitive enhancer properties of caffeine are relatively under debate. Surprisingly, there are scarce detailed ontogenetic studies focusing on neurochemical parameters related to the effects of caffeine during prenatal and earlier postnatal periods. Furthermore, despite the large number of epidemiological studies, it remains unclear how safe is caffeine consumption during pregnancy and brain development. Thus, the purpose of this article is to review what is currently known about the actions of caffeine intake on neurobehavioral and adenosinergic system during brain development. We also reviewed other neurochemical systems affected by caffeine, but not only during brain development. Besides, some recent epidemiological studies were also outlined with the control of "pregnancy signal" as confounding variable. The idea is to tease out how studies on the impact of caffeine consumption during brain development deserve more attention and further investigation.
Collapse
Affiliation(s)
- Lisiane O Porciúncula
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil.
| | - Cássia Sallaberry
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil
| | - Sabrina Mioranzza
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil
| | - Paulo Henrique S Botton
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil
| | - Denis B Rosemberg
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil; Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Exatas e Ambientais, Universidade Comunitária da Região de Chapecó. Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó/SC, Brazil
| |
Collapse
|
8
|
Adenosine A(1) receptors in mouse pontine reticular formation depress breathing, increase anesthesia recovery time, and decrease acetylcholine release. Anesthesiology 2013; 118:327-36. [PMID: 23263018 DOI: 10.1097/aln.0b013e31827d413e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Clinical and preclinical data demonstrate the analgesic actions of adenosine. Central administration of adenosine agonists, however, suppresses arousal and breathing by poorly understood mechanisms. This study tested the two-tailed hypothesis that adenosine A1 receptors in the pontine reticular formation (PRF) of C57BL/6J mice modulate breathing, behavioral arousal, and PRF acetylcholine release. METHODS Three sets of experiments used 51 mice. First, breathing was measured by plethysmography after PRF microinjection of the adenosine A1 receptor agonist N-sulfophenyl adenosine (SPA) or saline. Second, mice were anesthetized with isoflurane and the time to recovery of righting response (RoRR) was quantified after a PRF microinjection of SPA or saline. Third, acetylcholine release in the PRF was measured before and during microdialysis delivery of SPA, the adenosine A1 receptor antagonist 1, 3-dipropyl-8-cyclopentylxanthine, or SPA and 1, 3-dipropyl-8-cyclopentylxanthine. RESULTS First, SPA significantly decreased respiratory rate (-18%), tidal volume (-12%), and minute ventilation (-16%). Second, SPA concentration accounted for 76% of the variance in RoRR. Third, SPA concentration accounted for a significant amount of the variance in acetylcholine release (52%), RoRR (98%), and breathing rate (86%). 1, 3-dipropyl-8-cyclopentylxanthine alone caused a concentration-dependent increase in acetylcholine, a decrease in RoRR, and a decrease in breathing rate. Coadministration of SPA and 1, 3-dipropyl-8-cyclopentylxanthine blocked the SPA-induced decrease in acetylcholine and increase in RoRR. CONCLUSIONS Endogenous adenosine acting at adenosine A1 receptors in the PRF modulates breathing, behavioral arousal, and acetylcholine release. The results support the interpretation that an adenosinergic-cholinergic interaction within the PRF comprises one neurochemical mechanism underlying the wakefulness stimulus for breathing.
Collapse
|
9
|
Zhang J, Yin D, Wu F, Zhang G, Jiang C, Li Z, Wang L, Wang K. Microinjection of adenosine into the hypothalamic ventrolateral preoptic area enhances wakefulness via the A1 receptor in rats. Neurochem Res 2013; 38:1616-23. [PMID: 23657636 DOI: 10.1007/s11064-013-1063-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
Abstract
Adenosine (AD) is a nucleic acid component that is critical for energy metabolism in the body. AD modulates numerous neural functions in the central nervous system, including the sleep-wake cycle. Previous studies have indicated that the A1 receptor (A1R) or A2A receptor (A2AR) may mediate the effects of AD on the sleep-wake cycle. The hypothalamic ventrolateral preoptic area (VLPO) initiates and maintains normal sleep. Histological studies have shown A1R are widely expressed in brain tissue, whereas A2AR expression is limited in the brain and undetectable in the VLPO. We hypothesize therefore, that AD modulates the sleep-wake cycle through A1R in the VLPO. In the present study, bilateral microinjection of AD or an AD transporter inhibitor (s-(4-nitrobenzyl)-6-thioinosine) into the VLPO of rats decreased non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. An A1R agonist (N6-cyclohexyladenosine) produced similar effects in the VLPO. Microinjection of an A1R antagonist (8-cyclopentyl-1,3-dimethylxanthine) into the VLPO enhanced NREM sleep and diminished AD-induced wakefulness. These data indicate that AD enhances wakefulness in the VLPO via A1R in rats.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The development of sedative/hypnotic molecules has been empiric rather than rational. The empiric approach has produced clinically useful drugs but for no drug is the mechanism of action completely understood. All available sedative/hypnotic medications have unwanted side effects and none of these medications creates a sleep architecture that is identical to the architecture of naturally occurring sleep. This chapter reviews recent advances in research aiming to elucidate the neurochemical mechanisms regulating sleep and wakefulness. One promise of rational drug design is that understanding the mechanisms of sedative/hypnotic action will significantly enhance drug safety and efficacy.
Collapse
|
11
|
Hawryluk JM, Ferrari LL, Keating SA, Arrigoni E. Adenosine inhibits glutamatergic input to basal forebrain cholinergic neurons. J Neurophysiol 2012; 107:2769-81. [PMID: 22357797 PMCID: PMC3362278 DOI: 10.1152/jn.00528.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 02/15/2012] [Indexed: 01/03/2023] Open
Abstract
Adenosine has been proposed as an endogenous homeostatic sleep factor that accumulates during waking and inhibits wake-active neurons to promote sleep. It has been specifically hypothesized that adenosine decreases wakefulness and promotes sleep recovery by directly inhibiting wake-active neurons of the basal forebrain (BF), particularly BF cholinergic neurons. We previously showed that adenosine directly inhibits BF cholinergic neurons. Here, we investigated 1) how adenosine modulates glutamatergic input to BF cholinergic neurons and 2) how adenosine uptake and adenosine metabolism are involved in regulating extracellular levels of adenosine. Our experiments were conducted using whole cell patch-clamp recordings in mouse brain slices. We found that in BF cholinergic neurons, adenosine reduced the amplitude of AMPA-mediated evoked glutamatergic excitatory postsynaptic currents (EPSCs) and decreased the frequency of spontaneous and miniature EPSCs through presynaptic A(1) receptors. Thus we have demonstrated that in addition to directly inhibiting BF cholinergic neurons, adenosine depresses excitatory inputs to these neurons. It is therefore possible that both direct and indirect inhibition may synergistically contribute to the sleep-promoting effects of adenosine in the BF. We also found that blocking the influx of adenosine through the equilibrative nucleoside transporters or inhibiting adenosine kinase and adenosine deaminase increased endogenous adenosine inhibitory tone, suggesting a possible mechanism through which adenosine extracellular levels in the basal forebrain are regulated.
Collapse
Affiliation(s)
- J M Hawryluk
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
12
|
Nie HH, Huo LJ, Yang X, Gao ZY, Zeng JW, Trier K, Cui DM. Effects of 7-methylxanthine on form-deprivation myopia in pigmented rabbits. Int J Ophthalmol 2012; 5:133-7. [PMID: 22762036 DOI: 10.3980/j.issn.2222-3959.2012.02.03] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/31/2012] [Indexed: 11/02/2022] Open
Abstract
AIM To determine the effect of 7-methylxanthine (7-MX) on the posterior sclera of form-deprivation myopia (FDM) in pigmented rabbits. METHODS Sixteen pigmented rabbits were monocularly deprived (MD) by suturing the right eyelids after natural eye opening (ten-day old) for a period of 30 days. Two groups of pigmented rabbits were fed either 7-MX (30 mg per kg body weight; n=8) or vehicle control (saline equal volume with 7-MX; n=8). Ocular refractions, axial lengths and body weights were measured at the start and the end of the experiment 30 days later. Electron microscopy was used to measure and determine the collagen fibril diameters in the posterior pole of sclera. RESULTS In vehicle control MD pigmented rabbits, 30 days of MD produced -1.10D±0.78D of myopia and the axial length increased 0.51mm±0.09mm. In MD pigmented rabbits fed with 7-MX, 30 days of MD induced only -0.21D±0.11D of myopia and the axial length increased 0.07mm±0.10mm. There was significant change in axial length of vehicle control MD pigmented rabbits (13.11mm±0.19mm versus 12.60mm±0.06mm; P=0.03). The changes in refraction and axial length of two MD groups' contralateral eyes during the 30 days were not significantly different (2.75D±0.27D versus 2.75D±0.35D, P>0.05; 12.60mm±0.06mm versus 12.45mm±0.14mm, P>0.05). The weights of the two groups pigmented rabbits had no significant changes (187g±22.1g versus 189g±19.3g, P>0.05). The diameter of scleral collagen fibers increased in both eyes of 7-MX treated pigmented rabbits. There was significant difference in collagen fibril diameters of inner layer (111.34nm±28.30nm versus 94.80nm±27.52nm, P=0.002) and outer layer (167.92nm±55.82 nm versus 144.04 nm±47.02nm, P=0.016) in the posterior sclera between the myopic eyes of vehicle control MD group and contralateral eyes of 7-MX treated MD group. CONCLUSION 7-MX appears to prevent FDM in pigmented rabbits by remodeling the posterior sclera.
Collapse
Affiliation(s)
- Hao-Hui Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, SunYat-sen University, Guangzhou 510060, Guangdong Province, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Buprenorphine disrupts sleep and decreases adenosine concentrations in sleep-regulating brain regions of Sprague Dawley rat. Anesthesiology 2011; 115:743-53. [PMID: 21857500 DOI: 10.1097/aln.0b013e31822e9f85] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Buprenorphine, a partial μ-opioid receptor agonist and κ-opioid receptor antagonist, is an effective analgesic. The effects of buprenorphine on sleep have not been well characterized. This study tested the hypothesis that an antinociceptive dose of buprenorphine decreases sleep and decreases adenosine concentrations in regions of the basal forebrain and pontine brainstem that regulate sleep. METHODS Male Sprague Dawley rats were implanted with intravenous catheters and electrodes for recording states of wakefulness and sleep. Buprenorphine (1 mg/kg) was administered systemically via an indwelling catheter and sleep-wake states were recorded for 24 h. In additional rats, buprenorphine was delivered by microdialysis to the pontine reticular formation and substantia innominata of the basal forebrain while adenosine was simultaneously measured. RESULTS An antinociceptive dose of buprenorphine caused a significant increase in wakefulness (25.2%) and a decrease in nonrapid eye movement sleep (-22.1%) and rapid eye movement sleep (-3.1%). Buprenorphine also increased electroencephalographic delta power during nonrapid eye movement sleep. Coadministration of the sedative-hypnotic eszopiclone diminished the buprenorphine-induced decrease in sleep. Dialysis delivery of buprenorphine significantly decreased adenosine concentrations in the pontine reticular formation (-14.6%) and substantia innominata (-36.7%). Intravenous administration of buprenorphine significantly decreased (-20%) adenosine in the substantia innominata. CONCLUSIONS Buprenorphine significantly increased time spent awake, decreased nonrapid eye movement sleep, and increased latency to sleep onset. These disruptions in sleep architecture were mitigated by coadministration of the nonbenzodiazepine sedative-hypnotic eszopiclone. The buprenorphine-induced decrease in adenosine concentrations in basal forebrain and pontine reticular formation is consistent with the interpretation that decreasing adenosine in sleep-regulating brain regions is one mechanism by which opioids disrupt sleep.
Collapse
|
14
|
Cui D, Trier K, Zeng J, Wu K, Yu M, Hu J, Chen X, Ge J. Effects of 7-methylxanthine on the sclera in form deprivation myopia in guinea pigs. Acta Ophthalmol 2011; 89:328-34. [PMID: 19860777 DOI: 10.1111/j.1755-3768.2009.01688.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of this study was to determine the effect of the adenosine receptor antagonist 7-methylxanthine (7-MX) on form deprivation myopia in 3-week-old guinea pigs. METHODS Two groups of 3-week-old guinea pigs were subjected to monocular deprivation (MD) using a diffuser and fed either 7-MX (300 mg/kg body weight; n = 7) or vehicle control (saline at an equal volume to 7-MX; n = 7). A control group (n = 6) was not subjected to form deprivation. Ocular refraction, axial length and body weight were measured at the start and after 21 days. The thickness of the posterior sclera was measured by light microscopy and the collagen fibril diameter in the inner, middle and outer layers of the sclera was measured by electron microscopy. RESULTS In the vehicle control group, 21 days of MD produced significant amounts of myopia, axial elongation, thinning of the posterior sclera and thinning of the median collagen fibril diameter in the posterior sclera relative to the contralateral eyes. In the guinea pigs fed with 7-MX, however, form deprivation produced significantly less myopia and axial elongation compared with vehicle control animals. The 7-MX-treated animals exhibited a thickening of the posterior sclera in both the MD eye and the contralateral eye. In the 7-MX-treated animals, the median collagen fibril diameter in the posterior sclera was not reduced by form deprivation. CONCLUSIONS Treatment with 7-MX appears to not only decrease the amount of myopia by around 50% and eliminate the eye elongation induced by form deprivation in guinea pigs, but also to prevent form deprivation myopia-related scleral changes, such as thinning of the sclera and thinning of the collagen fibril diameter in the posterior sclera.
Collapse
Affiliation(s)
- Dongmei Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, SunYat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The development of sedative/hypnotic molecules has been empiric rather than rational. The empiric approach has produced clinically useful drugs but for no drug is the mechanism of action completely understood. All available sedative/hypnotic medications have unwanted side effects and none of these medications creates a sleep architecture that is identical to the architecture of naturally occurring sleep. This chapter reviews recent advances in research aiming to elucidate the neurochemical mechanisms regulating sleep and wakefulness. One promise of rational drug design is that understanding the mechanisms of sedative/hypnotic action will significantly enhance drug safety and efficacy.
Collapse
|
16
|
Cui D, Trier K, Zeng J, Wu K, Yu M, Ge J. Adenosine receptor protein changes in guinea pigs with form deprivation myopia. Acta Ophthalmol 2010; 88:759-65. [PMID: 19604158 DOI: 10.1111/j.1755-3768.2009.01559.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Recent results have shown that treatment with the non-selective adenosine antagonist 7-methylxanthine (7-MX) reduces the development of form deprivation myopia (FDM) in guinea pigs. The aims of this study were to identify the presence of adenosine receptors (AdoRs) in the eye wall of the guinea pig and to determine their possible changes during form deprivation. METHODS Three-week-old guinea pigs were monocularly treated with a translucent lens to induce FDM. After 21 days, samples were taken from the posterior eye wall and examined with immunofluorescence confocal microscopy for the presence of AdoRA1, AdoRA2A, AdoRA2B and AdoRA3 proteins. Western blot analysis was used to quantitate AdoRs in samples from the retina, choroids and sclera. RESULTS All four subtypes of AdoR were expressed in the posterior wall of the guinea pig eye, although AdoRA3 only weakly. Twenty-one days after the induction of myopia, we observed a significant decrease in protein expression for AdoRA1 (- 25.5%) and an increase in protein expression for AdoRA2B (+ 66.7%) in the retina of FDM eyes. CONCLUSIONS AdoRs of all subtypes are expressed in the retina, choroids and sclera in guinea pigs and may play a role in the regulation of eye growth. The changed pattern of AdoR expression during form deprivation confirms that pharmaceutical intervention targeting AdoRs may reduce myopia progression.
Collapse
Affiliation(s)
- Dongmei Cui
- Zhongshan Ophthalmic Centre, SunYat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Sleep and sleep intensity are enhanced by adenosine and its receptor agonists, whereas adenosine receptor antagonists induce wakefulness. Adenosine kinase (ADK) is the primary enzyme metabolizing adenosine in adult brain. To investigate whether adenosine metabolism or clearance affects sleep, we recorded sleep in mice with engineered mutations in Adk. Adk-tg mice overexpress a transgene encoding the cytoplasmic isoform of ADK in the brain but lack the nuclear isoform of the enzyme. Wild-type mice and Adk(+/-) mice that have a 50% reduction of the cytoplasmic and the nuclear isoforms of ADK served as controls. Adk-tg mice showed a remarkable reduction of EEG power in low frequencies in all vigilance states and in theta activity (6.25-11 Hz) in rapid eye movement (REM) sleep and waking. Adk-tg mice were awake 58 min more per day than wild-type mice and spent significantly less time in REM sleep (102 ± 3 vs 128 ± 3 min in wild type). After sleep deprivation, slow-wave activity (0.75-4 Hz), the intensity component of non-rapid eye movement sleep, increased significantly less in Adk-tg mice and their slow-wave energy was reduced. In contrast, the vigilance states and EEG spectra of Adk(+/-) and wild-type mice did not differ. Our data suggest that overexpression of the cytoplasmic isoform of ADK is sufficient to alter sleep physiology. ADK might orchestrate neurotransmitter pathways involved in the generation of EEG oscillations and regulation of sleep.
Collapse
|
18
|
Bjorness TE, Greene RW. Adenosine and sleep. Curr Neuropharmacol 2010; 7:238-45. [PMID: 20190965 PMCID: PMC2769007 DOI: 10.2174/157015909789152182] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 11/22/2022] Open
Abstract
Over the last several decades the idea that adenosine (Ado) plays a role in sleep control was postulated due in large part to pharmacological studies that showed the ability of Ado agonists to induce sleep and Ado antagonists to decrease sleep. A second wave of research involving in vitro cellular analytic approaches and subsequently, the use of neurochemical tools such as microdialysis, identified a population of cells within the brainstem and basal forebrain arousal centers, with activity that is both tightly coupled to thalamocortical activation and under tonic inhibitory control by Ado. Most recently, genetic tools have been used to show that Ado receptors regulate a key aspect of sleep, the slow wave activity expressed during slow wave sleep. This review will briefly introduce some of the phenomenology of sleep and then summarize the effect of Ado levels on sleep, the effect of sleep on Ado levels, and recent experiments using mutant mouse models to characterize the role for Ado in sleep control and end with a discussion of which Ado receptors are involved in such control. When taken together, these various experiments suggest that while Ado does play a role in sleep control, it is a specific role with specific functional implications and it is one of many neurotransmitters and neuromodulators affecting the complex behavior of sleep. Finally, since the majority of adenosine-related experiments in the sleep field have focused on SWS, this review will focus largely on SWS; however, the role of adenosine in REM sleep behavior will be addressed.
Collapse
|
19
|
Opioid-induced decreases in rat brain adenosine levels are reversed by inhibiting adenosine deaminase. Anesthesiology 2009; 111:1327-33. [PMID: 19934879 DOI: 10.1097/aln.0b013e3181bdf894] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Opioids disrupt sleep and adenosine promotes sleep, but no studies have characterized the effects of opioids on adenosine levels in brain regions known to regulate states of arousal. Delivering opioids to the pontine reticular formation (PRF) and substantia innominata (SI) region of the basal forebrain disrupts sleep. In contrast, administering adenosine agonists to the PRF or SI increases sleep. These findings encouraged the current study testing the hypothesis that microdialysis delivery of opioids to the PRF or SI decreases adenosine levels in the PRF or SI, respectively. METHODS A microdialysis probe was placed in the PRF of isoflurane anesthetized rats and perfused with Ringer's solution (control) followed by Ringer's solution containing morphine (0, 10, 30, 100, or 300 microm), fentanyl (100 microm), morphine (100 microm) and the adenosine deaminase inhibitor EHNA (100 microm), or naloxone (10 microm) and morphine (100 microm). Additional experiments measured adenosine levels in the SI before and during microdialysis delivery of morphine, fentanyl, and morphine plus EHNA. RESULTS Morphine caused a significant (P < 0.05) concentration-dependent decrease in PRF adenosine levels. The significant decrease (-20%) in adenosine caused by 100 microm morphine was blocked by coadministration of naloxone. Fentanyl also significantly decreased (-13.3%) PRF adenosine. SI adenosine levels were decreased by morphine (-26.8%) and fentanyl (-27.4%). In both PRF and SI, coadministration of morphine and EHNA prevented the significant decrease in adenosine levels caused by morphine alone. CONCLUSIONS These data support the interpretation that decreased adenosine levels in sleep-regulating brain regions may be one of the mechanisms by which opioids disrupt sleep.
Collapse
|
20
|
Liang CL, Marks GA. A novel GABAergic afferent input to the pontine reticular formation: the mesopontine GABAergic column. Brain Res 2009; 1297:32-40. [PMID: 19699725 DOI: 10.1016/j.brainres.2009.08.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 11/18/2022]
Abstract
Pharmacological manipulations of gamma-aminobutyric acid (GABA) neurotransmission in the nucleus pontis oralis (PnO) of the rat brainstem produce alterations in sleep/wake behavior. Local applications of GABA(A) receptor antagonists and agonists increase REM sleep and wake, respectively. These findings support a role for GABAergic mechanisms of the PnO in the control of arousal state. We have been investigating sources of GABA innervation of the PnO that may interact with local GABA(A) receptors in the control of state. Utilizing a retrograde tracer, cholera toxin-B subunit (CTb), injected into the PnO and dual-label immunohistochemistry with an antibody against glutamic acid decarboxalase-67 (GAD67), we report on a previously unidentified GABAergic neuronal population projecting to the contralateral PnO appearing as a column of cells, with long-axis in the sagittal plane, extending through the midbrain and pons. We refer to these neurons as the mesopontine GABAergic column (MPGC). The contiguous, columnar, anatomical distribution suggests operation as a functional neural system, which may influence expression of REM sleep, wake and other behaviors subserved by the PnO.
Collapse
Affiliation(s)
- Chang-Lin Liang
- Department of Veterans Affairs North Texas Health Care System, University of Texas Southwestern Medical Center, Dallas, TX 75216, USA
| | | |
Collapse
|
21
|
Adenosine A(1) and A(2A) receptors in mouse prefrontal cortex modulate acetylcholine release and behavioral arousal. J Neurosci 2009; 29:871-81. [PMID: 19158311 DOI: 10.1523/jneurosci.4111-08.2009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During prolonged intervals of wakefulness, brain adenosine levels rise within the basal forebrain and cortex. The view that adenosine promotes sleep is supported by the corollary that N-methylated xanthines such as caffeine increase brain and behavioral arousal by blocking adenosine receptors. The four subtypes of adenosine receptors are distributed heterogeneously throughout the brain, yet the neurotransmitter systems and brain regions through which adenosine receptor blockade causes arousal are incompletely understood. This study tested the hypothesis that adenosine A(1) and A(2A) receptors in the prefrontal cortex contribute to the regulation of behavioral and cortical arousal. Dependent measures included acetylcholine (ACh) release in the prefrontal cortex, cortical electroencephalographic (EEG) power, and time to waking after anesthesia. Sleep and wakefulness were also quantified after microinjecting an adenosine A(1) receptor antagonist into the prefrontal cortex. The results showed that adenosine A(1) and A(2A) receptors in the prefrontal cortex modulate cortical ACh release, behavioral arousal, EEG delta power, and sleep. Additional dual microdialysis studies revealed that ACh release in the pontine reticular formation is significantly altered by dialysis delivery of adenosine receptor agonists and antagonists to the prefrontal cortex. These data, and early brain transection studies demonstrating that the forebrain is not needed for sleep cycle generation, suggest that the prefrontal cortex modulates EEG and behavioral arousal via descending input to the pontine brainstem. The results provide novel evidence that adenosine A(1) receptors within the prefrontal cortex comprise part of a descending system that inhibits wakefulness.
Collapse
|
22
|
Systemic 7-methylxanthine in retarding axial eye growth and myopia progression: a 36-month pilot study. J Ocul Biol Dis Infor 2008; 1:85-93. [PMID: 20072638 PMCID: PMC2802512 DOI: 10.1007/s12177-008-9013-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 09/22/2008] [Indexed: 11/02/2022] Open
Abstract
The adenosine antagonist 7-methylxanthine (7-mx) works against myopia in animal models. In a clinical trial, 68 myopic children (mean age 11.3 years) received either placebo or 7-mx tablets for 12 months. All participants subsequently received 7-mx for another 12 months, after which treatment was stopped. Axial length was measured with Zeiss IOL-Master and cycloplegic refraction with Nikon Retinomax at -6, 0, 12, 24, and 36 months. Axial growth was reduced among children treated with 7-mx for 24 months compared with those only treated for the last 12 months. Myopia progression and axial eye growth slowed down in periods with 7-mx treatment, but when the treatment was stopped, both myopia progression and axial eye growth continued with invariable speed. The results indicate that 7-mx reduces eye elongation and myopia progression in childhood myopia. The treatment is safe and without side effects and may be continued until 18-20 years of age when myopia progression normally stops.
Collapse
|
23
|
Scharf MT, Naidoo N, Zimmerman JE, Pack AI. The energy hypothesis of sleep revisited. Prog Neurobiol 2008; 86:264-80. [PMID: 18809461 DOI: 10.1016/j.pneurobio.2008.08.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 06/08/2008] [Accepted: 08/27/2008] [Indexed: 01/09/2023]
Abstract
One of the proposed functions of sleep is to replenish energy stores in the brain that have been depleted during wakefulness. Benington and Heller formulated a version of the energy hypothesis of sleep in terms of the metabolites adenosine and glycogen. They postulated that during wakefulness, adenosine increases and astrocytic glycogen decreases reflecting the increased energetic demand of wakefulness. We review recent studies on adenosine and glycogen stimulated by this hypothesis. We also discuss other evidence that wakefulness is an energetic challenge to the brain including the unfolded protein response, the electron transport chain, NPAS2, AMP-activated protein kinase, the astrocyte-neuron lactate shuttle, production of reactive oxygen species and uncoupling proteins. We believe the available evidence supports the notion that wakefulness is an energetic challenge to the brain, and that sleep restores energy balance in the brain, although the mechanisms by which this is accomplished are considerably more complex than envisaged by Benington and Heller.
Collapse
Affiliation(s)
- Matthew T Scharf
- Center for Sleep and Respiratory Neurobiology, University of Pennsylvania School of Medicine, Translational Research Building, Suite 2100, 125 S. 31st Street, Philadelphia, PA 19104-3403, USA.
| | | | | | | |
Collapse
|
24
|
Marks GA, Sachs OW, Birabil CG. Blockade of GABA, type A, receptors in the rat pontine reticular formation induces rapid eye movement sleep that is dependent upon the cholinergic system. Neuroscience 2008; 156:1-10. [PMID: 18706488 DOI: 10.1016/j.neuroscience.2008.06.067] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 06/24/2008] [Accepted: 06/26/2008] [Indexed: 11/19/2022]
Abstract
The brainstem reticular formation is an area important to the control of rapid eye movement (REM) sleep. The antagonist of GABA-type A (GABA(A)) receptors, bicuculline methiodide (BMI), injected into the rat nucleus pontis oralis (PnO) of the reticular formation resulted in a long-lasting increase in REM sleep. Thus, one factor controlling REM sleep appears to be the number of functional GABA(A) receptors in the PnO. The long-lasting effect produced by BMI may result from secondary influences on other neurotransmitter systems known to have long-lasting effects. To study this question, rats were surgically prepared for chronic sleep recording and additionally implanted with guide cannulas aimed at sites in the PnO. Multiple, 60 nl, unilateral injections were made either singly or in combination. GABA(A) receptor antagonists, BMI and gabazine (GBZ), produced dose-dependent increases in REM sleep with GBZ being approximately 35 times more potent than BMI. GBZ and the cholinergic agonist, carbachol, produced very similar results, both increasing REM sleep for about 8 h, mainly through increased period frequency, with little reduction in REM latency. Pre-injection of the muscarinic antagonist, atropine, completely blocked the REM sleep-increase by GBZ. GABAergic control of REM sleep in the PnO requires the cholinergic system and may be acting through presynaptic modulation of acetylcholine release.
Collapse
Affiliation(s)
- G A Marks
- The University of Texas Southwestern Medical Center and Veterans Affairs Medical Center, MC# 151, 4500 South Lancaster Road, Dallas, TX 75216, USA.
| | | | | |
Collapse
|
25
|
Coleman CG, Baghdoyan HA, Lydic R. Dialysis delivery of an adenosine A2Aagonist into the pontine reticular formation of C57BL/6J mouse increases pontine acetylcholine release and sleep. J Neurochem 2006; 96:1750-9. [PMID: 16539690 DOI: 10.1111/j.1471-4159.2006.03700.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vivo microdialysis in C57BL/6J (B6) mouse was used to test the hypothesis that activating adenosine A(2A) receptors in the pontine reticular formation (PRF) increases acetylcholine (ACh) release and rapid eye movement (REM) sleep. Eight concentrations of the adenosine A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS 21680; CGS) were delivered to the PRF and ACh in the PRF was quantified. ACh release was significantly increased by dialysis with 3 mum CGS and significantly decreased by dialysis with 10 and 100 microm CGS. Co-administration of the adenosine A(2A) receptor antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385; 30 nM) blocked the CGS-induced increase in ACh release. In a second series of experiments, CGS (3 microm) was delivered by dialysis to the PRF for 2 h while recording sleep and wakefulness. CGS significantly decreased time in wakefulness (-51% in h 1; -54% in h 2), increased time in non-rapid eye movement (NREM) sleep (90% in h 1; 151% in h 2), and increased both time in REM sleep (331% in h 2) and the number of REM sleep episodes (488% in h 2). The enhancement of REM sleep is consistent with the interpretation that adenosine A(2A) receptors in the PRF of the B6 mouse contribute to REM sleep regulation, in part, by increasing ACh release in the PRF. A(2A) receptor activation may promote NREM sleep via GABAergic inhibition of arousal promoting neurons in the PRF.
Collapse
Affiliation(s)
- Christal G Coleman
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109-0615, USA
| | | | | |
Collapse
|
26
|
Deurveilher S, Lo H, Murphy JA, Burns J, Semba K. Differential c-Fos immunoreactivity in arousal-promoting cell groups following systemic administration of caffeine in rats. J Comp Neurol 2006; 498:667-89. [PMID: 16917819 DOI: 10.1002/cne.21084] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Despite the widespread use of caffeine, the neuronal mechanisms underlying its stimulatory effects are not completely understood. By using c-Fos immunohistochemistry as a marker of neuronal activation, we recently showed that stimulant doses of caffeine activate arousal-promoting hypothalamic orexin (hypocretin) neurons. In the present study, we investigated whether other key neurons of the arousal system are also activated by caffeine, via dual immunostaining for c-Fos and transmitter markers. Rats were administered three doses of caffeine or saline vehicle during the light phase. Caffeine at 10 and 30 mg/kg, i.p., increased motor activities, including locomotion, compared with after saline or a higher dose, 75 mg/kg. The three doses of caffeine induced distinct dose-related patterns of c-Fos immunoreactivity in several arousal-promoting areas, including orexin neurons and adjacent neurons containing neither orexin nor melanin-concentrating hormone; tuberomammillary histaminergic neurons; locus coeruleus noradrenergic neurons; noncholinergic basal forebrain neurons that do not contain parvalbumin; and nondopaminergic neurons in the ventral tegmental area. At any dose used, caffeine induced little or no c-Fos expression in cholinergic neurons of the basal forebrain and mesopontine tegmentum; dopaminergic neurons of the ventral tegmental area, central gray, and substantia nigra pars compacta; and serotonergic neurons in the dorsal raphe nucleus. Saline controls exhibited only few c-Fos-positive cells in most of the cell groups examined. These results indicate that motor-stimulatory doses of caffeine induce a remarkably restricted pattern of c-Fos expression in the arousal-promoting system and suggest that this specific neuronal activation may be involved in the behavioral arousal by caffeine.
Collapse
Affiliation(s)
- Samüel Deurveilher
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | | | |
Collapse
|
27
|
Marks GA, Birabil CG, Speciale SG. Adenosine A1 receptors mediate inhibition of cAMP formation in vitro in the pontine, REM sleep induction zone. Brain Res 2005; 1061:124-7. [PMID: 16246314 DOI: 10.1016/j.brainres.2005.08.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 08/25/2005] [Accepted: 08/28/2005] [Indexed: 11/25/2022]
Abstract
Microinjection of adenosine A1 receptor agonist or an inhibitor of adenylyl cyclase into the caudal, oral pontine reticular formation (PnOc) of the rat induces a long-lasting increase in REM sleep. Here, we report significant inhibition of forskolin-stimulated cAMP in dissected pontine tissue slices containing the PnOc incubated with the A1 receptor agonist, cyclohexaladenosine (10(-8) M). These data are consistent with adenosine A1 receptor agonist actions on REM sleep mediated through inhibition of cAMP.
Collapse
Affiliation(s)
- Gerald A Marks
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | |
Collapse
|
28
|
Sanford LD, Yang L, Tang X, Ross RJ, Morrison AR. Tetrodotoxin inactivation of pontine regions: Influence on sleep–wake states. Brain Res 2005; 1044:42-50. [PMID: 15862788 DOI: 10.1016/j.brainres.2005.02.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 02/21/2005] [Accepted: 02/24/2005] [Indexed: 11/19/2022]
Abstract
Studies using various methodologies have implicated n. reticularis pontis oralis (RPO) and n. subcoeruleus (SubC) in the generation of rapid eye movement sleep (REM). In rats, electrolytic lesions in these regions may give rise to the phenomenon of REM without atonia (REM-A), in which the electrophysiological features of REM are normal except that atonia is absent and elaborate behaviors may be exhibited. However, electrolytic lesions damage both cell bodies and fibers of passage, and the neural reorganization and adaptation that can occur post-lesion can complicate interpretation. Tetrodotoxin (TTX) is a sodium channel blocker that temporarily inactivates both neurons and fibers of passage and thus may be functionally equivalent to an electrolytic lesion, but without allowing time for neural adaptation. In this study, we examined the influence of microinjections of TTX into RPO and SubC on sleep in freely behaving rats. Rats (90 day old male Sprague-Dawley) were implanted with electrodes for recording EEG and EMG. Guide cannulae were implanted aimed into RPO or SubC. Each animal received one unilateral microinjection (TTXUH: 5.0 ng/0.2 microl) and two bilateral microinjections (TTXBL: 2.5 ng/0.1 microl; TTXBH: 5.0 ng/0.2 microl) of TTX, and control microinjections of saline alone (SAL). The injections were made 2 h following lights on, and sleep was recorded for the subsequent 22 h. Sleep was scored from computerized records in 10 s epochs. Recordings from the 10-h light period and the 12-h dark period were examined separately. TTX inactivation of RPO could decrease REM and non-REM (NREM), whereas inactivation of SubC produced relatively more specific decreases in REM with smaller effects on NREM. The results complement studies that have implicated RPO and SubC in REM generation. REM-A was not observed, suggesting that REM-A is a complex phenomenon that requires time for reorganization of the nervous system after insult.
Collapse
Affiliation(s)
- Larry D Sanford
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, PO Box 1980, Norfolk, VA 23501, USA.
| | | | | | | | | |
Collapse
|
29
|
Xu K, Bastia E, Schwarzschild M. Therapeutic potential of adenosine A2A receptor antagonists in Parkinson's disease. Pharmacol Ther 2005; 105:267-310. [PMID: 15737407 DOI: 10.1016/j.pharmthera.2004.10.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 10/14/2004] [Indexed: 10/26/2022]
Abstract
In the pursuit of improved treatments for Parkinson's disease (PD), the adenosine A(2A) receptor has emerged as an attractive nondopaminergic target. Based on the compelling behavioral pharmacology and selective basal ganglia expression of this G-protein-coupled receptor, its antagonists are now crossing the threshold of clinical development as adjunctive symptomatic treatment for relatively advanced PD. The antiparkinsonian potential of A(2A) antagonism has been boosted further by recent preclinical evidence that A(2A) antagonists might favorably alter the course as well as the symptoms of the disease. Convergent epidemiological and laboratory data have suggested that A(2A) blockade may confer neuroprotection against the underlying dopaminergic neuron degeneration. In addition, rodent and nonhuman primate studies have raised the possibility that A(2A) receptor activation contributes to the pathophysiology of dyskinesias-problematic motor complications of standard PD therapy--and that A(2A) antagonism might help prevent them. Realistically, despite being targeted to basal ganglia pathophysiology, A(2A) antagonists may be expected to have other beneficial and adverse effects elsewhere in the central nervous system (e.g., on mood and sleep) and in the periphery (e.g., on immune and inflammatory processes). The thoughtful design of new clinical trials of A(2A) antagonists should take into consideration these counterbalancing hopes and concerns and may do well to shift toward a broader set of disease-modifying as well as symptomatic indications in early PD.
Collapse
Affiliation(s)
- Kui Xu
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
30
|
Radek RJ, Decker MW, Jarvis MF. The adenosine kinase inhibitor ABT-702 augments EEG slow waves in rats. Brain Res 2005; 1026:74-83. [PMID: 15476699 DOI: 10.1016/j.brainres.2004.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2004] [Indexed: 11/25/2022]
Abstract
ABT-702 is a novel and selective non-nucleoside adenosine kinase (AK) inhibitor that produces increases in endogenous extracellular adenosine. Adenosine (ADO) is thought to be an important neuromodulator of sleep, therefore, the effects of ABT-702 and AK inhibition were examined on rat EEG and sleep, and compared to ADO receptor agonists to further evaluate the role of ADO receptor activation on sleep related EEG patterns. ABT-702 (10.0-30.0 micromol/kg, i.p.) increased the amplitude of the 1-4 Hz band (Fast Fourier Transform (FFT) analysis, p<0.05), which is indicative of augmented sleep-related slow waves. Theophylline (5.0 micromol/kg, i.p.), a centrally active, non-selective adenosine receptor antagonist, attenuated the effects of ABT-702 (20.0 micromol/kg, i.p.) on EEG, whereas 8-(p-sulfophenyl)-theophylline (8-PST, 150.0 micromol/kg, i.p.), a peripherally active antagonist, did not, indicating that the EEG effects of ABT-702 are mediated by a central ADO receptor mechanism. The selective A(1) agonist N6-cyclopentyladenosine (CPA, 30.0 micromol/kg, i.p.) also increased the amplitude of 1-4 Hz band, but was not as efficacious as ABT-702. In contrast, the A(2A) agonist CGS-21680 (1.0-10.0 micromol/kg, i.p.) and the non-selective agonist, N(6)-ethylcarboximidoadenosine (NECA, 0.03-0.1 micromol/kg, ip.), lowered 1-4 Hz amplitude for 2 h after injection. Finally, ABT-702 (10.0 micromol/kg, i.p.) was found to significantly increase slow wave sleep and decrease REM sleep in rats implanted with both EEG and EMG electrodes for evaluation of sleep. These studies demonstrate that increased extracellular adenosine through AK inhibition can elicit modulatory effects on EEG slow waves via an interaction with central ADO receptor subtypes.
Collapse
Affiliation(s)
- Richard J Radek
- Neurological Diseases Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-3500, USA.
| | | | | |
Collapse
|
31
|
Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. Adenosine and Brain Function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 63:191-270. [PMID: 15797469 DOI: 10.1016/s0074-7742(05)63007-3] [Citation(s) in RCA: 507] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Bertil B Fredholm
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | | | | | | | | |
Collapse
|