1
|
Sahley TL, Anderson DJ, Hammonds MD, Chandu K, Musiek FE. Evidence for a dynorphin-mediated inner ear immune/inflammatory response and glutamate-induced neural excitotoxicity: an updated analysis. J Neurophysiol 2019; 122:1421-1460. [DOI: 10.1152/jn.00595.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acoustic overstimulation (AOS) is defined as the stressful overexposure to high-intensity sounds. AOS is a precipitating factor that leads to a glutamate (GLU)-induced Type I auditory neural excitotoxicity and an activation of an immune/inflammatory/oxidative stress response within the inner ear, often resulting in cochlear hearing loss. The dendrites of the Type I auditory neural neurons that innervate the inner hair cells (IHCs), and respond to the IHC release of the excitatory neurotransmitter GLU, are themselves directly innervated by the dynorphin (DYN)-bearing axon terminals of the descending brain stem lateral olivocochlear (LOC) system. DYNs are known to increase GLU availability, potentiate GLU excitotoxicity, and induce superoxide production. DYNs also increase the production of proinflammatory cytokines by modulating immune/inflammatory signal transduction pathways. Evidence is provided supporting the possibility that the GLU-mediated Type I auditory neural dendritic swelling, inflammation, excitotoxicity, and cochlear hearing loss that follow AOS may be part of a brain stem-activated, DYN-mediated cascade of inflammatory events subsequent to a LOC release of DYNs into the cochlea. In support of a DYN-mediated cascade of events are established investigations linking DYNs to the immune/inflammatory/excitotoxic response in other neural systems.
Collapse
Affiliation(s)
- Tony L. Sahley
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- School of Health Sciences, Cleveland State University, Cleveland, Ohio
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | | | - Karthik Chandu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Frank E. Musiek
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
2
|
Hussain ZM, Fitting S, Watanabe H, Usynin I, Yakovleva T, Knapp PE, Scheff SW, Hauser KF, Bakalkin G. Lateralized response of dynorphin a peptide levels after traumatic brain injury. J Neurotrauma 2012; 29:1785-93. [PMID: 22468884 PMCID: PMC3360894 DOI: 10.1089/neu.2011.2286] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) induces a cascade of primary and secondary events resulting in impairment of neuronal networks that eventually determines clinical outcome. The dynorphins, endogenous opioid peptides, have been implicated in secondary injury and neurodegeneration in rodent and human brain. To gain insight into the role of dynorphins in the brain's response to trauma, we analyzed short-term (1-day) and long-term (7-day) changes in dynorphin A (Dyn A) levels in the frontal cortex, hippocampus, and striatum, induced by unilateral left-side or right-side cortical TBI in mice. The effects of TBI were significantly different from those of sham surgery (Sham), while the sham surgery also produced noticeable effects. Both sham and TBI induced short-term changes and long-term changes in all three regions. Two types of responses were generally observed. In the hippocampus, Dyn A levels were predominantly altered ipsilateral to the injury. In the striatum and frontal cortex, injury to the right (R) hemisphere affected Dyn A levels to a greater extent than that seen in the left (L) hemisphere. The R-TBI but not L-TBI produced Dyn A changes in the striatum and frontal cortex at 7 days after injury. Effects of the R-side injury were similar in the two hemispheres. In naive animals, Dyn A was symmetrically distributed between the two hemispheres. Thus, trauma may reveal a lateralization in the mechanism mediating the response of Dyn A-expressing neuronal networks in the brain. These networks may differentially mediate effects of left and right brain injury on lateralized brain functions.
Collapse
Affiliation(s)
- Zubair Muhammad Hussain
- The Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Sylvia Fitting
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Hiroyuki Watanabe
- The Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ivan Usynin
- Institute of Biochemistry, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - Tatjana Yakovleva
- The Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Stephen W. Scheff
- Spinal Cord and Brain Injury Research Center and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia
| | - Georgy Bakalkin
- The Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Watanabe H, Mizoguchi H, Verbeek DS, Kuzmin A, Nyberg F, Krishtal O, Sakurada S, Bakalkin G. Non-opioid nociceptive activity of human dynorphin mutants that cause neurodegenerative disorder spinocerebellar ataxia type 23. Peptides 2012; 35:306-10. [PMID: 22531488 DOI: 10.1016/j.peptides.2012.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 02/04/2023]
Abstract
We previously identified four missense mutations in the prodynorphin gene that cause human neurodegenerative disorder spinocerebellar ataxia type 23 (SCA23). Three mutations substitute Leu(5), Arg(6), and Arg(9) to Ser (L5S), Trp (R6W) and Cys (R9C) in dynorphin A(1-17) (Dyn A), a peptide with both opioid activities and non-opioid neurodegenerative actions. It has been reported that Dyn A administered intrathecally (i.t.) in femtomolar doses into mice produces nociceptive behaviors consisting of hindlimb scratching along with biting and licking of the hindpaw and tail (SBL responses) through a non-opioid mechanism. We here evaluated the potential of the three mutant peptides to produce similar behaviors. Compared to the wild type (WT)-peptide, the relative potency of Dyn A R6W, L5S and R9C peptides for SBL responses was 50-, 33- and 2-fold higher, and Dyn A R6W and L5S induced the SBL responses at a 10-30-fold lower doses. Dyn A R6W was the most potent peptide. The SBL responses induced by Dyn A R6W were dose dependently inhibited by morphine (i.p.; 0.1-1 mg/kg) or MK-801, an NMDA ion channel blocker (i.t. co-administration; 5-7.5 nmol). CP-99,994, a tachykinin NK1 receptor antagonist (i.t. co-administration; 2 nmol) and naloxone (i.p.; 5 mg/kg) failed to block effects of Dyn A R6W. Thus, similarly to Dyn A WT, the SBL responses induced by Dyn A R6W may involve the NMDA receptor but are not mediated through the opioid and tachykinin NK1 receptors. Enhanced non-opioid excitatory activities of Dyn A mutants may underlie in part development of SCA23.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Zou S, Fitting S, Hahn YK, Welch SP, El-Hage N, Hauser KF, Knapp PE. Morphine potentiates neurodegenerative effects of HIV-1 Tat through actions at μ-opioid receptor-expressing glia. Brain 2011; 134:3616-31. [PMID: 22102648 DOI: 10.1093/brain/awr281] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Individuals infected with human immunodeficiency virus-1 who abuse opiates can have a higher incidence of virus-associated neuropathology. Human immunodeficiency virus does not infect neurons, but viral proteins such as transactivator of transcription and glycoprotein 120, originating from infected glia, are neurotoxic. Moreover, functional changes in glial cells that enhance inflammation and reduce trophic support are increasingly implicated in human immunodeficiency virus neuropathology. In previous studies, co-exposure with morphine enhanced transactivator of transcription neurotoxicity towards cultured striatal neurons. Since those cultures contained µ-opioid receptor-expressing astroglia and microglia, and since glia are the principal site of infection in the central nervous system, we hypothesized that morphine synergy might be glially mediated. A 60 hour, repeated measures paradigm and multiple co-culture models were used to investigate the cellular basis for opiate-enhanced human immunodeficiency virus neurotoxicity. Morphine co-exposure significantly enhanced transactivator of transcription-induced neuron death when glia were present. Synergistic effects of morphine on transactivator of transcription neurotoxicity were greatest with neuron-glia contact, but also occurred to a lesser extent with glial conditioned medium. Importantly, synergy was lost if glia, but not neurons, lacked µ-opioid receptors, indicating that opiate interactions with human immunodeficiency virus converge at the level of µ-opioid receptor-expressing glia. Morphine enhanced transactivator of transcription-induced inflammatory effectors released by glia, elevating reactive oxygen species, increasing 3-nitrotyrosine production by microglia, and reducing the ability of glia to buffer glutamate. But neuron survival was reduced even more with glial contact than with exposure to conditioned medium, suggesting that noxious elements associated with cell contact augment the toxicity due to soluble factors. Similar morphine-transactivator of transcription synergy was also observed in studies with the clade C sequence of HIV-1 transactivator of transcription, which did not cause neuron death unless morphine was present. Several paradoxical observations related to opiate effects were noted when µ-opioid receptors were specifically ablated from either glia or neurons. This suggests that µ-opioid receptor loss in isolated cell types can fundamentally distort cell-to-cell signalling, revealing opponent processes that may exist in individual cell types. Our findings show the critical role of glia in orchestrating neurotoxic interactions of morphine and transactivator of transcription, and support the emerging concept that combined exposure to opiates and human immunodeficiency virus drives enhanced pathology within the central nervous system.
Collapse
Affiliation(s)
- Shiping Zou
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Wu GJ, Chen WF, Hung HC, Jean YH, Sung CS, Chakraborty C, Lee HP, Chen NF, Wen ZH. Effects of propofol on proliferation and anti-apoptosis of neuroblastoma SH-SY5Y cell line: new insights into neuroprotection. Brain Res 2011; 1384:42-50. [PMID: 21315692 DOI: 10.1016/j.brainres.2011.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/29/2011] [Accepted: 02/02/2011] [Indexed: 12/22/2022]
Abstract
Recently, it has been suggested that anesthetic agents may have neuroprotective potency. The notion that anesthetic agents can offer neuroprotection remains controversial. Propofol, which is a short-acting intravenous anesthetic agent, may have potential as a neuroprotective agent. In this study, we tried to determine whether propofol affected the viability of human neuroblastoma SH-SY5Y cells by using the MTT assay. Surprisingly, our results showed that propofol at a dose of 1-10 μM could improve cell proliferation. However, at higher doses (200 μM), propofol appears to be cytotoxic. On the other hand, propofol could up-regulate the expression of key proteins involved in neuroprotection including B-cell lymphoma 2 at a dose range of 1-10 μM, activation of phospho-serine/threonine protein kinase at a dose range of 0.5-10 μM, and activation of phospho-extracellular signal-regulated kinases at a dose range of 5-10 μM. Similarly, we demonstrate that propofol (10 μM) could elevate protein levels of heat shock protein 90 and heat shock protein 70. Therefore, we choose to utilize a 10 μM concentration of propofol to assess neuroprotective activities in our studies. In the following experiments, we used dynorphin A to generate cytotoxic effects on SH-SY5Y cells. Our data indicate that propofol (10 μM) could inhibit the cytotoxicity in SH-SY5Y cells induced by dynorphin A. Furthermore, propofol (10 μM) could decrease the expression of the p-P38 protein as well. These data together suggest that propofol may have the potential to act as a neuroprotective agent against various neurologic diseases. However, further delineation of the precise neuroprotective effects of propofol will need to be examined.
Collapse
Affiliation(s)
- Gong-Jhe Wu
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bakalkin G, Watanabe H, Jezierska J, Depoorter C, Verschuuren-Bemelmans C, Bazov I, Artemenko KA, Yakovleva T, Dooijes D, Van de Warrenburg BPC, Zubarev RA, Kremer B, Knapp PE, Hauser KF, Wijmenga C, Nyberg F, Sinke RJ, Verbeek DS. Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23. Am J Hum Genet 2010; 87:593-603. [PMID: 21035104 DOI: 10.1016/j.ajhg.2010.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/30/2010] [Accepted: 10/05/2010] [Indexed: 11/28/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are dominantly inherited neurodegenerative disorders characterized by progressive cerebellar ataxia and dysarthria. We have identified missense mutations in prodynorphin (PDYN) that cause SCA23 in four Dutch families displaying progressive gait and limb ataxia. PDYN is the precursor protein for the opioid neuropeptides, α-neoendorphin, and dynorphins A and B (Dyn A and B). Dynorphins regulate pain processing and modulate the rewarding effects of addictive substances. Three mutations were located in Dyn A, a peptide with both opioid activities and nonopioid neurodegenerative actions. Two of these mutations resulted in excessive generation of Dyn A in a cellular model system. In addition, two of the mutant Dyn A peptides induced toxicity above that of wild-type Dyn A in cultured striatal neurons. The fourth mutation was located in the nonopioid PDYN domain and was associated with altered expression of components of the opioid and glutamate system, as evident from analysis of SCA23 autopsy tissue. Thus, alterations in Dyn A activities and/or impairment of secretory pathways by mutant PDYN may lead to glutamate neurotoxicity, which underlies Purkinje cell degeneration and ataxia. PDYN mutations are identified in a small subset of ataxia families, indicating that SCA23 is an infrequent SCA type (∼0.5%) in the Netherlands and suggesting further genetic SCA heterogeneity.
Collapse
Affiliation(s)
- Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nguyen XV, Liu M, Kim HC, Bing G. Effects of prodynorphin deletion on striatal dopamine in mice during normal aging and in response to MPTP. Exp Neurol 2009; 219:228-38. [PMID: 19500577 DOI: 10.1016/j.expneurol.2009.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/21/2009] [Accepted: 05/23/2009] [Indexed: 11/17/2022]
Abstract
Dynorphins, endogenous neuropeptides found in striatonigral neurons, have been observed to exhibit dopamine-inhibitory actions and under some circumstances possess intrinsic neurotoxic activity. To test the hypothesis that dynorphin suppression mitigates effects of aging on the striatal dopaminergic system, HPLC quantitation of dopamine and related amines was performed on striatal homogenates of wild-type (WT) mice and mice lacking the prodynorphin (Pdyn) gene at varying ages. Pdyn knockout (KO) mice at 10 and 20 months show significant elevations in striatal dopamine compared to 3-month mice. Differences in tyrosine hydroxylase (TH) immunoreactivity could not account for these findings, but phosphorylation of TH at Ser40, but not Ser31, was enhanced in aged Pdyn KO mice. Systemic administration of MPTP produced significant dopamine depletion in an age-dependent manner, but Pdyn deletion conferred no protection against MPTP-induced dopamine loss, arguing against a mechanism by which Pdyn deletion enhances dopaminergic neuron survival. The above findings demonstrate an age-dependent inhibitory effect of dynorphins on striatal dopamine synthesis via modulation of TH activity.
Collapse
Affiliation(s)
- Xuan V Nguyen
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
8
|
Cell-specific loss of kappa-opioid receptors in oligodendrocytes of the dysmyelinating jimpy mouse. Neurosci Lett 2008; 451:114-8. [PMID: 19110031 DOI: 10.1016/j.neulet.2008.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/09/2008] [Accepted: 12/12/2008] [Indexed: 11/24/2022]
Abstract
Jimpy is a murine mutation in myelin proteolipid protein, leading to premature death of oligodendrocytes and severe central nervous system hypomyelination. Jimpy is a bona fide model of human Pelizaeus-Merzbacher disease. This paper describes a severe reduction in expression of kappa-opioid receptors (KOP) in oligodendrocytes of jimpy mice. A cell-specific reduction of >90% is apparent by 5 days of age. Expression is not reduced in neurons, and mu-opioid receptor expression is normal. Mechanism(s) leading to deficient KOP expression in jimpy mice remain unclear. We speculate that loss of KOP may be related to increased [Ca(2+)](i) and premature death of jimpy oligodendrocytes.
Collapse
|
9
|
Adjan VV, Hauser KF, Bakalkin G, Yakovleva T, Gharibyan A, Scheff SW, Knapp PE. Caspase-3 activity is reduced after spinal cord injury in mice lacking dynorphin: differential effects on glia and neurons. Neuroscience 2007; 148:724-36. [PMID: 17698296 DOI: 10.1016/j.neuroscience.2007.05.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/16/2007] [Accepted: 05/24/2007] [Indexed: 12/12/2022]
Abstract
Dynorphins are endogenous opioid peptide products of the prodynorphin gene. An extensive literature suggests that dynorphins have deleterious effects on CNS injury outcome. We thus examined whether a deficiency of dynorphin would protect against tissue damage after spinal cord injury (SCI), and if individual cell types would be specifically affected. Wild-type and prodynorphin(-/-) mice received a moderate contusion injury at 10th thoracic vertebrae (T10). Caspase-3 activity at the injury site was significantly decreased in tissue homogenates from prodynorphin(-/-) mice after 4 h. We examined frozen sections at 4 h post-injury by immunostaining for active caspase-3. At 3-4 mm rostral or caudal to the injury, >90% of all neurons, astrocytes and oligodendrocytes expressed active caspase-3 in both wild-type and knockout mice. At 6-7 mm, there were fewer caspase-3(+) oligodendrocytes and astrocytes than at 3-4 mm. Importantly, caspase-3 activation was significantly lower in prodynorphin(-/-) oligodendrocytes and astrocytes, as compared with wild-type mice. In contrast, while caspase-3 expression in neurons also declined with further distance from the injury, there was no effect of genotype. Radioimmunoassay showed that dynorphin A(1-17) was regionally increased in wild-type injured versus sham-injured tissues, although levels of the prodynorphin processing product Arg(6)-Leu-enkephalin were unchanged. Our results indicate that dynorphin peptides affect the extent of post-injury caspase-3 activation, and that glia are especially sensitive to these effects. By promoting caspase-3 activation, dynorphin peptides likely increase the probability of glial apoptosis after SCI. While normally beneficial, our findings suggest that prodynorphin or its peptide products become maladaptive following SCI and contribute to secondary injury.
Collapse
Affiliation(s)
- V V Adjan
- Department of Anatomy and Neurobiology, 800 Rose Street, MS209, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Fragioudaki K, Kouvelas ED, Cristiani R, Giompres P, Bagnoli P, Mitsacos A. Expression of amino acid receptors and neural peptides in the weaver mouse brain. Brain Res 2007; 1140:132-52. [PMID: 16626633 DOI: 10.1016/j.brainres.2006.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 03/01/2006] [Accepted: 03/07/2006] [Indexed: 12/29/2022]
Abstract
In the present study, we conducted: (i) in situ hybridization in order to investigate the expression of kainate and GABA(A) receptor subunits and the pre-proenkephalin and prodynorphin peptides in the brain of weaver mouse (a genetic model of dopamine deficiency) and (ii) immunocytochemistry in order to study the somatostatin-positive cells in weaver striatum. Our results indicated: (i) increases in mRNA levels of KA2 and GluR6 kainate receptor subunits, of alpha(4) and beta(3) GABA(A) receptor subunits and of pre-proenkephalin and prodynorphin in 6-month-old weaver striatum; (ii) a decrease in alpha(1) and beta(2) GABA(A) subunit mRNAs in 6-month-old weaver globus pallidus; (iii) increases in KA2, alpha(4) and beta(3) and decreases in alpha(2) and beta(2) mRNAs in the 6-month-old weaver somatosensory cortex; and (iv) an increase in somatostatin-immunopositive cells in 3-month-old weaver striatum. We suggest that: (i) in striatum, the alterations are induced by the induction of the transcription factor DeltafosB (for GluR6, pre-proenkephalin and prodynorphin mRNAs) and the suppression of transcription factors like NGF-IB (nerve growth factor inducible B; for the KA2 mRNA), in response to dopamine depletion; (ii) in striatum and cortex, the alterations in the expression of the GABA(A) subunits indicate an increase of extrasynaptic versus a decrease of synaptic GABA(A) receptors; and (iii) in globus pallidus, the increased striatopallidal GABAergic transmission leads to a decrease in the number of GABA(A) receptors. Our results further clarify the regulatory role of dopamine in the expression of amino acid receptors and striatal neuropeptides.
Collapse
Affiliation(s)
- Kleopatra Fragioudaki
- Department of Physiology, Faculty of Medicine, University of Patras, 26504 Patras, Greece
| | | | | | | | | | | |
Collapse
|
11
|
Singh IN, El-Hage N, Campbell ME, Lutz SE, Knapp PE, Nath A, Hauser KF. Differential involvement of p38 and JNK MAP kinases in HIV-1 Tat and gp120-induced apoptosis and neurite degeneration in striatal neurons. Neuroscience 2005; 135:781-90. [PMID: 16111829 PMCID: PMC4310730 DOI: 10.1016/j.neuroscience.2005.05.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2005] [Revised: 05/16/2005] [Accepted: 05/19/2005] [Indexed: 01/23/2023]
Abstract
The role of p38 and c-jun-N-terminal kinases 1/2, members of the mitogen-activated protein kinase family, in mediating the toxic effects of human immunodeficiency virus-1 transactivator of transcription (Tat) and gp120 were explored in primary mouse striatal neurons in vitro. Both Tat and gp120 caused significant increases in p38 and c-jun-N-terminal kinase mitogen-activated protein kinase phosphorylation, caspase-3 activity, neurite losses and cell death in striatal neurons. Tat-induced increases in caspase-3 activity were significantly attenuated by an inhibitor of c-jun-N-terminal kinase (anthra[1,9-cd]pyrazol-6(2H)-one), but not by an inhibitor of p38 ([4-(4-fluorophenyl)-2-(4-methylsul-finylphenyl)-5-(4-pyridyl)1 H-imidazole]), mitogen-activated protein kinase. However, despite preventing increases in caspase-3 activity, c-jun-N-terminal kinase inhibition failed to avert Tat-induced neuronal losses suggesting that the reductions in caspase-3 activity were insufficient to prevent cell death caused by Tat. Alternatively, gp120-induced increases in caspase-3 activity, neurite losses and neuronal death were prevented by p38, but not c-jun-N-terminal kinase, mitogen-activated protein kinase inhibition. Our findings suggest that gp120 induces neuronal dysfunction and death through actions at p38 mitogen-activated protein kinase, while Tat kills neurons through actions that are independent of p38 or c-jun-N-terminal kinase mitogen-activated protein kinase, or through the concurrent activation of multiple proapoptotic pathways.
Collapse
Affiliation(s)
- Indrapal N. Singh
- Department of Anatomy & Neurobiology, University Kentucky College of Medicine, Lexington, KY 40536-0298, USA
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky Medical Center, Lexington, KY 40536-0084, USA
| | - Nazira El-Hage
- Department of Anatomy & Neurobiology, University Kentucky College of Medicine, Lexington, KY 40536-0298, USA
| | - Megan E. Campbell
- Department of Anatomy & Neurobiology, University Kentucky College of Medicine, Lexington, KY 40536-0298, USA
| | - Sarah E. Lutz
- Department of Anatomy & Neurobiology, University Kentucky College of Medicine, Lexington, KY 40536-0298, USA
| | - Pamela E. Knapp
- Department of Anatomy & Neurobiology, University Kentucky College of Medicine, Lexington, KY 40536-0298, USA
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky Medical Center, Lexington, KY 40536-0084, USA
| | - Avindra Nath
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Pathology 509, Baltimore, MD 21287 USA
| | - Kurt F. Hauser
- Department of Anatomy & Neurobiology, University Kentucky College of Medicine, Lexington, KY 40536-0298, USA
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky Medical Center, Lexington, KY 40536-0084, USA
- Correspondence: Kurt F. Hauser, Ph.D., Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA; Phone: 01 (859) 323-6477; Fax: 01 (859) 323-5946;
| |
Collapse
|
12
|
Hauser KF, Aldrich JV, Anderson KJ, Bakalkin G, Christie MJ, Hall ED, Knapp PE, Scheff SW, Singh IN, Vissel B, Woods AS, Yakovleva T, Shippenberg TS. Pathobiology of dynorphins in trauma and disease. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2005; 10:216-35. [PMID: 15574363 PMCID: PMC4304872 DOI: 10.2741/1522] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dynorphins, endogenous opioid neuropeptides derived from the prodynorphin gene, are involved in a variety of normative physiologic functions including antinociception and neuroendocrine signaling, and may be protective to neurons and oligodendroglia via their opioid receptor-mediated effects. However, under experimental or pathophysiological conditions in which dynorphin levels are substantially elevated, these peptides are excitotoxic largely through actions at glutamate receptors. Because the excitotoxic actions of dynorphins require supraphysiological concentrations or prolonged tissue exposure, there has likely been little evolutionary pressure to ameliorate the maladaptive, non-opioid receptor mediated consequences of dynorphins. Thus, dynorphins can have protective and/or proapoptotic actions in neurons and glia, and the net effect may depend upon the distribution of receptors in a particular region and the amount of dynorphin released. Increased prodynorphin gene expression is observed in several disease states and disruptions in dynorphin processing can accompany pathophysiological situations. Aberrant processing may contribute to the net negative effects of dysregulated dynorphin production by tilting the balance towards dynorphin derivatives that are toxic to neurons and/or oligodendroglia. Evidence outlined in this review suggests that a variety of CNS pathologies alter dynorphin biogenesis. Such alterations are likely maladaptive and contribute to secondary injury and the pathogenesis of disease.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Singh IN, Goody RJ, Dean C, Ahmad NM, Lutz SE, Knapp PE, Nath A, Hauser KF. Apoptotic death of striatal neurons induced by human immunodeficiency virus-1 Tat and gp120: Differential involvement of caspase-3 and endonuclease G. J Neurovirol 2004; 10:141-51. [PMID: 15204919 PMCID: PMC4309288 DOI: 10.1080/13550280490441103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) infection affects the striatum, resulting in gliosis and neuronal losses. To determine whether HIV-1 proteins induce striatal neurotoxicity through an apoptotic mechanism, mouse striatal neurons isolated on embryonic day 15 and the effects of HIV-1 Tat(1-72) and gp120 on survival were assessed in vitro. Mitochondrial release of cytochrome c, caspase-3 activation, and neuron survival, as well as an alternative apoptotic pathway involving endonuclease G (endo G), were assessed at 4 h, 24 h, 48 h, and/or 72 h using enzyme assays and immunoblotting. Both HIV-1 Tat and gp120 significantly increased caspase-3 activation in a concentration-dependent manner in striatal neurons at 4 h following continuous exposure in vitro. Tat(1-72) and gp120 caused significant neuronal losses at 48 h and/or 72 h. Tat(1-72) increased cytochrome c release, and caspase-3 and endo G activation at 4 h, 24 h, and/or 72 h. By contrast, gp120 increased caspase-3 activation, but failed to increase cytochrome c or endo G levels in the cytoplasm at 4 h, 24 h, and/or 72 h. The cell permeant caspase inhibitor Z-DEVD-FMK significantly attenuated gp120-induced, but not Tat(1-72)-induced, neuronal death, suggesting that gp120 acts in large part through the activation of caspase(s), whereas Tat(1-72)-induced neurotoxicity was accompanied by activating an alternative pathway involving endo G. Thus, although Tat(1-72) and gp120 induced significant neurotoxicity, the nature of the apoptotic events preceding death differed. Collectively, our findings suggest that HIV-1 proteins are intrinsically toxic to striatal neurons and the pathogenesis is mediated through separate actions involving both caspase-3 and endo G.
Collapse
Affiliation(s)
- Indrapal N. Singh
- Department of Anatomy & Neurobiology, University Kentucky College of Medicine, Lexington, KY, 40536-0298, USA
| | - Robin J. Goody
- Department of Anatomy & Neurobiology, University Kentucky College of Medicine, Lexington, KY, 40536-0298, USA
| | - Celeste Dean
- Department of Anatomy & Neurobiology, University Kentucky College of Medicine, Lexington, KY, 40536-0298, USA
| | - Nael M. Ahmad
- Department of Anatomy & Neurobiology, University Kentucky College of Medicine, Lexington, KY, 40536-0298, USA
| | - Sarah E. Lutz
- Department of Anatomy & Neurobiology, University Kentucky College of Medicine, Lexington, KY, 40536-0298, USA
| | - Pamela E. Knapp
- Department of Anatomy & Neurobiology, University Kentucky College of Medicine, Lexington, KY, 40536-0298, USA
| | - Avindra Nath
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Pathology 509, Baltimore, MD 21287 USA
| | - Kurt F. Hauser
- Department of Anatomy & Neurobiology, University Kentucky College of Medicine, Lexington, KY, 40536-0298, USA
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536-0084, USA
- Correspondence: Kurt F. Hauser, Ph.D., Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA, Phone: (859) 323-6477, Fax: (859) 323-5946,
| |
Collapse
|
14
|
Singh IN, Goody RJ, Goebel SM, Martin KM, Knapp PE, Marinova Z, Hirschberg D, Yakovleva T, Bergman T, Bakalkin G, Hauser KF. Dynorphin A (1–17) induces apoptosis in striatal neurons in vitro through α-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor-mediated cytochrome C release and caspase-3 activation. Neuroscience 2003; 122:1013-23. [PMID: 14643768 PMCID: PMC4822705 DOI: 10.1016/j.neuroscience.2003.08.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Dynorphin A (1-17), an endogenous opioid neuropeptide, can have pathophysiological consequences at high concentrations through actions involving glutamate receptors. Despite evidence of excitotoxicity, the basic mechanisms underlying dynorphin-induced cell death have not been explored. To address this question, we examined the role of caspase-dependent apoptotic events in mediating dynorphin A (1-17) toxicity in embryonic mouse striatal neuron cultures. In addition, the role of opioid and/or glutamate receptors were assessed pharmacologically using dizocilpine maleate (MK(+)801), a non-equilibrium N-methyl-D-aspartate (NMDA) antagonist; 6-cyano-7-nitroquinoxaline-2,3-dione, a competitive alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate antagonist; or (-)-naloxone, a general opioid antagonist. The results show that dynorphin A (1-17) (>or=10 nM) caused concentration-dependent increases in caspase-3 activity that were accompanied by mitochondrial release of cytochrome c and the subsequent death of cultured mouse striatal neurons. Moreover, dynorphin A-induced neurotoxicity and caspase-3 activation were significantly attenuated by the cell permeable caspase inhibitor, caspase-3 inhibitor-II (z-DEVD-FMK), further suggesting an apoptotic cascade involving caspase-3. AMPA/kainate receptor blockade significantly attenuated dynorphin A-induced cytochrome c release and/or caspase-3 activity, while NMDA or opioid receptor blockade typically failed to prevent the apoptotic response. Last, dynorphin-induced caspase-3 activation was mimicked by the ampakine CX546 [1-(1,4-benzodioxan-6-ylcarbonyl)piperidine], which suggests that the activation of AMPA receptor subunits may be sufficient to mediate toxicity in striatal neurons. These findings provide novel evidence that dynorphin-induced striatal neurotoxicity is mediated by a caspase-dependent apoptotic mechanism that largely involves AMPA/kainate receptors.
Collapse
Affiliation(s)
- I N Singh
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|