1
|
Sharninghausen LS, Preshlock S, Joy ST, Horikawa M, Shao X, Winton WP, Stauff J, Kaur T, Koeppe RA, Mapp AK, Scott PJH, Sanford MS. Copper-Mediated Radiocyanation of Unprotected Amino Acids and Peptides. J Am Chem Soc 2022; 144:7422-7429. [PMID: 35437016 PMCID: PMC9887455 DOI: 10.1021/jacs.2c01959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This report describes a copper-mediated radiocyanation of aryl halides that is applicable to complex molecules. This transformation tolerates an exceptionally wide range of functional groups, including unprotected amino acids. As such, it enables the site-specific introduction of [11C]CN into peptides at an iodophenylalanine residue. The use of a diamine-ligated copper(I) mediator is crucial for achieving high radiochemical yield under relatively mild conditions, thus limiting racemization and competing side reactions of other amino acid side chains. The reaction has been scaled and automated to deliver radiolabeled peptides, including analogues of adrenocorticotropic hormone 1-27 (ACTH) and nociceptin (NOP). For instance, this Cu-mediated radiocyanation was leveraged to prepare >40 mCi of [11C]cyano-NOP to evaluate biodistribution in a primate using positron emission tomography. This investigation provides preliminary evidence that nociceptin crosses the blood-brain barrier and shows uptake across all brain regions (SUV > 1 at 60 min post injection), consistent with the known distribution of NOP receptors in the rhesus brain.
Collapse
Affiliation(s)
- Liam S. Sharninghausen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Sean Preshlock
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Stephen T. Joy
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Mami Horikawa
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Xia Shao
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Wade P. Winton
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Jenelle Stauff
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Tanpreet Kaur
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Robert A. Koeppe
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Anna K. Mapp
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States,Corresponding Author: Peter J. H. Scott. . Melanie S. Sanford. . Anna K. Mapp.
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States,Corresponding Author: Peter J. H. Scott. . Melanie S. Sanford. . Anna K. Mapp.
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States,Corresponding Author: Peter J. H. Scott. . Melanie S. Sanford. . Anna K. Mapp.
| |
Collapse
|
2
|
Simonetta I, Riolo R, Todaro F, Tuttolomondo A. New Insights on Metabolic and Genetic Basis of Migraine: Novel Impact on Management and Therapeutical Approach. Int J Mol Sci 2022; 23:3018. [PMID: 35328439 PMCID: PMC8955051 DOI: 10.3390/ijms23063018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a hereditary disease, usually one-sided, sometimes bilateral. It is characterized by moderate to severe pain, which worsens with physical activity and may be associated with nausea and vomiting, may be accompanied by photophobia and phonophobia. The disorder can occur at any time of the day and can last from 4 to 72 h, with and without aura. The pathogenic mechanism is unclear, but extensive preclinical and clinical studies are ongoing. According to electrophysiology and imaging studies, many brain areas are involved, such as cerebral cortex, thalamus, hypothalamus, and brainstem. The activation of the trigeminovascular system has a key role in the headache phase. There also appears to be a genetic basis behind the development of migraine. Numerous alterations have been identified, and in addition to the genetic cause, there is also a close association with the surrounding environment, as if on the one hand, the genetic alterations may be responsible for the onset of migraine, on the other, the environmental factors seem to be more strongly associated with exacerbations. This review is an analysis of neurophysiological mechanisms, neuropeptide activity, and genetic alterations that play a fundamental role in choosing the best therapeutic strategy. To date, the goal is to create a therapy that is as personalized as possible, and for this reason, steps forward have been made in the pharmacological field in order to identify new therapeutic strategies for both acute treatment and prophylaxis.
Collapse
Affiliation(s)
- Irene Simonetta
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
- Molecular and Clinical Medicine PhD Programme, University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| | - Renata Riolo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
| | - Federica Todaro
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
- Molecular and Clinical Medicine PhD Programme, University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
3
|
Hillhouse TM, Olson KM, Hallahan JE, Rysztak LG, Sears BF, Meurice C, Ostovar M, Koppenhaver PO, West JL, Jutkiewicz EM, Husbands SM, Traynor JR. The Buprenorphine Analogue BU10119 Attenuates Drug-Primed and Stress-Induced Cocaine Reinstatement in Mice. J Pharmacol Exp Ther 2021; 378:287-299. [PMID: 34183434 PMCID: PMC11047085 DOI: 10.1124/jpet.121.000524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023] Open
Abstract
There are no Food and Drug Administration-approved medications for cocaine use disorder, including relapse. The μ-opioid receptor (MOPr) partial agonist buprenorphine alone or in combination with naltrexone has been shown to reduce cocaine-positive urine tests and cocaine seeking in rodents. However, there are concerns over the abuse liability of buprenorphine. Buprenorphine's partial agonist and antagonist activity at the nociception receptor (NOPr) and κ-opioid receptor (KOPr), respectively, may contribute to its ability to inhibit cocaine seeking. Thus, we hypothesized that a buprenorphine derivative that exhibits antagonist activity at MOPr and KOPr with enhanced agonist activity at the NOPr could provide a more effective treatment. Here we compare the pharmacology of buprenorphine and two analogs, BU10119 and BU12004, in assays for antinociception and for cocaine- and stress-primed reinstatement in the conditioned place preference paradigm. In vitro and in vivo assays showed that BU10119 acts as an antagonist at MOPr, KOPr, and δ-opioid receptor (DOPr) and a partial agonist at NOPr, whereas BU12004 showed MOPr partial agonist activity and DOPr, KOPr, and NOPr antagonism. BU10119 and buprenorphine but not BU12004 lessened cocaine-primed reinstatement. In contrast, BU10119, BU12004, and buprenorphine blocked stress-primed reinstatement. The selective NOPr agonist SCH221510 but not naloxone decreased cocaine-primed reinstatement. Together, these findings are consistent with the concept that NOPr agonism contributes to the ability of BU10119 and buprenorphine to attenuate reinstatement of cocaine-conditioned place preference in mice. The findings support the development of buprenorphine analogs lacking MOPr agonism with increased NOPr agonism for relapse prevention to cocaine addiction. SIGNIFICANCE STATEMENT: There are no Food and Drug Administration-approved medications for cocaine use disorder. Buprenorphine has shown promise as a treatment for cocaine relapse prevention; however, there are concerns over the abuse liability of buprenorphine. Here we show a buprenorphine analogue, BU10119, which lacks μ-opioid receptor agonism and inhibits cocaine-primed and stress-primed reinstatement in a conditioned place-preference paradigm. The results suggest the development of BU10119 for the management of relapse to cocaine seeking.
Collapse
MESH Headings
- Animals
- Buprenorphine/pharmacology
- Buprenorphine/analogs & derivatives
- Mice
- Male
- Cocaine/pharmacology
- Stress, Psychological/drug therapy
- Stress, Psychological/metabolism
- Cocaine-Related Disorders/drug therapy
- Mice, Inbred C57BL
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Drug-Seeking Behavior/drug effects
- Humans
- Receptors, Opioid/metabolism
- Receptors, Opioid/agonists
- Narcotic Antagonists/pharmacology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
Collapse
Affiliation(s)
- Todd M Hillhouse
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Keith M Olson
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - James E Hallahan
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Lauren G Rysztak
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Bryan F Sears
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Claire Meurice
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Mehrnoosh Ostovar
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Peyton O Koppenhaver
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Joshua L West
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Emily M Jutkiewicz
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Stephen M Husbands
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - John R Traynor
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| |
Collapse
|
4
|
Kiguchi N, Ding H, Kishioka S, Ko MC. Nociceptin/Orphanin FQ Peptide Receptor-Related Ligands as Novel Analgesics. Curr Top Med Chem 2021; 20:2878-2888. [PMID: 32384033 DOI: 10.2174/1568026620666200508082615] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
Abstract
Despite similar distribution patterns and intracellular events observed in the nociceptin/ orphanin FQ peptide (NOP) receptor and other opioid receptors, NOP receptor activation displays unique pharmacological profiles. Several researchers have identified a variety of peptide and nonpeptide ligands to determine the functional roles of NOP receptor activation and observed that NOP receptor- related ligands exhibit pain modality-dependent pain processing. Importantly, NOP receptor activation results in anti-nociception and anti-hypersensitivity at the spinal and supraspinal levels regardless of the experimental settings in non-human primates (NHPs). Given that the NOP receptor agonists synergistically enhance mu-opioid peptide (MOP) receptor agonist-induced anti-nociception, it has been hypothesized that dual NOP and MOP receptor agonists may display promising functional properties as analgesics. Accumulating evidence indicates that the mixed NOP/opioid receptor agonists demonstrate favorable functional profiles. In NHP studies, bifunctional NOP/MOP partial agonists (e.g., AT-121, BU08028, and BU10038) exerted potent anti-nociception via NOP and MOP receptor activation; however, dose-limiting adverse effects associated with the MOP receptor activation, including respiratory depression, itch sensation, physical dependence, and abuse liability, were not observed. Moreover, a mixed NOP/opioid receptor agonist, cebranopadol, presented promising outcomes in clinical trials as a novel analgesic. Collectively, the dual agonistic actions on NOP and MOP receptors, with appropriate binding affinities and efficacies, may be a viable strategy to develop innovative and safe analgesics.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Huiping Ding
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Mei-Chuan Ko
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| |
Collapse
|
5
|
Abstract
After participating in this activity, learners should be better able to:• Identify the effects of dysregulated opioid signalling in depression• Evaluate the use of opioid compounds and ketamine in patients with depression ABSTRACT: Major depressive disorder (MDD) remains one of the leading causes of disability and functional impairment worldwide. Current antidepressant therapeutics require weeks to months of treatment prior to the onset of clinical efficacy on depressed mood but remain ineffective in treating suicidal ideation and cognitive impairment. Moreover, 30%-40% of individuals fail to respond to currently available antidepressant medications. MDD is a heterogeneous disorder with an unknown etiology; novel strategies must be developed to treat MDD more effectively. Emerging evidence suggests that targeting one or more of the four opioid receptors-mu (MOR), kappa (KOR), delta (DOR), and the nociceptin/orphanin FQ receptor (NOP)-may yield effective therapeutics for stress-related psychiatric disorders. Furthermore, the effects of the rapidly acting antidepressant ketamine may involve opioid receptors. This review highlights dysregulated opioid signaling in depression, evaluates clinical trials with opioid compounds, and considers the role of opioid mechanisms in rapidly acting antidepressants.
Collapse
|
6
|
Toll L, Cippitelli A, Ozawa A. The NOP Receptor System in Neurological and Psychiatric Disorders: Discrepancies, Peculiarities and Clinical Progress in Developing Targeted Therapies. CNS Drugs 2021; 35:591-607. [PMID: 34057709 PMCID: PMC8279133 DOI: 10.1007/s40263-021-00821-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 02/01/2023]
Abstract
The nociceptin opioid peptide (NOP) receptor and its endogenous ligand nociceptin/orphanin FQ (N/OFQ) are the fourth members of the opioid receptor and opioid peptide families. Although they have considerable sequence homology to the other family members, they are not considered opioid per se because they do not have pharmacological profiles similar to the other family members. The number of NOP receptors in the brain is higher than the other family members, and NOP receptors can be found throughout the brain. Because of the widespread distribution of NOP receptors, N/OFQ and other peptide and small molecule agonists and antagonists have extensive CNS activities. Originally thought to be anti-opioid, NOP receptor agonists block some opioid activities, potentiate others, and modulate other activities not affected by traditional opiates. Because the effect of receptor activation can be dependent upon site of administration, state of the animal, and other variables, the study of NOP receptors has been fraught with contradictions and inconsistencies. In this article, the actions and controversies pertaining to NOP receptor activation and inhibition are discussed with respect to CNS disorders including pain (acute, chronic, and migraine), drug abuse, anxiety and depression. In addition, progress towards clinical use of NOP receptor-directed compounds is discussed.
Collapse
Affiliation(s)
- Lawrence Toll
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA.
| | - Andrea Cippitelli
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Akihiko Ozawa
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| |
Collapse
|
7
|
Kiguchi N, Ding H, Ko MC. Therapeutic potentials of NOP and MOP receptor coactivation for the treatment of pain and opioid abuse. J Neurosci Res 2020; 100:191-202. [PMID: 32255240 DOI: 10.1002/jnr.24624] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/26/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022]
Abstract
Following the identification of the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) as an endogenous ligand for the NOP receptor, ample evidence has revealed unique functional profiles of the N/OFQ-NOP receptor system. NOP receptors are expressed in key neural substrates involved in pain and reward modulation. In nonhuman primates (NHPs), NOP receptor activation effectively exerts antinociception and anti-hypersensitivity at the spinal and supraspinal levels. Moreover, NOP receptor activation inhibits dopaminergic transmission and synergistically enhances mu-opioid peptide (MOP) receptor-mediated analgesia. In this article, we have discussed the functional profiles of ligands with dual NOP and MOP receptor agonist activities and highlight their optimal functional efficacy for pain relief and drug abuse treatment. Through coactivation of NOP and MOP receptors, bifunctional NOP/MOP receptor "partial" agonists (e.g., AT-121, BU08028, and BU10038) reveal a wider therapeutic window with fewer side effects. These newly developed ligands potently induce antinociception without MOP receptor agonist-associated side effects such as abuse potential, respiratory depression, itching sensation, and physical dependence. In addition, in both rodent and NHP models, bifunctional NOP/MOP receptor agonists can attenuate reward processing and/or the reinforcing effects of opioids and other abused drugs. While a mixed NOP/opioid receptor "full" agonist cebranopadol is undergoing clinical trials, bifunctional NOP/MOP "partial" agonists exhibit promising therapeutic profiles in translational NHP models for the treatment of pain and opioid abuse. This class of drugs demonstrates the therapeutic advantage of NOP and MOP receptor coactivation, indicating a greater potential for future development.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Huiping Ding
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mei-Chuan Ko
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,W.G. Hefner Veterans Affairs Medical Center, Salisbury, NC, USA
| |
Collapse
|
8
|
Mercatelli D, Bezard E, Eleopra R, Zaveri NT, Morari M. Managing Parkinson's disease: moving ON with NOP. Br J Pharmacol 2020; 177:28-47. [PMID: 31648371 PMCID: PMC6976791 DOI: 10.1111/bph.14893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/12/2019] [Accepted: 09/25/2019] [Indexed: 01/08/2023] Open
Abstract
The opioid-like neuropeptide nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP receptor) contribute to Parkinson's disease (PD) and motor complications associated with levodopa therapy. The N/OFQ-NOP receptor system is expressed in cortical and subcortical motor areas and, notably, in dopaminergic neurons of the substantia nigra compacta. Dopamine depletion, as in rodent models of PD results in up-regulation of N/OFQ transmission in the substantia nigra and down-regulation of N/OFQ transmission in the striatum. Consistent with this, NOP receptor antagonists relieve motor deficits in PD models by reinstating the physiological balance between excitatory and inhibitory inputs impinging on nigro-thalamic GABAergic neurons. NOP receptor antagonists also counteract the degeneration of nigrostriatal dopaminergic neurons, possibly by attenuating the excitotoxicity or modulating the immune response. Conversely, NOP receptor agonists attenuate levodopa-induced dyskinesia by attenuating the hyperactivation of striatal D1 receptor signalling in neurons of the direct striatonigral pathway. The N/OFQ-NOP receptor system might represent a novel target in the therapy of PD.
Collapse
Affiliation(s)
- Daniela Mercatelli
- Department of Medical Sciences, Section of PharmacologyUniversity of Ferrara and National Institute of NeuroscienceFerraraItaly
| | - Erwan Bezard
- Institut des Maladies Neurodégénératives, UMR 5293Université de BordeauxBordeauxFrance
- Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, UMR 5293BordeauxFrance
| | - Roberto Eleopra
- Neurology Unit 1Fondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Nurulain T. Zaveri
- Astraea Therapeutics, Medicinal Chemistry DivisionMountain ViewCaliforniaUSA
| | - Michele Morari
- Department of Medical Sciences, Section of PharmacologyUniversity of Ferrara and National Institute of NeuroscienceFerraraItaly
| |
Collapse
|
9
|
Effects of stimulation of mu opioid and nociceptin/orphanin FQ peptide (NOP) receptors on alcohol drinking in rhesus monkeys. Neuropsychopharmacology 2019; 44:1476-1484. [PMID: 30970376 PMCID: PMC6784996 DOI: 10.1038/s41386-019-0390-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder (AUD) persists as a devastating public health problem; widely effective pharmacological treatments are needed. Evidence from rodent models suggests that stimulating brain receptors for the neuropeptide nociceptin/orphanin FQ (NOP) can decrease ethanol drinking. We characterized the effects of the mu opioid peptide (MOP) receptor agonist buprenorphine and the buprenorphine analog (2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6 methoxymorphinan-7-yl]-3,3-dimethylpentan-2-ol (BU08028), which stimulates MOP and NOP receptors, in a translational nonhuman primate model of AUD. Rhesus monkeys drank a 4% ethanol solution 6 h per day, 5 days per week via an operant behavioral panel in their home cages. To assess behavioral selectivity, monkeys responded via a photo-optic switch to earn food pellets. After characterizing the acute effects of BU08028 (0.001-0.01 mg/kg, i.m.) and buprenorphine (0.003-0.056 mg/kg, i.m.), the drugs were administered chronically using a model of pharmacotherapy assessment that incorporates clinical aspects of AUD and treatment. Acutely, both drugs decreased ethanol drinking at doses that did not affect food-maintained responding. During chronic treatment, effects of BU08028 and buprenorphine were maintained for several weeks without development of tolerance or emergence of adverse effects. BU08028 was ~0.5 and 1.0 log units more potent in acute and chronic studies, respectively. The selective NOP receptor agonist SCH 221510 also selectively decreased ethanol intakes when given acutely (0.03-1.0 mg/kg, i.m.), whereas the MOP antagonist naltrexone (1.7-5.6 mg/kg, i.m.) decreased both ethanol intake and food pellets delivered. These data demonstrate that bifunctional MOP/NOP agonists, which may have therapeutic advantages to MOP-selective drugs, can decrease alcohol drinking in nonhuman primates.
Collapse
|
10
|
Narendran R, Tollefson S, Fasenmyer K, Paris J, Himes ML, Lopresti B, Ciccocioppo R, Mason NS. Decreased Nociceptin Receptors Are Related to Resilience and Recovery in College Women Who Have Experienced Sexual Violence: Therapeutic Implications for Posttraumatic Stress Disorder. Biol Psychiatry 2019; 85:1056-1064. [PMID: 30954231 PMCID: PMC7035950 DOI: 10.1016/j.biopsych.2019.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is a stress disorder that develops in only some individuals following a traumatic event. Data suggest that a substantial fraction of women recover after sexual violence. Thus, the investigation of stress and antistress neuropeptides in this sample has the potential to inform the neurochemistry of resilience following trauma. Nociceptin is an antistress neuropeptide in the brain that promotes resilience in animal models of PTSD. METHODS [11C]NOP-1A positron emission tomography was used to measure the in vivo binding to nociceptin receptors in 18 college women who had experienced sexual violence irrespective of whether they met DSM-5 diagnostic criteria for PTSD. [11C]NOP-1A data from 18 healthy control subjects were also included to provide a contrast with the sexual violence group. [11C]NOP-1A total distribution volume (VT) in the regions of interest were measured with kinetic analysis using the arterial input function. The relationships between regional VT and Clinician-Administered PTSD Scale for DSM-5 total symptom and subscale severity were examined using correlational analyses. RESULTS No differences in [11C]NOP-1A VT were noted between the sexual violence and control groups. VT in the midbrain and cerebellum were positively correlated with PTSD total symptom severity in the past month before positron emission tomography. Intrusion/re-experiencing and avoidance subscale symptoms drove this relationship. Stratification of subjects by a DSM-5 PTSD diagnosis and contrasting their VT with that in control subjects showed no group differences. CONCLUSIONS Decreased midbrain and cerebellum nociceptin receptors are associated with less severe PTSD symptoms. Medications that target nociceptin should be explored to prevent and treat PTSD.
Collapse
Affiliation(s)
- Rajesh Narendran
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | | | - Kelli Fasenmyer
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| | - Jennifer Paris
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Michael L. Himes
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| | - Brian Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - N. Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
11
|
Browne CA, Lucki I. Targeting opioid dysregulation in depression for the development of novel therapeutics. Pharmacol Ther 2019; 201:51-76. [PMID: 31051197 DOI: 10.1016/j.pharmthera.2019.04.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Since the serendipitous discovery of the first class of modern antidepressants in the 1950's, all pharmacotherapies approved by the Food and Drug Administration for major depressive disorder (MDD) have shared a common mechanism of action, increased monoaminergic neurotransmission. Despite the widespread availability of antidepressants, as many as 50% of depressed patients are resistant to these conventional therapies. The significant length of time required to produce meaningful symptom relief with these medications, 4-6 weeks, indicates that other mechanisms are likely involved in the pathophysiology of depression which may yield more viable targets for drug development. For decades, no viable candidate target with a different mechanism of action to that of conventional therapies proved successful in clinical studies. Now several exciting avenues for drug development are under intense investigation. One of these emerging targets is modulation of endogenous opioid tone. This review will evaluate preclinical and clinical evidence pertaining to opioid dysregulation in depression, focusing on the role of the endogenous ligands endorphin, enkephalin, dynorphin, and nociceptin/orphanin FQ (N/OFQ) and their respective receptors, mu (MOR), delta (DOR), kappa (KOR), and the N/OFQ receptor (NOP) in mediating behaviors relevant to depression and anxiety. Finally, putative opioid based antidepressants that are under investigation in clinical trials, ALKS5461, JNJ-67953964 (formerly LY2456302 and CERC-501) and BTRX-246040 (formerly LY-2940094) will be discussed. This review will illustrate the potential therapeutic value of targeting opioid dysregulation in developing novel therapies for MDD.
Collapse
Affiliation(s)
- Caroline A Browne
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America
| | - Irwin Lucki
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| |
Collapse
|
12
|
Abstract
Nociceptin/orphanin FQ (N/OFQ) is an endogenous neuropeptide of 17 amino acids, related to opioid peptides but with its own receptor, distinct from conventional opioid receptors, the ORL1 or NOP receptor. The NOP receptor is a G protein-coupled receptor which activates Gi/o proteins and thus induces an inhibition of neuronal activity. The peptide and its receptor are widely expressed in the central nervous system with a high density of receptors in regions involved in learning and memory. This review describes the consequences of the pharmacological manipulation of the N/OFQ system by NOP receptor ligands on learning processes and on the consolidation of various types of long-term memory. We also discuss the role of endogenous N/OFQ release in the modulation of learning and memory. Finally we propose several putative neuronal mechanisms taking place at the level of the hippocampus and amygdala and possibly underlying the behavioral amnestic or promnesic effects of NOP ligands.
Collapse
Affiliation(s)
- Lionel Moulédous
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France.
| |
Collapse
|
13
|
Abstract
The nociceptin/orphanin FQ peptide (NOP) receptor-related ligands have been demonstrated in preclinical studies for several therapeutic applications. This article highlights (1) how nonhuman primates (NHP) were used to facilitate the development and application of positron emission tomography tracers in humans; (2) effects of an endogenous NOP ligand, nociceptin/orphanin FQ, and its interaction with mu opioid peptide (MOP) receptor agonists; and (3) promising functional profiles of NOP-related agonists in NHP as analgesics and treatment for substance use disorders. NHP models offer the most phylogenetically appropriate evaluation of opioid and non-opioid receptor functions and drug effects. Based on preclinical and clinical data of ligands with mixed NOP/MOP receptor agonist activity, several factors including their intrinsic efficacies for activating NOP versus MOP receptors and different study endpoints in NHP could contribute to different pharmacological profiles. Ample evidence from NHP studies indicates that bifunctional NOP/MOP receptor agonists have opened an exciting avenue for developing safe, effective medications with fewer side effects for treating pain and drug addiction. In particular, bifunctional NOP/MOP partial agonists hold a great potential as (1) effective spinal analgesics without itch side effects; (2) safe, nonaddictive analgesics without opioid side effects such as respiratory depression; and (3) effective medications for substance use disorders.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
14
|
Narendran R, Ciccocioppo R, Lopresti B, Paris J, Himes ML, Mason NS. Nociceptin Receptors in Alcohol Use Disorders: A Positron Emission Tomography Study Using [ 11C]NOP-1A. Biol Psychiatry 2018; 84:708-714. [PMID: 28711193 PMCID: PMC5711613 DOI: 10.1016/j.biopsych.2017.05.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/05/2017] [Accepted: 05/23/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND The neuropeptide transmitter nociceptin, which binds to the nociceptin/orphanin FQ peptide (NOP) receptor, is a core component of the brain's antistress system. Nociceptin exerts its antistress effect by counteracting the functions of corticotropin-releasing factor, the primary stress-mediating neuropeptide in the brain. Basic investigations support a role for medications that target nociceptin receptors in the treatment of alcohol use disorders. Thus, it is of high interest to measure the in vivo status of NOP receptors in individuals with alcohol use disorders. METHODS Here, we used [11C]NOP-1A and positron emission tomography to measure the in vivo binding to NOP receptors in 15 alcohol-dependent humans as identified by DSM-IV and 15 healthy control subjects matched for age, sex, and smoking status. Alcohol-dependent individuals with no comorbid psychiatric, medical, or drug abuse disorders were scanned following 2 weeks of outpatient monitored abstinence (confirmed with three times per week urine alcohol metabolite testing). [11C]NOP-1A distribution volume in regions of interest (including the amygdala, hippocampus, and midbrain, striatal, and prefrontal cortical subdivisions) was measured with kinetic analysis using the arterial input function. RESULTS Regional [11C]NOP-1A distribution volume in alcohol dependence was not significantly different compared with healthy control subjects. No relationship between [11C]NOP-1A distribution volume and other clinical measures (including duration and severity of alcohol abuse, craving, and anxiety or depressive symptoms) were significant after correction for the multiple hypotheses tested. CONCLUSIONS The results of this study do not support alterations in the binding to NOP receptors in alcohol dependence. However, this finding does not necessarily rule out alterations in nociceptin transmission in alcohol dependence.
Collapse
Affiliation(s)
- Rajesh Narendran
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Brian Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer Paris
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael L Himes
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Tollefson S, Himes M, Narendran R. Imaging corticotropin-releasing-factor and nociceptin in addiction and PTSD models. Int Rev Psychiatry 2017; 29:567-579. [PMID: 29231765 DOI: 10.1080/09540261.2017.1404445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Addiction is composed of three phases: intoxication, withdrawal, and craving. Negative reinforcement, strengthening a behaviour by removing an aversive stimulus, has been associated with the withdrawal phase. An imbalance of neurotransmitters within the brain's stress (nociceptin, neuropeptide Y) and anti-stress (CRF, norepinephrine, etc.) system is attributed to negatively reinforced compulsive behaviours associated with relapse. Similarly, post-traumatic stress disorder is characterized by an overactive stress system. In a PTSD mouse model, rodents exhibited impaired cued-fear memory consolidation when nociceptin transmission was blocked. Furthermore, a single-nucleotide polymorphism has been identified between women diagnosed with PTSD and the severity of PTSD symptoms, suggesting a genetic basis. Therefore, it is critical to understand the functions and interactions between the brain's stress and anti-stress neurotransmitters, specifically nociceptin. This paper will examine the hypothalamic-pituitary-adrenocortical axis, evaluate the functions of corticotropin-releasing-factor and nociceptin, discuss nociceptin's role as an anxiolytic or anxiogenic, and discuss PET-imaging studies-all of which targeted nociceptin receptors (NOP-R). Finally, the discussion of pharmacological interventions will be proposed as preventative or therapeutic treatments for those suffering from PTSD and substance-use disorders.
Collapse
Affiliation(s)
- Savannah Tollefson
- a Department of Radiology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Michael Himes
- a Department of Radiology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Rajesh Narendran
- a Department of Radiology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| |
Collapse
|
16
|
Maslov LN, Khaliulin I, Oeltgen PR, Naryzhnaya NV, Pei J, Brown SA, Lishmanov YB, Downey JM. Prospects for Creation of Cardioprotective and Antiarrhythmic Drugs Based on Opioid Receptor Agonists. Med Res Rev 2016; 36:871-923. [PMID: 27197922 PMCID: PMC5082499 DOI: 10.1002/med.21395] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/19/2022]
Abstract
It has now been demonstrated that the μ, δ1 , δ2 , and κ1 opioid receptor (OR) agonists represent the most promising group of opioids for the creation of drugs enhancing cardiac tolerance to the detrimental effects of ischemia/reperfusion (I/R). Opioids are able to prevent necrosis and apoptosis of cardiomyocytes during I/R and improve cardiac contractility in the reperfusion period. The OR agonists exert an infarct-reducing effect with prophylactic administration and prevent reperfusion-induced cardiomyocyte death when ischemic injury of heart has already occurred; that is, opioids can mimic preconditioning and postconditioning phenomena. Furthermore, opioids are also effective in preventing ischemia-induced arrhythmias.
Collapse
Affiliation(s)
| | - Igor Khaliulin
- School of Clinical SciencesUniversity of BristolBristolUK
| | | | | | - Jian‐Ming Pei
- Department of PhysiologyFourth Military Medical UniversityXi'anP. R. China
| | | | - Yury B. Lishmanov
- Research Institute for CardiologyTomskRussia
- National Research Tomsk Polytechnic University634050TomskRussia
| | | |
Collapse
|
17
|
Toll L, Bruchas MR, Calo' G, Cox BM, Zaveri NT. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems. Pharmacol Rev 2016; 68:419-57. [PMID: 26956246 PMCID: PMC4813427 DOI: 10.1124/pr.114.009209] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor.
Collapse
Affiliation(s)
- Lawrence Toll
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Michael R Bruchas
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Girolamo Calo'
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Brian M Cox
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Nurulain T Zaveri
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| |
Collapse
|
18
|
Zaveri NT. Nociceptin Opioid Receptor (NOP) as a Therapeutic Target: Progress in Translation from Preclinical Research to Clinical Utility. J Med Chem 2016; 59:7011-28. [PMID: 26878436 DOI: 10.1021/acs.jmedchem.5b01499] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the two decades since the discovery of the nociceptin opioid receptor (NOP) and its ligand, nociceptin/orphaninFQ (N/OFQ), steady progress has been achieved in understanding the pharmacology of this fourth opioid receptor/peptide system, aided by genetic and pharmacologic approaches. This research spawned an explosion of small-molecule NOP receptor ligands from discovery programs in major pharmaceutical companies. NOP agonists have been investigated for their efficacy in preclinical models of anxiety, cough, substance abuse, pain (spinal and peripheral), and urinary incontinence, whereas NOP antagonists have been investigated for treatment of pain, depression, and motor symptoms in Parkinson's disease. Translation of preclinical findings into the clinic is guided by PET and receptor occupancy studies, particularly for NOP antagonists. Recent progress in preclinical NOP research suggests that NOP agonists may have clinical utility for pain treatment and substance abuse pharmacotherapy. This review discusses the progress toward validating the NOP-N/OFQ system as a therapeutic target.
Collapse
Affiliation(s)
- Nurulain T Zaveri
- Astraea Therapeutics , 320 Logue Avenue, Suite 142, Mountain View, California 94043, United States
| |
Collapse
|
19
|
Kiguchi N, Ding H, Ko MC. Central N/OFQ-NOP Receptor System in Pain Modulation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 75:217-43. [PMID: 26920014 PMCID: PMC4944813 DOI: 10.1016/bs.apha.2015.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Two decades have passed since the peptide, nociceptin/orphanin FQ (N/OFQ), and its cognate (NOP) receptor were discovered. Although NOP receptor activation causes a similar pattern of intracellular actions as mu-opioid (MOP) receptors, NOP receptor-mediated pain modulation in rodents are more complicated than MOP receptor activation. This review highlights the functional evidence of spinal, supraspinal, and systemic actions of NOP receptor agonists for regulating pain. In rodents, effects of the N/OFQ-NOP receptor system in spinal and supraspinal sites for modulating pain are bidirectional depending on the doses, assays, and pain modalities. The net effect of systemically administered NOP receptor agonists may depend on relative contribution of spinal and supraspinal actions of the N/OFQ-NOP receptor signaling in rodents under different pain states. In stark contrast, NOP receptor agonists produce only antinociception and antihypersensitivity in spinal and supraspinal regions of nonhuman primates regardless of doses and assays. More importantly, NOP receptor agonists and a few bifunctional NOP/MOP receptor agonists do not exhibit reinforcing effects (abuse liability), respiratory depression, itch pruritus, nor do they delay the gastrointestinal transit function (constipation) in nonhuman primates. Depending upon their intrinsic efficacies for activating NOP and MOP receptors, bifunctional NOP/MOP receptor agonists warrant additional investigation in primates regarding their side effect profiles. Nevertheless, NOP receptor-related agonists display a much wider therapeutic window as compared to that of MOP receptor agonists in primates. Both selective NOP receptor agonists and bifunctional NOP/MOP receptor agonists hold great potential as effective and safe analgesics without typical opioid-associated side effects in humans.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
20
|
Tajti J, Szok D, Majláth Z, Tuka B, Csáti A, Vécsei L. Migraine and neuropeptides. Neuropeptides 2015; 52:19-30. [PMID: 26094101 DOI: 10.1016/j.npep.2015.03.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022]
Abstract
Migraine is a common disabling neurovascular primary headache disorder. The pathomechanism is not clear, but extensive preclinical and clinical studies are ongoing. The structural basis of the leading hypothesis is the trigeminovascular system, which includes the trigeminal ganglion, the meningeal vasculature, and the distinct nuclei of the brainstem, the thalamus and the somatosensory cortex. This review covers the effects of sensory (calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide and substance P), sympathetic (neuropeptide Y) and parasympathetic (vasoactive intestinal peptide) migraine-related neuropeptides and the functions of somatostatin, nociceptin and the orexins in the trigeminovascular system. These neuropeptides may take part in neurogenic inflammation (plasma protein extravasation and vasodilatation) of the intracranial vasculature and peripheral and central sensitization of the trigeminal system. The results of human clinical studies are discussed with regard to the alterations in these neuropeptides in the plasma, saliva and cerebrospinal fluid during or between migraine attacks, and the therapeutic possibilities involving migraine-related neuropeptides in the acute and prophylactic treatment of migraine headache are surveyed.
Collapse
Affiliation(s)
- János Tajti
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary.
| | - Délia Szok
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Zsófia Majláth
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Bernadett Tuka
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Anett Csáti
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - László Vécsei
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary; MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| |
Collapse
|
21
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
22
|
Ding H, Hayashida K, Suto T, Sukhtankar DD, Kimura M, Mendenhall V, Ko MC. Supraspinal actions of nociceptin/orphanin FQ, morphine and substance P in regulating pain and itch in non-human primates. Br J Pharmacol 2015; 172:3302-12. [PMID: 25752320 PMCID: PMC4500367 DOI: 10.1111/bph.13124] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/20/2015] [Accepted: 02/25/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor agonists display a promising analgesic profile in preclinical studies. However, supraspinal N/OFQ produced hyperalgesia in rodents and such effects have not been addressed in primates. Thus, the aim of this study was to investigate the effects of centrally administered ligands on regulating pain and itch in non-human primates. In particular, nociceptive thresholds affected by intracisternal N/OFQ were compared with those of morphine and substance P, known to provide analgesia and mediate hyperalgesia, respectively, in humans. EXPERIMENTAL APPROACH Intrathecal catheters were installed to allow intracisternal and lumbar intrathecal administration in awake and unanaesthetized rhesus monkeys. Nociceptive responses were measured using the warm water tail-withdrawal assay. Itch scratching responses were scored from videotapes recording behavioural activities of monkeys in their home cages. Antagonist studies were conducted to validate the receptor mechanisms underlying intracisternally elicited behavioural responses. KEY RESULTS Intracisternal morphine (100 nmol) elicited more head scratches than those after intrathecal morphine. Distinct dermatomal scratching locations between the two routes suggest a corresponding activation of supraspinal and spinal μ receptors. Unlike intracisternal substance P, which induced hyperalgesia, intracisternal N/OFQ (100 nmol) produced antinociceptive effects mediated by NOP receptors. Neither peptide increased scratching responses. CONCLUSIONS AND IMPLICATIONS Taken together, these results demonstrated differential actions of ligands in the primate supraspinal region in regulating pain and itch. This study not only improves scientific understanding of the N/OFQ-NOP receptor system in pain processing but also supports the therapeutic potential of NOP-related ligands as analgesics.
Collapse
Affiliation(s)
- H Ding
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - K Hayashida
- Department of Anesthesiology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - T Suto
- Department of Anesthesiology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - D D Sukhtankar
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - M Kimura
- Department of Anesthesiology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - V Mendenhall
- Preclinical Translational Services, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - M C Ko
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
- Department of Dermatology, Wake Forest University School of MedicineWinston-Salem, NC, USA
- Center for Comparative Medicine Research, Wake Forest University School of MedicineWinston-Salem, NC, USA
| |
Collapse
|
23
|
Asth L, Correia N, Lobão-Soares B, De Lima TCM, Guerrini R, Calo' G, Soares-Rachetti VP, Gavioli EC. Nociceptin/orphanin FQ induces simultaneously anxiolytic and amnesic effects in the mouse elevated T-maze task. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:33-41. [PMID: 25319847 DOI: 10.1007/s00210-014-1055-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
Studies have shown a close relationship between anxiety and aversive memory processing, but few animal models are suitable for investigating the effects of a given compound on anxiety and memory simultaneously. A growing body of evidence suggests anxiolytic and amnesic effects of nociceptin/orphanin FQ (N/OFQ). The mouse elevated T-maze (ETM) has been shown to detect the effects of drugs on anxiety and memory at the same time. In this study, the effects of intracerebroventricular N/OFQ injected before or immediately after training session were assessed in the ETM task. When pretraining injected, N/OFQ 0.1 nmol significantly decreased the latency to enter an open arm in the training session compared to control, which is suggestive of anxiolysis. In addition, N/OFQ (0.1 and 1 nmol) significantly reduced the latency to enter an open arm during the test session compared to control, thus suggesting memory impairments. However, when N/OFQ was administered posttraining, it did not affect memory retrieval. No alterations in locomotion were detected in N/OFQ-treated mice in the open field test. In conclusion, these findings are discussed considering the simultaneous anxiolytic and amnesic effects of N/OFQ.
Collapse
Affiliation(s)
- Laila Asth
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n, Campus Universitário-Lagoa Nova, Natal, 59072-970, RN, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang L, Drummond E, Brodney MA, Cianfrogna J, Drozda SE, Grimwood S, Vanase-Frawley MA, Villalobos A. Design, synthesis and evaluation of [(3)H]PF-7191, a highly specific nociceptin opioid peptide (NOP) receptor radiotracer for in vivo receptor occupancy (RO) studies. Bioorg Med Chem Lett 2014; 24:5219-23. [PMID: 25442316 DOI: 10.1016/j.bmcl.2014.09.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 11/26/2022]
Abstract
Herein we report the identification of (+)-N-(2-((1H-pyrazol-1-yl)methyl)-3-((1R,3r,5S)-6'-fluoro-8-azaspiro[bicyclo[3.2.1]octane-3,1'-isochroman]-8-yl)propyl)-N-[(3)H]-methylacetamide {[(3)H]PF-7191 [(+)-11]} as a promising radiotracer for the nociceptin opioid peptide (NOP) receptor. (+)-11 demonstrated high NOP binding affinity (Ki = 0.1 nM), excellent selectivity over other opioid receptors (>1000×) and good brain permeability in rats (C(b,u)/C(p,u) = 0.29). Subsequent characterization of [(3)H](+)-11 showed a high level of specific binding and a brain bio-distribution pattern consistent with known NOP receptor expression. Furthermore, the in vivo brain binding of [(3)H](+)-11 in rats was inhibited by a selective NOP receptor antagonist in a dose-responsive manner. This overall favorable profile indicated that [(3)H](+)-11 is a robust radiotracer for pre-clinical in vivo receptor occupancy (RO) measurements and a possible substrate for carbon-11 labeling for positron emission tomography (PET) imaging in higher species.
Collapse
Affiliation(s)
- Lei Zhang
- Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, MA 02139, USA.
| | - Elena Drummond
- Neuroscience Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
| | - Michael A Brodney
- Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, MA 02139, USA
| | - Julie Cianfrogna
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT 06340, USA
| | - Susan E Drozda
- Neuroscience Medicinal Chemistry, Pfizer Inc., Groton, CT 06340, USA
| | - Sarah Grimwood
- Neuroscience Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
| | | | | |
Collapse
|
25
|
Schröder W, Lambert DG, Ko MC, Koch T. Functional plasticity of the N/OFQ-NOP receptor system determines analgesic properties of NOP receptor agonists. Br J Pharmacol 2014; 171:3777-800. [PMID: 24762001 PMCID: PMC4128043 DOI: 10.1111/bph.12744] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/07/2014] [Accepted: 04/15/2014] [Indexed: 12/12/2022] Open
Abstract
Despite high sequence similarity between NOP (nociceptin/orphanin FQ opioid peptide) and opioid receptors, marked differences in endogenous ligand selectivity, signal transduction, phosphorylation, desensitization, internalization and trafficking have been identified; underscoring the evolutionary difference between NOP and opioid receptors. Activation of NOP receptors affects nociceptive transmission in a site-specific manner, with antinociceptive effects prevailing after peripheral and spinal activation, and pronociceptive effects after supraspinal activation in rodents. The net effect of systemically administered NOP receptor agonists on nociception is proposed to depend on the relative contribution of peripheral, spinal and supraspinal activation, and this may depend on experimental conditions. Functional expression and regulation of NOP receptors at peripheral and central sites of the nociceptive pathway exhibits a high degree of plasticity under conditions of neuropathic and inflammatory pain. In rodents, systemically administered NOP receptor agonists exerted antihypersensitive effects in models of neuropathic and inflammatory pain. However, they were largely ineffective in acute pain while concomitantly evoking severe motor side effects. In contrast, systemic administration of NOP receptor agonists to non-human primates (NHPs) exerted potent and efficacious antinociception in the absence of motor and sedative side effects. The reason for this species difference with respect to antinociceptive efficacy and tolerability is not clear. Moreover, co-activation of NOP and μ-opioid peptide (MOP) receptors synergistically produced antinociception in NHPs. Hence, both selective NOP receptor as well as NOP/MOP receptor agonists may hold potential for clinical use as analgesics effective in conditions of acute and chronic pain.
Collapse
Affiliation(s)
- W Schröder
- Department of Translational Science, Global Innovation, Grünenthal GmbH, Aachen, Germany
| | | | | | | |
Collapse
|
26
|
Tariq S, Nurulain SM, Tekes K, Adeghate E. Deciphering intracellular localization and physiological role of nociceptin and nocistatin. Peptides 2013; 43:174-83. [PMID: 23454174 DOI: 10.1016/j.peptides.2013.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 01/16/2023]
Abstract
Nociceptin and nocistatin are endogenous ligands of G protein coupled receptor family. Numerous techniques have been used to study the diverse parameters including, localization, distribution and ultrastructure of these peptides. The majority of the study parameters are based on their physiological roles in different organ systems. The present study presents an overview of the different methods used for the study of nociceptin, nocistatin and their receptors. Nociceptin has been implicated in many physiological functions including, nociception, locomotion, stressed-induced analgesia, learning and memory, neurotransmitter and hormone release, renal function, neuronal differentiation, sexual and reproductive behavior, uterine contraction, feeding, anxiety, gastrointestinal motility, cardiovascular function, micturition, cough, hypoxic-ischemic brain injury, diuresis and sodium balance, temperature regulation, vestibular function, and mucosal transport. It has been noted that the use of light and electron microscopy was less frequent, though it may be one of the most promising tools to study the intracellular localization of these neuropeptides. In addition, more studies on the level of circulating nociceptin and nocistatin are also necessary for investigating their clinical roles in health and disease. A variety of modern tools including physiological, light and electron microscopy (EM) are needed to decipher the extent of intracellular localization, tissue distribution and function of these peptides. The intracellular localization of nociceptin and nocistatin will require a high resolution transmission EM capable of identifying these peptides and other supporting molecules that co-localize with them. A tracing technique could also elucidate a possible migratory ability of nociceptin and nocistatin from one cellular compartment to the other.
Collapse
Affiliation(s)
- Saeed Tariq
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | | | |
Collapse
|
27
|
Evaluation of [18F]MK-0911, a positron emission tomography (PET) tracer for opioid receptor-like 1 (ORL1), in rhesus monkey and human. Neuroimage 2013; 68:1-10. [DOI: 10.1016/j.neuroimage.2012.11.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/16/2012] [Accepted: 11/22/2012] [Indexed: 11/22/2022] Open
|
28
|
Marti M, Rodi D, Li Q, Guerrini R, Fasano S, Morella I, Tozzi A, Brambilla R, Calabresi P, Simonato M, Bezard E, Morari M. Nociceptin/orphanin FQ receptor agonists attenuate L-DOPA-induced dyskinesias. J Neurosci 2012; 32:16106-19. [PMID: 23152595 PMCID: PMC6794016 DOI: 10.1523/jneurosci.6408-11.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 09/11/2012] [Accepted: 09/14/2012] [Indexed: 11/21/2022] Open
Abstract
In the present study we investigated whether the neuropeptide nociceptin/orphanin FQ (N/OFQ), previously implicated in the pathogenesis of Parkinson's disease, also affects L-DOPA-induced dyskinesia. In striatal slices of naive rodents, N/OFQ (0.1-1 μm) prevented the increase of ERK phosphorylation and the loss of depotentiation of synaptic plasticity induced by the D1 receptor agonist SKF38393 in spiny neurons. In vivo, exogenous N/OFQ (0.03-1 nmol, i.c.v.) or a synthetic N/OFQ receptor agonist given systemically (0.01-1 mg/Kg) attenuated dyskinesias expression in 6-hydroxydopamine hemilesioned rats primed with L-DOPA, without causing primary hypolocomotive effects. Conversely, N/OFQ receptor antagonists worsened dyskinesia expression. In vivo microdialysis revealed that N/OFQ prevented dyskinesias simultaneously with its neurochemical correlates such as the surge of nigral GABA and glutamate, and the reduction of thalamic GABA. Regional microinjections revealed that N/OFQ attenuated dyskinesias more potently and effectively when microinjected in striatum than substantia nigra (SN) reticulata, whereas N/OFQ receptor antagonists were ineffective in striatum but worsened dyskinesias when given in SN. Quantitative autoradiography showed an increase in N/OFQ receptor binding in striatum and a reduction in SN of both unprimed and dyskinetic 6-hydroxydopamine rats, consistent with opposite adaptive changes of N/OFQ transmission. Finally, the N/OFQ receptor synthetic agonist also reduced dyskinesia expression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated dyskinetic macaques without affecting the global parkinsonian score. We conclude that N/OFQ receptor agonists may represent a novel strategy to counteract L-DOPA-induced dyskinesias. Their action is possibly mediated by upregulated striatal N/OFQ receptors opposing the D1 receptor-mediated overactivation of the striatonigral direct pathway.
Collapse
Affiliation(s)
- Matteo Marti
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, 44100 Ferrara Italy
| | - Donata Rodi
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, 44100 Ferrara Italy
| | - Qin Li
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, 100864 Beijing, China
| | - Remo Guerrini
- Department of Pharmaceutical Sciences, University of Ferrara, Ferrara, 44100 Italy
| | - Stefania Fasano
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute and University, 20123 Milano, Italy
| | - Ilaria Morella
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute and University, 20123 Milano, Italy
| | - Alessandro Tozzi
- Clinica Neurologica, Dip. Specialità Medico-Chirurgiche e Sanità Pubblica, Università di Perugia, Ospedale Santa Maria della Misericordia, 06123 Perugia, Italy
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico, 00179 Rome, Italy
| | - Riccardo Brambilla
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute and University, 20123 Milano, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Dip. Specialità Medico-Chirurgiche e Sanità Pubblica, Università di Perugia, Ospedale Santa Maria della Misericordia, 06123 Perugia, Italy
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico, 00179 Rome, Italy
| | - Michele Simonato
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, 44100 Ferrara Italy
| | - Erwan Bezard
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, 100864 Beijing, China
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, F-33000 France; and
- Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, F-33000 France
| | - Michele Morari
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, 44100 Ferrara Italy
| |
Collapse
|
29
|
Hayashi S, Ohashi K, Nakata E, Emoto C. Discovery of 1-(β-amino substituted-β-alanyl)-N,N-dimethylindoline-2-carboxamides as novel nonpeptide antagonists of nociceptin/orphanin FQ receptor: Efficient design, synthesis, and structure–activity relationship studies. Eur J Med Chem 2012; 55:228-42. [DOI: 10.1016/j.ejmech.2012.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/11/2012] [Accepted: 07/15/2012] [Indexed: 12/01/2022]
|
30
|
Pedregal C, Joshi EM, Toledo MA, Lafuente C, Diaz N, Martinez-Grau MA, Jiménez A, Benito A, Navarro A, Chen Z, Mudra DR, Kahl SD, Rash KS, Statnick MA, Barth VN. Development of LC-MS/MS-Based Receptor Occupancy Tracers and Positron Emission Tomography Radioligands for the Nociceptin/Orphanin FQ (NOP) Receptor. J Med Chem 2012; 55:4955-67. [DOI: 10.1021/jm201629q] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Concepción Pedregal
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Elizabeth M. Joshi
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Miguel A. Toledo
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Celia Lafuente
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Nuria Diaz
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Maria A. Martinez-Grau
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Alma Jiménez
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Ana Benito
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Antonio Navarro
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Zhaogen Chen
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Daniel R. Mudra
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Steven D. Kahl
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Karen S. Rash
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Michael A. Statnick
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Vanessa N. Barth
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| |
Collapse
|
31
|
Kimura Y, Fujita M, Hong J, Lohith TG, Gladding RL, Zoghbi SS, Tauscher JA, Goebl N, Rash KS, Chen Z, Pedregal C, Barth VN, Pike VW, Innis RB. Brain and whole-body imaging in rhesus monkeys of 11C-NOP-1A, a promising PET radioligand for nociceptin/orphanin FQ peptide receptors. J Nucl Med 2011; 52:1638-45. [PMID: 21880575 PMCID: PMC3216483 DOI: 10.2967/jnumed.111.091181] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Our laboratory developed (S)-3-(2'-fluoro-6',7'-dihydrospiro[piperidine-4,4'-thieno[3,2-c]pyran]-1-yl)-2-(2-fluorobenzyl)-N-methylpropanamide ((11)C-NOP-1A), a new radioligand for the nociceptin/orphanin FQ peptide (NOP) receptor, with high affinity (K(i), 0.15 nM) and appropriate lipophilicity (measured logD, 3.4) for PET brain imaging. Here, we assessed the utility of (11)C-NOP-1A for quantifying NOP receptors in the monkey brain and estimated the radiation safety profile of this radioligand based on its biodistribution in monkeys. METHODS Baseline and blocking PET scans were acquired from head to thigh for 3 rhesus monkeys for approximately 120 min after (11)C-NOP-1A injection. These 6 PET scans were used to quantify NOP receptors in the brain and to estimate radiation exposure to organs of the body. In the blocked scans, a selective nonradioactive NOP receptor antagonist (SB-612111; 1 mg/kg intravenously) was administered before (11)C-NOP-1A. In all scans, arterial blood was sampled to measure the parent radioligand (11)C-NOP-1A. Distribution volume (V(T); a measure of receptor density) was calculated with a compartment model using brain and arterial plasma data. Radiation-absorbed doses were calculated using the MIRD Committee scheme. RESULTS After (11)C-NOP-1A injection, peak uptake of radioactivity in the brain had a high concentration (∼5 standardized uptake value), occurred early (∼12 min), and thereafter washed out quickly. V(T) (mL · cm(-3)) was highest in the neocortex (∼20) and lowest in hypothalamus and cerebellum (∼13). SB-612111 blocked approximately 50%-70% of uptake and reduced V(T) in all brain regions to approximately 7 mL · cm(-3). Distribution was well identified within 60 min of injection and stable for the remaining 60 min, consistent with only parent radioligand and not radiometabolites entering the brain. Whole-body scans confirmed that the brain had specific (i.e., displaceable) binding but could not detect specific binding in peripheral organs. The effective dose for humans estimated from the baseline scans in monkeys was 5.0 μSv/MBq. CONCLUSION (11)C-NOP-1A is a useful radioligand for quantifying NOP receptors in the monkey brain, and its radiation dose is similar to that of other (11)C-labeled ligands for neuroreceptors. (11)C-NOP-1A appears to be a promising candidate for measuring NOP receptors in the human brain.
Collapse
Affiliation(s)
- Yasuyuki Kimura
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
- Department of Molecular Neuroimaging, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Jinsoo Hong
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Talakad G. Lohith
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Robert L. Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | | | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
32
|
Mazzone SB, McGovern AE, Cole LJ, Farrell MJ. Central nervous system control of cough: pharmacological implications. Curr Opin Pharmacol 2011; 11:265-71. [DOI: 10.1016/j.coph.2011.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/19/2011] [Indexed: 02/06/2023]
|
33
|
Pike VW, Rash KS, Chen Z, Pedregal C, Statnick MA, Kimura Y, Hong J, Zoghbi SS, Fujita M, Toledo MA, Diaz N, Gackenheimer SL, Tauscher JT, Barth VN, Innis RB. Synthesis and evaluation of radioligands for imaging brain nociceptin/orphanin FQ peptide (NOP) receptors with positron emission tomography. J Med Chem 2011; 54:2687-700. [PMID: 21438532 PMCID: PMC3081360 DOI: 10.1021/jm101487v] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Positron emission tomography (PET) coupled to an effective radioligand could provide an important tool for understanding possible links between neuropsychiatric disorders and brain NOP (nociceptin/orphanin FQ peptide) receptors. We sought to develop such a PET radioligand. High-affinity NOP ligands were synthesized based on a 3-(2'-fluoro-4',5'-dihydrospiro[piperidine-4,7'-thieno[2,3-c]pyran]-1-yl)-2(2-halobenzyl)-N-alkylpropanamide scaffold and from experimental screens in rats, with ex vivo LC-MS/MS measures, three ligands were identified for labeling with carbon-11 and evaluation with PET in monkey. Each ligand was labeled by (11)C-methylation of an N-desmethyl precursor and studied in monkey under baseline and NOP receptor-preblock conditions. The three radioligands, [(11)C](S)-10a-c, gave similar results. Baseline scans showed high entry of radioactivity into the brain to give a distribution reflecting that expected for NOP receptors. Preblock experiments showed high early peak levels of brain radioactivity, which rapidly declined to a much lower level than seen in baseline scans, thereby indicating a high level of receptor-specific binding in baseline experiments. Overall, [(11)C](S)-10c showed the most favorable receptor-specific signal and kinetics and is now selected for evaluation in human subjects.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Podlesnik CA, Ko MC, Winger G, Wichmann J, Prinssen EP, Woods JH. The effects of nociceptin/orphanin FQ receptor agonist Ro 64-6198 and diazepam on antinociception and remifentanil self-administration in rhesus monkeys. Psychopharmacology (Berl) 2011; 213:53-60. [PMID: 20852848 PMCID: PMC3108861 DOI: 10.1007/s00213-010-2012-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/24/2010] [Indexed: 11/26/2022]
Abstract
RATIONALE The synthetic nonpeptide NOP (nociceptin/orphanin FQ peptide) receptor agonist Ro 64-6198 produces antinociception in rhesus monkeys. In rodents, it has much more variable effects on pain responses, but has response rate-increasing effects on punished operant behavior and decreases drug reward. OBJECTIVES The aim of this study was to compare Ro 64-6198 with the benzodiazepine diazepam in tests of analgesia, drug self-administration, and response-increasing effects in rhesus monkeys. RESULTS Ro 64-6198 (0.001-0.01 mg/kg, i.v.) produced antinociception against an acute noxious stimulus (50°C water) in the absence of sedation, whereas diazepam (0.32-3.2 mg/kg, i.v.) did not have analgesic effects without sedation. Diazepam (1.0-5.6 mg/kg, i.v.) and the largest dose of Ro 64-6198 (0.32 mg/kg, i.v.) decreased lever pressing maintained by intravenous self-administration of the mu-opioid agonist, remifentanil, but neither effect could be distinguished from sedative effects. Although neither drug consistently increased responding during nonreinforcement, such effects were observed more frequently following diazepam administration. The effects of Ro 64-6198 on lever pressing were blocked by the NOP-receptor antagonist, J-113397, but not by the benzodiazepine antagonist, flumazenil. CONCLUSIONS These findings suggest that the effects of Ro 64-6198 on operant lever pressing are mediated by NOP receptors and that larger doses are required to impact operant behavior when compared directly with those that produce antinociception. Therefore, the present findings support previous literature suggesting NOP receptors are a viable target for pain management.
Collapse
Affiliation(s)
- Christopher A Podlesnik
- Department of Pharmacology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109-5632, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Hayashi S, Nakata E, Morita A, Mizuno K, Yamamura K, Kato A, Ohashi K. Discovery of {1-[4-(2-{hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl}-1H-benzimidazol-1-yl)piperidin-1-yl]cyclooctyl}methanol, systemically potent novel non-peptide agonist of nociceptin/orphanin FQ receptor as analgesic for the treatment of neuropathic pain: Design, synthesis, and structure–activity relationships. Bioorg Med Chem 2010; 18:7675-99. [DOI: 10.1016/j.bmc.2010.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
|
36
|
Selective and high affinity labeling of neuronal and recombinant nociceptin receptors with the hexapeptide radioprobe [3H]Ac-RYYRIK-ol. Neurochem Int 2009; 55:458-66. [DOI: 10.1016/j.neuint.2009.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 04/22/2009] [Accepted: 04/24/2009] [Indexed: 11/22/2022]
|
37
|
Koga K, Ichikawa D, Nambu H, Azuma-Kanoh T, Sakai N, Takaki-Kawagoe H, Ozaki S, Ohta H. Cloning and characterization of the rhesus monkey nociceptin/orphanin FQ receptor. Genes Genet Syst 2009; 84:319-25. [PMID: 20154418 DOI: 10.1266/ggs.84.319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We succeeded in cloning the rhesus monkey nociceptin/orphanin FQ peptide (NOP) receptor. The nucleotide sequence and amino acid sequence of the rhesus monkey NOP receptor were 95.9% and 97.8%, respectively, identical to the human NOP receptor. There was no significant difference between the rhesus monkey NOP receptor and the human NOP receptor in the binding affinity of [(125)I] [Thy(14)]nociceptin and the binding of [(35)S]guanosine 5'-O-(gamma thio)triphospate ([(35)S]GTPgammaS) stimulated by nociceptin/orphanin FQ (N/OFQ). A selective NOP receptor antagonist, 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one ((+)-J-113397) inhibited the [(35)S]GTPgammaS binding activated by N/OFQ using the membrane of the rhesus monkey NOP receptor. The antagonistic activity of (+)-J-113397 to the rhesus monkey NOP receptor was comparable to that to the human NOP receptor. Thus, N/OFQ acts via activation of the NOP receptor in both human and rhesus monkeys without significant species differences.
Collapse
Affiliation(s)
- Kazumi Koga
- Pharmacology, Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hayashi S, Hirao A, Nakamura H, Yamamura K, Mizuno K, Yamashita H. Discovery of 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole: integrated drug-design and structure-activity relationships for orally potent, metabolically stable and potential-risk reduced novel non-peptide nociceptin/orphanin FQ receptor agonist as antianxiety drug. Chem Biol Drug Des 2009; 74:369-81. [PMID: 19691471 DOI: 10.1111/j.1747-0285.2009.00872.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anxiety disorders, caused by continuous or acute stress or fear, have been highly prevailing psychiatric disorders. For the acute treatment of the disorders, benzodiazepines have been widely used despite having liabilities that limit their utility. Alternatively, endogenous nociceptin/orphanin FQ and nociceptin/orphanin FQ peptide receptor (or opioid-receptor-like-1 receptor) have important roles in the integration of emotional components, e.g. anxiolytic activity is the key behavioral action of nociceptin/orphanin FQ in brain. In our preceding study, various structurally novel 1,2-disubstituted benzimidazole derivatives were designed and synthesized as highly potent nociceptin/orphanin FQ peptide receptor selective full agonists in vitro with high or moderate nociceptin/orphanin FQ peptide receptor occupancy in the mice brain per os based on appropriate physicochemical properties for the oral brain activity [Hayashi et al. (2009) J Med Chem;52:610-625]. In the present study, drug design and structure-activity relationships for Vogel anticonflict activities in mice per os, metabolic stabilities in human liver microsome, CYP2D6 inhibitions, serum protein bindings, and human ether-a-go-go related gene binding affinities of novel nociceptin/orphanin FQ peptide receptor agonists were investigated. Through the series of coherent drug discovery studies, the strongest nociceptin/orphanin FQ peptide receptor agonist, 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole was designed and identified as a new-class orally potent anxiolytic with little side-effects, as significant findings.
Collapse
Affiliation(s)
- Shigeo Hayashi
- Pfizer Global Research & Development Nagoya Laboratories, Pfizer Japan Inc, 5-2 Taketoyo, Aichi 470-2393, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Behavioral effects of a synthetic agonist selective for nociceptin/orphanin FQ peptide receptors in monkeys. Neuropsychopharmacology 2009; 34:2088-96. [PMID: 19279568 PMCID: PMC2804925 DOI: 10.1038/npp.2009.33] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Behavioral effects of a nonpeptidic NOP (nociceptin/orphanin FQ Peptide) receptor agonist, Ro 64-6198, have not been studied in primate species. The aim of the study was to verify the receptor mechanism underlying the behavioral effects of Ro 64-6198 and to systematically compare behavioral effects of Ro 64-6198 with those of a mu-opioid receptor agonist, alfentanil, in monkeys. Both Ro 64-6198 (0.001-0.06 mg/kg, s.c.) and alfentanil (0.001-0.06 mg/kg, s.c.) produced antinociception against an acute noxious stimulus (50 degrees C water) and capsaicin-induced allodynia. An NOP receptor antagonist, J-113397 (0.01-0.1 mg/kg, s.c.), dose-dependently produced rightward shifts of the dose-response curve of Ro 64-6198-induced antinociception. The apparent pA(2) value of J-113397 was 8.0. Antagonist studies using J-113397 and naltrexone revealed that Ro 64-6198 produced NOP receptor-mediated antinociception independent of mu-opioid receptors. In addition, alfentanil dose-dependently produced respiratory depression and itch/scratching responses, but antinociceptive doses of Ro 64-6198 did not produce such effects. More important, Ro 64-6198 did not produce reinforcing effects comparable with those of alfentanil, cocaine, or methohexital under self-administration procedures in monkeys. These results provide the first functional evidence that the activation of NOP receptors produces antinociception without reinforcing effects in primates. Non-peptidic NOP receptor agonists may have therapeutic value as novel analgesics without abuse liability in humans.
Collapse
|
40
|
Ko MC, Naughton NN. Antinociceptive effects of nociceptin/orphanin FQ administered intrathecally in monkeys. THE JOURNAL OF PAIN 2009; 10:509-16. [PMID: 19231294 PMCID: PMC2797530 DOI: 10.1016/j.jpain.2008.11.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 11/04/2008] [Accepted: 11/11/2008] [Indexed: 11/24/2022]
Abstract
UNLABELLED Nociceptin/orphanin FQ (N/OFQ) is the endogenous peptide for the NOP receptors. Depending on the doses, intrathecal administration of N/OFQ has dual actions (ie, hyperalgesia and antinociception) in rodents. However, the pharmacological profile of intrathecal N/OFQ is not fully known in primates. The aim of this study was to investigate behavioral effects of intrathecal N/OFQ over a wide dose range and to compare its effects with ligands known to produce hyperalgesia or antinociception in monkeys. Intrathecal N/OFQ from 1 fmol to 1 nmol did not produce any hyperalgesic or scratching responses. In contrast, intrathecal substance P 100 nmol produced hyperalgesia, and intrathecal DAMGO 10 nmol produced antinociception. At the dose range between 10 nmol and 1 micromol, intrathecal N/OFQ dose-dependently produced thermal antinociception against a noxious stimulus in 2 intensities. More importantly, N/OFQ in combined with intrathecal morphine dose-dependently potentiated morphine-induced antinociception without inhibiting morphine-induced itch/scratching. Taken together, this study is the first to provide a unique functional profile of intrathecal N/OFQ over a wide dose range in primates. Intrathecal N/OFQ produces thermal antinociception without anti-morphine actions or scratching responses, indicating that N/OFQ or NOP receptor agonists represent a promising target as spinal analgesics. PERSPECTIVE Intrathecal administration of N/OFQ only produced thermal antinociception, not hyperalgesia, in monkeys. In addition, intrathecal N/OFQ does not have anti-morphine actions or itch/scratching responses. This study strongly supports the therapeutic potential of N/OFQ or NOP receptor agonists as spinal analgesics for clinical trials.
Collapse
MESH Headings
- Analgesics
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Dose-Response Relationship, Drug
- Drug Synergism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/adverse effects
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Female
- Hyperalgesia/psychology
- Injections, Spinal
- Macaca mulatta
- Male
- Morphine/adverse effects
- Morphine/pharmacology
- Opioid Peptides/administration & dosage
- Opioid Peptides/adverse effects
- Opioid Peptides/therapeutic use
- Pain Measurement/drug effects
- Pruritus/chemically induced
- Receptors, Opioid/agonists
- Substance P/administration & dosage
- Substance P/adverse effects
- Substance P/pharmacology
- Nociceptin
Collapse
Affiliation(s)
- Mei-Chuan Ko
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5632, USA.
| | | |
Collapse
|
41
|
Hayashi S, Hirao A, Imai A, Nakamura H, Murata Y, Ohashi K, Nakata E. Novel non-peptide nociceptin/orphanin FQ receptor agonist, 1-[1-(1-Methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole: design, synthesis, and structure-activity relationship of oral receptor occupancy in the brain for orally potent antianxiety drug. J Med Chem 2009; 52:610-25. [PMID: 19125610 DOI: 10.1021/jm7012979] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An endogenous heptadecapeptide, nociceptin/orphanin FQ (N/OFQ), and a G-protein-coupled receptor, N/OFQ peptide (NOP) receptor [or opioid-receptor-like-1 (ORL1) receptor], have been described in terms of its structure, distribution, and pharmacology. Thus, the N/OFQ and NOP receptor are located in the central nervous systems in humans, primates, and rodents, and are involved in the integration of the emotional components in the brain; e.g., N/OFQ displays anxiolytic activity in the brain. For identifying orally potent anxiolytic, drug-design studies were performed with a series of 1,2-disubstituted benzimidazole derivatives, which resulted in the identification of various chemotypes of highly potent NOP selective full agonists in vitro with high or moderate NOP receptor occupancy in the mice brain per os such as 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole 1 (MCOPPB), the most potent novel non-peptide NOP full agonist in vitro and an orally potent anxiolytic in the mice.
Collapse
Affiliation(s)
- Shigeo Hayashi
- Pfizer Global Research & Development Nagoya Laboratories, Pfizer Japan Inc., 5-2 Taketoyo, Aichi 470-2393, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Viaro R, Sanchez-Pernaute R, Marti M, Trapella C, Isacson O, Morari M. Nociceptin/orphanin FQ receptor blockade attenuates MPTP-induced parkinsonism. Neurobiol Dis 2008; 30:430-438. [PMID: 18413287 DOI: 10.1016/j.nbd.2008.02.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 02/14/2008] [Accepted: 02/23/2008] [Indexed: 11/15/2022] Open
Abstract
Endogenous nociceptin/orphanin FQ (N/OFQ) inhibits the activity of dopamine neurons in the substantia nigra and affects motor behavior. In this study we investigated whether a N/OFQ receptor (NOP) antagonist, J-113397, can modify movement in naive mice and nonhuman primates and attenuate motor deficits in MPTP-treated parkinsonian animals. J-113397 facilitated motor activity in naïve mice at low doses (0.1-1 mg/kg) and inhibited it at higher ones (10 mg/kg). Likewise, in MPTP-treated mice, J-113397 reversed motor deficit at 0.01 mg/kg but worsened hypokinesia at higher doses (1 mg/kg). In naïve nonhuman primates, J-113397, ineffective up to 1 mg/kg, produced inconsistent motor improvements at 3 mg/kg. Conversely, in parkinsonian primates J-113397 (0.01 mg/kg) reversed parkinsonism, being most effective against hypokinesia. We conclude that endogenous N/OFQ modulates motor activity in mice and nonhuman primates and contributes to parkinsonian symptoms in MPTP-treated animals. NOP receptor antagonists may represent a novel approach to Parkinson's disease.
Collapse
Affiliation(s)
- Riccardo Viaro
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, Ferrara, Italy; Neuroscience Center and Istituto Nazionale di Neuroscienze, University of Ferrara, Ferrara, Italy
| | - Rosario Sanchez-Pernaute
- Neuroregeneration Laboratories, Center for Neuroregeneration Research, McLean Hospital, Belmont, Massachusetts, USA; Harvard Medical School, Belmont, Massachusetts, USA
| | - Matteo Marti
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, Ferrara, Italy; Neuroscience Center and Istituto Nazionale di Neuroscienze, University of Ferrara, Ferrara, Italy
| | - Claudio Trapella
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, Ferrara, Italy
| | - Ole Isacson
- Neuroregeneration Laboratories, Center for Neuroregeneration Research, McLean Hospital, Belmont, Massachusetts, USA; Harvard Medical School, Belmont, Massachusetts, USA
| | - Michele Morari
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, Ferrara, Italy; Neuroscience Center and Istituto Nazionale di Neuroscienze, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
43
|
Roozendaal B, Lengvilas R, McGaugh JL, Civelli O, Reinscheid RK. Orphanin FQ/nociceptin interacts with the basolateral amygdala noradrenergic system in memory consolidation. Learn Mem 2007; 14:29-35. [PMID: 17202427 PMCID: PMC1838543 DOI: 10.1101/lm.403607] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 10/31/2006] [Indexed: 11/24/2022]
Abstract
Extensive evidence indicates that the basolateral complex of the amygdala (BLA) mediates hormonal and neurotransmitter effects on the consolidation of emotionally influenced memory and that such modulatory influences involve noradrenergic activation of the BLA. As the BLA also expresses a high density of receptors for orphanin FQ/nociceptin (OFQ/N), an opioid-like peptide with anxiolytic and amnestic properties, the present experiments investigated whether the BLA is involved in mediating OFQ/N effects on memory consolidation and whether such effects require noradrenergic activity. OFQ/N (0.01-100 pmol in 0.2 microL) administered bilaterally into the BLA of male Sprague-Dawley rats immediately after aversively motivated inhibitory avoidance training induced dose-dependent impairment on a 48-h retention trial. The beta(1)-adrenoceptor antagonist atenolol (2.0 nmol) administered concurrently into the BLA potentiated the dose-response effects of OFQ/N. In contrast, immediate post-training infusions of the peptidergic OFQ/N receptor antagonist [Nphe(1)]nociceptin(1-13)NH(2) (1-100 pmol in 0.2 microL) into the BLA enhanced 48-h retention of inhibitory avoidance training, an effect that was blocked by coadministration of atenolol. Delayed infusions of OFQ/N or [Nphe(1)]nociceptin(1-13)NH(2) into the BLA administered either 6 or 3 h after training, respectively, or immediate post-training infusions of OFQ/N into the adjacent central amygdala did not significantly alter retention performance. These findings indicate that endogenously released OFQ/N interacts with noradrenergic activity within the BLA in modulating memory consolidation.
Collapse
Affiliation(s)
- Benno Roozendaal
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, California 92697-3800, USA.
| | | | | | | | | |
Collapse
|
44
|
Hou Y, Belcheva MM, Clark AL, Zahm DS, Coscia CJ. Increased opioid receptor binding and G protein coupling in the accumbens and ventral tegmental area of postnatal day 2 rats. Neurosci Lett 2006; 395:244-8. [PMID: 16300888 PMCID: PMC1819395 DOI: 10.1016/j.neulet.2005.10.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 10/27/2005] [Accepted: 10/31/2005] [Indexed: 10/25/2022]
Abstract
In some regions of the developing rat brain such as the nucleus accumbens (Acb), mu opioid (MOP) receptor specific binding in the perinatal period exceeds that in the adult. To investigate the significance of these developmental changes, MOP and nociceptin/orphanin FQ (NOP) receptor binding and G protein coupling as determined by GTPgammaS binding experiments were examined in mesolimbic regions of postnatal day 2 (P2) pups and compared to those of their dams. Acb of the P2 pup exhibited 2-fold greater MOP receptor specific binding than that of the dam. In the ventral tegmental area (VTA), NOP specific binding was about 2-fold higher in the P2 pup. A correlation was found between MOP and NOP binding and their coupling to G protein on dam and P2 pup brain sections. However, the magnitude of increases in MOP and NOP receptor G protein coupling to G protein in P2 pups exceeded the 2-fold differences in binding between pups and dams. Furthermore, the amplitude of the MOP receptor G protein coupling in female P2 Acb was greater than increases in male P2 pup Acb. Differences in MOP and NOP binding and G protein coupling in other mesolimbic regions between P2 pups and dams were rarely observed. The data indicate that greater binding and G protein coupling of MOP and NOP receptors occur in discrete, mesolimbic regions of P2 pups when compared to their dams. It may be of significance that these brain regions, Acb and VTA, are undergoing maturation on P2.
Collapse
Affiliation(s)
- Yanning Hou
- Department of Biochemistry & Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Mariana M. Belcheva
- Department of Biochemistry & Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Amy L. Clark
- Department of Biochemistry & Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Daniel S. Zahm
- Department of Pharmacological & Physiological Sciences, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Carmine J. Coscia
- Department of Biochemistry & Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
45
|
Smith HR, Beveridge TJR, Porrino LJ. Distribution of norepinephrine transporters in the non-human primate brain. Neuroscience 2006; 138:703-14. [PMID: 16427744 DOI: 10.1016/j.neuroscience.2005.11.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 11/03/2005] [Accepted: 11/20/2005] [Indexed: 11/23/2022]
Abstract
Noradrenergic terminals in the central nervous system are widespread; as such this system plays a role in varying functions such as stress responses, sympathetic regulation, attention, and memory processing, and its dysregulation has been linked to several pathologies. In particular, the norepinephrine transporter is a target in the brain of many therapeutic and abused drugs. We used the selective ligand [(3)H]nisoxetine, therefore, to describe autoradiographically the normal regional distribution of the norepinephrine transporter in the non-human primate central nervous system, thereby providing a baseline to which alterations due to pathological conditions can be compared. The norepinephrine transporter in the monkey brain was distributed heterogeneously, with highest levels occurring in the locus coeruleus complex and raphe nuclei, and moderate binding density in the hypothalamus, midline thalamic nuclei, bed nucleus of the stria terminalis, central nucleus of the amygdala, and brainstem nuclei such as the dorsal motor nucleus of the vagus and nucleus of the solitary tract. Low levels of binding to the norepinephrine transporter were measured in basolateral amygdala and cortical, hippocampal, and striatal regions. The distribution of the norepinephrine transporter in the non-human primate brain was comparable overall to that described in other species, however disparities exist between the rodent and the monkey in brain regions that play a role in such critical processes as memory and learning. The differences in such areas point to the possibility of important functional differences in noradrenergic information processing across species, and suggest the use of caution in applying findings made in the rodent to the human condition.
Collapse
Affiliation(s)
- H R Smith
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
46
|
Csaba G, Tekes K. Is the brain hormonally imprintable? Brain Dev 2005; 27:465-71. [PMID: 16198202 DOI: 10.1016/j.braindev.2004.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 12/06/2004] [Accepted: 12/20/2004] [Indexed: 11/22/2022]
Abstract
Hormonal imprinting develops at the first encounter between the target hormone and its developing receptor in the perinatal critical period. This determines the binding and response capacity of the receptor-signal transduction system and hormone production of cells for life. Molecules similar to the hormone and excess or absence of the target hormone cause faulty imprinting with lifelong consequences. Prenatal or neonatal imprinting with opiates, other drugs and prenatal stress have harmful consequences on the adult brain. Perinatal imprinting with endorphin or serotonin decreases the serotonin level of the brain while increasing sexual activity and (as in the case of endorphin) aggression. Endorphin or serotonin antagonist treatment at weaning (late imprinting) also significantly reduces the serotonin content of the brain. Backed by literary data, these observations are discussed, and the possible consequences of medical treatments are shown. The paper concludes that an excess of molecules produced by the brain itself can provoke perinatal imprinting, and it points to the possibility of late imprinting of the brain by receptor level acting agents, including a brain product (endorphin).
Collapse
Affiliation(s)
- Gyorgy Csaba
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, Budapest H-1445, Hungary.
| | | |
Collapse
|
47
|
Abstract
This paper is the 26th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2003 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology, Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
48
|
Affiliation(s)
- Howard Fields
- University of California, 513 Parnassus Avenue, San Francisco, California 94143, USA.
| |
Collapse
|
49
|
Berthele A, Platzer S, Dworzak D, Schadrack J, Mahal B, Büttner A, Assmus HP, Wurster K, Zieglgänsberger W, Conrad B, Tölle TR. [3H]-nociceptin ligand-binding and nociceptin opioid receptor mrna expression in the human brain. Neuroscience 2003; 121:629-40. [PMID: 14568023 DOI: 10.1016/s0306-4522(03)00484-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Following the cloning of the novel nociceptin opioid receptor (NOP(1)) and the identification of its endogenous ligand orphanin FQ/nociceptin the distribution and functional role of the NOP(1) receptor system have been studied mainly in the rodent CNS. In the present study the regional distribution and splice variant expression of the NOP(1) receptor was investigated in the adult human brain using [(3)H]-nociceptin autoradiography, NOP(1) reverse transcriptase PCR and mRNA in situ hybridization. Ligand binding revealed strong expression of functional NOP(1) receptors in the cerebral cortex and moderate signals in hippocampus and cerebellum. Interestingly, the NOP(1) receptor specific ligand was also strongly bound in the human striatum. A matching pattern of mRNA expression was observed with high amounts of NOP(1) mRNA in the prefrontal and cingulate cortex as well as in the dentate gyrus of the hippocampus. mRNA levels in the Ammon's horn and cerebellar cortex were moderate and low in the striatum. A considerable expression of N-terminal NOP(1) splice variant mRNAs was not detectable in the human brain by means of in situ hybridization. This suggests that functional NOP(1) receptors in the human brain are encoded by N-terminal full length NOP(1) transcripts. The present data on the anatomical distribution of nociceptin binding sites and NOP(1) receptor mRNA contribute to the knowledge about opioid receptor systems in the human brain and may promote the understanding of function and pharmacology of the orphanin FQ/nociceptin receptor system in the human CNS.
Collapse
Affiliation(s)
- A Berthele
- Department of Neurology, Technical University Munich, Moehlstrasse 28, D-81675 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|