1
|
Garcia Jareño P, Bartley OJM, Precious SV, Rosser AE, Lelos MJ. Challenges in progressing cell therapies to the clinic for Huntington's disease: A review of the progress made with pluripotent stem cell derived medium spiny neurons. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:1-48. [PMID: 36424090 DOI: 10.1016/bs.irn.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Huntington's disease (HD) is a hereditary, neurodegenerative disorder characterized by a triad of symptoms: motor, cognitive and psychiatric. HD is caused by a genetic mutation, expansion of the CAG repeat in the huntingtin gene, which results in loss of medium spiny neurons (MSNs) of the striatum. Cell replacement therapy (CRT) has emerged as a possible therapy for HD, aiming to replace those cells lost to the disease process and alleviate its symptoms. Initial pre-clinical studies used primary fetal striatal cells to provide proof-of-principal that CRT can bring about functional recovery on some behavioral tasks following transplantation into HD models. Alternative donor cell sources are required if CRT is to become a viable therapeutic option and human pluripotent stem cell (hPSC) sources, which have undergone differentiation toward the MSNs lost to the disease process, have proved to be strong candidates. The focus of this chapter is to review work conducted on the functional assessment of animals following transplantation of hPSC-derived MSNs. We discuss different ways that graft function has been assessed, and the results that have been achieved to date. In addition, this chapter presents and discusses challenges that remain in this field.
Collapse
Affiliation(s)
| | - Oliver J M Bartley
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Sophie V Precious
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom; Cardiff University Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom; Brain Repair and Intracranial Neurotherapeutics (B.R.A.I.N.) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
2
|
Rosser AE, Busse ME, Gray WP, Badin RA, Perrier AL, Wheelock V, Cozzi E, Martin UP, Salado-Manzano C, Mills LJ, Drew C, Goldman SA, Canals JM, Thompson LM. Translating cell therapies for neurodegenerative diseases: Huntington's disease as a model disorder. Brain 2022; 145:1584-1597. [PMID: 35262656 PMCID: PMC9166564 DOI: 10.1093/brain/awac086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022] Open
Abstract
There has been substantial progress in the development of regenerative medicine strategies for CNS disorders over the last decade, with progression to early clinical studies for some conditions. However, there are multiple challenges along the translational pipeline, many of which are common across diseases and pertinent to multiple donor cell types. These include defining the point at which the preclinical data are sufficiently compelling to permit progression to the first clinical studies; scaling-up, characterization, quality control and validation of the cell product; design, validation and approval of the surgical device; and operative procedures for safe and effective delivery of cell product to the brain. Furthermore, clinical trials that incorporate principles of efficient design and disease-specific outcomes are urgently needed (particularly for those undertaken in rare diseases, where relatively small cohorts are an additional limiting factor), and all processes must be adaptable in a dynamic regulatory environment. Here we set out the challenges associated with the clinical translation of cell therapy, using Huntington's disease as a specific example, and suggest potential strategies to address these challenges. Huntington's disease presents a clear unmet need, but, importantly, it is an autosomal dominant condition with a readily available gene test, full genetic penetrance and a wide range of associated animal models, which together mean that it is a powerful condition in which to develop principles and test experimental therapeutics. We propose that solving these challenges in Huntington's disease would provide a road map for many other neurological conditions. This white paper represents a consensus opinion emerging from a series of meetings of the international translational platforms Stem Cells for Huntington's Disease and the European Huntington's Disease Network Advanced Therapies Working Group, established to identify the challenges of cell therapy, share experience, develop guidance and highlight future directions, with the aim to expedite progress towards therapies for clinical benefit in Huntington's disease.
Collapse
Affiliation(s)
- Anne E. Rosser
- Cardiff University Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
- Cardiff University Brain Repair Group, School of Biosciences, Life Sciences Building, Cardiff CF10 3AX, UK
- Brain Repair and Intracranial Neurotherapeutics (B.R.A.I.N.) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4EP, UK
| | - Monica E. Busse
- Cardiff University Centre for Trials Research, College of Biomedical and Life Sciences Cardiff University, 4th Floor Neuadd Meirionnydd, Heath Park, Cardiff CF14 4YS, UK
| | - William P. Gray
- Cardiff University Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
- Brain Repair and Intracranial Neurotherapeutics (B.R.A.I.N.) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4EP, UK
- University Hospital of Wales Healthcare NHS Trust, Department of Neurosurgery, Cardiff CF14 4XW, UK
| | - Romina Aron Badin
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives: mécanismes, thérapies, imagerie, 92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Anselme L. Perrier
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives: mécanismes, thérapies, imagerie, 92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Vicki Wheelock
- University of California Davis, Department of Neurology, 95817 Sacramento, CA, USA
| | - Emanuele Cozzi
- Transplant Immunology Unit, Department of Cardiac, Thoracic and Vascular Sciences, Padua University Hospital—Ospedale Giustinianeo, Padova, Italy
| | - Unai Perpiña Martin
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, and Creatio-Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
| | - Cristina Salado-Manzano
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, and Creatio-Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
| | - Laura J. Mills
- Cardiff University Centre for Trials Research, College of Biomedical and Life Sciences Cardiff University, 4th Floor Neuadd Meirionnydd, Heath Park, Cardiff CF14 4YS, UK
| | - Cheney Drew
- Cardiff University Centre for Trials Research, College of Biomedical and Life Sciences Cardiff University, 4th Floor Neuadd Meirionnydd, Heath Park, Cardiff CF14 4YS, UK
| | - Steven A. Goldman
- Centre for Translational Neuromedicine, University of Rochester, 14642 Rochester, NY, USA
- University of Copenhagen Faculty of Health and Medical Sciences, DK-2200 Kobenhavn, Denmark
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, and Creatio-Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
| | - Leslie M. Thompson
- University of California Irvine, Department of Psychiatry and Human Behaviour, Department of Neurobiology and Behavior and the Sue and Bill Gross Stem Cell Center, 92697 Irvine, CA, USA
| |
Collapse
|
3
|
Abstract
Purpose of Review The purpose of this review was to review the imaging, particularly positron emission tomography (PET), findings in neurorestoration studies in movement disorders, with specific focus on neural transplantation in Parkinson’s disease (PD) and Huntington’s disease (HD). Recent Findings PET findings in PD transplantation studies have shown that graft survival as reflected by increases in dopaminergic PET markers does not necessarily correlate with clinical improvement. PD patients with more denervated ventral striatum and more imbalanced serotonin-to-dopamine ratio in the grafted neurons tended to have worse outcome. In HD transplantation studies, variable graft survival and clinical responses may be related to host inflammatory/immune responses to the grafts. Summary Information gleaned from imaging findings in previous neural transplantation studies has been used to refine study protocol and patient selection in future trials. This includes identifying suitable candidates for transplantation using imaging markers, employing multiple and/or novel PET tracers to better assess graft functions and inflammatory responses to grafts.
Collapse
|
4
|
Fricker-Gates RA, Muir JA, Dunnett SB. Transplanted hNT Cells (“LBS Neurons”) in a Rat Model of Huntington's Disease: Good Survival, Incomplete Differentiation, and Limited Functional Recovery. Cell Transplant 2017; 13:123-36. [PMID: 15129758 DOI: 10.3727/000000004773301807] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A variety of immortalized cell lines have been proposed to exhibit sufficient phenotypic plasticity to allow them to replace primary embryonic neurons for restorative cell transplantation. In the present experiments we evaluate the functional viability of one particular cell line, the hNT cells developed by Layton Bioscience, to replace lost neurons and alleviate asymmetrical motor deficits in a unilateral excitotoxic lesion model of Huntington's disease. Because the grafts involved implantation of human-derived cells into a rat host environment, all animals were immunosuppressed. Cyclosporin A and FK-506 were similar in providing effective immunoprotection of the hNT xenografts, and whereas the lesions induced a marked inflammatory response in the host brain, this was not exacerbated by the presence of xenograft cells. The presence of grafted cells was determined with the human-specific antigen HuNu, and good graft survival was demonstrated in almost all animals up to the longest survival examined, 16 weeks posttransplantation. Although the cells exhibited progressively greater maturation and differentiation at 10-day, 4- and 16-week time points, staining for the mature neuronal marker NeuN was at best very weak, and we were unable to detect unequivocal staining with any markers of mature striatal phenotype, including DARPP-32, calbindin, parvalbumin, choline acetyl transferase, or NADPH diaphorase (with in all cases positive control provided by good staining on the intact contralateral side of the brain). Nor were we able to detect any differences between rats with lesions alone and rats with grafts in the contralateral motor deficits exhibited in a test of skilled paw reaching or cylinder placing. These results suggest that further and more extensive studies should be undertaken to assess whether hNT neurons can show more extensive and appropriate maturation and be associated with recovery in appropriate behavioral models, before they may be considered a suitable replacement for primary embryonic cells for clinical application in Huntington's disease.
Collapse
|
5
|
Abstract
Over the last decade, neural transplantation has emerged as one of the more promising, albeit highly experimental, potential therapeutics in neurodegenerative disease. Preclinical studies in rat lesion models of Huntington's disease (HD) and Parkinson's disease (PD) have shown that transplanted precursor neuronal tissue from a fetus into the lesioned striatum can survive, integrate, and reconnect circuitry. Importantly, specific training on behavioral tasks that target striatal function is required to encourage functional integration of the graft to the host tissue. Indeed, "learning to use the graft" is a concept recently adopted in preclinical studies to account for unpredicted profiles of recovery posttransplantation and is an emerging strategy for improving graft functionality. Clinical transplant studies in HD and PD have resulted in mixed outcomes. Small sample sizes and nonstandardized experimental procedures from trial to trial may explain some of this variability. However, it is becoming increasingly apparent that simply replacing the lost neurons may not be sufficient to ensure the optimal graft effects. The knowledge gained from preclinical grafting and training studies suggests that lifestyle factors, including physical activity and specific cognitive and/or motor training, may be required to drive the functional integration of grafted cells and to facilitate the development of compensatory neural networks. The clear implications of preclinical studies are that physical activity and cognitive training strategies are likely to be crucial components of clinical cell replacement therapies in the future. In this chapter, we evaluate the role of general activity in mediating the physical ability of cells to survive, sprout, and extend processes following transplantation in the adult mammalian brain, and we consider the impact of general and specific activity at the behavioral level on functional integration at the cellular and physiological level. We then highlight specific research questions related to timing, intensity, and specificity of training in preclinical models and synthesize the current state of knowledge in clinical populations to inform the development of a strategy for neural transplantation rehabilitation training.
Collapse
|
6
|
Lelos MJ, Roberton VH, Vinh NN, Harrison C, Eriksen P, Torres EM, Clinch SP, Rosser AE, Dunnett SB. Direct Comparison of Rat- and Human-Derived Ganglionic Eminence Tissue Grafts on Motor Function. Cell Transplant 2016; 25:665-75. [DOI: 10.3727/096368915x690297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a debilitating, genetically inherited neurodegenerative disorder that results in early loss of medium spiny neurons from the striatum and subsequent degeneration of cortical and other subcortical brain regions. Behavioral changes manifest as a range of motor, cognitive, and neuropsychiatric impairments. It has been established that replacement of the degenerated medium spiny neurons with rat-derived fetal whole ganglionic eminence (rWGE) tissue can alleviate motor and cognitive deficits in preclinical rodent models of HD. However, clinical application of this cell replacement therapy requires the use of human-derived (hWGE), not rWGE, tissue. Despite this, little is currently known about the functional efficacy of hWGE. The aim of this study was to directly compare the ability of the gold standard rWGE grafts, against the clinically relevant hWGE grafts, on a range of behavioral tests of motor function. Lister hooded rats either remained as unoperated controls or received unilateral excitotoxic lesions of the lateral neostriatum. Subsets of lesioned rats then received transplants of either rWGE or hWGE primary fetal tissue into the lateral striatum. All rats were tested postlesion and postgraft on the following tests of motor function: staircase test, apomorphine-induced rotation, cylinder test, adjusting steps test, and vibrissae-evoked touch test. At 21 weeks postgraft, brain tissue was taken for histological analysis. The results revealed comparable improvements in apomorphine-induced rotational bias and the vibrissae test, despite larger graft volumes in the hWGE cohort. hWGE grafts, but not rWGE grafts, stabilized behavioral performance on the adjusting steps test. These results have implications for clinical application of cell replacement therapies, as well as providing a foundation for the development of stem cell-derived cell therapy products.
Collapse
Affiliation(s)
- Mariah J. Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Victoria H. Roberton
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Ngoc-Nga Vinh
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Carl Harrison
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Peter Eriksen
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Eduardo M. Torres
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Susanne P. Clinch
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Anne E. Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
- Neuroscience and Mental Health Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Stephen B. Dunnett
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
7
|
Donor age dependent graft development and recovery in a rat model of Huntington's disease: histological and behavioral analysis. Behav Brain Res 2013; 256:56-63. [PMID: 23916743 DOI: 10.1016/j.bbr.2013.07.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/25/2013] [Accepted: 07/30/2013] [Indexed: 12/17/2022]
Abstract
Neural cell replacement therapy using fetal striatal cells has provided evidence of disease modification in clinical trials in Huntington's disease (HD) patients, although the results have been inconsistent. One of the contributing factors to the variable outcome could be the different capacity of transplanted cells derived from the primordial striatum to proliferate and maturate into striatal projection neurons. Based on the rodent lesion model of HD, the current study investigated how intrastriatal-striatal grafts from variable aged donors develop in vivo and how they influence functional recovery. Young adult female Sprague-Dawley rats were lesioned unilaterally in the dorso-striatum with quinolinic acid (0.12 M) and transplanted 14 days later with single cell suspension grafts equivalent of one whole ganglionic eminence (WGE) from donors of embryonic developmental age E13, E14, or E15; animals with or without striatal lesion served as controls. All animals were tested on the Cylinder and the Corridor tests, as well as on apomorphine-induced rotation at baseline, post-lesion/pre-grafting, and at 6 and 10 weeks post-grafting. A week prior to perfusion, a sub-group in each grafted group received fluorogold injections into the ipsilateral globus pallidus to study graft efferent projections. In summary, the data demonstrates that the age of the embryonic donor tissue has an impact on both the graft mediated functional recovery, and on the in vivo cellular composition of the striatal transplant. E13 tissue grafts gave the best overall outcome indicating that WGE from different donor ages have different potential to promote functional recovery. Understanding the stages and process in rodent striatal development could improve tissue selection in clinical trials of cell therapy in HD.
Collapse
|
8
|
Trueman RC, Klein A, Lindgren HS, Lelos MJ, Dunnett SB. Repair of the CNS using endogenous and transplanted neural stem cells. Curr Top Behav Neurosci 2013; 15:357-98. [PMID: 22907556 DOI: 10.1007/7854_2012_223] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Restoration of the damaged central nervous system is a vast challenge. However, there is a great need for research into this topic, due to the prevalence of central nervous system disorders and the devastating impact they have on people's lives. A number of strategies are being examined to achieve this goal, including cell replacement therapy, enhancement of endogenous plasticity and the recruitment of endogenous neurogenesis. The current chapter reviews this topic within the context of Parkinson's disease, Huntington's disease and stroke. For each disease exogenous cell therapies are discussed including primary (foetal) cell transplants, neural stem cells, induced pluripotent stem cells and marrow stromal cells. This chapter highlights the different mechanistic approaches of cell replacement therapy versus cells that deliver neurotropic factors, or enhance the endogenous production of these factors. Evidence of exogenously transplanted cells functionally integrating into the host brain, replacing cells, and having a behavioural benefit are discussed, along with the ability of some cell sources to stimulate endogenous neuroprotective and restorative events. Alongside exogenous cell therapy, the role of endogenous neurogenesis in each of the three diseases is outlined and methods to enhance this phenomenon are discussed.
Collapse
Affiliation(s)
- R C Trueman
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | |
Collapse
|
9
|
Miranda DMD, Mamede M, Souza BRD, Almeida Barros AGD, Magno LA, Alvim-Soares A, Rosa DV, Castro CJD, Malloy-Diniz L, Gomez MV, Marco LAD, Correa H, Romano-Silva MA. Molecular medicine: a path towards a personalized medicine. BRAZILIAN JOURNAL OF PSYCHIATRY 2012; 34:82-91. [PMID: 22392394 DOI: 10.1016/s1516-4446(12)70015-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 08/21/2011] [Indexed: 10/27/2022]
Abstract
Psychiatric disorders are among the most common human illnesses; still, the molecular and cellular mechanisms underlying their complex pathophysiology remain to be fully elucidated. Over the past 10 years, our group has been investigating the molecular abnormalities in major signaling pathways involved in psychiatric disorders. Recent evidences obtained by the Instituto Nacional de Ciência e Tecnologia de Medicina Molecular (National Institute of Science and Technology - Molecular Medicine, INCT-MM) and others using behavioral analysis of animal models provided valuable insights into the underlying molecular alterations responsible for many complex neuropsychiatric disorders, suggesting that "defects" in critical intracellular signaling pathways have an important role in regulating neurodevelopment, as well as in pathophysiology and treatment efficacy. Resources from the INCT have allowed us to start doing research in the field of molecular imaging. Molecular imaging is a research discipline that visualizes, characterizes, and quantifies the biologic processes taking place at cellular and molecular levels in humans and other living systems through the results of image within the reality of the physiological environment. In order to recognize targets, molecular imaging applies specific instruments (e.g., PET) that enable visualization and quantification in space and in real-time of signals from molecular imaging agents. The objective of molecular medicine is to individualize treatment and improve patient care. Thus, molecular imaging is an additional tool to achieve our ultimate goal.
Collapse
Affiliation(s)
- Debora Marques de Miranda
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
El-Akabawy G, Rattray I, Johansson SM, Gale R, Bates G, Modo M. Implantation of undifferentiated and pre-differentiated human neural stem cells in the R6/2 transgenic mouse model of Huntington's disease. BMC Neurosci 2012; 13:97. [PMID: 22876937 PMCID: PMC3502570 DOI: 10.1186/1471-2202-13-97] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/24/2012] [Indexed: 01/15/2023] Open
Abstract
Background Cell therapy is a potential therapeutic approach for several neurodegenetative disease, including Huntington Disease (HD). To evaluate the putative efficacy of cell therapy in HD, most studies have used excitotoxic animal models with only a few studies having been conducted in genetic animal models. Genetically modified animals should provide a more accurate representation of human HD, as they emulate the genetic basis of its etiology. Results In this study, we aimed to assess the therapeutic potential of a human striatal neural stem cell line (STROC05) implanted in the R6/2 transgenic mouse model of HD. As DARPP-32 GABAergic output neurons are predominately lost in HD, STROC05 cells were also pre-differentiated using purmorphamine, a hedgehog agonist, to yield a greater number of DARPP-32 cells. A bilateral injection of 4.5x105 cells of either undifferentiated or pre-differentiated DARPP-32 cells, however, did not affect outcome compared to a vehicle control injection. Both survival and neuronal differentiation remained poor with a mean of only 161 and 81 cells surviving in the undifferentiated and differentiated conditions respectively. Only a few cells expressed the neuronal marker Fox3. Conclusions Although the rapid brain atrophy and short life-span of the R6/2 model constitute adverse conditions to detect potentially delayed treatment effects, significant technical hurdles, such as poor cell survival and differentiation, were also sub-optimal. Further consideration of these aspects is therefore needed in more enduring transgenic HD models to provide a definite assessment of this cell line’s therapeutic relevance. However, a combination of treatments is likely needed to affect outcome in transgenic models of HD.
Collapse
Affiliation(s)
- Gehan El-Akabawy
- Department of Neuroscience, King's College London, Institute of Psychiatry, London, SE5 9NU, United Kingdom
| | | | | | | | | | | |
Collapse
|
11
|
Pauly MC, Piroth T, Döbrössy M, Nikkhah G. Restoration of the striatal circuitry: from developmental aspects toward clinical applications. Front Cell Neurosci 2012; 6:16. [PMID: 22529778 PMCID: PMC3329876 DOI: 10.3389/fncel.2012.00016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/23/2012] [Indexed: 12/20/2022] Open
Abstract
In the basal ganglia circuitry, the striatum is a highly complex structure coordinating motor and cognitive functions and it is severely affected in Huntington's disease (HD) patients. Transplantation of fetal ganglionic eminence (GE) derived precursor cells aims to restore neural circuitry in the degenerated striatum of HD patients. Pre-clinical transplantation in genetic and lesion HD animal models has increased our knowledge of graft vs. host interactions, and clinical studies have been shown to successfully reduce motor and cognitive effects caused by the disease. Investigating the molecular mechanisms of striatal neurogenesis is a key research target, since novel strategies aim on generating striatal neurons by differentiating embryonic stem cells or by reprogramming somatic cells as alternative cell source for neural transplantation.
Collapse
Affiliation(s)
- Marie-Christin Pauly
- Division of Stereotactic Neurosurgery, Department of General Neurosurgery, University Freiburg - Medical Center Freiburg im Breisgau, Germany
| | | | | | | |
Collapse
|
12
|
de Miranda DM, Mamede M, de Souza BR, de Almeida Barros AG, Magno LA, Alvim-Soares A, Rosa DV, de Castro CJ, Malloy-Diniz L, Gomez MV, De Marco LA, Correa H, Romano-Silva MA. Molecular medicine: a path towards a personalized medicine. BRAZILIAN JOURNAL OF PSYCHIATRY 2012. [DOI: 10.1590/s1516-44462012000100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Skilled motor control for the preclinical assessment of functional deficits and recovery following nigral and striatal cell transplantation. PROGRESS IN BRAIN RESEARCH 2012. [DOI: 10.1016/b978-0-444-59575-1.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
14
|
Rosser AE, Bachoud-Lévi AC. Clinical trials of neural transplantation in Huntington's disease. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23195427 DOI: 10.1016/b978-0-444-59575-1.00016-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Clinical neural transplantation in Huntington's disease has moved forward as a series of small studies, which have provided some preliminary proof of principle that neural transplantation can provide benefit. However, to date, such benefits have not been robust, and there are a number of important issues that need to be addressed. These include defining the optimum donor tissue conditions and host characteristics in order to produce reliable benefit in transplant recipients, and whether, and for how long, immunosuppression is needed. Further clinical studies will be required to address these, and other issues, in order to better understand the processes leading to a properly functioning neural graft. Such studies will pave the way for future clinical trials of renewable donor sources, in particular, stem cell-derived neuronal progenitor grafts.
Collapse
Affiliation(s)
- Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| | | |
Collapse
|
15
|
El-Akabawy G, Medina LM, Jeffries A, Price J, Modo M. Purmorphamine increases DARPP-32 differentiation in human striatal neural stem cells through the Hedgehog pathway. Stem Cells Dev 2011; 20:1873-87. [PMID: 21345011 DOI: 10.1089/scd.2010.0282] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transplantation of neural stem cells (NSCs) is a promising therapeutic approach for Huntington's disease (HD). HD is characterized by a progressive loss of medium-sized spiny neurons (MSNs) in the striatum. DARPP-32 (dopamine and cyclic AMP-regulated phosphoprotein, 32 kDa) is expressed in 98% of these MSNs. To establish an effective cell therapy for HD, the differentiation of human NSCs into MSNs is essential. Enhancing differentiation of NSCs is therefore an important aspect to optimize transplant efficacy. A comparison of 5 differentiation protocols indicated that the Hedgehog agonist purmorphamine (1 μM) most significantly increased the neuronal differentiation of a human striatal NSC line (STROC05). This 3-fold increase in neurons was associated with a dramatic reduction in proliferation as well as a decrease in astrocytic differentiation. A synergistic effect between purmorphamine and cell density even further increased neuronal differentiation from 20% to 30% within 7 days. Upon long-term differentiation (21 days), this combined differentiation protocol tripled the number of DARPP-32 cells (7%) and almost doubled the proportion of calbindin cells. However, there was no effect on calretinin cells. Differential expression of positional specification markers (DLX2, MASH1, MEIS2, GSH2, and NKX2.1) further confirmed the striatal identity of these differentiated cells. Purmorphamine resulted in a significant upregulation of the Hedgehog (Hh) signaling pathway (GLI1 expression). Cyclopamine, an Hh inhibitor, blocked this effect, indicating that purmorphamine specifically acts through this pathway to increase neuronal differentiation. These results demonstrate that small synthetic molecules can play a pivotal role in directing the differentiation of NSCs to optimize their therapeutic potential in HD.
Collapse
Affiliation(s)
- Gehan El-Akabawy
- Department of Neuroscience, King's College London, Institute of Psychiatry, London, UK
| | | | | | | | | |
Collapse
|
16
|
Dunnett SB, Rosser AE. Cell-based treatments for huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:483-508. [PMID: 21907097 DOI: 10.1016/b978-0-12-381328-2.00017-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In experimental rats, mice, and monkeys, transplantation of embryonic striatal cells into the striatum can repair the damage and alleviate the functional deficits caused by striatal lesions. Such strategies have been translated to striatal repair by cell transplantation in small numbers of patients with progressive genetic striatal degeneration in Huntington's disease. In spite of some encouraging preliminary data, the clinical results are to date neither as reliable nor as compelling as the broad extend of recovery observed in the animal models across motor, cognitive, and skill and habit learning domains. Strategies to achieve immediate and long-term improvements in the clinical applications include identifying and limiting the causes of complications, standardization and quality control of preparation and delivery, appropriate patient selection to match the cellular repair to specific profiles of cell loss and degeneration in individual patients and different neurodegenerative diseases, and improving the availability of alternative sources of donor cells and tissues.
Collapse
Affiliation(s)
- Stephen B Dunnett
- Brain Repair Group, Schools of Biosciences and Medicine, Cardiff University, Cardiff, Wales, UK
| | | |
Collapse
|
17
|
Jiang W, Büchele F, Papazoglou A, Döbrössy M, Nikkhah G. Multitract microtransplantation increases the yield of DARPP-32-positive embryonic striatal cells in a rodent model of Huntington's disease. Cell Transplant 2010; 20:1515-27. [PMID: 21176402 DOI: 10.3727/096368910x547435] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Embryonic striatal graft-mediated functional recovery in the rodent lesion model of Huntington's disease (HD) has been shown to correlate with the proportion of dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP-32)-positive neurons in the graft. The current study investigated the impact of graft distribution on the yield of DARPP-32-positive cells in the grafts following either single-tract or multitract cell delivery protocols using the microtransplantation approach. Cells derived from the whole ganglionic eminence of E15 rat embryos, ubiquitously expressing green fluorescent protein (GFP), were implanted into unilaterally QA-lesioned rat striatum either as 2 × 1.8 μl macrodeposits in a single tract, or as 18 × 0.2 μl microdeposits disseminated over six needle, multitract, penetrations. For both groups, an ultrathin glass capillary with an outer diameter of 50 μm was used. Histological assessment at 4 months after transplantation showed nearly twofold increase of DARRP-32-positive striatal-like neurons in the multitract compared to the single-tract group. However, the cellular make-up of the grafts did not translate into functional differences as tested in a basic spontaneous behavior test. Furthermore, the volumetric values for overall volume, DARPP-32-positive patches, and dopaminergic projection zones were similar between both groups. The results show that distribution of fetal striatal tissue in multiple submicroliter deposits provides for an increased yield of striatal-like neurons, potentially due to the enlargement of the graft-host border area intensifying the graft's exposure to host-derived factors. Furthermore, the use of embryonic tissue from GFP donors was validated in cell-based therapy studies in the HD model.
Collapse
Affiliation(s)
- Wei Jiang
- Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Neurocentre, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
18
|
Mazzocchi-Jones D, Döbrössy M, Dunnett SB. Embryonic striatal grafts restore bi-directional synaptic plasticity in a rodent model of Huntington's disease. Eur J Neurosci 2009; 30:2134-42. [PMID: 20128850 DOI: 10.1111/j.1460-9568.2009.07006.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Embryonic striatal grafts integrate with the host striatal circuitry, forming anatomically appropriate connections capable of influencing host behaviour. In addition, striatal grafts can influence host behaviour via a variety of non-specific, trophic and pharmacological mechanisms; however, direct evidence that recovery is dependent on circuit reconstruction is lacking. Recent studies suggest that striatal grafts alleviate simple motor deficits, and also that learning of complex motor skills and habits can also be restored. However, although the data suggest that such 're-learning' requires integration of the graft into the host striatal circuitry, little evidence exists to demonstrate that such integration includes functional synaptic connections. Here we demonstrate that embryonic striatal grafts form functional connections with the host striatal circuitry, capable of restoring stable synaptic transmission, within an excitotoxic lesion model of Huntington's disease. Furthermore, such 'functional integration' of the striatal graft enables the expression of host-graft bi-directional synaptic plasticity, similar to the normal cortico-striatal circuit. These results indicate that striatal grafts express synaptic correlates of learning, and thereby provide direct evidence of functional neuronal circuit repair, an essential component of 'functional integration'.
Collapse
|
19
|
Abstract
Cell-replacement therapy for Huntington's disease is one of very few therapies that has reported positive outcomes in clinical trials. However, for cell transplantation to be made more readily available, logistical, standardization and ethical issues associated with the current methodology need to be resolved. To achieve these goals, it is imperative that an alternative cell source be identified. One of the key requirements of the cells is that they are capable of acquiring an MSN (medium spiny neuron) morphology, express MSN markers such as DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of 32 kDa), and function in vivo in a manner that replicates those that have been lost to the disease. Developmental biology has progressed in recent years to provide a vast array of information with regard to the key signalling events involved in the proliferation, specification and differentiation of striatal-specific neurons. In the present paper, we review the rationale for cell-replacement therapy in Huntington's disease, discuss some potential donor sources and consider the value of developmental markers in the identification of cells with the potential to develop an MSN phenotype.
Collapse
|
20
|
Döbrössy MD, Dunnett SB. The corridor task: Striatal lesion effects and graft-mediated recovery in a model of Huntington's disease. Behav Brain Res 2007; 179:326-30. [PMID: 17383020 DOI: 10.1016/j.bbr.2007.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 02/19/2007] [Accepted: 02/23/2007] [Indexed: 10/23/2022]
Abstract
Experimental validation of cell replacement therapy as a treatment of neurodegenerative diseases requires the demonstration of graft-mediated behavioural recovery. The Corridor task proved to be simple and efficient to conduct with a robust ipsilateral retrieval bias in our rodent Huntington's disease model. The Corridor task is a viable behavioural option, particularly to non-specialised laboratories, for the evaluation of lateralised striatal damage and the probing of alternative therapeutic strategies, including transplantation.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Brain Repair Group, School of Biosciences, Cardiff University, Museum Avenue Box 911, Cardiff CF10 3US, UK.
| | | |
Collapse
|
21
|
Abstract
Cell transplantation for Huntington's disease has developed over the last decade to clinical application in pilot trials in the USA, France and the UK. Although the procedures are feasible, and under appropriate conditions safe, evidence for efficacy is still limited, which has led to some calls that further development should be discontinued. We review the background of striatal cell transplantation in experimental animal models of Huntington's disease and the rationale for applying similar strategies in the human disease, and we survey the present status of the preliminary studies that have so far been undertaken in patients. When we consider the variety of parameters and principles that remain poorly defined -- such as the optimal source, age, dissection, preparation, implantation, immunoprotection and assessment protocols -- it is not surprising that clinical efficacy is still unreliable. However, since these protocols are all tractable to experimental refinement, we consider that the potential for cell transplantation in Huntington's disease is greater than has yet been realised, and remains a therapeutic strategy worthy of investigation and pursuit.
Collapse
|
22
|
Dunnett SB, Rosser AE. Stem cell transplantation for Huntington's disease. Exp Neurol 2007; 203:279-92. [PMID: 17208230 DOI: 10.1016/j.expneurol.2006.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 11/13/2006] [Accepted: 11/15/2006] [Indexed: 01/13/2023]
Abstract
By way of commentary on a recent report that transplanted adult neural progenitor cells can alleviate functional deficits in a rat lesion model of Huntington's disease [Vazey, E.M., Chen, K., Hughes, S.M., Connor, B., 2006. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington's disease. Exp. Neurol. 199, 384-396], we review the current status of the field exploring the use of stem cells, progenitor cells and immortalised cell lines to repair the lesioned striatum in animal models of the human disease. A remarkably rich range of alternative cell types have been used in various animal models, several of which exhibit cell survival and incorporation in the host brain, leading to subsequent functional recovery. In comparing the alternatives with the 'gold standard' currently offered by primary tissue grafts, key issues turn out to be: cell survival, differentiation prior to and following implantation into striatal-like phenotypes, integration and connectivity with the host brain, the nature of the electrophysiological, motor and cognitive tests used to assess functional repair, and the mechanisms by which the grafts exert their function. Although none of the alternatives yet has the capacity to match primary fetal tissues for functional repair, that standard is itself limited, and the long term goal must be not just to match but to surpass present capabilities in order to achieve fully functional reconstruction reliably, flexibly, and on demand.
Collapse
Affiliation(s)
- Stephen B Dunnett
- The Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| | | |
Collapse
|
23
|
Döbrössy MD, Dunnett SB. Morphological and cellular changes within embryonic striatal grafts associated with enriched environment and involuntary exercise. Eur J Neurosci 2006; 24:3223-33. [PMID: 17156383 DOI: 10.1111/j.1460-9568.2006.05182.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Environmental enrichment (EE) and exercise have been implicated in influencing behaviour and altering neuronal processes associated with cellular morphology in both 'normal' and injured states of the CNS. Using a rodent model of Huntington's disease, we investigated whether prolonged EE or involuntary exercise can induce morphological and cellular changes within embryonic striatal transplants. Adult rats were trained on the Staircase test--requiring fine motor control to reach and collect reward pellets--prior to being lesioned unilaterally in the dorsal neostriatum with quinolinic acid. The lesioned animals received E15 whole ganglionic eminence cell suspension grafts followed by housing in EE or standard cages. Half of the animals in standard cages received daily forced exercise on a treadmill. The grafted animals showed significant functional recovery on both the Staircase test and in drug-induced rotation. Neither the housing conditions nor the training had an impact on the behaviour, with the exception of the treadmill reducing the ipsilateral drug-induced rotation observed amongst the lesioned animals. However, the animals housed in the EE had significantly increased striatal brain-derived neurotrophic factor (BDNF) levels, and graft neurons in these animals exhibited both greater spine densities and larger cell volumes. Animals on forced exercise regime had reduced BDNF levels and grafted cells with sparser spines. The study suggests that the context of the animal can affect the plasticity of transplanted cells. Appropriately exploiting the underlying, and yet unknown, mechanisms could lead the way to improved anatomical and potentially functional integration of the graft.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Brain Repair Group, School of Biosciences, Cardiff University, Museum Avenue Box 911, Cardiff CF10 3US, UK.
| | | |
Collapse
|
24
|
Dunnett SB, White A. Striatal grafts alleviate bilateral striatal lesion deficits in operant delayed alternation in the rat. Exp Neurol 2006; 199:479-89. [PMID: 16516889 DOI: 10.1016/j.expneurol.2006.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/03/2006] [Accepted: 01/12/2006] [Indexed: 11/27/2022]
Abstract
In order to assess the capacity of striatal grafts to alleviate cognitive deficits of the frontal type that arise following bilateral striatal lesions, control, lesion and grafted rats were tested in an operant test of delayed alternation. Bilateral striatal lesions induced a marked impairment in choice accuracy, and signal detection analysis indicated that the lesion animals were reliably impaired on both parametric and non-parametric indices of discriminative sensitivity but not of response bias. The impairment was apparent at all intertrial interval delays, including the very shortest, suggesting the deficit is one of frontal-type executive function rather than of short-term memory. The grafted animals exhibited a significant alleviation of the deficit, again apparent at all delays. Histological analyses indicated good graft survival, and injections of a dextran amine anterograde tracer bilaterally into the host prefrontal cortex indicated reformation of extensive projections into the grafted tissues. Since performance of the operant delayed alternation task is dependent upon the integrity of corticostriatal connections, which is disrupted bilaterally by the lesions and restored to the grafts in the transplanted animals, the results corroborate the hypothesis that striatal grafts can alleviate complex cognitive functions of the frontal type by a mechanism that involves functional integration of the grafted neurons into the neural circuits of the host brain.
Collapse
Affiliation(s)
- Stephen B Dunnett
- School of Biosciences, Cardiff University, Museum Avenue Box 911, Cardiff CF10 3US, Wales, UK.
| | | |
Collapse
|
25
|
Abstract
In this article, the role of functional imaging for providing objective evidence that grafts of fetal tissue can survive and form connections in Parkinson's and Huntington's disease patients is reviewed. The dissociation between dopamine storage capacity, clinical improvement, and normalization of brain metabolism in PD is discussed, and possible mechanisms underlying the phenomenon of dyskinesias off medication are presented. It is concluded the positron emission tomography and single photon emission computed tomography can provide valuable ancillary information alongside clinical observations but are not currently appropriate modalities for use as surrogate endpoints.
Collapse
Affiliation(s)
- David J Brooks
- Medical Research Council Clinical Sciences Centre and Division of Neuroscience, Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 ONN, United Kingdom.
| |
Collapse
|
26
|
Döbrössy MD, Dunnett SB. Optimising plasticity: environmental and training associated factors in transplant-mediated brain repair. Rev Neurosci 2005; 16:1-21. [PMID: 15810651 DOI: 10.1515/revneuro.2005.16.1.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With progressively ageing populations, degeneration of nerve cells of the brain, due to accident or disease, represents one of the major problems for health and welfare in the developed world. The molecular environment in the adult brain promotes stability limiting its ability to regenerate or to repair itself following injury. Cell transplantation aims to repair the nervous system by introducing new cells that can replace the function of the compromised or lost cells. Alternatives to primary embryonic tissue are actively being sought but this is at present the only source that has been shown reliably to survive grafting into the adult brain and spinal cord, connect with the host nervous system, and influence behaviour. Based on animal studies, several clinical trials have now shown that embryonic tissue grafts can partially alleviate symptoms in Parkinson's disease, and related strategies are under evaluation for Huntington's disease, spinal cord injury, stroke and other CNS disorders. The adult brain is at its most plastic in the period following injury, offering a window of opportunity for therapeutic intervention. Enriched environment, behavioural experience and grafting can each separately influence neuronal plasticity and recovery of function after brain damage, but the extent to which these factors interact is at present unknown. To improve the outcome following brain damage, transplantation must make use of the endogenous potential for plasticity of both the host and the graft and optimise the external circumstances associated with graft-mediated recovery. Our understanding of mechanisms of brain plasticity subsequent to brain damage needs to be associated with what we know about enhancing intrinsic recovery processes in order to improve neurobiological and surgical strategies for repair at the clinical level. With the proof of principle beginning to emerge from clinical trials, a rich area for innovative research with profound therapeutic application, even broader than the specific context of transplantation, is now opening for investigation.
Collapse
Affiliation(s)
- Màtè Daniel Döbrössy
- The Brain Repair Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | |
Collapse
|
27
|
Döbrössy MD, Dunnett SB. Training specificity, graft development and graft-mediated functional recovery in a rodent model of Huntington’s disease. Neuroscience 2005; 132:543-52. [PMID: 15837116 DOI: 10.1016/j.neuroscience.2005.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2005] [Indexed: 01/03/2023]
Abstract
Neuronal function and morphology are affected by the environment and the behavioral experience. Here we report on the effects of differential training protocols on the development and the functional recovery mediated by intrastriatal striatal grafts. Rats were trained exclusively on the left or the right paw to perform on the skilled staircase task before being lesioned unilaterally in the dorsal striatum with quinolinic acid. E15 whole ganglionic eminence suspension grafts were implanted into the lesioned striatum. Subsequent testing probed unilateral performance of the affected contralateral paw, as well as bilateral performance. The grafted animals were initially as impaired as the lesioned, but partially recovered their performance with additional training. Grafted animals with appropriate previous experience initially performed better on the staircase test, but the advantage was transient. Furthermore, the grafted animals performed better with their affected paw under forced choice than under conditions when both paws were simultaneously probed. Improvements of the grafted animals were also observed on tests of forelimb akinesia and asymmetry. Morphological data suggest that the training conditions influenced the development specifically of striatal-like, but not of non-striatal like, neurones within the grafts. The grafts were smaller containing less striatal-like neurones in animals that were trained on the contralateral side prior to lesioning and grafting. The results support the hypothesis that unilateral training sensitizes the striatum that subserves the motor learning, leading to exacerbated excitotoxic lesions and to an environment less conducive for graft development.
Collapse
Affiliation(s)
- M D Döbrössy
- Brain Repair Group, School of Biosciences, Cardiff University, Museum Avenue Box 911, Cardiff CF10 3US, UK.
| | | |
Collapse
|
28
|
Watts C, Donovan T, Gillard JH, Antoun NM, Burnstein R, Menon DK, Carpenter TA, Fryer T, Thomas DGT, Pickard JD. Evaluation of an MRI-based protocol for cell implantation in four patients with Huntington's disease. Cell Transplant 2004; 12:697-704. [PMID: 14653617 DOI: 10.3727/000000003108747316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to evaluate our surgical protocol for the preparation and delivery of suspensions of fetal tissue into the diseased human brain. We implanted suspensions of human fetal striatal anlage into the right caudate and putamen of four patients with Huntington's disease. Postoperative 3 tesla MR imaging confirmed accurate graft placement. Variability in graft survival was noted and the MR signal changes over 6 months revealed persistent hyperintense signal on T2-weighted images. Our results are consistent with those described by other groups and indicate that our surgical protocol is safe, accurate, and reproducible.
Collapse
Affiliation(s)
- C Watts
- Academic Department of Neurosurgery, Addenbrooke's Hospital and the University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hurelbrink CB, Tyers P, Armstrong RJE, Dunnett SB, Barker RA, Rosser AE. Long-term hibernation of human fetal striatal tissue does not adversely affect its differentiation in vitro or graft survival: implications for clinical trials in Huntington's disease. Cell Transplant 2004; 12:687-95. [PMID: 14653616 DOI: 10.3727/000000003108747307] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transplantation of human fetal CNS tissue is a promising therapy for neurodegenerative conditions such as Huntington's disease (HD), but its widespread adoption is limited by restricted tissue availability. One method of overcoming this problem would be to store the tissue in hibernation medium, an approach that we reported previously for human fetal striatal tissue stored for up to 24 h. We now demonstrate the feasibility of storing such tissue for up to 8 days in hibernation medium. When either fresh or 8-day hibernated striatal cells were cultured under standard conditions for 4 days, the proportion of DARPP-32-positive neurons did not differ significantly, although the total number of cells was significantly less from tissue that had been hibernated. Six weeks after transplantation into cyclosporin A-immunosuppressed unilateral quinolinic acid-lesioned rats, there was no significant difference between fresh and hibernated grafts, both in terms of graft volume and extent of striatal phenotypic markers. This study therefore clearly demonstrates that hibernation of human fetal striatal tissue for up to 8 days is not deleterious to its differentiation in culture or survival following transplantation, and is therefore an appropriate method of storage for this tissue.
Collapse
Affiliation(s)
- Carrie B Hurelbrink
- Cambridge Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge CB2 2PY, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Rosser AE, Barker RA, Armstrong RJE, Elneil S, Jain M, Hurelbrink CB, Prentice A, Carne C, Thornton S, Hutchinson H, Dunnett SB. Staging and preparation of human fetal striatal tissue for neural transplantation in Huntington's disease. Cell Transplant 2004; 12:679-86. [PMID: 14653615 DOI: 10.3727/000000003108747299] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transplantation of human fetal central nervous system tissue has been shown to be of benefit in Parkinson's disease, and is currently being explored as a therapeutic option in Huntington's disease. The success of a neural transplant is dependent on a number of factors, including the requirement that donor cells are harvested within a given developmental window and that the cell preparation protocols take account of the biological parameters identified in animal models. Although many of the criteria necessary for a successful neural transplant have been defined in animal models, ultimately they must be validated in human studies, and some issues can only ever be addressed in human studies. Furthermore, because neural transplantation of human fetal tissue is limited to small numbers of patients in any one surgical center, largely due to practical constraints, it is crucial that tissue preparation protocols are clearly defined and reproducible, so that (i) multicenter trials are possible and are based on consistent tissue preparation parameters, and (ii) results between centers can be meaningfully analyzed. Here we describe the preparation of human fetal striatum for neural transplantation in Huntington's disease, and report on the validation of a method for estimating the developmental stage of the fetus based on direct morphometric measurements of the embryonic tissue.
Collapse
Affiliation(s)
- A E Rosser
- School of Biosciences, Cardiff University, PO Box 911, Museum Av, Cardiff CF10 3US, Wales, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nikolaus S, Beu M, Vosberg H, Müller HW, Larisch R. Quantitative analysis of dopamine D2 receptor kinetics with small animal positron emission tomography. Methods Enzymol 2004; 385:228-39. [PMID: 15130742 DOI: 10.1016/s0076-6879(04)85013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
32
|
Döbrössy MD, Dunnett SB. Environmental enrichment affects striatal graft morphology and functional recovery. Eur J Neurosci 2004; 19:159-68. [PMID: 14750974 DOI: 10.1111/j.1460-9568.2004.03105.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Environmental conditions and behavioural experience can affect neuronal function and morphology. It is less well known whether such factors also influence the growth, integration and functional recovery provided by neural grafts placed within the damaged brain. Here we report on the effects of differential housing conditions on striatal graft morphology and functional recovery after striatal lesions. Rats were pretrained on a skilled bilateral forelimb task, the staircase test, and lesioned unilaterally in the lateral dorsal striatum with quinolinic acid. One group of lesioned animals was given suspension grafts of E15 whole ganglionic eminence implanted into the lesioned striatum. Following transplantation, the animals were housed either in standard cages (four per cage) or in enriched environment housing conditions (10 per cage) with tunnels, ladders and increased living space available for exploration, social interaction and play. The differentially housed animals were retested on the skilled staircase test at two separate time points. Repeated testing, environmental enrichment and transplantation positively influenced behavioural recovery. Partial recovery was observed bilaterally amongst the grafted animals in both housing conditions. Nevertheless, the grafted animals housed in the enriched environment performed significantly better in the final test compared with all of the other experimental groups. The grafts survived equally well under both housing conditions but the grafts of animals housed in the enriched environment contained larger projection neurons and were somewhat better reinnervated by dopaminergic afferents. An increased level of striatal brain-derived neurotrophic factor was observed in the control animals housed under the enriched compared with the standard conditions. The results indicate that an enriched environment can affect both graft function and graft morphology through as yet unknown mechanisms.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Brain Repair Group, School of Biosciences, Cardiff University, Museum Avenue Box 911, Cardiff CF10 3US, UK.
| | | |
Collapse
|
33
|
Fricker-Gates RA, Smith R, Muhith J, Dunnett SB. The role of pretraining on skilled forelimb use in an animal model of Huntington's disease. Cell Transplant 2004; 12:257-64. [PMID: 12797380 DOI: 10.3727/000000003108746812] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
After a unilateral striatal lesion, animals have generally been seen to have a bilateral impairment in paw reaching, with the contralateral paw being more affected. However, most studies to date have not used a pretraining paradigm to assess maximal capacity for paw reaching, to compare with any lesion-induced loss. This study compared animals that were pretrained with naive animals in their ability to paw reach after a striatal lesion, to address the role of the striatum in either acquisition or execution of this motor task. All lesioned animals showed a significant decrease in reaching ability with their contralateral paw compared with the ipsilateral paw. Pretrained lesioned animals showed a clear lesion deficit with the contralateral paw immediately after lesion, and no impairment whatsoever with the ipsilateral paw. Naive lesioned animals showed delayed acquisition of the task with both paws, possibly due to postural deficits, and a lasting deficit on the contralateral side. The variability of performance between animals was higher in the naive lesioned group. These results suggest that animals should be pretrained on the staircase task prior to lesion to enable maximum sensitivity in detecting both loss and recovery of function of skilled forelimb use.
Collapse
Affiliation(s)
- R A Fricker-Gates
- Brain Repair Group, School of Biosciences, Cardiff University, Wales, UK.
| | | | | | | |
Collapse
|
34
|
Fricker-Gates RA, White A, Gates MA, Dunnett SB. Striatal neurons in striatal grafts are derived from both post-mitotic cells and dividing progenitors. Eur J Neurosci 2004; 19:513-20. [PMID: 14984402 DOI: 10.1111/j.1460-9568.2004.03149.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Transplants of embryonic striatal tissue are characteristically heterogeneous, containing patches (P-zones) of striatal medium spiny projection neurons. It is not yet known how this morphology develops, and whether the striatal neurons in the grafts are derived from post-mitotic neuroblasts in the embryonic brain or from striatal progenitors that continue to divide after transplantation. To address this question we labelled dividing cells in the transplants with bromodeoxyuridine (BrdU), either prior to or after transplantation into the adult lesioned rat striatum. Cells for transplantation were either pre-labelled in utero by intraperitoneal (i.p.) injections of BrdU, or post-labelled after transplantation by i.p. injections to the hosts. Either two or six months after transplantation the brains were processed using double immunohistochemical techniques to detect BrdU and calbindin-positive neurons in the transplants. In the transplants pre-labelled with BrdU, approximately 30% of calbindin-positive cells were heavily labelled with BrdU, suggesting these had undergone a final division prior to transplantation. In transplants where cells had been labelled post-transplantation, approximately 17% of calbindin cells were heavily BrdU labelled. These results suggest that whereas a proportion of striatal medium spiny neurons in the striatal grafts were post-mitotic at the time of transplantation, other striatal progenitor cells can continue to divide after transplantation, and then complete an appropriate neuronal maturation programme in the adult host brain environment.
Collapse
|
35
|
Abstract
The gene for Huntington's disease was identified in 1993 as being a CAG repeat expansion in exon 1 of a gene now known as huntingtin on chromosome 4. Although many of the downstream effects of this mutant gene were identified in the subsequent years, a more detailed understanding of these events will be necessary in order to design specific interventions to interfere with the disease process and slow disease progression. In parallel, a number of groups have been investigating alternative approaches to treatment of Huntington's disease, including cell and tissue transplantation. As the brunt of cell dysfunction and loss is borne by the striatum, at least in the early to mid-stages of disease, the goal is to identify methods for replacing lost cells with fetal neuroblasts that can develop, integrate into the host circuitry and thereby restore lost function. Clinical studies in which primary fetal neuroblasts were transplanted into the brains of patients with advanced Parkinson's disease have demonstrated benefit when the transplant methodology closely follows the biological principles established in animal experiments. On the basis of demonstrated benefit following striatal cell transplantation in animal models of Huntington's disease, a small number of studies have now commenced in patients with Huntington's disease. To date, these clinical studies have demonstrated the feasibility and safety of transplantation in this condition, but it will require several more years yet before the efficacy of the procedure can be confidently established.
Collapse
Affiliation(s)
- Anne E Rosser
- School of Biosciences, Cardiff University, Cardiff, UK.
| | | |
Collapse
|
36
|
Döbrössy MD, Dunnett SB. Motor training effects on recovery of function after striatal lesions and striatal grafts. Exp Neurol 2003; 184:274-84. [PMID: 14637098 DOI: 10.1016/s0014-4886(03)00028-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Environment, training, and experience can influence plasticity and recovery of function after brain damage. However, it is less well known whether, and how, such factors influence the growth, integration, and functional recovery provided by neural grafts placed within the brain. To explore this process, rats were pretrained on the skilled staircase test, then lesioned unilaterally in the lateral dorsal striatum with quinolinic acid. Half of the animals were given suspension grafts prepared from E15 whole ganglionic eminence implanted into the lesioned striatum. For the following 5 months, half of the animals in each group were trained daily in a bilateral manual dexterity task. Then, 23 weeks after surgery, all animals were retested on the staircase test. The grafts promoted recovery in the reaching task, irrespective of the additional dexterity training, and within the trained group recovery was proportional to the volume of the striatal-like tissue in the graft, suggesting that training influenced the pattern of graft-induced functional recovery. The additional training also benefited the rats with lesions alone, raising their performance close to level of the grafted groups. In separate tests of rotation, the grafts reduced drug-induced ipsilateral turning in response to both amphetamine and apomorphine, an effect that was greater in the grafted rats given extra training. The results suggest that both nonspecific motor training and cell transplantation can contribute to recovery of lost function in tests of spontaneous and skilled lateralized motor function after striatal damage, and that these two factors interact in a task-specific manner.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Brain Repair Group, School of Biosciences, Cardiff University, Museum Avenue Box 911, Cardiff CF10 3US, Wales, UK.
| | | |
Collapse
|
37
|
Kawamura K, Oda K, Ishiwata K. Age-related changes of the [11C]CFT binding to the striatal dopamine transporters in the Fischer 344 rats: a PET study. Ann Nucl Med 2003; 17:249-53. [PMID: 12846549 DOI: 10.1007/bf02990030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We investigated the age-related changes of the binding of [11C]CFT to striatal dopamine transporters (DATs) in vivo in Fischer 344 rats by positron emission tomography (PET). The tissue dissection method represented an age-related decrease in the uptake ratio of the striatum to the cerebellum and in the specific binding-to-nonspecific binding ratio of [11C]CFT. PET demonstrated an age-dependent decrease in the striatal uptake of [11C]CFT, however, the kinetic analysis represented the age-related decrease in both the association rate constant (k3) and dissociation rate constant (k4), but not the binding potential (k3/k4) that was a parameter including both of density and affinity of the binding sites. The PET finding was not necessarily coincident with the result investigated in vitro previously. Therefore, careful interpretation is necessary for PET studies using [11C]CFT and small animals such as rats.
Collapse
Affiliation(s)
- Kazunori Kawamura
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi, Japan.
| | | | | |
Collapse
|
38
|
Brown RW, Gass JT, Kostrzewa RM. Ontogenetic quinpirole treatments produce spatial memory deficits and enhance skilled reaching in adult rats. Pharmacol Biochem Behav 2002; 72:591-600. [PMID: 12175456 DOI: 10.1016/s0091-3057(02)00730-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
There is a paucity of data on neurochemical abnormalities and associated effects on cognition and motor performance in rats ontogenetically treated with quinpirole, a rodent model of dopaminergic hyperfunction. The objective of the current study was to analyze the cognitive and motor effects produced by ontogenetic administration of quinpirole, a dopamine D(2)/D(3) receptor agonist. Past research from this laboratory has shown that ontogenetic quinpirole treatment sensitizes D(2) receptors and produces a variety of characteristic stereotypic behaviors in adult rats. In the current study, rats received quinpirole HCl (1 mg/kg/day) or saline from postnatal day (PD) 1 to PD 11 and went otherwise untreated until adulthood (PD 60). In Experiment 1, cognitive performance was assessed on the standard and matching-to-place versions of the Morris water task (MWT). In Experiment 2, skilled motor performance was assessed on the Whishaw reaching task and locomotor activity was also analyzed. We found that ontogenetically quinpirole-treated rats displayed a deficit on the probe trial given at the end of training of the standard version of the MWT but that there were no significant differences from control on the matching-to-place task. Additionally, rats treated in ontogeny with quinpirole showed significant enhancement in reaching accuracy on the Whishaw reaching task as well as increased locomotor activity relative to saline controls. These findings demonstrate that ontogenetic quinpirole treatments produce cognitive deficits, enhanced skilled reaching and hyperlocomotion. The behavioral changes produced by ontogenetic quinpirole treatment are consistent with dopaminergic hyperfunction, and possible mechanisms are discussed.
Collapse
Affiliation(s)
- Russell W Brown
- Department of Psychology, East Tennessee State University, Johnson City, USA.
| | | | | |
Collapse
|
39
|
Ishiwata K, Ogi N, Hayakawa N, Umegaki H, Nagaoka T, Oda K, Toyama H, Endo K, Tanaka A, Senda M. Positron emission tomography and ex vivo and in vitro autoradiography studies on dopamine D2-like receptor degeneration in the quinolinic acid-lesioned rat striatum: comparison of [11C]raclopride, [11C]nemonapride and [11C]N-methylspiperone. Nucl Med Biol 2002; 29:307-16. [PMID: 11929700 DOI: 10.1016/s0969-8051(01)00307-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
With [11C]raclopride,[11C]nemonapride and [11C]N-methylspiperone, degeneration of dopamine D2-like receptors in the unilaterally quinolinic acid-lesioned rats was evaluated by positron emission tomography (PET) and ex vivo and in vitro autoradiography. PET showed a decreased uptake of [11C]raclopride in the lesioned striatum, but an increased uptake of [11C]nemonapride and [11C]N-methylspiperone despite a decreased binding in vitro. Ex vivo autoradiography showed an increased accumulation of the three ligands in the cortical region overlying the injured striatum, probably enlarging PET signals. PET has the limited potential for evaluating the receptor degeneration in the present animal model.
Collapse
Affiliation(s)
- Kiichi Ishiwata
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, 172-0022, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Noninvasive imaging technologies provide a unique window on the anatomy, physiology and function of living organisms. Imaging systems and methods have been developed for the study of small animal model systems that offer exciting new possibilities in neuroscience. Advances in magnetic resonance microscopy and positron emission tomography, and their applications in brain imaging, have provided many benefits to neurobiology, ranging from detailed in vivo neuroanatomy to the measurement of specific molecular targets.
Collapse
Affiliation(s)
- R E Jacobs
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
41
|
Abstract
The short history of small animal PET is reviewed in the context of its application in the laboratory. Early work has demonstrated a role for the technique in both drug development and in the in vivo monitoring of neuroreceptor function with time. As spatial resolution approaches 1 mm, challenges in quantification remain. However, the ability to carry out animal PET studies that are analogous to human PET will form an important bridge between laboratory and clinical sciences.
Collapse
Affiliation(s)
- R Myers
- MRC Cyclotron Unit, Hammersmith Hospital, Ducane Road, London, W12 0NN, UK.
| |
Collapse
|
42
|
Dunnett SB, Nathwani F, Björklund A. The integration and function of striatal grafts. PROGRESS IN BRAIN RESEARCH 2001; 127:345-80. [PMID: 11142035 DOI: 10.1016/s0079-6123(00)27017-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S B Dunnett
- School of Biosciences, Cardiff University, Cardiff CF1 3US, Wales, UK.
| | | | | |
Collapse
|
43
|
Brooks DJ, Piccini P. Non-invasive in vivo imaging of transplant function. PROGRESS IN BRAIN RESEARCH 2001; 127:321-32. [PMID: 11142033 DOI: 10.1016/s0079-6123(00)27015-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- D J Brooks
- MRC Cyclotron Unit, Hammersmith Hospital, London W12 0NN, UK.
| | | |
Collapse
|
44
|
Abstract
The "staircase" test has become established for measurement of side-specific deficits in coordinated paw reaching in rats, and has been shown to reveal impairments on the contralateral side following unilateral lesions in a wide range of motor structures of the brain. As mice become more widely used in behavioural neuroscience, we have scaled down the staircase reaching test for application to this latter species. We here validate the test in C57BL/6J mice by (a) establishing the optimal dimensions of the apparatus, (b) comparing the effects of test parameters including sex, test duration, levels of deprivation and alternative reward pellets, and (c) demonstrating contralateral deficits after aspirative lesions of the motor cortex. Differences between mice and rats in normal performance of the task are noted. The staircase test provides a simple objective test of skilled motor function that allows measurement of lateralised effects without unduly constraining the animal, and which may prove as useful for mice as has previously been demonstrated in rats.
Collapse
Affiliation(s)
- A L Baird
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | | | |
Collapse
|
45
|
MacLaren DC, Toyokuni T, Cherry SR, Barrio JR, Phelps ME, Herschman HR, Gambhir SS. PET imaging of transgene expression. Biol Psychiatry 2000; 48:337-48. [PMID: 10978717 DOI: 10.1016/s0006-3223(00)00970-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A vital step in transgenic animal study and gene therapy is the ability to assay the extent of transgene expression. Unfortunately, classic methods of assaying transgene expression require biopsies or death of the subject. We are developing techniques to noninvasively and repetitively determine the location, duration, and magnitude of transgene expression in living animals. This will allow investigators and clinicians to assay the effectiveness of their particular experimental and therapeutic paradigms. Of radionuclide (single photon emission computed tomography, positron emission tomography [PET]), optical (green fluorescent protein, luciferase), and magnetic (magnetic resonance imaging) approaches, only the radionuclide approach has sufficient sensitivity and quantitation to measure the expression of genes in vivo. We describe the instrumentation involved in high resolution PET scanning. We also describe the principles of PET reporter gene/reporter probe in vivo imaging, the development of two in vivo reporter gene imaging systems, and the validation of our ability to noninvasively, quantitatively, and repetitively image gene expression in murine viral gene transfer and transgenic models. We compare the two reporter gene systems and discuss their utility for the study of transgenic animals and gene therapies. Finally, we mention alternative approaches to image gene expression by using radiolabeled antibody fragments to image specific proteins and radiolabeled oligonucleotides to image RNA messages directly.
Collapse
Affiliation(s)
- D C MacLaren
- The Crump Institute for Biological Imaging, UCLA School of Medicine, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Mundt-Petersen U, Petersén A, Emgård M, Dunnett SB, Brundin P. Caspase inhibition increases embryonic striatal graft survival. Exp Neurol 2000; 164:112-20. [PMID: 10877921 DOI: 10.1006/exnr.2000.7407] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In transplants of embryonic striatal cells placed into the excitotoxically lesioned rat striatum (a model of Huntington's disease), as many as 60 to 90% of the grafted cells are believed to die. Caspase activation is part of a cascade of events that can lead to apoptosis. We investigated the effect of the caspase inhibitor acetyl-tyrosinyl-valyl-alanyl-aspartyl-chloromethylketone (Ac-YVAD-cmk) on grafted embryonic striatal cells in the excitotoxically lesioned or intact rat striatum. Female Sprague-Dawley rats were subjected to unilateral intrastriatal injection of quinolinic acid. After 10 days, rats received bilateral intrastriatal grafts from embryonic day 14 rat lateral ganglionic eminence. Rats were divided into the following groups: Ac-YVAD-cmk, pretreatment of the graft tissue with the caspase inhibitor (500 microM); and control, untreated control grafts. Rats were perfused 10 days or 5 weeks postgrafting. Brain sections were processed immunohistochemically using an antibody against the striatal neuron marker dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP-32). Adjacent sections were stained for acetylcholinesterase/cresyl violet cytochemistry and Fluoro-Jade cytochemistry, a marker for degenerating neurons. Total graft volume, P-zone volume, total number of neuron-like cells, and number of DARPP-32-positive cells were increased, compared to control, in the group receiving Ac-YVAD-cmk-treated graft tissue. Moreover, transplants injected into the intact striatum were found to be significantly smaller compared to transplants placed into the excitotoxically lesioned striatum. The Fluoro-Jade staining revealed ongoing cell death in transplants 10 days after intrastriatal implantation and that cell death was significantly reduced 5 weeks after grafting.
Collapse
|
47
|
Nakao N, Itakura T. Fetal tissue transplants in animal models of Huntington's disease: the effects on damaged neuronal circuitry and behavioral deficits. Prog Neurobiol 2000; 61:313-38. [PMID: 10727778 DOI: 10.1016/s0301-0082(99)00058-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Accumulating evidence indicates that grafts of embryonic neurons achieve the anatomical and functional reconstruction of damaged neuronal circuitry. The restorative capacity of grafted embryonic neural tissue is most illustrated by studies with striatal tissue transplantation in animals with striatal lesions. Striatal neurons implanted into the lesioned striatum receive some of the major striatal afferents such as the nigrostriatal dopaminergic inputs and the gluatmatergic afferents from the neocortex and thalamus. The grafted neurons also send efferents to the primary striatal targets, including the globus pallidus (GP, the rodent homologue of the external segment of the globus pallidus) and the entopeduncular nucleus (EP, the rodent homologue of the internal segment of the globus pallidus). These anatomical connections provide the reversal of the lesion-induced alterations in neuronal activities of primary and secondary striatal targets. Furthermore, intrastriatal striatal grafts improve motor and cognitive deficits seen in animals with striatal lesions. Since the grafts affect motor and cognitive behaviors that are critically dependent on the integrity of neuronal circuits of the basal ganglia, the graft-mediated recovery in these behavioral deficits is most likely attributable to the functional reconstruction of the damaged neuronal circuits. The fact that the extent of the behavioral recovery is positively correlated to the amount of grafted neurons surviving in the striatum encourages this view. Based on the animal studies, embryonic striatal tissue grafting could be a viable strategy to alleviate motor and cognitive disorders seen in patients with Huntington's disease where massive degeneration of striatal neurons occurs.
Collapse
Affiliation(s)
- N Nakao
- Department of Neurological Surgery, Wakayama Medical College, Wakayama, Japan.
| | | |
Collapse
|
48
|
Watts C, Brasted PJ, Dunnett SB. The morphology, integration, and functional efficacy of striatal grafts differ between cell suspensions and tissue pieces. Cell Transplant 2000; 9:395-407. [PMID: 10972338 DOI: 10.1177/096368970000900310] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to develop a surgical protocol for use in clinical trials of striatal transplantation in Huntington's disease (HD), the issues involved in the preparation and implantation of the embryonic striatal tissue must be addressed. Rodent models of HD offer the best experimental paradigm with which to study various aspects of striatal transplantation. In this article we present the results of an investigation of the role of trypsin and the process of trituration in the preparation of cell suspensions compared to the use of solid pieces of tissue. The embryonic material was derived from the lateral ganglionic eminence (LGE) and implanted into the excitotoxically lesioned striatum of the host rats. Twelve weeks following implantation, retrograde tracing of projections from the graft to the globus pallidus was performed. Grafts derived from cell suspensions triturated in the presence of trypsin contained larger quantities of striatal tissue within the graft and more DARPP-32-positive medium spiny neurons than grafts implanted as fragments of tissue. Afferent and efferent connectivity was also better in the trypsinized suspension graft group. Modest recovery in paw reaching was observed contralateral to the grafted side in animals implanted with solid fragments of embryonic striatal tissue. No relationship was observed between functional effect and the graft anatomy. These results suggest that local graft host interaction may also be involved in graft-mediated functional recovery.
Collapse
Affiliation(s)
- C Watts
- MRC Cambridge Centre for Brain Repair, Department of Neurosurgery, University of Cambridge, UK.
| | | | | |
Collapse
|
49
|
Watts C, Brasted PJ, Dunnett SB. Embryonic donor age and dissection influences striatal graft development and functional integration in a rodent model of Huntington's disease. Exp Neurol 2000; 163:85-97. [PMID: 10785447 DOI: 10.1006/exnr.1999.7341] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The method of embryonic dissection and the age of the donor material remain areas of controversy in the preparation of striatal tissue for intrastriatal implantation. This study explores the relationship between these two parameters with respect to the morphology, function, and physiological integration of the resultant grafts. Tissue derived from embryos of 14 and 16 days of gestation (CRL 10-11 and 14-15 mm, respectively) was prepared as whole, lateral, and medial ganglionic eminence suspensions (WGE, LGE, and MGE, respectively). The embryonic material was implanted into the excitotoxically lesioned striatum of host rats. Grafts derived from E14 LGE attenuated drug-induced rotational bias whereas grafts from E14 MGE ameliorated contralateral deficits in paw reaching. Six months after grafting retrograde tracing of graft projections to the globus pallidus was performed followed by electrical excitation of cortical afferent fibers. Grafts derived from E14 WGE had the largest volume of striatum-like tissue and more striatal neurons compared to LGE from the same donor age. These results suggest that MGE tissue as well as LGE plays a role in the structural and functional integration of striatal grafts.
Collapse
Affiliation(s)
- C Watts
- MRC Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom.
| | | | | |
Collapse
|
50
|
BESRET LAURENT, KENDALL ALISA, DUNNETT STEPHENB. Aspects of PET imaging relevant to the assessment of striatal transplantation in Huntington's disease. J Anat 2000; 196 ( Pt 4):597-607. [PMID: 10923990 PMCID: PMC1468100 DOI: 10.1046/j.1469-7580.2000.19640597.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proper assessment of outcome in clinical trials of neural transplantation requires both biochemical and imaging indices of graft survival, and behavioural and physiological indices of graft function. For transplantation in Huntington's disease, a variety of ligands that are selective for striatal degeneration and graft-derived replacement are available, notably ligands of dopaminergic receptors on striatal neurons. However, the validity of such ligands is potentially compromised by adjunctive drug therapies (e.g. neuroleptics) given to patients in the course of normal clinical care. We review the present state of experimental and clinical understanding of the selectivity of available ligands for striatal imaging, their interaction with other drug treatments, and strategies for refining valid assessment protocols in patients.
Collapse
Affiliation(s)
| | | | - STEPHEN B.
DUNNETT
- Centre for Brain Repair, University of Cambridge, UK
- Correspondence to Dr Stephen B. Dunnett, Department of Biosciences, Preclinical Sciences building, Cardiff University, Cardiff, UK. Tel. 01222 875188; fax. 01223 874117; email
| |
Collapse
|