1
|
Gkioka E, Korou LM, Daskalopoulou A, Misitzi A, Batsidis E, Bakoyiannis I, Pergialiotis V. Prenatal cocaine exposure and its impact on cognitive functions of offspring: a pathophysiological insight. Rev Neurosci 2018; 27:523-34. [PMID: 26953708 DOI: 10.1515/revneuro-2015-0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/07/2016] [Indexed: 11/15/2022]
Abstract
It is estimated that approximately 0.5%-3% of fetuses are prenatally exposed to cocaine (COC). The neurodevelopmental implications of this exposure are numerous and include motor skill impairments, alterations of social function, predisposition to anxiety, and memory function and attention deficits; these implications are commonly observed in experimental studies and ultimately affect both learning and IQ. According to previous studies, the clinical manifestations of prenatal COC exposure seem to persist at least until adolescence. The pathophysiological cellular processes that underlie these impairments include dysfunctional myelination, disrupted dendritic architecture, and synaptic alterations. On a molecular level, various neurotransmitters such as serotonin, dopamine, catecholamines, and γ-aminobutyric acid seem to participate in this process. Finally, prenatal COC abuse has been also associated with functional changes in the hormones of the hypothalamic-pituitary-adrenal axis that mediate neuroendocrine responses. The purpose of this review is to summarize the neurodevelopmental consequences of prenatal COC abuse, to describe the pathophysiological pathways that underlie these consequences, and to provide implications for future research in the field.
Collapse
|
2
|
Martin MM, Graham DL, McCarthy DM, Bhide PG, Stanwood GD. Cocaine-induced neurodevelopmental deficits and underlying mechanisms. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2016; 108:147-73. [PMID: 27345015 PMCID: PMC5538582 DOI: 10.1002/bdrc.21132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/06/2016] [Indexed: 11/06/2022]
Abstract
Exposure to drugs early in life has complex and long-lasting implications for brain structure and function. This review summarizes work to date on the immediate and long-term effects of prenatal exposure to cocaine. In utero cocaine exposure produces disruptions in brain monoamines, particularly dopamine, during sensitive periods of brain development, and leads to permanent changes in specific brain circuits, molecules, and behavior. Here, we integrate clinical studies and significance with mechanistic preclinical studies, to define our current knowledge base and identify gaps for future investigation. Birth Defects Research (Part C) 108:147-173, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Melissa M. Martin
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| | - Devon L. Graham
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| | - Deirdre M. McCarthy
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| | - Pradeep G. Bhide
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| | - Gregg D. Stanwood
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| |
Collapse
|
3
|
Bakshi K, Parihar R, Goswami SK, Walsh M, Friedman E, Wang HY. Prenatal cocaine exposure uncouples mGluR1 from Homer1 and Gq Proteins. PLoS One 2014; 9:e91671. [PMID: 24626340 PMCID: PMC3953582 DOI: 10.1371/journal.pone.0091671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 02/14/2014] [Indexed: 11/18/2022] Open
Abstract
Cocaine exposure during gestation causes protracted neurobehavioral changes consistent with a compromised glutamatergic system. Although cocaine profoundly disrupts glutamatergic neurotransmission and in utero cocaine exposure negatively affects metabotropic glutamate receptor-type 1 (mGluR1) activity, the effect of prenatal cocaine exposure on mGluR1 signaling and the underlying mechanism responsible for the prenatal cocaine effect remain elusive. Using brains of the 21-day-old (P21) prenatal cocaine-exposed rats, we show that prenatal cocaine exposure uncouples mGluR1s from their associated synaptic anchoring protein, Homer1 and signal transducer, Gq/11 proteins leading to markedly reduced mGluR1-mediated phosphoinositide hydrolysis in frontal cortex (FCX) and hippocampus. This prenatal cocaine-induced effect is the result of a sustained protein kinase C (PKC)-mediated phosphorylation of mGluR1 on the serine residues. In support, phosphatase treatment of prenatal cocaine-exposed tissues restores whereas PKC-mediated phosphorylation of saline-treated synaptic membrane attenuates mGluR1 coupling to both Gq/11 and Homer1. Expression of mGluR1, Homer1 or Gα proteins was not altered by prenatal cocaine exposure. Collectively, these data indicate that prenatal cocaine exposure triggers PKC-mediated hyper-phosphorylation of the mGluR1 leading to uncoupling of mGluR1 from its signaling components. Hence, blockade of excessive PKC activation may alleviate abnormalities in mGluR1 signaling and restores mGluR1-regulated brain functions in prenatal cocaine-exposed brains.
Collapse
Affiliation(s)
- Kalindi Bakshi
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
| | - Raminder Parihar
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
| | - Satindra K. Goswami
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
| | - Melissa Walsh
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
| | - Eitan Friedman
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
| | - Hoau-Yan Wang
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Voulalas PJ, Schetz J, Undieh AS. Differential subcellular distribution of rat brain dopamine receptors and subtype-specific redistribution induced by cocaine. Mol Cell Neurosci 2011; 46:645-54. [PMID: 21236347 PMCID: PMC3055788 DOI: 10.1016/j.mcn.2011.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 12/07/2010] [Accepted: 01/04/2011] [Indexed: 12/01/2022] Open
Abstract
We investigated the subcellular distribution of dopamine D(1), D(2) and D(5) receptor subtypes in rat frontal cortex, and examined whether psychostimulant-induced elevation of synaptic dopamine could alter the receptor distribution. Differential detergent solubilization and density gradient centrifugation were used to separate various subcellular fractions, followed by semi-quantitative determination of the relative abundance of specific receptor proteins in each fraction. D(1) receptors were predominantly localized to detergent-resistant membranes, and a portion of these receptors also floated on sucrose gradients. These properties are characteristic of proteins found in lipid rafts and caveolae. D(2) receptors exhibited variable distribution between cytoplasmic, detergent-soluble and detergent-resistant membrane fractions, yet were not present in buoyant membranes. Most D(5) receptor immunoreactivity was distributed into the cytoplasmic fraction, failing to sediment at forces up to 300,000g, while the remainder was localized to detergent-soluble membranes in cortex. D(5) receptors were undetectable in detergent-resistant fractions or raft-like subdomains. Following daily cocaine administration for seven days, a significant portion of D(1) receptors translocated from detergent-resistant membranes to detergent-soluble membranes and the cytoplasmic fraction. The distributions of D(5) and D(2) receptor subtypes were not significantly altered by cocaine treatment. These data imply that D(5) receptors are predominantly cytoplasmic, D(2) receptors are diffusely distributed within the cell, whereas D(1) receptors are mostly localized to lipid rafts within the rat frontal cortex. Dopamine receptor subtype localization is susceptible to modulation by pharmacological manipulations that elevate synaptic dopamine, however the functional implications of such drug-induced receptor warrant further investigation.
Collapse
Affiliation(s)
- Pamela J Voulalas
- Pharmacokinetics-Biopharmaceutics Laboratory, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
5
|
Seugnet L, Suzuki Y, Donlea JM, Gottschalk L, Shaw PJ. Sleep deprivation during early-adult development results in long-lasting learning deficits in adult Drosophila. Sleep 2011; 34:137-46. [PMID: 21286249 DOI: 10.1093/sleep/34.2.137] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Multiple lines of evidence indicate that sleep is important for the developing brain, although little is known about which cellular and molecular pathways are affected. Thus, the aim of this study was to determine whether the early adult life of Drosophila, which is associated with high amounts of sleep and critical periods of brain plasticity, could be used as a model to identify developmental processes that require sleep. SUBJECTS Wild type Canton-S Drosophila melanogaster. DESIGN; INTERVENTION Flies were sleep deprived on their first full day of adult life and allowed to recover undisturbed for at least 3 days. The animals were then tested for short-term memory and response-inhibition using aversive phototaxis suppression (APS). Components of dopamine signaling were further evaluated using mRNA profiling, immunohistochemistry, and pharmacological treatments. MEASUREMENTS AND RESULTS Flies exposed to acute sleep deprivation on their first day of life showed impairments in short-term memory and response inhibition that persisted for at least 6 days. These impairments in adult performance were reversed by dopamine agonists, suggesting that the deficits were a consequence of reduced dopamine signaling. However, sleep deprivation did not impact dopaminergic neurons as measured by their number or by the levels of dopamine, pale (tyrosine hydroxylase), dopadecarboxylase, and the Dopamine transporter. However, dopamine pathways were impacted as measured by increased transcript levels of the dopamine receptors D2R and dDA1. Importantly, blocking signaling through the dDA1 receptor in animals that were sleep deprived during their critical developmental window prevented subsequent adult learning impairments. CONCLUSIONS These data indicate that sleep plays an important and phylogenetically conserved role in the developing brain.
Collapse
Affiliation(s)
- Laurent Seugnet
- Washington University School of Medicine, Anatomy and Neurobiology, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
6
|
Roussotte F, Soderberg L, Sowell E. Structural, metabolic, and functional brain abnormalities as a result of prenatal exposure to drugs of abuse: evidence from neuroimaging. Neuropsychol Rev 2010; 20:376-97. [PMID: 20978945 PMCID: PMC2988996 DOI: 10.1007/s11065-010-9150-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/06/2010] [Indexed: 12/28/2022]
Abstract
Prenatal exposure to alcohol and stimulants negatively affects the developing trajectory of the central nervous system in many ways. Recent advances in neuroimaging methods have allowed researchers to study the structural, metabolic, and functional abnormalities resulting from prenatal exposure to drugs of abuse in living human subjects. Here we review the neuroimaging literature of prenatal exposure to alcohol, cocaine, and methamphetamine. Neuroimaging studies of prenatal alcohol exposure have reported differences in the structure and metabolism of many brain systems, including in frontal, parietal, and temporal regions, in the cerebellum and basal ganglia, as well as in the white matter tracts that connect these brain regions. Functional imaging studies have identified significant differences in brain activation related to various cognitive domains as a result of prenatal alcohol exposure. The published literature of prenatal exposure to cocaine and methamphetamine is much smaller, but evidence is beginning to emerge suggesting that exposure to stimulant drugs in utero may be particularly toxic to dopamine-rich basal ganglia regions. Although the interpretation of such findings is somewhat limited by the problem of polysubstance abuse and by the difficulty of obtaining precise exposure histories in retrospective studies, such investigations provide important insights into the effects of drugs of abuse on the structure, function, and metabolism of the developing human brain. These insights may ultimately help clinicians develop better diagnostic tools and devise appropriate therapeutic interventions to improve the condition of children with prenatal exposure to drugs of abuse.
Collapse
Affiliation(s)
- Florence Roussotte
- Developmental Cognitive Neuroimaging Group, Department of Neurology, University of California, Los Angeles, CA USA
- Interdepartmental Ph.D. Program for Neuroscience, University of California, Los Angeles, CA USA
| | - Lindsay Soderberg
- Developmental Cognitive Neuroimaging Group, Department of Neurology, University of California, Los Angeles, CA USA
| | - Elizabeth Sowell
- Developmental Cognitive Neuroimaging Group, Department of Neurology, University of California, Los Angeles, CA USA
- Interdepartmental Ph.D. Program for Neuroscience, University of California, Los Angeles, CA USA
- Developmental Cognitive Neuroimaging Group, Laboratory of Neuro Imaging, University of California, Los Angeles, 710 Westwood Plaza, Room 1-138, Los Angeles, CA 90095-7332 USA
| |
Collapse
|
7
|
Fujimoto K, Araki K, McCarthy DM, Sims JR, Ren JQ, Zhang X, Bhide PG. A transgenic mouse model of neuroepithelial cell specific inducible overexpression of dopamine D1-receptor. Neuroscience 2010; 170:961-70. [PMID: 20674683 DOI: 10.1016/j.neuroscience.2010.07.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 07/14/2010] [Accepted: 07/18/2010] [Indexed: 01/01/2023]
Abstract
Dopamine and its receptors appear in the brain during early embryonic period suggesting a role for dopamine in brain development. In fact, dopamine receptor imbalance resulting from impaired physiological balance between D1- and D2-receptor activities can perturb brain development and lead to persisting changes in brain structure and function. Dopamine receptor imbalance can be produced experimentally using pharmacological or genetic methods. Pharmacological methods tend to activate or antagonize the receptors in all cell types. In the traditional gene knockout models the receptor imbalance occurs during development and also at maturity. Therefore, assaying the effects of dopamine imbalance on specific cell types (e.g. precursor versus postmitotic cells) or at specific periods of brain development (e.g. pre- or postnatal periods) is not feasible in these models. We describe a novel transgenic mouse model based on the tetracycline dependent inducible gene expression system in which dopamine D1-receptor transgene expression is induced selectively in neuroepithelial cells of the embryonic brain at experimenter-chosen intervals of brain development. In this model, doxycycline-induced expression of the transgene causes significant overexpression of the D1-receptor and significant reductions in the incorporation of the S-phase marker bromodeoxyuridine into neuroepithelial cells of the basal and dorsal telencephalon indicating marked effects on telencephalic neurogenesis. The D1-receptor overexpression occurs at higher levels in the medial ganglionic eminence (MGE) than the lateral ganglionic eminence (LGE) or cerebral wall (CW). Moreover, although the transgene is induced selectively in the neuroepithelium, D1-receptor protein overexpression appears to persist in postmitotic cells. The mouse model can be modified for neuroepithelial cell-specific inducible expression of other transgenes or induction of the D1-receptor transgene in other cells in specific brain regions by crossbreeding the mice with transgenic mouse lines available already.
Collapse
Affiliation(s)
- K Fujimoto
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Characterization of the dopamine receptor system in adult rhesus monkeys exposed to cocaine throughout gestation. Psychopharmacology (Berl) 2010; 210:481-8. [PMID: 20401746 PMCID: PMC2878372 DOI: 10.1007/s00213-010-1847-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE Cocaine use during pregnancy is associated with alterations in the dopamine (DA) system in the fetal brain. However, little is known about the effects of prenatal cocaine exposure on the postnatal dopaminergic system. OBJECTIVES The objective of the study was to examine DA receptor function in adult monkeys that were prenatally exposed to cocaine. MATERIALS AND METHODS Male and female rhesus monkeys (approximately 13 years old) that had been prenatally exposed to cocaine (n = 10) and controls (n = 10) were used in all studies. First, DA D2-like receptor availability was assessed using positron emission tomography and the D2-like receptor radiotracer [(18)F]fluoroclebopride (FCP). Next, D(3) receptor function was assessed by measuring quinpirole-induced yawning (0.03-0.3 mg/kg). Finally, D1-like receptor function was examined by measuring eye blinking elicited by the high-efficacy D1-like receptor agonist SKF81297 (0.3-3.0 mg/kg). RESULTS There were no differences between groups or sexes in D2-like receptor availability in the caudate nucleus, putamen or amygdala. However, quinpirole elicited significantly more yawns in prenatally cocaine-exposed monkeys compared with control monkeys. A significant correlation between gestational dose of cocaine and peak effects of quinpirole was observed. In all monkeys, administration of SKF81297 elicited dose-dependent increases in eye blinks that did not differ between groups. CONCLUSIONS These findings suggest that prenatal cocaine exposure can have long-term effects on DA D(3) receptor function in adults.
Collapse
|
9
|
Specificity of prenatal cocaine exposure effects on cortical interneurons is independent from dopamine D1 receptor co-localization. J Chem Neuroanat 2010; 39:228-34. [PMID: 20080176 DOI: 10.1016/j.jchemneu.2010.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/21/2009] [Accepted: 01/11/2010] [Indexed: 10/20/2022]
Abstract
Gestational cocaine exposure in a rabbit model leads to a persistent increase in parvalbumin immunoreactive cells and processes, reduces dopamine D1 receptor coupling to Gsalpha by means of improper trafficking of the receptor, changes pyramidal neuron morphology, and disrupts cognitive function. Here, experiments investigated whether changes in parvalbumin neurons were specific, or extended to other subpopulations of interneurons. Additionally, we examined dopamine D1 receptor expression patterns and its overlap with specific interneuron populations in the rabbit prefrontal cortex as a possible correlate for alterations in interneuron development following prenatal cocaine exposure. Analysis of calbindin and calretinin interneuron subtypes revealed that they did not exhibit any differences in cell number or process development. Thus, specific consequences of prenatal cocaine in the rabbit appear to be limited to parvalbumin-positive interneurons. Dopamine D1 receptor expression did not correlate with the selective effects of cocaine exposure, however, as both parvalbumin and calbindin cell types expressed the receptor. The findings suggest that additional, unique properties of parvalbumin neurons contribute to their developmental sensitivity to in utero cocaine exposure.
Collapse
|
10
|
Cocaine exposure in utero alters synaptic plasticity in the medial prefrontal cortex of postnatal rats. J Neurosci 2009; 29:12664-74. [PMID: 19812341 DOI: 10.1523/jneurosci.1984-09.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cocaine exposure during pregnancy causes abnormality in fetal brain development, leading to cognitive dysfunction of the offspring, but the underlying cellular mechanism remains mostly unclear. In this study, we examined synaptic functions in the medial prefrontal cortex (mPFC) of postnatal rats that were exposed to cocaine in utero, using whole-cell recording from mPFC layer V pyramidal neurons in acute brain slices. Cocaine exposure in utero resulted in a facilitated activity-induced long-term potentiation (LTP) of excitatory synapses on these pyramidal neurons and an elevated neuronal excitability in postnatal rat pups after postnatal day 15 (P15). This facilitated LTP could be primarily attributed to the reduction of GABAergic inhibition. Biochemical assays of isolated mPFC tissue from postnatal rats further showed that cocaine exposure in utero caused a marked reduction in the surface expression of GABA(A) receptor subunits alpha1, beta2, and beta3, but had no effect on glutamate receptor subunit GluR1. Both facilitated LTP and reduced surface expression of GABA(A) receptors persisted in rats up to at least P42. Finally, the behavioral consequence of cocaine exposure in utero was reflected by the reduction in the sensitivity of locomotor activity in postnatal rats to cocaine and the dopamine receptor agonist apomorphine. Since the mPFC is an important part of the reward circuit in the rat brain and plays important roles in cognitive functions, these findings offer new insights into the cellular mechanism underlying the adverse effects of cocaine exposure in utero on brain development and cognitive functions.
Collapse
|
11
|
Lejeune C, Simonpoli AM, Gressens P. [Obstetrical and pediatric impact of in utero cocaine exposure]. Arch Pediatr 2009; 16 Suppl 1:S56-63. [PMID: 19836669 DOI: 10.1016/s0929-693x(09)75302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Review of recent publications about perinatal consequences of cocaine use during pregnancy points out that: - dramatic obstetrical, neonatal and developmental abnormalities, reported during 1980-90', are less frequent in recent cohort studies; - pregnant women who use cocaine or crack, also consume other psychoactive drugs (alcohol, tobacco, benzodiazepines, cannabis, opiates, ...) and have a very chaotic life-style; so, it is difficult to distinguish abnormalities caused by cocaine per se, even with numerous cohorts, control groups and multivariate analysis.
Collapse
Affiliation(s)
- C Lejeune
- Service de Néonatologie, Hôpital Louis Mourier, Colombes, France.
| | | | | |
Collapse
|
12
|
Kubrusly RCC, Bhide PG. Cocaine exposure modulates dopamine and adenosine signaling in the fetal brain. Neuropharmacology 2009; 58:436-43. [PMID: 19765599 DOI: 10.1016/j.neuropharm.2009.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/04/2009] [Accepted: 09/09/2009] [Indexed: 11/18/2022]
Abstract
Exposure to cocaine during the fetal period can produce significant lasting changes in the structure and function of the brain. Cocaine exerts its effects on the developing brain by blocking monoamine transporters and impairing monoamine receptor signaling. Dopamine is a major central target of cocaine. In a mouse model, we show that cocaine exposure from embryonic day 8 (E8) to E14 produces significant reduction in dopamine transporter activity, attenuation of dopamine D1-receptor function and upregulation of dopamine D2-receptor function. Cocaine's effects on the D1-receptor are at the level of protein expression as well as activity. The cocaine exposure also produces significant increases in basal cAMP levels in the striatum and cerebral cortex. The increase in the basal cAMP levels was independent of dopamine receptor activity. In contrast, blocking the adenosine A2a receptor downregulated the basal cAMP levels in the cocaine-exposed brain to physiological levels, suggesting the involvement of adenosine receptors in mediating cocaine's effects on the embryonic brain. In support of this suggestion, we found that the cocaine exposure downregulated adenosine transporter function. We also found that dopamine D2- and adenosine A2a-receptors antagonize each other's function in the embryonic brain in a manner consistent with their interactions in the mature brain. Thus, our data show that prenatal cocaine exposure produces direct effects on both the dopamine and adenosine systems. Furthermore, the dopamine D2 and adenosine A2a receptor interactions in the embryonic brain discovered in this study unveil a novel substrate for cocaine's effects on the developing brain.
Collapse
Affiliation(s)
- Regina C C Kubrusly
- Developmental Neurobiology, Neurology Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | | |
Collapse
|
13
|
Prenatal cocaine reduces AMPA receptor synaptic expression through hyperphosphorylation of the synaptic anchoring protein GRIP. J Neurosci 2009; 29:6308-19. [PMID: 19439608 DOI: 10.1523/jneurosci.5485-08.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Prenatal cocaine exposure produces sustained neurobehavioral and brain synaptic changes closely resembling those of animals with defective AMPA receptors (AMPARs). We hypothesized that prenatal cocaine exposure attenuates AMPAR signaling by interfering with AMPAR synaptic targeting. AMPAR function is governed by receptor cycling on and off the synaptic membrane through its interaction with glutamate receptor-interacting protein (GRIP), a PDZ domain protein that is regulated by reversible phosphorylation. Our results show that prenatal cocaine exposure markedly reduces AMPAR synaptic targeting and attenuates AMPAR-mediated synaptic long-term depression in the frontal cortex of 21-d-old rats. This cocaine effect is the result of reduced GRIP-AMPAR interaction caused by persistent phosphorylation of GRIP by protein kinase C (PKC) and Src tyrosine kinase. These data support the restoration of AMPAR activation via suppressing excessive PKC-mediated GRIP phosphorylation as a novel therapeutic approach to treat the neurobehavioral consequences of prenatal cocaine.
Collapse
|
14
|
Frederick AL, Stanwood GD. Drugs, biogenic amine targets and the developing brain. Dev Neurosci 2009; 31:7-22. [PMID: 19372683 DOI: 10.1159/000207490] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 09/08/2008] [Indexed: 01/12/2023] Open
Abstract
Defects in the development of the brain have a profound impact on mature brain functions and underlying psychopathology. Classical neurotransmitters and neuromodulators, such as dopamine, serotonin, norepinephrine, acetylcholine, glutamate and GABA, have pleiotropic effects during brain development. In other words, these molecules produce multiple diverse effects to serve as regulators of distinct cellular functions at different times in neurodevelopment. These systems are impacted upon by abuse of a variety of illicit drugs, neurotherapeutics and environmental contaminants. In this review, we describe the impact of drugs and chemicals on brain formation and function in animal models and in human populations, highlighting sensitive periods and effects that may not emerge until later in life.
Collapse
Affiliation(s)
- Aliya L Frederick
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232-6600, USA
| | | |
Collapse
|
15
|
Thompson BL, Levitt P, Stanwood GD. Prenatal exposure to drugs: effects on brain development and implications for policy and education. Nat Rev Neurosci 2009; 10:303-12. [PMID: 19277053 PMCID: PMC2777887 DOI: 10.1038/nrn2598] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effects of prenatal exposure to drugs on brain development are complex and are modulated by the timing, dose and route of drug exposure. It is difficult to assess these effects in clinical cohorts as these are beset with problems such as multiple exposures and difficulties in documenting use patterns. This can lead to misinterpretation of research findings by the general public, the media and policy makers, who may mistakenly assume that the legal status of a drug correlates with its biological impact on fetal brain development and long-term clinical outcomes. It is important to close the gap between what science tells us about the impact of prenatal drug exposure on the fetus and the mother and what we do programmatically with regard to at-risk populations.
Collapse
Affiliation(s)
- Barbara L Thompson
- Department of Pharmacology, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
16
|
Zagar RJ, Busch KG, Isbell SA, Hughes JR. An Empirical Theory of the Development of Homicide within Individuals. Psychol Rep 2009; 104:199-245. [DOI: 10.2466/pr0.104.1.199-245] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There have been many attempts to explain violent behavior, identify its causes, and predict its occurrence among youth and adults. Research and theoretical constructions have dealt with such far-ranging aspects as childhood health, peer and parental interactions, neuropsychological function, school and community support, and substance use and dependency. Theories have tended to focus on one or a few of these aspects, but there is an effort by many researchers to converge on an integrated approach. By demonstrating unique risk patterns in random samples of later-homicidal abused infants, children, and youth, violent and homicidal delinquents, and homicidal adults, five studies by Zagar and colleagues provide the best current empirical evidence for a view of the development of delinquency as a process of accumulating risks. These risks begin with prenatal substance exposure and continue with abusive or neglectful parenting, academic failure, court contacts, compromised executive function and resultant poor social functioning. Analysis by sex shows that males' and females' risks are virtually identical. Various theories are evaluated with respect to these empirical risk patterns for development of violence and homicide. A proposal for the necessary elements of a successful, overarching explanatory theory is offered.
Collapse
Affiliation(s)
- Robert John Zagar
- Consultant to Juvenile Division of the Circuit Court of Cook County, Illinois
| | - Kenneth G. Busch
- Former Consultant to U.S. Department of Health and Human Services
| | | | | |
Collapse
|
17
|
Bhide PG. Dopamine, cocaine and the development of cerebral cortical cytoarchitecture: a review of current concepts. Semin Cell Dev Biol 2009; 20:395-402. [PMID: 19560044 DOI: 10.1016/j.semcdb.2009.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 01/09/2009] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
Abstract
Exposure of the developing fetus to cocaine produces lasting adverse effects on brain structure and function. Animal models show that cocaine exerts its effects by interfering with monoamine neurotransmitter function and that dopamine is cocaine's principal monoamine target in the fetal brain. This review will examine the role of dopamine receptor signaling in the regulation of normal development of the cerebral cortex, the seat of higher cognitive functions, and discuss whether dopamine receptor signaling mechanisms are the principal mediators of cocaine's deleterious effects on the ontogeny of cerebral cortical cytoarchitecture.
Collapse
Affiliation(s)
- Pradeep G Bhide
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
18
|
Thompson BL, Stanwood GD. Pleiotropic effects of neurotransmission during development: modulators of modularity. J Autism Dev Disord 2008; 39:260-8. [PMID: 18648918 DOI: 10.1007/s10803-008-0624-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Accepted: 07/04/2008] [Indexed: 11/28/2022]
Abstract
The formation and function of the mammalian cerebral cortex relies on the complex interplay of a variety of genetic and environmental factors through protracted periods of gestational and postnatal development. Biogenic amine systems are important neuromodulators, both in the adult nervous system, and during critical epochs of brain development. Abnormalities in developmental programming likely contribute to developmental delays and multiple neurological and psychiatric disorders, often with symptom onset much later than the actual induction of pathology. We review several genetic and pharmacological models of dopamine, norepinephrine and serotonin modulation during development, each of which produces permanent changes in cerebral cortical structure and function. These models clearly illustrate the ability of these neurotransmitters to function beyond their classic roles and show their involvement in the development and modulation of fine brain circuitry that is sensitive to numerous effectors. Furthermore, these studies demonstrate the need to consider not only gene by environment interactions, but also gene by environment by developmental time interactions.
Collapse
Affiliation(s)
- Barbara L Thompson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|
19
|
Shang EH, Zhdanova IV. The circadian system is a target and modulator of prenatal cocaine effects. PLoS One 2007; 2:e587. [PMID: 17622340 PMCID: PMC1899232 DOI: 10.1371/journal.pone.0000587] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 06/05/2007] [Indexed: 11/18/2022] Open
Abstract
Background Prenatal exposure to cocaine can be deleterious to embryonic brain development, but the results in humans remain controversial, the mechanisms involved are not well understood and effective therapies are yet to be designed. We hypothesize that some of the prenatal effects of cocaine might be related to dysregulation of physiological rhythms due to alterations in the integrating circadian clock function. Methodology and Principle Findings Here we introduce a new high-throughput genetically well-characterized diurnal vertebrate model for studying the mechanisms of prenatal cocaine effects by demonstrating reduced viability and alterations in the pattern of neuronal development following repeated cocaine exposure in zebrafish embryos. This effect is associated with acute cocaine-induced changes in the expression of genes affecting growth (growth hormone, zGH) and neurotransmission (dopamine transporter, zDAT). Analysis of circadian gene expression, using quantitative real-time RT-PCR (QPCR), demonstrates that cocaine acutely and dose-dependently changes the expression of the circadian genes (zPer-3, zBmal-1) and genes encoding melatonin receptors (zMelR) that mediate the circadian message to the entire organism. Moreover, the effects of prenatal cocaine depend on the time of treatment, being more robust during the day, independent of whether the embryos are raised under the light-dark cycle or in constant light. The latter suggests involvement of the inherited circadian factors. The principal circadian hormone, melatonin, counteracts the effects of cocaine on neuronal development and gene expression, acting via specific melatonin receptors. Conclusions/Significance These findings demonstrate that, in a diurnal vertebrate, prenatal cocaine can acutely dysregulate the expression of circadian genes and those affecting melatonin signaling, growth and neurotransmission, while repeated cocaine exposure can alter neuronal development. Daily variation in these effects of cocaine and their attenuation by melatonin suggest a potential prophylactic or therapeutic role for circadian factors in prenatal cocaine exposure.
Collapse
Affiliation(s)
- Eva H Shang
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | |
Collapse
|
20
|
Crandall JE, McCarthy DM, Araki KY, Sims JR, Ren JQ, Bhide PG. Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex. J Neurosci 2007; 27:3813-22. [PMID: 17409246 PMCID: PMC2711976 DOI: 10.1523/jneurosci.5124-06.2007] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA neurons of the cerebral cortex and other telencephalic structures are produced in the basal forebrain and migrate to their final destinations during the embryonic period. The embryonic basal forebrain is enriched in dopamine and its receptors, creating a favorable environment for dopamine to influence GABA neuron migration. However, whether dopamine receptor activation can influence GABA neuron migration is not known. We show that dopamine D1 receptor activation promotes and D2 receptor activation decreases GABA neuron migration from the medial and caudal ganglionic eminences to the cerebral cortex in slice preparations of embryonic mouse forebrain. Slice preparations from D1 or D2 receptor knock-out mouse embryos confirm the findings. In addition, D1 receptor electroporation into cells of the basal forebrain and pharmacological activation of the receptor promote migration of the electroporated cells to the cerebral cortex. Analysis of GABA neuron numbers in the cerebral wall of the dopamine receptor knock-out mouse embryos further confirmed the effects of dopamine receptor activation on GABA neuron migration. Finally, dopamine receptor activation mobilizes striatal neuronal cytoskeleton in a manner consistent with the effects on neuronal migration. These data show that impairing the physiological balance between D1 and D2 receptors can alter GABA neuron migration from the basal forebrain to the cerebral cortex. The intimate relationship between dopamine and GABA neuron development revealed here may offer novel insights into developmental disorders such as schizophrenia, attention deficit or autism, and fetal cocaine exposure, all of which are associated with dopamine and GABA imbalance.
Collapse
Affiliation(s)
- James E. Crandall
- Eunice Kennedy Shriver Center for Mental Retardation, Physiology, University of Massachusetts Medical School, Waltham, Massachusetts 02452, and
| | | | | | - John R. Sims
- Departments of Neurology and
- Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129
| | - Jia-Qian Ren
- Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129
| | | |
Collapse
|
21
|
Stanwood GD, Parlaman JP, Levitt P. Genetic or pharmacological inactivation of the dopamine D
1
receptor differentially alters the expression of regulator of G‐protein signalling (Rgs) transcripts. Eur J Neurosci 2006; 24:806-18. [PMID: 16930410 DOI: 10.1111/j.1460-9568.2006.04970.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dysregulation of dopamine (DA) receptor signalling induces specific changes in behaviour, neuronal circuitry and gene expression in the mammalian forebrain. In order to better understand signalling adaptations at the molecular level, we used high-density oligonucleotide microarrays (Codelink Mouse 20K) to define alterations in the expression of transcripts encoding regulator of G-protein coupled receptor signalling in dopamine D1 receptor knockout mice (Drd1a-KO). Regulator of G-protein signalling (Rgs) 2, Rgs4, and Rgs9 were significantly decreased in the striatum (STR) of Drd1a-KO mice. These changes were confirmed by in situ hybridization, and were also observed in the nucleus accumbens (NAc). In contrast, analysis of the medial frontal cortex (MFC) revealed a significant decrease in Rgs17 expression exclusively, and a modest up-regulation of Rgs5 transcript. The expression of these gene products were not significantly altered in the dopamine-poor visual cortex (VC). The Drd1a-KO mouse, and a rabbit model of in utero cocaine exposure, in which D1R signalling is permanently reduced, possess analogous morphological and functional alterations in dopamine-modulated brain circuits; thus we also examined long-lasting changes in RGS transcript expression following prenatal exposure to cocaine. In sharp contrast to the Drd1a-KO, Rgs2 and Rgs4 were unchanged, and Rgs9 and Rgs17 transcripts were increased in prenatal cocaine-exposed progeny. These data suggest that an absolute absence of D1R signalling (Drd1a-KO) and hypomorphic D1R signalling (prenatal cocaine) produce common alterations in neuronal morphology, but distinct outcomes in molecular neuroadaptations.
Collapse
Affiliation(s)
- Gregg D Stanwood
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville TN 37203, USA.
| | | | | |
Collapse
|
22
|
Simansky KJ, Baker G, Kachelries WJ, Hood H, Romano AG, Harvey JA. Prenatal Exposure to Cocaine Reduces Dopaminergic D 1-Mediated Motor Function but Spares the Enhancement of Learning by Amphetamine in Rabbits a. Ann N Y Acad Sci 2006; 846:375-378. [PMID: 29087578 DOI: 10.1111/j.1749-6632.1998.tb09759.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K J Simansky
- Department of Pharmacology, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA
| | - G Baker
- Department of Pharmacology, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA
| | - W J Kachelries
- Department of Pharmacology, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA
| | - H Hood
- Department of Pharmacology, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA
| | - A G Romano
- Department of Pharmacology, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA
| | - J A Harvey
- Department of Pharmacology, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
23
|
ROMANO ANTHONYG, HARVEY JOHNA. Prenatal Cocaine Exposure: Long-Term Deficits in Learning and Motor Performancea. Ann N Y Acad Sci 2006; 846:89-108. [DOI: 10.1111/j.1749-6632.1998.tb09729.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
FRIEDMAN EITAN, WANG HOAUYAN. Prenatal Cocaine Exposure Alters Signal Transduction in the Brain D1Dopamine Receptor Systema. Ann N Y Acad Sci 2006; 846:238-247. [DOI: 10.1111/j.1749-6632.1998.tb09741.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
GABRIEL MICHAEL, TAYLOR CARRIE. Prenatal Exposure to Cocaine Impairs Neuronal Coding of Attention and Discriminative Learninga. Ann N Y Acad Sci 2006; 846:194-212. [DOI: 10.1111/j.1749-6632.1998.tb09737.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Abstract
In the central nervous system, dopamine is known to play a critical role in motor and cognitive functions. Although the cerebellum plays a role in the control of movement and posture and in cognitive functions, it has not been considered to be a dopaminergic region and the dopamine present was thought to represent a precursor of noradrenaline. However, recent evidence suggests that in the cerebellum there is a small dopaminergic element, whose properties are similar to the well characterized system of striatum. In order to better understand the functional role of this system and to delineate its specific interactions within the cerebellum, the distribution and properties of dopamine transporter (DAT) in the cerebellum of reeler and Purkinje cell degeneration (Nna1pcd) mutant mice, which are characterized by severe loss of different cell populations and abnormalities in synapse formation, have been studied. Kinetic studies revealed that [3H]dopamine is transported into cerebellar synaptosomes prepared from normal mice with affinities similar to that into striatal synaptosomes but with much lower maximal velocities. In reeler cerebellar synaptosomes the number of transport sites is significantly reduced. In Nna1pcd cerebellar synaptosomes the kinetic properties of transport of [3H]dopamine are similar to the normal. However, in vitro quantitative DAT autoradiography revealed a significantly increased binding in cerebellar nuclei, a decreased binding in molecular layer and an unaltered binding in the granule cell layer. These observations confirm a dopaminergic innervation of the cerebellum and contribute to our understanding of the intracerebellar distribution of the dopaminergic system.
Collapse
Affiliation(s)
- Panagiotis Giompres
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, Greece.
| | | |
Collapse
|
27
|
Guerriero RM, Rajadhyaksha A, Crozatier C, Giros B, Nosten-Bertrand M, Kosofsky BE. Augmented Constitutive CREB Expression in the Nucleus accumbens and Striatum May Contribute to the Altered Behavioral Response to Cocaine of Adult Mice Exposed to Cocaine in utero. Dev Neurosci 2005; 27:235-48. [PMID: 16046859 DOI: 10.1159/000085997] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 10/10/2004] [Indexed: 11/19/2022] Open
Abstract
Neuroadaptations occurring in the mesolimbic dopamine pathway following recurrent exposure to drugs of abuse have been correlated with a behavioral phenomenon known as behavioral sensitization. We have developed an animal model of prenatal cocaine exposure and, using a postnatal sensitization protocol, have examined the subsequent sensitivity of offspring to cocaine. Pregnant Swiss Webster dams were injected twice daily from embryonic day 8 to 17, inclusive, with cocaine (COC40: administered cocaine HCl at a dose of 40 mg/kg/day, and COC20: administered cocaine HCl at a dose of 20 mg/kg/day), or saline (SAL). The SPF40 group (saline pair-fed), a nutritional control group, was 'pair-fed' with COC40 dams. Activity was recorded for 30 min during a 3-day saline habituation, a 14-day 'initiation' phase, when animals received cocaine (15 mg/kg) or saline every other day, and following a 21-day 'withdrawal' period when all mice were challenged with cocaine. COC40 offspring, as compared with SAL controls, did not habituate to a novel environment, demonstrated increased cocaine-induced stereotypy on Coc 1 (first cocaine injection), and blunted locomotor sensitization on challenge as measured by the percentage of each animal's baseline locomotion. Tissue samples of the nucleus accumbens (NAc) and striatum (Str) of all four prenatal treatment groups were examined to determine whether alterations in the transcription factor CREB or glutamate receptor subunit, GluR1, induced by prenatal cocaine treatment may have contributed to the altered behavioral responses. Immunoblot quantitation revealed significantly increased constitutive CREB expression in the NAc and Str of COC40 mice as compared with SAL controls. Such alterations in constitutive CREB levels may contribute to some of the behavioral differences reported in adult mice exposed to cocaine in utero.
Collapse
Affiliation(s)
- Rejean M Guerriero
- Laboratory of Molecular and Developmental Neuroscience, Massachusetts General Hospital-East, Charlestown, MA, USA
| | | | | | | | | | | |
Collapse
|
28
|
Stanwood GD, Parlaman JP, Levitt P. Anatomical abnormalities in dopaminoceptive regions of the cerebral cortex of dopamine D1 receptor mutant mice. J Comp Neurol 2005; 487:270-82. [PMID: 15892099 DOI: 10.1002/cne.20548] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Alteration of dopamine neurotransmission during development can induce specific changes in neuronal structure and function. Here, we report specific morphological and neurochemical changes of projection neurons and interneurons of the medial frontal cortex of the dopamine D(1) receptor null mouse. Using immunostaining of cytoskeletal proteins and a crossbred D(1) receptor null:YFP transgenic reporter line, we demonstrate that the apical dendrites of pyramidal cells are abnormally organized in the prefrontal and anterior cingulate cortices of mice lacking the D(1) receptor. Neuronal processes exhibit a decrease in bundling and an increase in irregular, tortuous patterning as they weave a course towards the pial surface. In addition, there is increased parvalbumin staining of the dendrites of cortical interneurons in D(1) receptor null mice. Both pyramidal and interneuron alterations are evident by the early postnatal period and persist into adulthood. The alterations show regional specificity, in that dendritic profiles of projection neurons and interneurons in somatosensory and visual cortices develop normally. The abnormalities are reminiscent of those induced by prenatal exposure to cocaine in rabbits, an insult which has been shown to produce an attenuation of D(1) receptor-mediated responses through G(salpha). These results suggest that loss of D(1) receptor-mediated signaling during development produces permanent alterations in the cellular organization of specific cortical areas involved in attention, cognition, and emotion. Pharmacological and behavioral studies in the D(1) null mouse should be interpreted in the context of possible altered circuitry, given the presence of these developmental defects in the organization of dopaminoceptive regions of the cerebral cortex.
Collapse
Affiliation(s)
- Gregg D Stanwood
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37203, USA.
| | | | | |
Collapse
|
29
|
Morrow BA, Elsworth JD, Roth RH. Prenatal exposure to cocaine selectively disrupts the development of parvalbumin containing local circuit neurons in the medial prefrontal cortex of the rat. Synapse 2005; 56:1-11. [PMID: 15700288 DOI: 10.1002/syn.20121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exposure to cocaine in utero can result in cognitive deficits potentially through a disruption in the inhibitory processes of the frontal cortex. One potential mechanism is through alterations in the inhibitory local circuit neurons containing the calcium-binding protein, parvalbumin. Parvalbumin-immunostaining primarily identifies 2 types of local circuit neurons: larger, rounder, axo-somal basket cells and smaller, more-spindle shaped, axo-axonic chandelier cells. Both are thought to have critical impact on the excitatory/inhibitory balance due to the proximal site of projection on pyramidal neurons. Calretinin, another calcium-binding protein, identifies a distinct sub-population of inhibitory local circuits that impinges more distally on the dendritic arbor and serves as a control population for this study. Here, we examine local circuit neurons containing either parvalbumin or calretinin in adolescent male rats (approximately 45 days old) exposed to saline or cocaine (3 mg/kg, intravenous twice a day during embryonic days 10 to 20). Prenatal cocaine exposure caused select changes in the parvalbumin, but not calretinin, containing cells in the frontal cortex. Specifically, prenatal cocaine exposure is associated with a 50% reduction in spindle-shaped parvalbumin-immunoreactive cells potentially indicating a select loss of chandelier cells or a shift to a rounder shape. Additionally, a reduction in the number of dendrites of parvalbumin-immunoreactive cells in rats exposed to cocaine in utero was noted. Other measures of both parvalbumin- and calretinin-immunoreactive cells were unchanged, including total number of cells, distribution by depth, and sizes of cells. These changes to the excitatory/inhibitory balance in the frontal cortex may contribute to the cognitive deficits associated with prenatal cocaine exposure.
Collapse
Affiliation(s)
- Bret A Morrow
- Neuropsychopharmacology Research Unit, Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA.
| | | | | |
Collapse
|
30
|
Melnick SM, Torres-Reveron A, Dow-Edwards DL. Preweaning cocaine exposure alters brain glucose metabolic rates following repeated amphetamine administration in the adult rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 153:127-34. [PMID: 15464226 DOI: 10.1016/j.devbrainres.2004.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/22/2004] [Indexed: 11/18/2022]
Abstract
Developmental cocaine exposure produces long-term alterations in function of many neuronal circuits. This study examined glucose metabolic rates following repeated amphetamine administration in adult male and female rats pretreated with cocaine during postnatal days (PND) 11-20. PND11-20 cocaine increased the response to amphetamine in many components of the motor system and the dorsal caudate-putamen, in particular, and decreased the metabolic response in the hypothalamus. While amphetamine alone produced widespread increases in metabolism, there were no cocaine-related effects in the mesolimbic, limbic or sensory structures. These data suggest that a brief cocaine exposure during development can alter ontogeny and result in abnormal neuronal responses to repeated psychostimulant administration in adulthood.
Collapse
Affiliation(s)
- Susan M Melnick
- Laboratory of Cerebral Metabolism, Department of Physiology/Pharmacology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
31
|
Crandall JE, Hackett HE, Tobet SA, Kosofsky BE, Bhide PG. Cocaine exposure decreases GABA neuron migration from the ganglionic eminence to the cerebral cortex in embryonic mice. Cereb Cortex 2004; 14:665-75. [PMID: 15054047 PMCID: PMC1224742 DOI: 10.1093/cercor/bhh027] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recurrent exposure of the developing fetus to cocaine produces persistent alterations in structure and function of the cerebral cortex. Neurons of the cerebral cortex are derived from two sources: projection neurons from the neuroepithelium of the dorsal pallium and interneurons from the ganglionic eminence of the basal telencephalon. The interneurons are GABAergic and reach the cerebral cortex via a tangential migratory pathway. We found that recurrent, transplacental exposure of mouse embryos to cocaine from embryonic day 8 to 15 decreases tangential neuronal migration and results in deficits in GABAergic neuronal populations in the embryonic cerebral wall. GABAergic neurons of the olfactory bulb, which are derived from the ganglionic eminence via the rostral migratory pathway, are not affected by the cocaine exposure suggesting a degree of specificity in the effects of cocaine on neuronal migration. Thus, one mechanism by which prenatal cocaine exposure exerts deleterious effects on cerebral cortical development may be by decreasing GABAergic neuronal migration from the ganglionic eminence to the cerebral wall. The decreased GABA neuron migration may contribute to persistent structural and functional deficits observed in the exposed offspring.
Collapse
Affiliation(s)
- James E. Crandall
- E.K. Shriver Center for Mental Retardation, University of Massachusetts Medical School, Waltham, MA 02452, USA
| | - Hazel E. Hackett
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA and
| | - Stuart A. Tobet
- Department of Biomedical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Barry E. Kosofsky
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA and
| | - Pradeep G. Bhide
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA and
| |
Collapse
|
32
|
Abstract
The present paper reports on the results obtained in a rabbit model of prenatal cocaine exposure that mimics the pharmacokinetics of crack cocaine in humans, and relates these findings to studies in other species including humans. A general finding is that prenatal exposure to cocaine during neurogenesis produces dysfunctions in signal transduction via the dopamine D(1) receptor and alterations in cortical neuronal development leading to permanent morphological abnormalities in frontocingulate cortex and other brain structures. Differences in the precise effects obtained appear to be due to the dose, route and time of cocaine administration. Related to these effects of in utero cocaine exposure, animals demonstrate permanent deficits in cognitive processes related to attentional focus that have been correlated with impairment of stimulus processing in the anterior cingulate cortex. The long-term cognitive deficits observed in various species are in agreement with recent reports indicating that persistent attentional and other cognitive deficits are evident in cocaine-exposed children as they grow older and are challenged to master more complex cognitive tasks.
Collapse
Affiliation(s)
- John A Harvey
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia PA 19102-1192, USA.
| |
Collapse
|
33
|
Gabriel M, Taylor C, Burhans L. In utero cocaine, discriminative avoidance learning with low-salient stimuli and learning-related neuronal activity in rabbits (Oryctolagus cuniculus). Behav Neurosci 2004; 117:912-26. [PMID: 14570542 DOI: 10.1037/0735-7044.117.5.912] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Daily injections of cocaine administered to pregnant rabbits (Oryctolagus cuniculus) throughout gestation were associated with neural and behavioral changes during development and in adulthood, including altered neuron structure and function in areas receiving dopaminergic projections and retarded Pavlovian eyeblink conditioning with low-salient conditional stimuli. Studies of discriminative avoidance learning have shown changes in learning-related cingulothalamic neuronal activity, but no behavioral learning impairment in cocaine-exposed offspring. Here, low-salient stimuli were used during discriminative avoidance conditioning. Impairments early in behavioral acquisition were found, as well as alterations of anterior cingulate and medial prefrontal cortical, medial dorsal thalamic, and amygdalar neuronal response profiles and learning-related neuronal activity. These results elucidate the neural processes, impaired by prenatal cocaine, that support conditioning with low-salient stimuli.
Collapse
Affiliation(s)
- Michael Gabriel
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
34
|
Gendle MH, Strawderman MS, Mactutus CF, Booze RM, Levitsky DA, Strupp BJ. Impaired sustained attention and altered reactivity to errors in an animal model of prenatal cocaine exposure. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 147:85-96. [PMID: 14741754 DOI: 10.1016/j.devbrainres.2003.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although correlations have been reported between maternal cocaine use and impaired attention in exposed children, interpretation of these findings is complicated by the many risk factors that differentiate cocaine-exposed children from SES-matched controls. For this reason, the present dose-response study (0, 0.5, 1.0, or 3.0 mg/kg cocaine HCl) was designed to explore the effect of prenatal cocaine exposure on visual attention in a rodent model, using an intravenous injection protocol that closely mimics the pharmacokinetic profile and physiological effects of human recreational cocaine use. In adulthood, animals were tested on an attention task in which the duration, location, and onset time of a brief visual cue varied randomly between trials. The 3.0 mg/kg exposed males committed significantly more omission errors than control males during the final 1/3 of each testing session, specifically on trials that followed an error, which implicates impaired sustained attention and increased reactivity to committing an error. During the final 1/3 of each testing session, the 0.5 and 1.0 mg/kg exposed females took longer to enter the testing alcove at trial onset, and failed to enter the alcove more frequently than control females. Because these effects were not seen in other tasks of similar duration and reinforcement density, these findings suggest an impairment of sustained attention. This inference is supported by the finding that the increase in omission errors in the final block of trials in each daily session (relative to earlier in the session) was significantly greater for the 1.0 mg/kg females than for controls, a trend also seen for the 0.5 mg/kg group. Unlike the cocaine-exposed males, who remain engaged in the task when attention is waning, the cocaine-exposed females appear to opt for another strategy; namely, refusing to participate when their ability to sustain attention is surpassed.
Collapse
Affiliation(s)
- Mathew H Gendle
- Department of Psychology and Division of Nutritional Sciences, 109 Savage Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
35
|
Unterwald EM, Ivkovic S, Cuntapay M, Stroppolo A, Guinea B, Ehrlich ME. Prenatal exposure to cocaine decreases adenylyl cyclase activity in embryonic mouse striatum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 147:67-75. [PMID: 14741752 DOI: 10.1016/s0165-3806(03)00058-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Adenylyl cyclase activity was measured in the striatum of naive mice as a function of age and in mice exposed in utero to cocaine. In naive Swiss-Webster mice, basal and forskolin-stimulated adenylyl cyclase activity increased gradually from embryonic day 13 (E13) until 2-3 weeks of age when activity peaked before decreasing slightly to adult levels. The ability of the dopamine D1 receptor agonist, SKF 82958, to stimulate adenylyl cyclase activity also increased in magnitude until P15. In a separate study, pregnant Swiss-Webster mice were injected twice daily with cocaine (15 mg/kg, s.c.) or an equal volume of saline from E10 to E17. Adenylyl cyclase activity was measured in the striatum of E18 embryos. Basal adenylyl cyclase activity was significantly reduced following prenatal exposure to cocaine. Likewise, the ability of forskolin or SKF 82958 to stimulate adenylyl cyclase was attenuated following cocaine exposure. DeltaFosB was not induced, contrary to what is seen in adult mice. These results demonstrate a functional change in a critical signal transduction pathway following chronic in utero exposure to cocaine that might have profound effects of the development of the brain. Alterations in the cAMP system may underlie some of the deficits seen in humans exposed in utero to cocaine.
Collapse
Affiliation(s)
- Ellen M Unterwald
- Department of Pharmacology, Temple University School of Medicine, 3420 N. Broad St., Philadelphia, PA 19140, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Noland JS, Singer LT, Arendt RE, Minnes S, Short EJ, Bearer CF. Executive functioning in preschool-age children prenatally exposed to alcohol, cocaine, and marijuana. Alcohol Clin Exp Res 2003. [PMID: 12711927 DOI: 10.1111/j.1530-0277.2003.tb04401.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Reports from clinical and experimental (animal) research converge on the suggestion that prenatal exposure to alcohol, cocaine, or marijuana undermines executive functioning (EF) and its neurological underpinnings. However, large, adequately controlled, prospective studies of alcohol and marijuana effects on EF have reported conflicting findings, and there have been no such studies of cocaine exposure. METHODS EF was investigated in a cohort (n = 316) of 4-year-old children the majority of whose mothers had used varying combinations of cocaine, alcohol, and marijuana during pregnancy. With use of postpartum maternal report and biological assay, children were assigned to overlapping prenatal cocaine-exposed, alcohol-exposed, and marijuana-exposed groups and to complementary control groups. The postnatal environmental assessment included measures of maternal intellectual and psychosocial functioning, current drug or alcohol use, and home environment. RESULTS The children in the alcohol-exposed group had worse tapping-inhibition performance than children in the non-alcohol-exposed group, and this effect persisted when potential confounding environmental variables, other drug variables, and concurrent verbal intelligence were controlled for. CONCLUSIONS Prenatal alcohol is predictive of decreased EF in early childhood that could not be attributed to environmental factors. The results are discussed in terms of the age and overall high-risk status of the children.
Collapse
|
37
|
Abstract
BACKGROUND Alcohol and drug use by pregnant women are harmful to the developing embryo and fetus. Teasing apart the specific contributions of each substance to adverse child outcome, however, proves difficult in practice. The risks to the neonate include intra-uterine growth retardation, birth defects, altered neurobehavior, and withdrawal symptoms. Subsequent behavior, development, and neurologic function may also be impaired. REVIEW SUMMARY Maternal cigarette smoking carries the greatest risk of impaired fetal growth of any of the substances discussed herein and has been linked to subsequent externalizing behaviors. Alcohol is a well-established teratogen. Heavy exposure to alcohol in a subset of infants is associated with fetal alcohol syndrome (FAS). Mental retardation is one of the main sequelae of alcohol exposure in utero. Fetal marijuana exposure has no consistent effect on outcome. Prenatal cocaine exposure has not been shown to have any detrimental effect on cognition, except as mediated through cocaine effects on head size. Although fetal cocaine exposure has been linked to numerous abnormalities in arousal, attention, and neurologic and neurophysiological function, most such effects appear to be self-limited and restricted to early infancy and childhood. Opiate exposure elicits a well-described withdrawal syndrome affecting central nervous, autonomic, and gastrointestinal systems, which is most severe among methadone-exposed infants. CONCLUSION Most adverse effects of prenatal drug exposure are self-limited, with catch-up growth and resolution of withdrawal and of prior neurobehavioral abnormalities noted over time. The exception is alcohol, which is linked to life-long impairments (i.e., mental retardation and microcephaly) and possibly cigarette-related behavioral effects. The absence of tangible evidence of detrimental long-term cocaine effects may reflect limitations in the methodology used to identify children at greatest risk for adverse outcome.
Collapse
Affiliation(s)
- Claudia A Chiriboga
- Department of Neurology, Division of Pediatric Neurology, College of Physicians and Surgeons, Columbia University, and Harlem Hospital Center, New York, NY 10032, USA.
| |
Collapse
|
38
|
Gil M, Zhen X, Friedman E. Prenatal cocaine exposure alters glycogen synthase kinase-3beta (GSK3beta) pathway in select rabbit brain areas. Neurosci Lett 2003; 349:143-6. [PMID: 12951189 DOI: 10.1016/s0304-3940(03)00852-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Prenatal cocaine exposure in rabbits induces cerebrocortical structural abnormalities. Glycogen synthase kinase-3beta (GSK3beta) plays an important role in neuronal development and survival. This study was designed to examine the effect of prenatal cocaine on brain GSK3beta. Rabbits exposed in utero to cocaine and assessed on postnatal day 20 had increased basal levels of phospho-GSK3beta (ser-9) in frontal cortex (FCX) and striatum, but not hippocampus (HP). However, no changes in GSK3beta expression were detected in the brain regions of treated rabbits. Consistent with the change in GSK3beta activity, levels of beta-catenin, a downstream substrate of GSK3beta, increased in FCX but not in HP of cocaine offspring. Administration of a D(1) dopamine receptor agonist inhibited GSK3beta activity in FCX and HP of control rabbits but not in cocaine offspring. This loss of GSK3beta inhibition is in accord with the previously demonstrated dysfunction of this receptor in in utero cocaine-exposed animals. The results indicate that prenatal cocaine exposure alters GSK3beta pathway in select brain areas and may underlie the structural changes noted in these animals.
Collapse
Affiliation(s)
- Mara Gil
- Department of Physiology/Pharmacology, CUNY Medical School, 138th Street and Convent Avenue, New York, NY 10031, USA
| | | | | |
Collapse
|
39
|
Affiliation(s)
- Linda C Mayes
- Child Study Center, 230 South Frontage Road, New Haven, CT 06520, USA.
| |
Collapse
|
40
|
Axo-axonic structures in the medial prefrontal cortex of the rat: reduction by prenatal exposure to cocaine. J Neurosci 2003. [PMID: 12832547 DOI: 10.1523/jneurosci.23-12-05227.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cognitive deficits associated with prenatal exposure to cocaine have been hypothesized to be the results of changes in the anatomy and function of the frontal cortex. In this study, pregnant dams were treated with cocaine (3 mg/kg i.v. twice a day) and the resulting adolescent (postnatal day, approximately 45) male offspring were killed for immunocytochemical determination of the total linear measure, number, location, and lengths of inhibitory GABA transporter-1 immunoreactive axo-axonic structures commonly called "candles" or "cartridges" in the medial prefrontal cortex. These inhibitory structures are the axon terminals of GABAergic cells that impinge on the initial axon segments of excitatory pyramidal neurons. We report that prenatal cocaine exposure decreased the number of these inhibitory candles. The greatest reduction of candles was observed in the ventral prelimbic cortex. Additionally, there was a subtle difference in the pattern of distribution of candles, namely the depth of the initial candle in the ventral portions of the prefrontal cortex was greater in rats exposed to prenatal cocaine. However, there was no overt change in the number of cells that were immunoreactive for the calcium-binding protein parvalbumin, an indicator of a subset of GABAergic interneurons that includes axo-axonic chandelier cells. We conclude that exposure to cocaine in utero disrupts the development of the axo-axonic cells in the prefrontal cortex and this disruption could contribute to the cognitive deficits reported with prenatal cocaine exposure.
Collapse
|
41
|
Melnick SM, Dow-Edwards DL. Blunted metabolic response to SKF 82958 in the mesolimbic system following preweaning cocaine treatment. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:253-9. [PMID: 12855197 DOI: 10.1016/s0165-3806(03)00098-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study examined glucose metabolic rates following dopamine D(1) agonist challenge in adult male rats pretreated with cocaine during postnatal days 11-20. Water-pretreated control rats showed a reliable decrease in glucose metabolism of rostral mesolimbic structures when challenged with SKF 82958 while cocaine-pretreated males did not. These data support the notion that cocaine exposure during the preweaning period dampens D(1) receptor-mediated function and that the mesolimbic system exhibits a selective vulnerability to early cocaine exposure.
Collapse
Affiliation(s)
- Susan M Melnick
- Laboratory of Cerebral Metabolism, Department of Physiology/Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Box #29, Brooklyn, NY 11203, USA
| | | |
Collapse
|
42
|
Noland JS, Singer LT, Arendt RE, Minnes S, Short EJ, Bearer CF. Executive functioning in preschool-age children prenatally exposed to alcohol, cocaine, and marijuana. Alcohol Clin Exp Res 2003; 27:647-56. [PMID: 12711927 PMCID: PMC2597170 DOI: 10.1097/01.alc.0000060525.10536.f6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Reports from clinical and experimental (animal) research converge on the suggestion that prenatal exposure to alcohol, cocaine, or marijuana undermines executive functioning (EF) and its neurological underpinnings. However, large, adequately controlled, prospective studies of alcohol and marijuana effects on EF have reported conflicting findings, and there have been no such studies of cocaine exposure. METHODS EF was investigated in a cohort (n = 316) of 4-year-old children the majority of whose mothers had used varying combinations of cocaine, alcohol, and marijuana during pregnancy. With use of postpartum maternal report and biological assay, children were assigned to overlapping prenatal cocaine-exposed, alcohol-exposed, and marijuana-exposed groups and to complementary control groups. The postnatal environmental assessment included measures of maternal intellectual and psychosocial functioning, current drug or alcohol use, and home environment. RESULTS The children in the alcohol-exposed group had worse tapping-inhibition performance than children in the non-alcohol-exposed group, and this effect persisted when potential confounding environmental variables, other drug variables, and concurrent verbal intelligence were controlled for. CONCLUSIONS Prenatal alcohol is predictive of decreased EF in early childhood that could not be attributed to environmental factors. The results are discussed in terms of the age and overall high-risk status of the children.
Collapse
|
43
|
Noland JS, Singer LT, Mehta SK, Super DM. Prenatal cocaine/polydrug exposure and infant performance on an executive functioning task. Dev Neuropsychol 2003; 24:499-517. [PMID: 12850756 PMCID: PMC10246334 DOI: 10.1207/s15326942dn2401_05] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Executive functioning in cocaine/polydrug (marijuana, alcohol, tobacco) exposed infants was assessed in a single session, occurring between 9.5 and 12.5 months of age. In an A-not-B task, infants searched, after performance-adjusted delays, for an object hidden in a new location. Overall, the cocaine-exposed (CE) infants did not differ from non-CE controls recruited from the same at-risk population. However, comparison of heavier-CE (n = 9) to the combined group of lighter-CE (n = 10) and non-CE (n = 32) infants revealed significant differences on A-not-B performance, as well as on global tests of mental and motor development. Covariates investigated included socioeconomic status, marital status, race, maternal age, years of education, weeks of gestation, birth weight, as well as severity of prenatal marijuana, alcohol, and tobacco exposure. The relationship of heavier-CE status to motor development was mediated by length of gestation, and the relationship of heavier-CE status to mental development was confounded with maternal gestational use of cigarettes. The relationship of heavier-CE status to A-not-B performance remained significant after controlling for potentially confounded variables and mediators, but was not statistically significant after controlling for the variance associated with global mental development.
Collapse
Affiliation(s)
- Julia S Noland
- Department of Pediatrics and General Medical Sciences, Case Western Reserve University, USA.
| | | | | | | |
Collapse
|
44
|
Shumsky JS, Wu Y, Murphy EH, Nissanov J, O'Brien-Jenkins A, Grayson DR. Differential effects of prenatal cocaine exposure on selected subunit mRNAs of the GABA(A) receptor in rabbit anterior cingulate cortex. J Chem Neuroanat 2002; 24:243-55. [PMID: 12406500 DOI: 10.1016/s0891-0618(02)00067-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have previously shown that in the dopamine-rich anterior cingulate cortex (ACC), significant changes in gamma-aminobutyric acid (GABA) immunoreactivity occur in the offspring of rabbits given intravenous injections of cocaine (3 mg/kg) twice daily during pregnancy. In the present study, the effects of prenatal cocaine exposure on the developmental expression of specific GABA(A) receptor subunit mRNAs were investigated. We compared the distribution of the alpha1, beta2, and gamma2 subunit mRNAs in cocaine- and saline-treated offspring aged postnatal days 20 and 60 (P20, P60). At P20, prenatal cocaine exposure resulted in a significant increase in alpha1 subunit mRNA in ACC lamina III and a significant reduction in the amounts of the beta2 subunit mRNA in ACC lamina II. No differences between cocaine- and saline-treated controls were detected for gamma2 subunit mRNA levels in ACC. Although the pattern of labeling was altered in cocaine-exposed animals, Nissl sections revealed no differences in lamination, indicating that the changes in GABA(A) subunit mRNAs could not be attributed to abnormal cytoarchitectonics. In P60 brains, no significant differences were observed between cocaine- and saline-treated material, indicating that the observed differences were transient. Collectively, our data show that prenatal cocaine exposure elicits differential, lamina-specific changes in mRNA levels encoding selected subunits of the GABA(A) receptor. Since these changes occur during a critical period when fine tuning of synaptic organization is achieved by processes of selective elimination or stabilization of synapses, we suggest that specific subunit mRNAs of the GABA(A) receptor play a role in cortical development.
Collapse
Affiliation(s)
- Jed S Shumsky
- Department of Neurobiology and Anatomy, MCP Hahnemann University, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Morgan RE, Garavan HP, Mactutus CF, Levitsky DA, Booze RM, Strupp BJ. Enduring effects of prenatal cocaine exposure on attention and reaction to errors. Behav Neurosci 2002; 116:624-33. [PMID: 12148929 DOI: 10.1037/0735-7044.116.4.624] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rats exposed to cocaine prenatally were administered a series of 3-choice visual attention tasks, with the most pronounced deficits seen in a task in which the onset time, location, and duration of a visual cue varied unpredictably between trials. The cocaine-exposed rats were less accurate than controls but did not differ in the rate of premature responses or omission errors. The pattern of errors, coupled with response latency data, implicated deficits in the ability to rapidly engage attention and maintain a high level of alertness to the task. The cocaine-exposed rats also exhibited a blunted reaction to an error on the previous trial, possibly reflecting an alteration in emotional regulation and/or error monitoring. Implications for underlying neuropathology are discussed.
Collapse
Affiliation(s)
- Russell E Morgan
- Department of Psychology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
46
|
Prenatal exposure to cocaine disrupts D1A dopamine receptor function via selective inhibition of protein phosphatase 1 pathway in rabbit frontal cortex. J Neurosci 2002. [PMID: 11717349 DOI: 10.1523/jneurosci.21-23-09160.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous work has demonstrated that in utero cocaine exposure induces an uncoupling of brain D(1A) dopamine receptors (D(1A)DARs) from G(s)-protein. The present work is an attempt to define the mechanism underlying the uncoupling. We detected a significant elevation of phosphoserine in frontal cortical D(1A)DARs of rabbits that were exposed prenatally to cocaine compared with saline controls. This increase in phosphorylation is observed at gestational day 22 and persists to postnatal day 20. The hyperphosphorylation of the D(1A)DAR is accompanied by a 45% inhibition in frontal cortex (FCX) protein phsphatase-1 (PP1) activity that appears to be mediated via DARPP-32 (dopamine and cAMP-regulated phosphoprotein) as indicated by elevated FCX phospho-DARPP-32 (Thr(34)). Furthermore, we demonstrated in both FCX and in PC2 cells that express D(1A)DARs that PP1 is physically associated with D(1A)DARs. We also observed a dramatic decrease in D(1A)DAR-associated PP1 activity in FCX of prenatal cocaine-exposed rabbits, indicating that the reduction in PP1 activity may be responsible for the hyperphosphorylation of the receptor. Furthermore, pretreatment of cortical membranes obtained from cocaine-exposed animals with exogenous PP1 dephosphorylated the phosphorylated D(1A)DAR and significantly reversed the impaired receptor-G(alphas) coupling. This work indicates (1) that D(1A)DAR dephosphorylation via PP1 is essential for receptor resensitization or reactivation and (2) an alteration in the DARPP-32/PP1 cascade appears to be a primary event responsible for D(1A)DAR dysfunction in in utero cocaine-exposed rabbit progeny. The present finding of an altered DARPP-32/PP1 cascade in association with a dysfunction in D(1A)DAR signal transmission in the prenatal cocaine-exposed rabbit brain may implicate novel strategies for the prevention and treatment for in utero cocaine-induced developmental and behavioral abnormalities.
Collapse
|
47
|
Stanwood GD, Washington RA, Shumsky JS, Levitt P. Prenatal cocaine exposure produces consistent developmental alterations in dopamine-rich regions of the cerebral cortex. Neuroscience 2002; 106:5-14. [PMID: 11564412 DOI: 10.1016/s0306-4522(01)00256-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Administration of cocaine to pregnant rabbits produces robust and long-lasting anatomical alterations in the dopamine-rich anterior cingulate cortex of offspring. These effects include increased length and decreased bundling of layer III and V pyramidal neuron dendrites, increases in parvalbumin expression in the dendrites of interneurons, and increases in detectable GABAergic neurons. We have now examined multiple cortical regions with varying degrees of catecholaminergic innervation to investigate regional variations in the ability of prenatal cocaine exposure to elicit these permanent changes. All regions containing a high density of tyrosine hydroxylase-immunoreactive fibers, indicative of prominent dopaminergic input, exhibited alterations in GABA and parvalbumin expression by interneurons and microtubule-associated protein-2 labeling of apical dendrites of pyramidal neurons. These regions included the medial prefrontal, entorhinal, and piriform cortices. In contrast, primary somatosensory, auditory and motor cortices exhibited little tyrosine hydroxylase staining and no measurable cocaine-induced changes in cortical structure. From these data we suggest that the presence of dopaminergic afferents contributes to the marked specificity of the altered development of excitatory pyramidal neurons and inhibitory interneurons induced by low dose i.v. administration of cocaine in utero.
Collapse
Affiliation(s)
- G D Stanwood
- Department of Neurobiology, University of Pittsburgh School of Medicine, E1440 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
48
|
Jin LQ, Wang HY, Friedman E. Stimulated D(1) dopamine receptors couple to multiple Galpha proteins in different brain regions. J Neurochem 2001; 78:981-90. [PMID: 11553672 DOI: 10.1046/j.1471-4159.2001.00470.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have revealed that activation of rat striatal D(1) dopamine receptors stimulates both adenylyl cyclase and phospholipase C via G(s) and G(q), respectively. The differential distribution of these systems in brain supports the existence of distinct receptor systems. The present communication extends the study by examining other brain regions: hippocampus, amygdala, and frontal cortex. In membrane preparations of these brain regions, selective stimulation of D(1) dopamine receptors increases the hydrolysis of phosphatidylinositol/phosphatidylinositol 4,5-biphosphate. In these brain regions, D(1) dopamine receptors couple differentially to multiple Galpha protein subunits. Antisera against Galpha(q) blocks dopamine-stimulated PIP(2) hydrolysis in hippocampal and in striatal membranes. The binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(i) was enhanced in all brain regions. Dopamine also increased the binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(q) in these brain regions: hippocampus = amygdala > frontal cortex. However, dopamine-stimulated binding of [(35)S]GTPgammaS to Galphas only in the frontal cortex and striatum. This differential coupling profile in the brain regions was not related to a differential regional distribution of the Galpha proteins. Dopamine induced increases in GTPgammaS binding to Galpha(s) and Galpha(q) was blocked by the D(1) antagonist SCH23390 but not by D(2) receptor antagonist l-sulpiride, suggesting that D(1) dopamine receptors couple to both Galpha(s) and Galpha(q) proteins. Co-immunoprecipitation of Galpha proteins with receptor-binding sites indicate that in the frontal cortex, D(1) dopamine-binding sites are associated with both Galpha(s) and Galpha(q) and, in hippocampus or amygdala, D(1) dopamine receptors couple solely to Galpha(q). The results indicate that in addition to the D(1)/G(s)/adenylyl cyclase system, brain D(1)-like dopamine receptor sites activate phospholipase C through Galpha(q) protein.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Amygdala/metabolism
- Animals
- Benzazepines/pharmacology
- Brain/metabolism
- Cell Membrane/metabolism
- Dopamine/pharmacology
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Frontal Lobe/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11
- GTP-Binding Protein alpha Subunits, Gs/analysis
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
- Heterotrimeric GTP-Binding Proteins/analysis
- Heterotrimeric GTP-Binding Proteins/metabolism
- Hippocampus/metabolism
- Male
- Phosphatidylinositols/metabolism
- Phosphorus Radioisotopes
- Precipitin Tests
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/analysis
- Receptors, Dopamine D1/metabolism
- Sulfur Radioisotopes
- Tritium
Collapse
Affiliation(s)
- L Q Jin
- Laboratory of Molecular Pharmacology, Department of Pharmacology and Physiology, MCP Hahnemann School of Medicine, Philadelphia 19102, USA
| | | | | |
Collapse
|
49
|
Tilakaratne N, Cai G, Friedman E. Attenuation of cocaine-induced genomic and functional responses in prenatal cocaine-exposed rabbits. Pharmacol Biochem Behav 2001; 69:225-32. [PMID: 11420090 DOI: 10.1016/s0091-3057(01)00534-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effects of in utero cocaine exposure on cocaine-induced genomic and functional responses in postnatal life were examined. Pregnant Dutch Belted rabbits were injected intravenously, twice daily, with cocaine hydrochloride (4 mg/kg) or saline from day 8 through day 29 of pregnancy. Prenatally exposed kits were challenged with cocaine on postnatal day 20. In prenatal saline-exposed kits, cocaine induced time- and dose-dependent c-fos gene expression in both frontal cortex and striatum. Prenatal cocaine exposure reduced cocaine-induced c-fos responses by 35-58% in the frontal cortex and 37-41% in the striatum. Cocaine-induced functional responses that included head bobbing, seizure, and locomotor activity were also attenuated in prenatal cocaine-exposed kits. Cocaine-induced c-fos expression and functional responses were blocked by the D(1) dopamine receptor antagonist, SCH23390, or by the serotonin receptor antagonist, methysergide, but not by the D(2) dopamine receptor antagonist, L-sulpride. The results indicate that in utero cocaine exposure leads to diminished responses to cocaine challenge in the offspring, which may be mediated by prenatal cocaine-induced alterations in one or more components of the D(1) dopamine and/or serotonin receptor signaling systems during early postnatal life.
Collapse
Affiliation(s)
- N Tilakaratne
- Laboratory of Molecular Pharmacology, Department of Pharmacology and Physiology, MCP Hahnemann School of Medicine, 245 N 15th Street, Philadelphia, PA 19102, USA
| | | | | |
Collapse
|
50
|
Prenatal cocaine exposure increases sensitivity to the attentional effects of the dopamine D1 agonist SKF81297. J Neurosci 2001. [PMID: 11102500 DOI: 10.1523/jneurosci.20-23-08902.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sensitivity to the attentional effects of SKF81297, a selective full agonist at dopamine D(1) receptors, was assessed in adult rats exposed to cocaine prenatally (via intravenous injections) and controls. The task assessed the ability of the subjects to monitor an unpredictable light cue of either 300 or 700 msec duration and to maintain performance when presented with olfactory distractors. SKF81297 decreased nose pokes before cue presentation and increased latencies and response biases (the tendency to respond to the same port used on the previous trial), suggesting an effect of SKF81297 on the dopamine (DA) systems responsible for response initiation and selection. The cocaine-exposed (COC) and control animals did not differ in sensitivity to the effects of SKF81297 on these measures. In contrast, the COC animals were significantly more sensitive than were controls to the impairing effect of SKF81297 on omission errors, a measure of sustained attention. This pattern of results provides evidence that prenatal cocaine exposure produces lasting changes in the DA system(s) subserving sustained attention but does not alter the DA system(s) underlying response selection and initiation. These findings also provide support for the role of D(1) receptor activation in attentional functioning.
Collapse
|