1
|
Mubuchi A, Takechi M, Nishio S, Matsuda T, Itoh Y, Sato C, Kitajima K, Kitagawa H, Miyata S. Assembly of neuron- and radial glial-cell-derived extracellular matrix molecules promotes radial migration of developing cortical neurons. eLife 2024; 12:RP92342. [PMID: 38512724 PMCID: PMC10957175 DOI: 10.7554/elife.92342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Radial neuronal migration is a key neurodevelopmental event for proper cortical laminar organization. The multipolar-to-bipolar transition, a critical step in establishing neuronal polarity during radial migration, occurs in the subplate/intermediate zone (SP/IZ), a distinct region of the embryonic cerebral cortex. It has been known that the extracellular matrix (ECM) molecules are enriched in the SP/IZ. However, the molecular constitution and functions of the ECM formed in this region remain poorly understood. Here, we identified neurocan (NCAN) as a major chondroitin sulfate proteoglycan in the mouse SP/IZ. NCAN binds to both radial glial-cell-derived tenascin-C (TNC) and hyaluronan (HA), a large linear polysaccharide, forming a ternary complex of NCAN, TNC, and HA in the SP/IZ. Developing cortical neurons make contact with the ternary complex during migration. The enzymatic or genetic disruption of the ternary complex impairs radial migration by suppressing the multipolar-to-bipolar transition. Furthermore, both TNC and NCAN promoted the morphological maturation of cortical neurons in vitro. The present results provide evidence for the cooperative role of neuron- and radial glial-cell-derived ECM molecules in cortical development.
Collapse
Affiliation(s)
- Ayumu Mubuchi
- Graduate School of Agriculture, Tokyo University of Agriculture and TechnologyFuchuJapan
| | - Mina Takechi
- Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
| | - Shunsuke Nishio
- Faculty of Food and Agricultural Sciences, Fukushima UniversityFukushimaJapan
| | - Tsukasa Matsuda
- Faculty of Food and Agricultural Sciences, Fukushima UniversityFukushimaJapan
| | - Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of OxfordOxfordUnited Kingdom
| | - Chihiro Sato
- Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
- Bioscience and Biotechnology Center, Nagoya UniversityNagoyaJapan
- Institute for Glyco-core Research, Nagoya UniversityNagoyaJapan
| | - Ken Kitajima
- Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
- Bioscience and Biotechnology Center, Nagoya UniversityNagoyaJapan
- Institute for Glyco-core Research, Nagoya UniversityNagoyaJapan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical UniversityKobeJapan
| | - Shinji Miyata
- Graduate School of Agriculture, Tokyo University of Agriculture and TechnologyFuchuJapan
| |
Collapse
|
2
|
Lee CY, Chooi WH, Ng S, Chew SY. Modulating neuroinflammation through molecular, cellular and biomaterial-based approaches to treat spinal cord injury. Bioeng Transl Med 2023; 8:e10389. [PMID: 36925680 PMCID: PMC10013833 DOI: 10.1002/btm2.10389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/02/2022] [Accepted: 07/16/2022] [Indexed: 11/09/2022] Open
Abstract
The neuroinflammatory response that is elicited after spinal cord injury contributes to both tissue damage and reparative processes. The complex and dynamic cellular and molecular changes within the spinal cord microenvironment result in a functional imbalance of immune cells and their modulatory factors. To facilitate wound healing and repair, it is necessary to manipulate the immunological pathways during neuroinflammation to achieve successful therapeutic interventions. In this review, recent advancements and fresh perspectives on the consequences of neuroinflammation after SCI and modulation of the inflammatory responses through the use of molecular-, cellular-, and biomaterial-based therapies to promote tissue regeneration and functional recovery will be discussed.
Collapse
Affiliation(s)
- Cheryl Yi‐Pin Lee
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Wai Hon Chooi
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Shi‐Yan Ng
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Sing Yian Chew
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
3
|
Paul MH, Hildebrandt-Einfeldt L, Beeg Moreno VJ, Del Turco D, Deller T. Maturation-Dependent Differences in the Re-innervation of the Denervated Dentate Gyrus by Sprouting Associational and Commissural Mossy Cell Axons in Organotypic Tissue Cultures of Entorhinal Cortex and Hippocampus. Front Neuroanat 2021; 15:682383. [PMID: 34122019 PMCID: PMC8194403 DOI: 10.3389/fnana.2021.682383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022] Open
Abstract
Sprouting of surviving axons is one of the major reorganization mechanisms of the injured brain contributing to a partial restoration of function. Of note, sprouting is maturation as well as age-dependent and strong in juvenile brains, moderate in adult and weak in aged brains. We have established a model system of complex organotypic tissue cultures to study sprouting in the dentate gyrus following entorhinal denervation. Entorhinal denervation performed after 2 weeks postnatally resulted in a robust, rapid, and very extensive sprouting response of commissural/associational fibers, which could be visualized using calretinin as an axonal marker. In the present study, we analyzed the effect of maturation on this form of sprouting and compared cultures denervated at 2 weeks postnatally with cultures denervated at 4 weeks postnatally. Calretinin immunofluorescence labeling as well as time-lapse imaging of virally-labeled (AAV2-hSyn1-GFP) commissural axons was employed to study the sprouting response in aged cultures. Compared to the young cultures commissural/associational sprouting was attenuated and showed a pattern similar to the one following entorhinal denervation in adult animals in vivo. We conclude that a maturation-dependent attenuation of sprouting occurs also in vitro, which now offers the chance to study, understand and influence maturation-dependent differences in brain repair in these culture preparations.
Collapse
Affiliation(s)
- Mandy H Paul
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Lars Hildebrandt-Einfeldt
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Viktor J Beeg Moreno
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Domenico Del Turco
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
4
|
Roll L, Eysel UT, Faissner A. Laser Lesion in the Mouse Visual Cortex Induces a Stem Cell Niche-Like Extracellular Matrix, Produced by Immature Astrocytes. Front Cell Neurosci 2020; 14:102. [PMID: 32508592 PMCID: PMC7253582 DOI: 10.3389/fncel.2020.00102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
The mammalian central nervous system (CNS) is characterized by a severely limited regeneration capacity. Comparison with lower species like amphibians, which are able to restore even complex tissues after damage, indicates the presence of an inhibitory environment that restricts the cellular response in mammals. In this context, signals provided by the extracellular matrix (ECM) are important regulators of events like cell survival, proliferation, migration, differentiation or neurite outgrowth. Therefore, knowledge of the post-lesional ECM and of cells that produce these factors might support development of new treatment strategies for patients suffering from traumatic brain injury and other types of CNS damage. In the present study, we analyzed the surround of focal infrared laser lesions of the adult mouse visual cortex. This lesion paradigm avoids direct contact with the brain, as the laser beam passes the intact bone. Cell type-specific markers revealed a distinct spatial distribution of different astroglial subtypes in the penumbra after injury. Glial fibrillary acidic protein (GFAP) as marker for reactive astrocytes was found broadly up-regulated, whereas the more immature markers vimentin and nestin were only expressed by a subset of cells. Dividing astrocytes could be identified via the proliferation marker Ki-67. Different ECM molecules, among others the neural stem cell-associated glycoprotein tenascin-C and the DSD-1 chondroitin sulfate epitope, were found on astrocytes in the penumbra. Wisteria floribunda agglutinin (WFA) and aggrecan as markers for perineuronal nets, a specialized ECM limiting synaptic plasticity, appeared normal in the vicinity of the necrotic lesion core. In sum, expression of progenitor markers by astrocyte subpopulations and the identification of proliferating astrocytes in combination with an ECM that contains components typically associated with neural stem/progenitor cells suggest that an immature cell fate is facilitated as response to the injury.
Collapse
Affiliation(s)
- Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Ulf T Eysel
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany.,Department of Neurophysiology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Zhou Y, Shao A, Yao Y, Tu S, Deng Y, Zhang J. Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Commun Signal 2020; 18:62. [PMID: 32293472 PMCID: PMC7158016 DOI: 10.1186/s12964-020-00549-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of fatality and disability worldwide. Despite its high prevalence, effective treatment strategies for TBI are limited. Traumatic brain injury induces structural and functional alterations of astrocytes, the most abundant cell type in the brain. As a way of coping with the trauma, astrocytes respond in diverse mechanisms that result in reactive astrogliosis. Astrocytes are involved in the physiopathologic mechanisms of TBI in an extensive and sophisticated manner. Notably, astrocytes have dual roles in TBI, and some astrocyte-derived factors have double and opposite properties. Thus, the suppression or promotion of reactive astrogliosis does not have a substantial curative effect. In contrast, selective stimulation of the beneficial astrocyte-derived molecules and simultaneous attenuation of the deleterious factors based on the spatiotemporal-environment can provide a promising astrocyte-targeting therapeutic strategy. In the current review, we describe for the first time the specific dual roles of astrocytes in neuronal plasticity and reconstruction, including neurogenesis, synaptogenesis, angiogenesis, repair of the blood-brain barrier, and glial scar formation after TBI. We have also classified astrocyte-derived factors depending on their neuroprotective and neurotoxic roles to design more appropriate targeted therapies. Video Abstract
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Province, Zhejiang, 310009, Hangzhou, China.
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Province, Zhejiang, 310009, Hangzhou, China
| |
Collapse
|
6
|
Roll L, Faissner A. Tenascins in CNS lesions. Semin Cell Dev Biol 2019; 89:118-124. [DOI: 10.1016/j.semcdb.2018.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/03/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
|
7
|
Kim SY, Senatorov VV, Morrissey CS, Lippmann K, Vazquez O, Milikovsky DZ, Gu F, Parada I, Prince DA, Becker AJ, Heinemann U, Friedman A, Kaufer D. TGFβ signaling is associated with changes in inflammatory gene expression and perineuronal net degradation around inhibitory neurons following various neurological insults. Sci Rep 2017; 7:7711. [PMID: 28794441 PMCID: PMC5550510 DOI: 10.1038/s41598-017-07394-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/27/2017] [Indexed: 01/17/2023] Open
Abstract
Brain damage due to stroke or traumatic brain injury (TBI), both leading causes of serious long-term disability, often leads to the development of epilepsy. Patients who develop post-injury epilepsy tend to have poor functional outcomes. Emerging evidence highlights a potential role for blood-brain barrier (BBB) dysfunction in the development of post-injury epilepsy. However, common mechanisms underlying the pathological hyperexcitability are largely unknown. Here, we show that comparative transcriptome analyses predict remodeling of extracellular matrix (ECM) as a common response to different types of injuries. ECM-related transcriptional changes were induced by the serum protein albumin via TGFβ signaling in primary astrocytes. In accordance with transcriptional responses, we found persistent degradation of protective ECM structures called perineuronal nets (PNNs) around fast-spiking inhibitory interneurons, in a rat model of TBI as well as in brains of human epileptic patients. Exposure of a naïve brain to albumin was sufficient to induce the transcriptional and translational upregulation of molecules related to ECM remodeling and the persistent breakdown of PNNs around fast-spiking inhibitory interneurons, which was contingent on TGFβ signaling activation. Our findings provide insights on how albumin extravasation that occurs upon BBB dysfunction in various brain injuries can predispose neural circuitry to the development of chronic inhibition deficits.
Collapse
Affiliation(s)
- Soo Young Kim
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
| | - Vladimir V Senatorov
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Christapher S Morrissey
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Kristina Lippmann
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, D10117, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, 04315, Germany
| | - Oscar Vazquez
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Dan Z Milikovsky
- Departments of Cognitive and Brain Sciences, Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Feng Gu
- Department of Neurology and Neurological Sciences, , Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Isabel Parada
- Department of Neurology and Neurological Sciences, , Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - David A Prince
- Department of Neurology and Neurological Sciences, , Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Albert J Becker
- Department of Neuropathology, University of Bonn Medical Center, Bonn, 53105, Germany
| | - Uwe Heinemann
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, D10117, Germany
| | - Alon Friedman
- Departments of Cognitive and Brain Sciences, Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Daniela Kaufer
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA. .,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA. .,Canadian Institute for Advanced Research (CIFAR) Program in Child and Brain Development, ON M5G 1Z8, Toronto, Canada.
| |
Collapse
|
8
|
Abstract
Spinal cord injury (SCI) lesions present diverse challenges for repair strategies. Anatomically complete injuries require restoration of neural connectivity across lesions. Anatomically incomplete injuries may benefit from augmentation of spontaneous circuit reorganization. Here, we review SCI cell biology, which varies considerably across three different lesion-related tissue compartments: (a) non-neural lesion core, (b) astrocyte scar border, and (c) surrounding spared but reactive neural tissue. After SCI, axon growth and circuit reorganization are determined by neuron-cell-autonomous mechanisms and by interactions among neurons, glia, and immune and other cells. These interactions are shaped by both the presence and the absence of growth-modulating molecules, which vary markedly in different lesion compartments. The emerging understanding of how SCI cell biology differs across lesion compartments is fundamental to developing rationally targeted repair strategies.
Collapse
|
9
|
Role of Matricellular Proteins in Disorders of the Central Nervous System. Neurochem Res 2016; 42:858-875. [DOI: 10.1007/s11064-016-2088-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022]
|
10
|
Seehusen F, Al-Azreg SA, Raddatz BB, Haist V, Puff C, Spitzbarth I, Ulrich R, Baumgärtner W. Accumulation of Extracellular Matrix in Advanced Lesions of Canine Distemper Demyelinating Encephalitis. PLoS One 2016; 11:e0159752. [PMID: 27441688 PMCID: PMC4956304 DOI: 10.1371/journal.pone.0159752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/07/2016] [Indexed: 11/18/2022] Open
Abstract
In demyelinating diseases, changes in the quality and quantity of the extracellular matrix (ECM) may contribute to demyelination and failure of myelin repair and axonal sprouting, especially in chronic lesions. To characterize changes in the ECM in canine distemper demyelinating leukoencephalitis (DL), histochemical and immunohistochemical investigations of formalin-fixed paraffin-embedded cerebella using azan, picrosirius red and Gomori`s silver stain as well as antibodies directed against aggrecan, type I and IV collagen, fibronectin, laminin and phosphacan showed alterations of the ECM in CDV-infected dogs. A significantly increased amount of aggrecan was detected in early and late white matter lesions. In addition, the positive signal for collagens I and IV as well as fibronectin was significantly increased in late lesions. Conversely, the expression of phosphacan was significantly decreased in early and more pronounced in late lesions compared to controls. Furthermore, a set of genes involved in ECM was extracted from a publically available microarray data set and was analyzed for differential gene expression. Gene expression of ECM molecules, their biosynthesis pathways, and pro-fibrotic factors was mildly up-regulated whereas expression of matrix remodeling enzymes was up-regulated to a relatively higher extent. Summarized, the observed findings indicate that changes in the quality and content of ECM molecules represent important, mainly post-transcriptional features in advanced canine distemper lesions. Considering the insufficiency of morphological regeneration in chronic distemper lesions, the accumulated ECM seems to play a crucial role upon regenerative processes and may explain the relatively small regenerative potential in late stages of this disease.
Collapse
Affiliation(s)
- Frauke Seehusen
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Seham A. Al-Azreg
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Barbara B. Raddatz
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Verena Haist
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Ingo Spitzbarth
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- * E-mail:
| |
Collapse
|
11
|
Kim SY, Porter BE, Friedman A, Kaufer D. A potential role for glia-derived extracellular matrix remodeling in postinjury epilepsy. J Neurosci Res 2016; 94:794-803. [PMID: 27265805 DOI: 10.1002/jnr.23758] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 01/04/2023]
Abstract
Head trauma and vascular injuries are known risk factors for acquired epilepsy. The sequence of events that lead from the initial injury to the development of epilepsy involves complex plastic changes and circuit rewiring. In-depth, comprehensive understanding of the epileptogenic process is critical for the identification of disease-modifying targets. Here we review the complex interactions of cellular and extracellular components that may promote epileptogenesis, with an emphasis on the role of astrocytes. Emerging evidence demonstrates that astrocytes promptly respond to brain damage and play a critical role in the development of postinjury epilepsy. Astrocytes have been shown to regulate extracellular matrix (ECM) remodeling, which can affect plasticity and stability of synapses and, in turn, contribute to the epileptogenic process. From these separate lines of evidence, we present a hypothesis suggesting a possible role for astrocyte-regulated remodeling of ECM and perineuronal nets, a specialized ECM structure around fast-spiking inhibitory interneurons, in the development and progression of posttraumatic epilepsies. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soo Young Kim
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California
| | - Brenda E Porter
- Department of Neurology, Stanford University School of Medicine, Palo Alto, California
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California.,Canadian Institute for Advanced Research Program in Child and Brain Development, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Pharmacological Suppression of CNS Scarring by Deferoxamine Reduces Lesion Volume and Increases Regeneration in an In Vitro Model for Astroglial-Fibrotic Scarring and in Rat Spinal Cord Injury In Vivo. PLoS One 2015. [PMID: 26222542 PMCID: PMC4519270 DOI: 10.1371/journal.pone.0134371] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lesion-induced scarring is a major impediment for regeneration of injured axons in the central nervous system (CNS). The collagen-rich glial-fibrous scar contains numerous axon growth inhibitory factors forming a regeneration-barrier for axons. We demonstrated previously that the combination of the iron chelator 2,2’-bipyridine-5,5’-decarboxylic acid (BPY-DCA) and 8-Br-cyclic AMP (cAMP) inhibits scar formation and collagen deposition, leading to enhanced axon regeneration and partial functional recovery after spinal cord injury. While BPY-DCA is not a clinical drug, the clinically approved iron chelator deferoxamine mesylate (DFO) may be a suitable alternative for anti-scarring treatment (AST). In order to prove the scar-suppressing efficacy of DFO we modified a recently published in vitro model for CNS scarring. The model comprises a co-culture system of cerebral astrocytes and meningeal fibroblasts, which form scar-like clusters when stimulated with transforming growth factor-β (TGF-β). We studied the mechanisms of TGF-β-induced CNS scarring and compared the efficiency of different putative pharmacological scar-reducing treatments, including BPY-DCA, DFO and cAMP as well as combinations thereof. We observed modulation of TGF-β-induced scarring at the level of fibroblast proliferation and contraction as well as specific changes in the expression of extracellular matrix molecules and axon growth inhibitory proteins. The individual and combinatorial pharmacological treatments had distinct effects on the cellular and molecular aspects of in vitro scarring. DFO could be identified as a putative anti-scarring treatment for CNS trauma. We subsequently validated this by local application of DFO to a dorsal hemisection in the rat thoracic spinal cord. DFO treatment led to significant reduction of scarring, slightly increased regeneration of corticospinal tract as well as ascending CGRP-positive axons and moderately improved locomotion. We conclude that the in vitro model for CNS scarring is suitable for efficient pre-screening and identification of putative scar-suppressing agents prior to in vivo application and validation, thus saving costs, time and laboratory animals.
Collapse
|
13
|
Burda JE, Bernstein AM, Sofroniew MV. Astrocyte roles in traumatic brain injury. Exp Neurol 2015; 275 Pt 3:305-315. [PMID: 25828533 DOI: 10.1016/j.expneurol.2015.03.020] [Citation(s) in RCA: 515] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/28/2015] [Accepted: 03/08/2015] [Indexed: 01/15/2023]
Abstract
Astrocytes sense changes in neural activity and extracellular space composition. In response, they exert homeostatic mechanisms critical for maintaining neural circuit function, such as buffering neurotransmitters, modulating extracellular osmolarity and calibrating neurovascular coupling. In addition to upholding normal brain activities, astrocytes respond to diverse forms of brain injury with heterogeneous and progressive changes of gene expression, morphology, proliferative capacity and function that are collectively referred to as reactive astrogliosis. Traumatic brain injury (TBI) sets in motion complex events in which noxious mechanical forces cause tissue damage and disrupt central nervous system (CNS) homeostasis, which in turn trigger diverse multi-cellular responses that evolve over time and can lead either to neural repair or secondary cellular injury. In response to TBI, astrocytes in different cellular microenvironments tune their reactivity to varying degrees of axonal injury, vascular disruption, ischemia and inflammation. Here we review different forms of TBI-induced astrocyte reactivity and the functional consequences of these responses for TBI pathobiology. Evidence regarding astrocyte contribution to post-traumatic tissue repair and synaptic remodeling is examined, and the potential for targeting specific aspects of astrogliosis to ameliorate TBI sequelae is considered.
Collapse
Affiliation(s)
- Joshua E Burda
- Department of Neurobiology and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095-1763, USA
| | - Alexander M Bernstein
- Department of Neurobiology and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095-1763, USA
| | - Michael V Sofroniew
- Department of Neurobiology and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095-1763, USA.
| |
Collapse
|
14
|
Perederiy JV, Westbrook GL. Structural plasticity in the dentate gyrus- revisiting a classic injury model. Front Neural Circuits 2013; 7:17. [PMID: 23423628 PMCID: PMC3575076 DOI: 10.3389/fncir.2013.00017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/27/2013] [Indexed: 12/12/2022] Open
Abstract
The adult brain is in a continuous state of remodeling. This is nowhere more true than in the dentate gyrus, where competing forces such as neurodegeneration and neurogenesis dynamically modify neuronal connectivity, and can occur simultaneously. This plasticity of the adult nervous system is particularly important in the context of traumatic brain injury or deafferentation. In this review, we summarize a classic injury model, lesioning of the perforant path, which removes the main extrahippocampal input to the dentate gyrus. Early studies revealed that in response to deafferentation, axons of remaining fiber systems and dendrites of mature granule cells undergo lamina-specific changes, providing one of the first examples of structural plasticity in the adult brain. Given the increasing role of adult-generated new neurons in the function of the dentate gyrus, we also compare the response of newborn and mature granule cells following lesioning of the perforant path. These studies provide insights not only to plasticity in the dentate gyrus, but also to the response of neural circuits to brain injury.
Collapse
Affiliation(s)
- Julia V Perederiy
- Vollum Institute, Oregon Health and Science University Portland, OR, USA
| | | |
Collapse
|
15
|
Jakovcevski I, Miljkovic D, Schachner M, Andjus PR. Tenascins and inflammation in disorders of the nervous system. Amino Acids 2012; 44:1115-27. [DOI: 10.1007/s00726-012-1446-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/10/2012] [Indexed: 12/20/2022]
|
16
|
Wiese S, Karus M, Faissner A. Astrocytes as a source for extracellular matrix molecules and cytokines. Front Pharmacol 2012; 3:120. [PMID: 22740833 PMCID: PMC3382726 DOI: 10.3389/fphar.2012.00120] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/06/2012] [Indexed: 12/19/2022] Open
Abstract
Research of the past 25 years has shown that astrocytes do more than participating and building up the blood-brain barrier and detoxify the active synapse by reuptake of neurotransmitters and ions. Indeed, astrocytes express neurotransmitter receptors and, as a consequence, respond to stimuli. Within the tripartite synapse, the astrocytes owe more and more importance. Besides the functional aspects the differentiation of astrocytes has gained a more intensive focus. Deeper knowledge of the differentiation processes during development of the central nervous system might help explaining and even help treating neurological diseases like Alzheimer’s disease, Amyotrophic lateral sclerosis, Parkinsons disease, and psychiatric disorders in which astrocytes have been shown to play a role. Specific differentiation of neural stem cells toward the astroglial lineage is performed as a multi-step process. Astrocytes and oligodendrocytes develop from a multipotent stem cell that prior to this has produced primarily neuronal precursor cells. This switch toward the more astroglial differentiation is regulated by a change in receptor composition on the cell surface and responsiveness to Fibroblast growth factor and Epidermal growth factor (EGF). The glial precursor cell is driven into the astroglial direction by signaling molecules like Ciliary neurotrophic factor, Bone Morphogenetic Proteins, and EGF. However, the early astrocytes influence their environment not only by releasing and responding to diverse soluble factors but also express a wide range of extracellular matrix (ECM) molecules, in particular proteoglycans of the lectican family and tenascins. Lately these ECM molecules have been shown to participate in glial development. In this regard, especially the matrix protein Tenascin C (Tnc) proved to be an important regulator of astrocyte precursor cell proliferation and migration during spinal cord development. Nevertheless, ECM molecules expressed by reactive astrocytes are also known to act mostly in an inhibitory fashion under pathophysiological conditions. Thus, we further summarize resent data concerning the role of chondroitin sulfate proteoglycans and Tnc under pathological conditions.
Collapse
Affiliation(s)
- Stefan Wiese
- Group for Molecular Cell Biology, Department for Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum Bochum, Germany
| | | | | |
Collapse
|
17
|
Garwood J, Theocharidis U, Calco V, Dobbertin A, Faissner A. Existence of tenascin-C isoforms in rat that contain the alternatively spliced AD1 domain are developmentally regulated during hippocampal development. Cell Mol Neurobiol 2012; 32:279-87. [PMID: 21968644 DOI: 10.1007/s10571-011-9759-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
Tenascin-C (TN-C) is a multimodular glycoprotein of the extracellular matrix which is important for the development of the nervous system and has a range of different functions which are mediated by the different protein domains present. TN-C contains eight constitutive fibronectin type III (FNIII) domains and a region of alternatively spliced FNIII domains. In the mouse and chick, six of these domains have been described and characterized, whereas in human there are nine of them. In this report, we show that seven alternatively spliced FNIII domains exist in rat and describe the differential expression pattern of the additional domain AD1 during embryonic and postnatal rat brain development. The AD1 domain of rat is homologous to the ones described in human and chick proteins but does not exist in mouse. Its expression can be located to the developing rat hippocampus and the lining of the lateral ventricle, regions where the TN-C protein may affect the behavior of stem and progenitor cells. During hippocampal development AD1 and the other alternatively spliced domains are differentially expressed as shown by RT-PCRs, immunocytochemistry and in situ hybridizations.
Collapse
Affiliation(s)
- J Garwood
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University, NDEF 05/593, Universitätsstraße 150, 44780 Bochum, Germany, Jeremy.
| | | | | | | | | |
Collapse
|
18
|
Roll L, Mittmann T, Eysel UT, Faissner A. The laser lesion of the mouse visual cortex as a model to study neural extracellular matrix remodeling during degeneration, regeneration and plasticity of the CNS. Cell Tissue Res 2012; 349:133-45. [DOI: 10.1007/s00441-011-1313-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/20/2011] [Indexed: 02/06/2023]
|
19
|
Pyka M, Wetzel C, Aguado A, Geissler M, Hatt H, Faissner A. Chondroitin sulfate proteoglycans regulate astrocyte-dependent synaptogenesis and modulate synaptic activity in primary embryonic hippocampal neurons. Eur J Neurosci 2011; 33:2187-202. [PMID: 21615557 DOI: 10.1111/j.1460-9568.2011.07690.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been shown that astrocyte-derived extracellular matrix (ECM) is important for formation and maintenance of CNS synapses. In order to study the effects of glial-derived ECM on synaptogenesis, E18 rat hippocampal neurons and primary astrocytes were co-cultivated using a cell-insert system. Under these conditions, neurons differentiated under low density conditions (3500 cells/cm(2) ) in defined, serum-free medium and in the absence of direct, membrane-mediated neuron-astrocyte interactions. Astrocytes promoted the formation of structurally intact synapses, as documented by the co-localisation of bassoon- and ProSAP1/Shank2-positive puncta, markers of the pre- and postsynapse, respectively. The development of synapses was paralleled by the emergence of perineuronal net (PNN)-like structures that contained various ECM components such as hyaluronic acid, brevican and neurocan. In order to assess potential functions for synaptogenesis, the ECM was removed by treatment with hyaluronidase or chondroitinase ABC. Both enzymes significantly enhanced the number of synaptic puncta. Whole-cell voltage-clamp recordings of control and enzyme-treated hippocampal neurons revealed that chondroitinase ABC treatment led to a significant decrease in amplitude and a reduced charge of miniature excitatory postsynaptic currents, whereas inhibitory postsynaptic currents were not affected. When the response to the application of glutamate was measured, a reduced sensitivity could be detected and resulted in decreased currents in response to the excitatory neurotransmitter. These findings are consistent with the interpretation that the ECM partakes in the regulation of the density of glutamate receptors in subsynaptic sites.
Collapse
Affiliation(s)
- Martin Pyka
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Universitätsstr. 150, NDEF 05/594, D-44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Harris JL, Reeves TM, Phillips LL. Phosphacan and receptor protein tyrosine phosphatase β expression mediates deafferentation-induced synaptogenesis. Hippocampus 2011; 21:81-92. [PMID: 20014386 DOI: 10.1002/hipo.20725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study documents the spatial and temporal expression of three structurally related chondroitin sulfated proteoglycans (CSPGs) during synaptic regeneration induced by brain injury. Using the unilateral entorhinal cortex (EC) lesion model of adaptive synaptogenesis, we documented mRNA and protein profiles of phosphacan and its two splice variants, full length receptor protein tyrosine phosphatase β (RPTPβ) and the short transmembrane receptor form (sRPTPβ), at 2, 7, and 15 days postlesion. We report that whole hippocampal sRPTPβ protein and mRNA are persistently elevated over the first two weeks after UEC. As predicted, this transmembrane family member was localized adjacent to synaptic sites in the deafferented neuropil and showed increased distribution over that zone following lesion. By contrast, whole hippocampal phosphacan protein was not elevated with deafferentation; however, its mRNA was increased during the period of sprouting and synapse formation (7d). When the zone of synaptic reorganization was sampled using molecular layer/granule cell (ML/GCL) enriched dissections, we observed an increase in phosphacan protein at 7d, concurrent with the observed hippocampal mRNA elevation. Immunohistochemistry also showed a shift in phosphacan distribution from granule cell bodies to the deafferented ML at 2 and 7d postlesion. Phosphacan and sRPTPβ were not colocalized with glial fibrillary acid protein (GFAP), suggesting that reactive astrocytes were not a major source of either proteoglycan. While transcript for the developmentally prominent full length RPTPβ was also increased at 2 and 15d, its protein was not detected in our adult samples. These results indicate that phosphacan and RPTPβ splice variants participate in both the acute degenerative and long-term regenerative phases of reactive synaptogenesis. These results suggest that increase in the transmembrane sRPTPβ tyrosine phosphatase activity is critical to this plasticity, and that local elevation of extracellular phosphacan influences dendritic organization during synaptogenesis.
Collapse
Affiliation(s)
- Janna L Harris
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | | | | |
Collapse
|
21
|
Dobbertin A, Czvitkovich S, Theocharidis U, Garwood J, Andrews MR, Properzi F, Lin R, Fawcett JW, Faissner A. Analysis of combinatorial variability reveals selective accumulation of the fibronectin type III domains B and D of tenascin-C in injured brain. Exp Neurol 2010; 225:60-73. [PMID: 20451518 DOI: 10.1016/j.expneurol.2010.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/23/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
Tenascin-C (Tnc) is a multimodular extracellular matrix glycoprotein that is markedly upregulated in CNS injuries where it is primarily secreted by reactive astrocytes. Different Tnc isoforms can be generated by the insertion of variable combinations of one to seven (in rats) alternatively spliced distinct fibronectin type III (FnIII) domains to the smallest variant. Each spliced FnIII repeat mediates specific actions on neurite outgrowth, neuron migration or adhesion. Hence, different Tnc isoforms might differentially influence CNS repair. We explored the expression pattern of Tnc variants after cortical lesions and after treatment of astrocytes with various cytokines. Using RT-PCR, we observed a strong upregulation of Tnc transcripts containing the spliced FnIII domains B or D in injured tissue at 2-4 days post-lesion (dpl). Looking at specific combinations, we showed a dramatic increase of Tnc isoforms harboring the neurite outgrowth-promoting BD repeat with both the B and D domains being adjacent to each other. Isoforms containing only the axon growth-stimulating spliced domain D were also dramatically enhanced after injury. Injury-induced increase of Tnc proteins comprising the domain D was confirmed by Western Blotting and immunostaining of cortical lesions. In contrast, the FnIII modules C and AD1 were weakly modulated after injury. The growth cone repulsive A1A2A4 domains were poorly expressed in normal and injured tissue but the smallest isoform, which is also repellant, was highly expressed after injury. Expression of the shortest Tnc isoform and of variants containing B, D or BD, was strongly upregulated in cultured astrocytes after TGFbeta1 treatment, suggesting that TGFbeta1 could mediate, at least in part, the injury-induced upregulation of these isoforms. We identified complex injury-induced differential regulations of Tnc isoforms that may well influence axonal regeneration and repair processes in the damaged CNS.
Collapse
Affiliation(s)
- Alexandre Dobbertin
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University of Bochum, 44780 Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wanner IB, Deik A, Torres M, Rosendahl A, Neary JT, Lemmon VP, Bixby JL. A new in vitro model of the glial scar inhibits axon growth. Glia 2009; 56:1691-709. [PMID: 18618667 DOI: 10.1002/glia.20721] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes respond to central nervous system (CNS) injury with reactive astrogliosis and participate in the formation of the glial scar, an inhibitory barrier for axonal regeneration. Little is known about the injury-induced mechanisms underlying astrocyte reactivity and subsequent development of an axon-inhibitory scar. We combined two key aspects of CNS injury, mechanical trauma and co-culture with meningeal cells, to produce an in vitro model of the scar from cultures of highly differentiated astrocytes. Our model displayed widespread morphological signs of astrocyte reactivity, increases in expression of glial fibrillary acidic protein (GFAP), and accumulation of GFAP in astrocytic processes. Expression levels of scar-associated markers, phosphacan, neurocan, and tenascins, were also increased. Importantly, neurite growth from various CNS neuronal populations was significantly reduced when neurons were seeded on the scar-like cultures, compared with growth on cultures of mature astrocytes. Quantification of neurite growth parameters on the scar model demonstrated significant reductions in neuronal adhesion and neurite lengths. Interestingly, neurite outgrowth of postnatal neurons was reduced to a greater extent than that of embryonic neurons, and outgrowth inhibition varied among neuronal populations. Scar-like reactive sites and neurite-inhibitory patches were found throughout these cultures, creating a patchwork of growth-inhibitory areas mimicking a CNS injury site. Thus, our model showed relevant aspects of scar formation and produced widespread inhibition of axonal regeneration; it should be useful both for examining mechanisms underlying scar formation and to assess various treatments for their potential to improve regeneration after CNS injury. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Ina B Wanner
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Riquelme PA, Drapeau E, Doetsch F. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond B Biol Sci 2008; 363:123-37. [PMID: 17322003 PMCID: PMC2605490 DOI: 10.1098/rstb.2006.2016] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neurogenesis persists in two germinal regions in the adult mammalian brain, the subventricular zone of the lateral ventricles and the subgranular zone in the hippocampal formation. Within these two neurogenic niches, specialized astrocytes are neural stem cells, capable of self-renewing and generating neurons and glia. Cues within the niche, from cell-cell interactions to diffusible factors, are spatially and temporally coordinated to regulate proliferation and neurogenesis, ultimately affecting stem cell fate choices. Here, we review the components of adult neural stem cell niches and how they act to regulate neurogenesis in these regions.
Collapse
Affiliation(s)
- Patricio A Riquelme
- Center for Neurobiology and Behavior, Columbia University630 West 168th Street, New York City, NY 10032, USA
| | - Elodie Drapeau
- Department of Pathology, Columbia University630 West 168th Street, New York City, NY 10032, USA
| | - Fiona Doetsch
- Center for Neurobiology and Behavior, Columbia University630 West 168th Street, New York City, NY 10032, USA
- Department of Pathology, Columbia University630 West 168th Street, New York City, NY 10032, USA
- Department of Neurology, Columbia University630 West 168th Street, New York City, NY 10032, USA
- Author for correspondence ()
| |
Collapse
|
24
|
Kusakari S, Ohnishi H, Jin FJ, Kaneko Y, Murata T, Murata Y, Okazawa H, Matozaki T. Trans-endocytosis of CD47 and SHPS-1 and its role in regulation of the CD47-SHPS-1 system. J Cell Sci 2008; 121:1213-23. [PMID: 18349073 DOI: 10.1242/jcs.025015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
CD47 and SHPS-1 are transmembrane proteins that interact with each other through their extracellular regions and constitute a bidirectional cell-cell communication system (the CD47-SHPS-1 system). We have now shown that the trans-interaction of CD47 and SHPS-1 that occurred on contact of CD47-expressing CHO cells and SHPS-1-expressing CHO cells resulted in endocytosis of the ligand-receptor complex into either cell type. Such trans-endocytosis of CD47 by SHPS-1-expressing cells was found to be mediated by clathrin and dynamin. A juxtamembrane region of SHPS-1 was indispensable for efficient trans-endocytosis of CD47, which was also regulated by Rac and Cdc42, probably through reorganization of the actin cytoskeleton. Inhibition of trans-endocytosis of CD47 promoted the aggregation of CD47-expressing cells with the cells expressing SHPS-1. Moreover, CD47 expressed on the surface of cultured mouse hippocampal neurons was shown to undergo trans-endocytosis by neighboring astrocytes expressing endogenous SHPS-1. These results suggest that trans-endocytosis of CD47 is responsible for removal of the CD47-SHPS-1 complex from the cell surface and hence regulates the function of the CD47-SHPS-1 system, at least in neurons and glial cells.
Collapse
Affiliation(s)
- Shinya Kusakari
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Deller T, Del Turco D, Rappert A, Bechmann I. Structural reorganization of the dentate gyrus following entorhinal denervation: species differences between rat and mouse. PROGRESS IN BRAIN RESEARCH 2008; 163:501-28. [PMID: 17765735 DOI: 10.1016/s0079-6123(07)63027-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Deafferentation of the dentate gyrus by unilateral entorhinal cortex lesion or unilateral perforant pathway transection is a classical model to study the response of the central nervous system (CNS) to denervation. This model has been extensively characterized in the rat to clarify mechanisms underlying denervation-induced gliosis, transneuronal degeneration of denervated neurons, and collateral sprouting of surviving axons. As a result, candidate molecules have been identified which could regulate these changes, but a causal link between these molecules and the postlesional changes has not yet been demonstrated. To this end, mutant mice are currently studied by many groups. A tacit assumption is that data from the rat can be generalized to the mouse, and fundamental species differences in hippocampal architecture and the fiber systems involved in sprouting are often ignored. In this review, we will (1) provide an overview of some of the basics and technical aspects of the entorhinal denervation model, (2) identify anatomical species differences between rats and mice and will point out their relevance for the axonal reorganization process, (3) describe glial and local inflammatory changes, (4) consider transneuronal changes of denervated dentate neurons and the potential role of reactive glia in this context, and (5) summarize the differences in the reorganization of the dentate gyrus between the two species. Finally, we will discuss the use of the entorhinal denervation model in mutant mice.
Collapse
Affiliation(s)
- Thomas Deller
- Institute of Clinical Neuroanatomy, J.W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany.
| | | | | | | |
Collapse
|
26
|
Faissner A, Heck N, Dobbertin A, Garwood J. DSD-1-Proteoglycan/Phosphacan and Receptor Protein Tyrosine Phosphatase-Beta Isoforms during Development and Regeneration of Neural Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 557:25-53. [PMID: 16955703 DOI: 10.1007/0-387-30128-3_3] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interactions between neurons and glial cells play important roles in regulating key events of development and regeneration of the CNS. Thus, migrating neurons are partly guided by radial glia to their target, and glial scaffolds direct the growth and directional choice of advancing axons, e.g., at the midline. In the adult, reactive astrocytes and myelin components play a pivotal role in the inhibition of regeneration. The past years have shown that astrocytic functions are mediated on the molecular level by extracellular matrix components, which include various glycoproteins and proteoglycans. One important, developmentally regulated chondroitin sulfate proteoglycan is DSD-1-PG/phosphacan, a glial derived proteoglycan which represents a splice variant of the receptor protein tyrosine phosphatase (RPTP)-beta (also known as PTP-zeta). Current evidence suggests that this proteoglycan influences axon growth in development and regeneration, displaying inhibitory or stimulatory effects dependent on the mode of presentation, and the neuronal lineage. These effects seem to be mediated by neuronal receptors of the Ig-CAM superfamily.
Collapse
Affiliation(s)
- Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University, Bochum, Germany
| | | | | | | |
Collapse
|
27
|
Deller T, Haas CA, Freiman TM, Phinney A, Jucker M, Frotscher M. Lesion-Induced Axonal Sprouting in the Central Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 557:101-21. [PMID: 16955706 DOI: 10.1007/0-387-30128-3_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Injury or neuronal death often come about as a result of brain disorders. Inasmuch as the damaged nerve cells are interconnected via projections to other regions of the brain, such lesions lead to axonal loss in distal target areas. The central nervous system responds to deafferentation by means of plastic remodeling processes, in particular by inducing outgrowth of new axon collaterals from surviving neurons (collateral sprouting). These sprouting processes result in a partial reinnervation, new circuitry, and functional changes within the deafferented brain regions. Lesioning of the entorhinal cortex is an established model system for studying the phenomenon of axonal sprouting. Using this model system, it could be shown that the sprouting process respects the pre-existing lamination pattern of the deafferented fascia dentata, i. e., it is layer-specific. A variety of different molecules are involved in regulating this reorganization process (extracellular matrix molecules, cell adhesion molecules, transcription factors, neurotrophic factors, growth-associated proteins). It is proposed here that molecules of the extracellular matrix define the boundaries of the laminae following entorhinal lesioning and in so doing limit the sprouting process to the deafferented zone. To illustrate the role of axonal sprouting in disease processes, special attention is given to its significance for neurodegenerative disorders, particularly Alzheimer's disease (AD), and temporal lobe epilepsy. Finally, we discuss both the beneficial as well as disadvantageous functional implications of axonal sprouting for the injured organism in question.
Collapse
Affiliation(s)
- Thomas Deller
- Institute of Clinical Neuroanatomy, Johann Wolfgang Goether-University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Schmidt JF, Agapova OA, Yang P, Kaufman PL, Hernandez MR. Expression of ephrinB1 and its receptor in glaucomatous optic neuropathy. Br J Ophthalmol 2007; 91:1219-24. [PMID: 17301119 PMCID: PMC1954885 DOI: 10.1136/bjo.2006.112185] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To determine ephrinB1, ephrinB2 and EphB1 expression in the optic nerve head (ONH) and retina of monkeys with glaucoma and in human ONH astrocytes. METHODS Using immunohistochemistry, the localisation of ephrinB1, ephrinB2 and EphB1 was determined in the ONH and retina bilaterally in monkeys with monocular laser-induced glaucoma. RT-PCR, western blot and immunocytochemistry were used to study ephrinB1, ephrinB2 and EphB1 expression in cultured human ONH astrocytes from donors with and without glaucoma. RESULTS There was an increase in ephrinB1 and EphB1 expression in mild to moderate glaucoma. In the ONH, both ephrinB1 and EphB1 were localised to astrocytes and EphB1 was also localised to lamina cribrosa cells and perivascular cells. In the retina, ephrinB1 localised to Muller cells and astrocytes, and EphB1 was found in retinal ganglion cells. In ONH astrocytes in humans with glaucoma, ephrinB1 and EphB1 were up-regulated but barely present in donors without glaucoma. CONCLUSIONS Ephrins are activated in early and moderate glaucoma in the ONH and retina. We postulate that the up-regulation of Eph/ephrin pathway may play a protective role by limiting axonal damage and inflammatory cell invasion. Loss of ephrin signalling in advanced glaucoma may explain macrophage activation.
Collapse
Affiliation(s)
- Jimena F Schmidt
- Department of Ophthalmology, Northwestern University, Chicago, Illinois, USA.
| | | | | | | | | |
Collapse
|
29
|
Klausmeyer A, Garwood J, Faissner A. Differential expression of phosphacan/RPTPβ isoforms in the developing mouse visual system. J Comp Neurol 2007; 504:659-79. [PMID: 17722031 DOI: 10.1002/cne.21479] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The chondroitin sulfate proteoglycan DSD-1-PG/phosphacan represents one of four splice variants of receptor-protein-tyrosine-phosphatase-beta/zeta (RPTPbeta/zeta). This receptor is expressed by glial cells and occurs in two isoforms, RPTPbeta(long) and RPTPbeta(short). The secreted forms phosphacan and phosphacan short isoform (PSI) bind to extracellular matrix and adhesion molecules and might mediate astroglial effects on neuronal differentiation. Phosphacan and RPTPbeta(long) both carry the DSD-1 epitope, a glycosaminoglycan modification that is involved in stimulating neurite outgrowth of embryonic rat mesencephalic and hippocampal neurons in a polycationic environment. Additionally, phosphacan inhibits neurite outgrowth of embryonic DRG neurons in the presence of laminin. In the light of these functional properties we examined the expression patterns of the DSD-1 epitope and phosphacan isoforms in the developing mouse visual system. During retinal development the DSD-1 epitope appears around embryonic day (E)13, peaks around postnatal day (P)6, and is downregulated from P9 to adolescence. By comparison, the phosphacan core protein is first detectable at E12, reaches maximal levels around P14, and persists, although at lower levels, to adulthood. The DSD-1 epitope is restricted to the nerve fiber and the inner plexiform layers. In contrast, the phosphacan core protein immunoreactivity extends from the nerve fiber layer to the outer plexiform layer. The level of expression of the phosphacan/RPTPbeta gene was investigated by reverse-transcriptase polymerase chain reaction. These experiments suggest that there is a shift in the expression patterns of the different phosphacan/RPTPbeta isoforms during late embryonic and postnatal development. In situ hybridization experiments support the conclusion that at least one of the phosphacan/RPTPbeta isoforms in the retina is expressed by neurons.
Collapse
Affiliation(s)
- Alice Klausmeyer
- Department of Cellmorphology and Molecular Neurobiology, Ruhr-University-Bochum, 44801 Bochum, Germany
| | | | | |
Collapse
|
30
|
Deller T, Bas Orth C, Vlachos A, Merten T, Del Turco D, Dehn D, Mundel P, Frotscher M. Plasticity of synaptopodin and the spine apparatus organelle in the rat fascia dentata following entorhinal cortex lesion. J Comp Neurol 2006; 499:471-84. [PMID: 16998909 DOI: 10.1002/cne.21103] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synaptopodin is an actin-associated molecule essential for the formation of a spine apparatus in telencephalic spines. To study whether synaptopodin and the spine apparatus organelle are regulated under conditions of lesion-induced plasticity, synaptopodin and the spine apparatus were analyzed in granule cells of the rat fascia dentata following entorhinal denervation. Confocal microscopy was employed to quantify layer-specific changes in synaptopodin-immunoreactive puncta densities. Electron microscopy was used to quantify layer-specific changes in spine apparatus organelles. Within the denervated middle and outer molecular layers, the layers of deafferentation-induced spine loss, synaptogenesis, and spinogenesis, the density of synaptopodin puncta and the number of spine apparatuses decreased by 4 days postlesion and slowly recovered in parallel with spinogenesis by 180 days postlesion. Within the nondenervated inner molecular layer, the zone without deafferentation-induced spine loss, a rapid loss of synaptopodin puncta and spine apparatuses was also observed. In this layer, spine apparatus densities recovered by 14 days postlesion, in parallel with plastic remodeling at the synaptic level and the postlesional recovery of granule cell activity. These data demonstrate layer-specific changes in the distribution of synaptopodin and the spine apparatus organelle following partial denervation of granule cells: in the layer of spine loss, spine apparatus densities follow spine densities; in the layer of spine maintenance, however, spine apparatus densities appear to be regulated by other signals.
Collapse
Affiliation(s)
- Thomas Deller
- Institute of Clinical Neuroanatomy, J.W. Goethe-University, D-60590 Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bausch SB. Potential roles for hyaluronan and CD44 in kainic acid-induced mossy fiber sprouting in organotypic hippocampal slice cultures. Neuroscience 2006; 143:339-50. [PMID: 16949761 DOI: 10.1016/j.neuroscience.2006.07.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 06/23/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
The most well-documented synaptic rearrangement associated with temporal lobe epilepsy is mossy fiber sprouting (MFS). MFS is a pronounced expansion of granule cell mossy fiber axons into the inner dentate molecular layer. The recurrent excitatory network formed by MFS is hypothesized to play a critical role in epileptogenesis, which is the transformation of the normal brain into one that is prone to recurrent spontaneous seizures. While many studies have focused on the functional consequences of MFS, relatively few have investigated the molecular mechanisms underlying the increased propensity of mossy fibers to invade the inner molecular layer. We hypothesized that changes in two components of the extracellular matrix, hyaluronan and its primary receptor, CD44, contribute to MFS. Hyaluronan contributes to laminar-specificity in the hippocampus and increases in hyaluronan and CD44 are associated with temporal lobe epilepsy. We tested our hypothesis in an in vitro model of MFS using a combination of histological and biochemical approaches. Application of kainic acid (KA) to organotypic hippocampal slice cultures induced robust MFS into the inner dentate molecular layer compared with vehicle-treated controls. Degradation of hyaluronan with hyaluronidase significantly reduced but did not eliminate KA-induced MFS, suggesting that hyaluronan played a permissive role in MFS, but that loss of hyaluronan signaling alone was not sufficient to block mossy fiber reorganization. Comparison of CD44 expression with MFS revealed that when CD44 expression in the molecular layers was high, MFS was minimal and when CD44 expression/function was reduced following KA treatment or with function blocking antibodies, MFS was increased. The time course of KA-induced reductions in CD44 expression was identical to the temporal progression of KA-induced MFS reported previously in hippocampal slice cultures, suggesting that reduced CD44 expression may help promote MFS. Understanding the molecular mechanisms underlying MFS may lead to therapeutic interventions that limit epileptogenesis.
Collapse
Affiliation(s)
- S B Bausch
- Department of Pharmacology, Uniformed Services University, Room C2007, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| |
Collapse
|
32
|
Goldshmit Y, McLenachan S, Turnley A. Roles of Eph receptors and ephrins in the normal and damaged adult CNS. ACTA ACUST UNITED AC 2006; 52:327-45. [PMID: 16774788 DOI: 10.1016/j.brainresrev.2006.04.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 04/21/2006] [Accepted: 04/23/2006] [Indexed: 12/19/2022]
Abstract
Injury to the central nervous system (CNS) usually results in very limited regeneration of lesioned axons, which are inhibited by the environment of the injury site. Factors that have been implicated in inhibition of axonal regeneration include myelin proteins, astrocytic gliosis and cell surface molecules that are involved in axon guidance during development. This review examines the contribution of one such family of developmental guidance molecules, the Eph receptor tyrosine kinases and their ligands, the ephrins in normal adult CNS and following injury or disease. Eph/ephrin signaling regulates axon guidance through contact repulsion during development of the CNS, inducing collapse of neuronal growth cones. Eph receptors and ephrins continue to be expressed in the adult CNS, although usually at lower levels, but are upregulated following neural injury on different cell types, including reactive astrocytes, neurons and oligodendrocytes. This upregulated expression may directly inhibit regrowth of regenerating axons; however, in addition, Eph expression also regulates astrocytic gliosis and formation of the glial scar. Therefore, Eph/ephrin signaling may inhibit regeneration by more than one mechanism and modulation of Eph receptor expression or signaling could prove pivotal in determining the outcome of injury in the adult CNS.
Collapse
Affiliation(s)
- Yona Goldshmit
- Centre for Neuroscience, The University of Melbourne, Melbourne, Vic 3010, Australia
| | | | | |
Collapse
|
33
|
Dehn D, Burbach GJ, Schäfer R, Deller T. NG2 upregulation in the denervated rat fascia dentata following unilateral entorhinal cortex lesion. Glia 2006; 53:491-500. [PMID: 16369932 DOI: 10.1002/glia.20307] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The chondroitin sulfate proteoglycan NG2 is a component of the glial scar following brain injury. Because of its growth inhibiting properties, it has been suggested to impede axonal regeneration. To study whether NG2 could also regulate axonal growth in denervated brain areas, changes in NG2 were studied in the rat fascia dentata following entorhinal deafferentation and were correlated with the post-lesional sprouting response. Laser microdissection was employed to selectively harvest the denervated molecular layer and combined with quantitative RT-PCR to measure changes in NG2 mRNA (6 h, 12 h, 2 days, 4 days, 7 days post-lesion). This revealed increases of NG2 mRNA at day 2 (2.5-fold) and day 4 (2-fold) post-lesion. Immunocytochemistry was used to detect changes in NG2 protein (1 days, 4 days, 7 days, 10 days, 14 days, 30 days, 6 months post-lesion). NG2 staining was increased in the denervated outer molecular layer at day 1 post-lesion, reached a maximum 10 days post-lesion, and returned to control levels thereafter. Electron microscopy revealed NG2 immunoprecipitate on glial surfaces and in the extracellular matrix around neuronal profiles, indicating that NG2 is secreted following denervation. Double labeling of NG2-immunopositive cells with markers for astrocytes, microglia/macrophages, and mature oligodendrocytes suggested that NG2 cells are a distinct glial subpopulation before and after entorhinal deafferentation. BrdU labeling revealed that some of the NG2-positive cells are generated post-lesion. Taken together, our data revealed a layer-specific upregulation of NG2 in the denervated fascia dentata that coincides with the sprouting response. This suggests that NG2 could regulate lesion-induced axonal growth in denervated areas of the brain.
Collapse
Affiliation(s)
- Doris Dehn
- Institute of Clinical Neuroanatomy, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
34
|
Heck N, Klausmeyer A, Faissner A, Garwood J. Cortical neurons express PSI, a novel isoform of phosphacan/RPTPbeta. Cell Tissue Res 2005; 321:323-33. [PMID: 16028071 DOI: 10.1007/s00441-005-1135-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 04/11/2005] [Indexed: 01/06/2023]
Abstract
Phosphacan is a chondroitin sulfate proteoglycan representing the secreted extracellular part of a transmembrane receptor protein tyrosine phosphatase (RPTP-beta). These isoforms have been implicated in cell-extracellular matrix signaling events associated with myelination, axon growth, and cell migration in the developing central nervous system and may play critical roles in the context of brain pathologies. Recently, we have reported the identification of a new isoform of phosphacan, the phosphacan short isoform (PSI), the expression of which peaks in the second postnatal week. PSI interacts with the neuronal receptors L1 and F3/contactin and can promote neurite growth of cortical neurons. In this study, we have assessed, by in situ hybridization, the expression profile of PSI in the rat brain at postnatal day 7. PSI is largely expressed in the gray matter of the developing cerebral cortex in which it colocalizes with phosphacan, whereas the expression of RPTPbeta receptor forms is restricted to the ventricular area in which PSI has not been observed. Neurons from all layers of the cortex express PSI. In the cerebellum, on the other hand, no expression of PSI has been detected, although the other phosphacan/RPTP-beta isoforms show strong PSI expression here. Overall, our study suggests that PSI is expressed during the postnatal period in differentiated neurons of the cortex but is absent from structures in which proliferation and migration occur. The significance of these observations is discussed in the context of previous models of phosphacan/RPTP-beta functions.
Collapse
Affiliation(s)
- Nicolas Heck
- LNDR, CNRS Centre de Neurochimie, 67084, Strasbourg, France.
| | | | | | | |
Collapse
|
35
|
Asher RA, Morgenstern DA, Properzi F, Nishiyama A, Levine JM, Fawcett JW. Two separate metalloproteinase activities are responsible for the shedding and processing of the NG2 proteoglycan in vitro. Mol Cell Neurosci 2005; 29:82-96. [PMID: 15866049 DOI: 10.1016/j.mcn.2005.02.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 01/28/2005] [Accepted: 02/02/2005] [Indexed: 11/30/2022] Open
Abstract
A high proportion of NG2 in the adult rat spinal cord is saline-soluble and migrates slightly faster than intact NG2 on SDS-PAGE, suggesting that it represents the shed ectodomain of NG2. In the injured cerebral cortex, much of the overall increase in NG2 is due to the saline-soluble (shed), rather than the detergent-soluble (intact), form. Hydroxamic acid metalloproteinase inhibitors, but not TIMPs, were able to prevent NG2 shedding in oligodendrocyte precursor cells (OPCs) in vitro. The generation of another truncated form of NG2 was, however, sensitive to TIMP-2 and TIMP-3. Two observations suggest that NG2 is involved in PDGF signaling in OPCs: the rate of NG2 shedding increased with cell density and NG2 expression was increased in the absence of PDGF. Ectodomain shedding converts NG2 into a diffusible entity able to interact with the growth cone, and we suggest that this release is likely to enhance its axon growth-inhibitory activity.
Collapse
Affiliation(s)
- Richard A Asher
- Cambridge Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Wang Y, Ying GX, Liu X, Wang WY, Dong JH, Ni ZM, Zhou CF. Induction of ephrin-B1 and EphB receptors during denervation-induced plasticity in the adult mouse hippocampus. Eur J Neurosci 2005; 21:2336-46. [PMID: 15932593 DOI: 10.1111/j.1460-9568.2005.04093.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Abstract It has been widely demonstrated that Eph receptors and their ephrin ligands play multiple pivotal roles in the development of the nervous system. However, less is known about their roles in the adult brain. Here we reported the expression of ephrin-B1 and its cognate EphB receptors in the adult mouse hippocampus at 3, 7, 15, 30 and 60 days after transections of the entorhinal afferents. In situ hybridization and immunohistochemistry showed the time-dependent up-regulation of ephrin-B1 in the denervated areas of the hippocampus, which initiated at 3 days postlesion (dpl), reached maximal levels at 7-15 dpl, remained slightly elevated at 30 dpl and recovered to normal levels by 60 dpl. Double labeling of ephrin-B1 and glial fibrillary acidic protein revealed that ephrin-B1-expressing cells in the denervated areas were reactive astrocytes. Furthermore, a ligand-binding assay using ephrin-B1/Fc chimera protein also displayed the up-regulation of EphB receptors in the denervated areas of the hippocampus in a similar manner to that of ephrin-B1. Within the first week postlesion, the EphB receptors were expressed by reactive astrocytes. After 7 dpl, however, EphB receptors were expressed not only by reactive astrocytes but also first by sprouting axons and later by regrowing dendrites. These results suggest that the ephrin-B1/EphB system may participate in the lesion-induced plasticity processes in the adult mouse hippocampus.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Neurobiology, Shanghai Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, PR China
| | | | | | | | | | | | | |
Collapse
|
37
|
Wang Y, Ni ZM, Zhou CF. Denervation-induced spatiotemporal upregulation of ephrin-A2 in the mouse hippocampus after transections of the perforant path. FEBS Lett 2005; 579:1055-60. [PMID: 15710390 DOI: 10.1016/j.febslet.2005.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 12/23/2004] [Accepted: 01/03/2005] [Indexed: 10/25/2022]
Abstract
Transections of the entorhinal afferent fibers to hippocampus, perforant path (PP), result in the denervation in specific hippocampal subregions, which is followed by a series of plastic events including axon sprouting and reactive synaptogenesis. Many growth-associated molecules are thought to participate in these events. In the present study, we proved the upregulation of ephrin-A2 in the denervated areas of the ipsilateral hippocampus following PP transections. Interestingly, when the elevation of ephrin-A2 reached the maximum axon sprouting in the denervated areas almost finished, implying the possible inhibitory effect of ephrin-A2 on sprouting. In addition, ephrin-A2 expression was observed in synapses during reactive synaptogenesis, suggesting that this molecule might also be implicated in the formation and maturation of synapses in the denervated areas.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Neurobiology, Shanghai Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, PR China
| | | | | |
Collapse
|
38
|
Wang Y, Zhou CF. Involvement of interferon-gamma and its receptor in the activation of astrocytes in the mouse hippocampus following entorhinal deafferentation. Glia 2005; 50:56-65. [PMID: 15625714 DOI: 10.1002/glia.20152] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The activation of glial cells has been thought to be a universal and important reaction to trauma and pathology in the mammalian central nervous system. The mechanism of glial activation is not completely clear to date, but numerous cytokines have been demonstrated to effectively influence the process in vitro and in vivo. Here we reported the axotomy-induced upregulation of interferon-gamma (IFN-gamma) receptor mRNA in the mouse hippocampus following transections of the entorhinal afferents. Northern blot analysis showed that the transcripts of IFN-gamma receptor were upregulated in a transient manner in the deafferented mouse hippocampus. In situ hybridization confirmed the temporal upregulation of IFN-gamma receptor mRNA specifically in the denervated areas of the mouse hippocampus, which showed that the expression of IFN-gamma receptor mRNA rose slightly at 2 days postlesion, increased remarkably at 3 days postlesion, nearly reached the maximum at 7 days postlesion, and almost returned to control levels at 15 days postlesion. Double labeling further proved that the upregulated IFN-gamma receptor mRNA was confined to reactive astrocytes. At 2 and 3 days postlesion, we also observed the expression of IFN-gamma mRNA by a small number of cells in the denervated areas. We noted that the upregulation of both IFN-gamma and its receptor expression coincided spatiotemporally with astroglial activation, suggesting the potential involvement of IFN-gamma and its receptor in the activation process of astrocytes in the hippocampus following entorhinal deafferentation.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Neurobiology, Shanghai Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | |
Collapse
|
39
|
Garwood J, Garcion E, Dobbertin A, Heck N, Calco V, ffrench-Constant C, Faissner A. The extracellular matrix glycoprotein Tenascin-C is expressed by oligodendrocyte precursor cells and required for the regulation of maturation rate, survival and responsiveness to platelet-derived growth factor. Eur J Neurosci 2005; 20:2524-40. [PMID: 15548197 DOI: 10.1111/j.1460-9568.2004.03727.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analysis of Tenascin-C (TN-C) knockout mice revealed novel roles for this extracellular matrix (ECM) protein in regulation of the developmental programme of oligodendrocyte precursor cells (OPCs), their maturation into myelinating oligodendrocytes and sensitivity to growth factors. A major component of the ECM of developing nervous tissue, TN-C was expressed in zones of proliferation, migration and morphogenesis. Examination of TN-C knockout mice showed roles for TN-C in control of OPC proliferation and migration towards zones of myelination [E. Garcion et al. (2001) Development, 128, 2485-2496]. Extending our studies of TN-C effects on OPC development we found that OPCs can endogenously express TN-C protein. This expression covered the whole range of possible TN-C isoforms and could be strongly up-regulated by leukaemia inhibitory factor and ciliary neurotrophic factor, cytokines known to modulate OPC proliferation and survival. Comparative analysis of TN-C knockout OPCs with wild-type OPCs reveals an accelerated rate of maturation in the absence of TN-C, with earlier morphological differentiation and precocious expression of myelin basic protein. TN-C knockout OPCs plated on poly-lysine displayed higher levels of apoptosis than wild-type OPCs and there was also an earlier loss of responsiveness to the protective effects of platelet-derived growth factor (PDGF), indicating that TN-C has anti-apoptotic effects that may be associated with PDGF signalling. The existence of mechanisms to compensate for the absence of TN-C in the knockout is indicated by the development of oligodendrocytes derived from TN-C knockout neurospheres. These were present in equivalent proportions to those found in wild-type neurospheres but displayed enhanced myelin membrane formation.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigens/metabolism
- Blotting, Western/methods
- Brain/cytology
- Brain/embryology
- Brain/growth & development
- Brain/metabolism
- Bromodeoxyuridine/metabolism
- Cell Count/methods
- Cell Differentiation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Cerebral Cortex/cytology
- Chondroitin Sulfates/metabolism
- Cytokines/pharmacology
- Embryo, Mammalian
- Gene Expression Regulation, Developmental/drug effects
- Humans
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- In Situ Nick-End Labeling/methods
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- Myelin Basic Protein/metabolism
- Nerve Tissue Proteins/metabolism
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/pharmacology
- Platelet-Derived Growth Factor/pharmacology
- Protein Tyrosine Phosphatases/metabolism
- Proteoglycans/metabolism
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 5
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Stem Cells/drug effects
- Stem Cells/metabolism
- Tenascin/genetics
- Tenascin/physiology
- Time Factors
Collapse
Affiliation(s)
- Jeremy Garwood
- LNDR, CNRS 5, rue Blaise Pascal, 67084 Strasbourg Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
40
|
Bechmann I, Goldmann J, Kovac AD, Kwidzinski E, Simbürger E, Naftolin F, Dirnagl U, Nitsch R, Priller J. Circulating monocytic cells infiltrate layers of anterograde axonal degeneration where they transform into microglia. FASEB J 2005; 19:647-9. [PMID: 15671154 DOI: 10.1096/fj.04-2599fje] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, we demonstrate the infiltration of blood-derived monocytic cells and their morphologic transformation into microglia in zones of acute, anterograde (Wallerian) axonal degeneration induced by entorhinal cortex lesion (ECL). ECL was performed in mice which had received green fluorescent protein (GFP)-transduced bone marrow grafts allowing identification of blood-derived elements within the brain. While in the unlesioned hemisphere GFP+ cells were restricted to perivascular and leptomeningeal sites, many round fluorescent cells appeared in hippocampal zones of axonal degeneration at 24 h post lesion (hpl). Within 72 hpl, these GFP+ cells acquired ramified, microglia-like morphologies, which persisted for at least 7 days post ECL. Differentiation of GFP+ cells into glial fibrillary acidic protein (GFAP)+ astrocytes was never observed. To exclude that this recruitment is an artifact of irradiation or bone marrow transplantation, the fluorescent cell tracker 6-carboxylfluorescein diacetate (CFDA) was injected into spleens of normal mice 1 day before ECL. Again, fluorescent cells appeared at the lesion site and along the layers of axonal degeneration at 48 hpl and CFDA+/MAC-1+, cells exhibited amoeboid and ramified morphologies. Thus, blood-derived cells infiltrate not only the site of mechanical lesion, but also the layers of anterograde axonal degeneration, where they readily transform into microglia-like elements. A role for infiltrating leukocytes in facilitating or modulating postlesional plasticity, e.g., by phagocytosis of growth-inhibiting myelin should now be considered. Moreover, monocytic cells may serve as vehicles to transport therapeutic substances such as neurotrophic factors or caspase inhibitors to zones of axonal degeneration.
Collapse
Affiliation(s)
- Ingo Bechmann
- Institute of Cell Biology and Neurobiology, Charité University Hospital, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Heck N, Garwood J, Loeffler JP, Larmet Y, Faissner A. Differential upregulation of extracellular matrix molecules associated with the appearance of granule cell dispersion and mossy fiber sprouting during epileptogenesis in a murine model of temporal lobe epilepsy. Neuroscience 2005; 129:309-24. [PMID: 15501589 DOI: 10.1016/j.neuroscience.2004.06.078] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2004] [Indexed: 01/06/2023]
Abstract
We have investigated changes in the extracellular matrix of the hippocampus associated with the early progression of epileptogenesis in a murine model of temporal lobe epilepsy using immunohistochemistry. In the first week following intrahippocampal injection of the glutamate agonist, domoate, there is a latent period at the end of which begins a sequential upregulation of extracellular matrix (ECM) molecules in the granule cell layer of the dentate gyrus, beginning with neurocan and tenascin-C. This expression precedes the characteristic dispersion of the granule cell layer which is evident at 14 days post-injection when the first recurrent seizures can be recorded. At this stage, an upregulation of the chondroitin sulfate proteoglycan, phosphacan, the DSD-1 chondroitin sulfate motif, and the HNK-1 oligosaccharide are also observed. The expression of these molecules is localized differentially in the epileptogenic dentate gyrus, especially in the sprouting molecular layer, where a strong upregulation of phosphacan, tenascin-C, and HNK-1 is observed but there is no expression of the proteoglycan, neurocan, nor of the DSD-1 chondroitin sulfate motif. Hence, it appears that granule cell layer dispersion is accompanied by a general increase in the ECM, while mossy fiber sprouting in the molecular layer is associated with a more restricted repertoire. In contrast to these changes, the expression of the ECM glycoproteins, laminin and fibronectin, both of which are frequently implicated in tissue remodelling events, showed no changes associated with either granule cell dispersion or mossy fiber sprouting, indicating that the epileptogenic plasticity of the hippocampus is accompanied by ECM interactions that are characteristic of the CNS.
Collapse
Affiliation(s)
- N Heck
- LNDR, Centre de Neurochimie du CNRS, 5, rue Blaise Pascal, 67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
42
|
Abstract
Proteoglycan is a family of glycoproteins which carry covalently-linked glycosaminoglycan chains, such as chondroitin sulfate and heparan sulfate. Proteoglycans are believed to play important roles in morphogenesis and maintenance of various tissues including the central nervous system (CNS) through interactions with cell adhesion molecules and growth factors. In the CNS, a significant amount of evidence has been accumulated to show that proteoglycans function as modulators in various cellular events not only in the development, but also in the pathogenesis of neuronal diseases and lesions. When the CNS is injured, several chondroitin sulfate proteoglycans (CSPG) are up-regulated in glial scars formed around the lesion site. The glial scar also contains some molecules inhibitory to axonal growth, such as myelin-associated glycoprotein, Nogo, and Semaphorin. In vitro studies revealed that CSPG largely exert a repulsive effect on axonal regeneration, and a signal from CSPG modulates the actin cytoskeleton of outgrowing neurites through the Rho/ROCK pathway. These findings suggest that CSPG are responsible for unsuccessful axonal regeneration in glial scars. Various attempts to overcome the inhibitory effect of CSPG have been pursued in vivo. Digestion of chondroitin sulfate chains by chondroitinase ABC, suppression of CSPG core protein synthesis by decorin, suppression of glycosaminoglycan chain synthesis by a DNA enzyme, and inhibition of the Rho/ROCK pathway with specific inhibitors were all successful for increasing axonal regeneration. For a clinical application, the most effective combination of these treatments needs to be examined in the future.
Collapse
Affiliation(s)
- Fumiko Matsui
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi 480-0392, Japan.
| | | |
Collapse
|
43
|
Correale J, Villa A. The neuroprotective role of inflammation in nervous system Injuries. J Neurol 2004; 251:1304-16. [PMID: 15592725 DOI: 10.1007/s00415-004-0649-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 09/02/2004] [Indexed: 12/16/2022]
Abstract
The contribution of inflammation to the pathogenesis of several nervous system disorders has long been established. Other observations, however, indicate that both inflammatory cells and mediators may also have beneficial functions, assisting in repair and recovery processes. There is compelling evidence to indicate that in the injured nervous system, as in other tissues, macrophages are needed at an early stage after injury in order for healing to take place. Likewise, activated T cells of a particular specificity can reduce the spread of damage. This neuroprotective effect of T cells may be caused, at least in part, by the production of neurotrophic factors such as neurotrophin-3 or brain-derived neurotrophic factor. Interestingly, recent findings indicate that immune cells are able to produce a variety of neurotrophic factors which promote neuronal survival and may also mediate anti-inflammatory effects. Numerous cytokines are induced after nervous system injuries. Some cytokines, such as TNF-alpha, IL-1 and IFN-gamma, are well known for their promotion of inflammatory responses. However, these cytokines also have immunosuppressive functions and their subsequent expression also assists in repair or recovery processes, suggesting a dual role for some pro-inflammatory cytokines. This should be clarified, as it may be crucial in the design of therapeutic strategies to target specific cytokine(s). Finally, there is a growing body of evidence to show that autoreactive IgM antibodies may constitute an endogenous system of tissue repair, and therefore prove of value as a therapeutic strategy. Available evidence would appear to indicate that the inflammatory response observed in several neurological conditions is more complex than previously thought. Therefore, the design of more effective therapies depends on a clear delineation of the beneficial and detrimental effects of inflammation.
Collapse
Affiliation(s)
- Jorge Correale
- Raúl Carrea Institute for Neurological Research, FLENI, Montañeses 2325, 1428, Buenos Aires, Argentina.
| | | |
Collapse
|
44
|
Camand E, Morel MP, Faissner A, Sotelo C, Dusart I. Long-term changes in the molecular composition of the glial scar and progressive increase of serotoninergic fibre sprouting after hemisection of the mouse spinal cord. Eur J Neurosci 2004; 20:1161-76. [PMID: 15341588 DOI: 10.1111/j.1460-9568.2004.03558.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The scarring process occurring after adult central nervous system injury and the subsequent increase in the expression of certain extracellular matrix molecules are known to contribute to the failure of axon regeneration. This study provides an immunohistochemical analysis of temporal changes (8 days to 1 year) in the cellular and molecular response of the Swiss mouse spinal cord to a dorsal hemisection and its correlation with the axonal growth properties of a descending pathway, the serotoninergic axons. In this lesion model, no cavity forms at the centre of the lesion. Instead, a dense fibronectin-positive tissue matrix occupies the centre of the lesion, surrounded by a glial scar mainly constituted by reactive astrocytes. NG2 proteoglycan and tenascin-C, potential axon growth inhibitors, are constantly associated with the central region. In the glial scar, tenascin-C is never observed and the expression of chondroitin sulphate proteoglycans (revealed with CS-56 and anti-NG2 antibodies) highly increases in the week following injury to progressively return to their control level. In parallel, there is an increasing expression of the polysialilated neural cell adhesion molecule by reactive astrocytes. These molecular changes are correlated with a sprouting process of serotoninergic axons in the glial scar, except in a small area in contact with the central region. All these observations suggest that while a part of the glial scar progressively becomes permissive to axon regeneration after mouse spinal cord injury, the border of the glial scar, in contact with the fibronectin-positive tissue matrix, is the real barrier to prevent axon regeneration.
Collapse
Affiliation(s)
- Emeline Camand
- CNRS UMR-7102 NPA, Université Paris 6, Case 12 Bat B 6étage, 9 quai Saint-Bernard, 75005, France
| | | | | | | | | |
Collapse
|
45
|
Ying GX, Liu X, Wang WY, Wang Y, Dong JH, Jin HF, Huang C, Zhou CF. Regulated transcripts in the hippocampus following transections of the entorhinal afferents. Biochem Biophys Res Commun 2004; 322:210-6. [PMID: 15313193 DOI: 10.1016/j.bbrc.2004.07.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2004] [Indexed: 10/26/2022]
Abstract
Based on the data from a cDNA microarray experiment which was carried out to screen the differential expressed genes in the rat hippocampus 10 days after removal of the entorhinal afferents, we confirmed the increase of expression of eight transcripts encoding protein osteonectin, thymosin-beta4, gelsolin, MHC I, MHC II, beta2-microglobulin, and interferon-gamma receptor using Northern blot. In situ hybridization revealed that the up-regulation of all these 8 transcripts localized specifically in the denervated target areas, the hippocampal stratum lacunosum-moleculare, and the dentate outer molecular layer. The results suggest that these molecules may have roles in the plasticity events in the hippocampus after entorhinal deafferentation.
Collapse
Affiliation(s)
- Guo-Xin Ying
- Key Laboratory of Neurobiology, Shanghai Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Locations of a distinctive mode of trans-endocytosis involving dendrites, axons, and glia were quantified through serial section electron microscopy. Short vesicular or long vermiform evaginations emerged from dendrites and axons and were engulfed by presynaptic or neighboring axons, astrocytes, and, surprisingly, a growth cone to form double-membrane structures called spinules. In total, 254 spinules were evaluated in 326 microm(3) of stratum radiatum in area CA1 of mature rat hippocampus. Spinules emerged from spine heads (62%), necks (24%), axons (13%), dendritic shafts (1%), or nonsynaptic protrusions (<1%) and invaginated into axons (approximately 90%), astrocytic processes (approximately 8%), or a growth cone (approximately 1%). Coated pits occurred on the engulfing membrane at the tips of most spinules (69%), and double-membrane structures occurred freely in axonal and astrocytic cytoplasm, suggesting trans-endocytosis. Spinule locations differed among mushroom and thin spines. For mushroom spines, most (84%) of the spinules were engulfed by presynaptic axons, 16% by neighboring axons, and none by astrocytic processes. At thin spines, only 17% of the spinules were engulfed by presynaptic axons, whereas 67% were engulfed by neighboring axons and 14% by astrocytic processes. Spinules engulfed by astrocytic processes support the growing evidence that perisynaptic glia interact directly with synapses at least on thin spines. Spinules with neighboring axons may provide a mechanism for synaptic competition in the mature brain. Trans-endocytosis of spinules by presynaptic axons suggest retrograde signaling or coordinated remodeling of presynaptic and postsynaptic membranes to remove transient perforations and assemble the postsynaptic density of large synapses on mushroom spines.
Collapse
Affiliation(s)
- Josef Spacek
- Department of Pathology, Charles University Prague, Faculty of Medicine Hradec Kralove, Czech Republic 500 05
| | | |
Collapse
|
47
|
Harrison PJH, Cate HS, Derby CD. Localized ablation of olfactory receptor neurons induces both localized regeneration and widespread replacement of neurons in spiny lobsters. J Comp Neurol 2004; 471:72-84. [PMID: 14983477 DOI: 10.1002/cne.20020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The peripheral olfactory system of the spiny lobster Panulirus argus--located on paired antennules--undergoes continual postembryonic development. This process includes continuous addition of olfactory receptor neurons (ORNs) related to indeterminate growth, continuous replacement, and regeneration when necessitated by damage. We have shown previously that new olfactory tissue is continually added to the proximal margin of these populations, called the proximal proliferation zone (PPZ). Here, we show that focal damage to mature portions of the olfactory system causes localized degeneration of ORNs over 1-10 days after damage. Studies using the cell proliferation marker 5-bromo-2'-deoxyuridine show that localized degeneration was followed by rapid and localized regeneration of olfactory tissue. Rapidly dividing cells were recorded up to 40 days after damage, with regeneration of ORN clusters complete within 80 days. Focal damage appeared to stimulate widespread cell replacement (cell death and proliferation) within mature, undamaged ORN clusters. This response was observed in ORN clusters outside the damaged zone, including mature clusters in the contralateral antennule. The degree of widespread cell replacement was less than local repair after local damage, but it increased with more extensive damage. However, changes in on-going proliferation in the PPZ were not detected, at least not 20 days or longer after damage, suggesting damage-induced widespread proliferation may be specific to mature populations of ORNs. We speculate that localized regeneration involves activity of resident precursor cells not destroyed by the ablation and that unidentified regulatory signals released in response to localized damage induce widespread ORN replacement.
Collapse
Affiliation(s)
- Paul J H Harrison
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | | | | |
Collapse
|
48
|
Stoss TD, Nickell MD, Hardin D, Derby CD, McClintock TS. Inducible transcript expressed by reactive epithelial cells at sites of olfactory sensory neuron proliferation. ACTA ACUST UNITED AC 2004; 58:355-68. [PMID: 14750148 DOI: 10.1002/neu.10294] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The continuous replacement of cells in the spiny lobster olfactory organ depends on proliferation of new cells at a specific site, the proximal proliferation zone (PPZ). Using representational difference analysis of cDNA, we identified transcripts enriched in the PPZ compared to the mature zone (MZ) of the organ. The 12 clones identified included four novel sequences, three exoskeletal proteins, a serine protease, two protease inhibitors, a putative growth factor, and a sequence named PET-15 that has similarity to antimicrobial proteins of the crustin type. PET-15 mRNA was only detected in epithelial cells. It was abundant in all epithelial cells of the PPZ, but was only detected in the MZ at sites of damage to the olfactory organ. PET-15 mRNA was increased by types of damage that are known to induce proliferation of new olfactory sensory neurons in the olfactory organ. It increased in the PPZ after partial ablation of the olfactory organ and in the MZ after shaving of aesthetasc sensilla. These ipsilateral effects were mirrored by smaller increases in the undamaged contralateral olfactory organ. These contralateral effects are most parsimoniously explained by the action of a diffusible signal. Because epithelial cells are the source of proliferating progenitors in the olfactory organ, the same diffusible signal may stimulate increases in both cellular proliferation and PET-15 mRNA. The uniformity of expression of PET-15 in the PPZ epithelium suggests that the epithelial cells that give rise to new olfactory sensory neurons are a subset of cells that express PET-15.
Collapse
Affiliation(s)
- Thomas D Stoss
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | |
Collapse
|
49
|
Del Turco D, Woods AG, Gebhardt C, Phinney AL, Jucker M, Frotscher M, Deller T. Comparison of commissural sprouting in the mouse and rat fascia dentata after entorhinal cortex lesion. Hippocampus 2003; 13:685-99. [PMID: 12962314 DOI: 10.1002/hipo.10118] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reactive axonal sprouting occurs in the fascia dentata after entorhinal cortex lesion. This sprouting process has been described extensively in the rat, and plasticity-associated molecules have been identified that might be involved in its regulation. To demonstrate causal relationships between these candidate molecules and the axonal reorganization process, it is reasonable to analyze knockout and transgenic animals after entorhinal cortex lesion, and because gene knockouts are primarily generated in mice, it is necessary to characterize the sprouting response after entorhinal cortex lesion in this species. In the present study, Phaseolus vulgaris-leucoagglutinin (PHAL) tracing was used to analyze the commissural projection to the inner molecular layer in mice with longstanding entorhinal lesions. Because the commissural projection to the fascia dentata is neurochemically heterogeneous, PHAL tracing was combined with immunocytochemistry for calretinin, a marker for commissural/associational mossy cell axons. Using both techniques singly as well as in combination (double-immunofluorescence) at the light or electron microscopic level, it could be shown that in response to entorhinal lesion mossy cell axons leave the main commissural fiber plexus, invade the denervated middle molecular layer, and form asymmetric synapses within the denervated zone. Thus, the commissural sprouting response in mice has a considerable translaminar component. This is in contrast to the layer-specific commissural sprouting observed in rats, in which the overwhelming majority of mossy cell axons remain within their home territory. These data demonstrate an important species difference in the commissural/associational sprouting response between rats and mice that needs to be taken into account in future studies.
Collapse
Affiliation(s)
- Domenico Del Turco
- Institute of Clinical Neuroanatomy, J. W. Goethe University, Frankfurt/Main, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Matrix metalloproteinase inhibition alters functional and structural correlates of deafferentation-induced sprouting in the dentate gyrus. J Neurosci 2003. [PMID: 14614076 DOI: 10.1523/jneurosci.23-32-10182.2003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecules comprising the extracellular matrix (ECM), and the family of matrix metalloproteinases (MMPs) that regulate them, perform essential functions during neuroplasticity in both developing and adult nervous systems, including substrate guidance during neuritogenesis and the establishment of boundaries for axonal terminal fields. MMP proteolysis of ECM molecules may perform a permissive or inductive role in fiber remodeling and synaptogenesis initiated by deafferentation. This study examined functional and structural effects of MMP inhibition during the early phases of deafferentation-induced sprouting, characterizing components of the degeneration/proliferation cycle that may be dependent on MMP activity. Adult rats received unilateral lesions of the entorhinal cortex to induce collateral sprouting of the crossed temporodentate fiber pathway. This was followed by intraventricular infusion of the MMP inhibitor FN-439 (2.9 mg/kg) or saline vehicle. After 7 d postlesion, rats underwent in vivo electrophysiological recording or histological processing for electron microscopic analysis. Lesioned rats receiving vehicle exhibited normal sprouting and synaptogenesis, with the emergence of the capacity for long-term potentiation (LTP) within the sprouting pathway, and the successful clearance of degenerating terminals with subsequent synaptic proliferation. In contrast, lesioned rats receiving the MMP inhibitor failed to develop the capacity for LTP and showed persistent cellular debris. Current source density analysis also revealed an FN-439-induced disruption of the current sink, normally localized to the middle region of the granule cell dendrites, corresponding to the terminal field of the crossed temporodentate fibers. These results establish a role for MMP-dependent processes in the deafferentation/sprouting cycle.
Collapse
|