1
|
Fogarty MJ. Dendritic morphology of motor neurons and interneurons within the compact, semicompact, and loose formations of the rat nucleus ambiguus. Front Cell Neurosci 2024; 18:1409974. [PMID: 38933178 PMCID: PMC11199410 DOI: 10.3389/fncel.2024.1409974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Motor neurons (MNs) within the nucleus ambiguus innervate the skeletal muscles of the larynx, pharynx, and oesophagus. These muscles are activated during vocalisation and swallowing and must be coordinated with several respiratory and other behaviours. Despite many studies evaluating the projections and orientation of MNs within the nucleus ambiguus, there is no quantitative information regarding the dendritic arbours of MNs residing in the compact, and semicompact/loose formations of the nucleus ambiguus.. Methods In female and male Fischer 344 rats, we evaluated MN number using Nissl staining, and MN and non-MN dendritic morphology using Golgi-Cox impregnation Brightfield imaging of transverse Nissl sections (15 μm) were taken to stereologically assess the number of nucleus ambiguus MNs within the compact and semicompact/loose formations. Pseudo-confocal imaging of Golgi-impregnated neurons within the nucleus ambiguus (sectioned transversely at 180 μm) was traced in 3D to determine dendritic arbourisation. Results We found a greater abundance of MNs within the compact than the semicompact/loose formations. Dendritic lengths, complexity, and convex hull surface areas were greatest in MNs of the semicompact/loose formation, with compact formation MNs being smaller. MNs from both regions were larger than non-MNs reconstructed within the nucleus ambiguus. Conclusion Adding HBLS to the diet could be a potentially effective strategy to improve horses' health.
Collapse
Affiliation(s)
- Matthew J. Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
2
|
Sieck GC, Hernandez-Vizcarrondo GA, Brown AD, Fogarty MJ. Sarcopenia of the longitudinal tongue muscles in rats. Respir Physiol Neurobiol 2024; 319:104180. [PMID: 37863156 PMCID: PMC10851598 DOI: 10.1016/j.resp.2023.104180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/29/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
The tongue is a muscular hydrostat, with lingual movements occurring during breathing, chewing, swallowing, vocalization, vomiting, coughing and grooming/sexual activities. In the elderly, reduced lingual dysfunction and weakness contribute to increased risks of obstructive sleep apnea and aspiration pneumonia. In Fischer 344 (F344) rats, a validated model of aging, hypoglossal motor neuron death is apparent, although there is no information regarding tongue strength. The intrinsic tongue muscles, the superior and inferior longitudinal, transversalis and verticalis exist in an interdigitated state. Recently, we established a method to measure the specific force of individual intrinsic tongue muscle, accounting for the tissue bulk that is not in the direction of uniaxial force. In the longitudinal muscles of 6- (n = 10), 18- (n = 9) and 24-month-old (n = 12) female and male F344 rats, we assessed specific force, fatigability, fiber type dependent cross-sectional area (CSA) and overall CSA. Muscle force and fatigue was assessed ex vivo using platinum plate simulation electrodes. Tongue muscles were frozen in melting isopentane, and transverse sections cut at 10 µm. Muscle fiber type was classified based on immunoreactivity to myosin heavy chain (MyHC) isoform antibodies. In H&E stained muscle, CSA and uniaxial muscle contributions to total tongue bulk was assessed. We observed a robust ∼30% loss of longitudinal specific force, with reductions in overall longitudinal muscle fiber CSA and specific atrophy of type IIx/IIb fibers. It will be important to investigate the mechanistic underpinnings of hypoglossal motor neuron death and tongue muscle weakness to eventually provide therapies for age-associated lingual dysfunctions.
Collapse
Affiliation(s)
- Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Alyssa D Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
3
|
Fogarty MJ. Loss of larger hypoglossal motor neurons in aged Fischer 344 rats. Respir Physiol Neurobiol 2023:104092. [PMID: 37331418 DOI: 10.1016/j.resp.2023.104092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
The intrinsic (longitudinal, transversalis and verticalis) and extrinsic (genioglossus, styloglossus, hyoglossus and geniohyoid) tongue muscles are innervated by hypoglossal motor neurons (MNs). Tongue muscle activations occur during many behaviors: maintaining upper airway patency, chewing, swallowing, vocalization, vomiting, coughing, sneezing and grooming/sexual activities. In the tongues of the elderly, reduced oral motor function and strength contribute to increased risk of obstructive sleep apnoea. Tongue muscle atrophy and weakness is also described in rats, yet hypoglossal MN numbers are unknown. In young (6-months, n=10) and old (24-months, n=8) female and male Fischer 344 (F344) rats, stereological assessment of hypoglossal MN numbers and surface areas were performed on 16µm Nissl-stained brainstem cryosections. We observed a robust loss of ~15% of hypoglossal MNs and a modest ~8% reduction in their surface areas with age. In the larger size tertile of hypoglossal MNs, age-associated loss of hypoglossal MNs approached ~30% These findings uncover a potential neurogenic locus of pathology for age-associated tongue dysfunctions.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905.
| |
Collapse
|
4
|
Gustafsson T, Ulfhake B. Sarcopenia: What Is the Origin of This Aging-Induced Disorder? Front Genet 2021; 12:688526. [PMID: 34276788 PMCID: PMC8285098 DOI: 10.3389/fgene.2021.688526] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
We here review the loss of muscle function and mass (sarcopenia) in the framework of human healthspan and lifespan, and mechanisms involved in aging. The rapidly changing composition of the human population will impact the incidence and the prevalence of aging-induced disorders such as sarcopenia and, henceforth, efforts to narrow the gap between healthspan and lifespan should have top priority. There are substantial knowledge gaps in our understanding of aging. Heritability is estimated to account for only 25% of lifespan length. However, as we push the expected lifespan at birth toward those that we consider long-lived, the genetics of aging may become increasingly important. Linkage studies of genetic polymorphisms to both the susceptibility and aggressiveness of sarcopenia are still missing. Such information is needed to shed light on the large variability in clinical outcomes between individuals and why some respond to interventions while others do not. We here make a case for the concept that sarcopenia has a neurogenic origin and that in manifest sarcopenia, nerve and myofibers enter into a vicious cycle that will escalate the disease progression. We point to gaps in knowledge, for example the crosstalk between the motor axon, terminal Schwann cell, and myofiber in the denervation processes that leads to a loss of motor units and muscle weakness. Further, we argue that the operational definition of sarcopenia should be complemented with dynamic metrics that, along with validated biomarkers, may facilitate early preclinical diagnosis of individuals vulnerable to develop advanced sarcopenia. We argue that preventive measures are likely to be more effective to counter act aging-induced disorders than efforts to treat manifest clinical conditions. To achieve compliance with a prescription of preventive measures that may be life-long, we need to identify reliable predictors to design rational and convincing interventions.
Collapse
Affiliation(s)
- Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Brun Ulfhake
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Brown BL, Sandelski MM, Drejet SM, Runge EM, Shipchandler TZ, Jones KJ, Walker CL. Facial nerve repair utilizing intraoperative repair strategies. Laryngoscope Investig Otolaryngol 2020; 5:552-559. [PMID: 32596500 PMCID: PMC7314485 DOI: 10.1002/lio2.411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES To determine whether functional and anatomical outcomes following suture neurorrhaphy are improved by the addition of electrical stimulation with or without the addition of polyethylene glycol (PEG). METHODS In a rat model of facial nerve injury, complete facial nerve transection and repair was performed via (a) suture neurorrhaphy alone, (b) neurorrhaphy with the addition of brief (30 minutes) intraoperative electrical stimulation, or (c) neurorrhaphy with the addition electrical stimulation and PEG. Functional recovery was assessed weekly for 16 weeks. At 16 weeks postoperatively, motoneuron survival, amount of regrowth, and specificity of regrowth were assessed by branch labeling and tissue analysis. RESULTS The addition of brief intraoperative electrical stimulation improved all functional outcomes compared to suturing alone. The addition of PEG to electrical stimulation impaired this benefit. Motoneuron survival, amount of regrowth, and specificity of regrowth were unaltered at 16 weeks postoperative in all treatment groups. CONCLUSION The addition of brief intraoperative electrical stimulation to neurorrhaphy in this rodent model shows promising neurological benefit in the surgical repair of facial nerve injury. LEVEL OF EVIDENCE Animal study.
Collapse
Affiliation(s)
- Brandon L. Brown
- Department of Anatomy, Cell Biology and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Morgan M. Sandelski
- Department of Anatomy, Cell Biology and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Sarah M. Drejet
- Department of OtolaryngologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Elizabeth M. Runge
- Department of Anatomy, Cell Biology and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Taha Z. Shipchandler
- Department of OtolaryngologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kathryn J. Jones
- Department of Anatomy, Cell Biology and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Research and Development ServiceRichard L Roudebush Veterans Affairs Medical CenterIndianapolisIndianaUSA
| | - Chandler L. Walker
- Department of Anatomy, Cell Biology and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Research and Development ServiceRichard L Roudebush Veterans Affairs Medical CenterIndianapolisIndianaUSA
- Department of Biomedical Sciences and Comprehensive CareIndiana University School of DentistryIndianapolisIndianaUSA
| |
Collapse
|
6
|
Brown BL, Asante T, Welch HR, Sandelski MM, Drejet SM, Shah K, Runge EM, Shipchandler TZ, Jones KJ, Walker CL. Functional and Anatomical Outcomes of Facial Nerve Injury With Application of Polyethylene Glycol in a Rat Model. JAMA FACIAL PLAST SU 2020; 21:61-68. [PMID: 29800078 DOI: 10.1001/jamafacial.2018.0308] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Importance Functional and anatomical outcomes after surgical repair of facial nerve injury may be improved with the addition of polyethylene glycol (PEG) to direct suture neurorrhaphy. The application of PEG has shown promise in treating spinal nerve injuries, but its efficacy has not been evaluated in treatment of cranial nerve injuries. Objective To determine whether PEG in addition to neurorrhaphy can improve functional outcomes and synkinesis after facial nerve injury. Design, Setting, and Subjects In this animal experiment, 36 rats underwent right facial nerve transection and neurorrhaphy with addition of PEG. Weekly behavioral scoring was done for 10 rats for 6 weeks and 14 rats for 16 weeks after the operations. In the 16-week study, the buccal branches were labeled and tissue analysis was performed. In the 6-week study, the mandibular and buccal branches were labeled and tissue analysis was performed. Histologic analysis was performed for 10 rats in a 1-week study to assess the association of PEG with axonal continuity and Wallerian degeneration. Six rats served as the uninjured control group. Data were collected from February 8, 2016, through July 10, 2017. Intervention Polyethylene glycol applied to the facial nerve after neurorrhaphy. Main Outcomes and Measures Functional recovery was assessed weekly for the 16- and 6-week studies, as well as motoneuron survival, amount of regrowth, specificity of regrowth, and aberrant branching. Short-term effects of PEG were assessed in the 1-week study. Results Among the 40 male rats included in the study, PEG addition to neurorrhaphy showed no functional benefit in eye blink reflex (mean [SEM], 3.57 [0.88] weeks; 95% CI, -2.8 to 1.9 weeks; P = .70) or whisking function (mean [SEM], 4.00 [0.72] weeks; 95% CI, -3.6 to 2.4 weeks; P = .69) compared with suturing alone at 16 weeks. Motoneuron survival was not changed by PEG in the 16-week (mean, 132.1 motoneurons per tissue section; 95% CI, -21.0 to 8.4; P = .13) or 6-week (mean, 131.1 motoneurons per tissue section; 95% CI, -11.0 to 10.0; P = .06) studies. Compared with controls, neither surgical group showed differences in buccal branch regrowth at 16 (36.9 motoneurons per tissue section; 95% CI, -14.5 to 22.0; P = .28) or 6 (36.7 motoneurons per tissue section; 95% CI, -7.8 to 18.5; P = .48) weeks or in the mandibular branch at 6 weeks (25.2 motoneurons per tissue section; 95% CI, -14.5 to 15.5; P = .99). Addition of PEG had no advantage in regrowth specificity compared with suturing alone at 16 weeks (15.3% buccal branch motoneurons with misguided projections; 95% CI, -7.2% to 11.0%; P = .84). After 6 weeks, the number of motoneurons with misguided projections to the mandibular branch showed no advantage of PEG treatment compared with suturing alone (12.1% buccal branch motoneurons with misguided projections; 95% CI, -8.2% to 9.2%; P = .98). In the 1-week study, improved axonal continuity and muscular innervation were not observed in PEG-treated rats. Conclusions and Relevance Although PEG has shown efficacy in treating other nervous system injuries, PEG in addition to neurorraphy was not beneficial in a rat model of facial nerve injury. The addition of PEG to suturing may not be warranted in the surgical repair of facial nerve injury. Level of Evidence NA.
Collapse
Affiliation(s)
- Brandon L Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky
| | - Tony Asante
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis
| | - Haley R Welch
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis
| | - Morgan M Sandelski
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis
| | - Sarah M Drejet
- Department of Otolaryngology, Indiana University School of Medicine, Indianapolis
| | - Kishan Shah
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis
| | - Elizabeth M Runge
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis
| | - Taha Z Shipchandler
- Department of Otolaryngology, Indiana University School of Medicine, Indianapolis
| | - Kathryn J Jones
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis.,Research and Development Service, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Chandler L Walker
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis.,Research and Development Service, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana.,Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis
| |
Collapse
|
7
|
Single finger movements in the aging hand: changes in finger independence, muscle activation patterns and tendon displacement in older adults. Exp Brain Res 2019; 237:1141-1154. [PMID: 30783716 DOI: 10.1007/s00221-019-05487-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 02/01/2019] [Indexed: 01/05/2023]
Abstract
With aging, hand mobility and manual dexterity decline, even under healthy circumstances. To assess how aging affects finger movement control, we compared elderly and young subjects with respect to (1) finger movement independence, (2) neural control of extrinsic finger muscles and (3) finger tendon displacements during single finger flexion. In twelve healthy older (age 68-84) and nine young (age 22-29) subjects, finger kinematics were measured to assess finger movement enslaving and the range of independent finger movement. Muscle activation was assessed using a multi-channel electrode grid placed over the flexor digitorum superficialis (FDS) and the extensor digitorum (ED). FDS tendon displacements of the index, middle and ring fingers were measured using ultrasound. In older subjects compared to the younger subjects, we found: (1) increased enslaving of the middle finger during index finger flexion (young: 25.6 ± 12.4%, elderly: 47.0 ± 25.1%; p = 0.018), (2) a lower range of independent movement of the index finger (youngmiddle = 74.0%, elderlymiddle: 45.9%; p < 0.001), (3) a more evenly distributed muscle activation pattern over the finger-specific FDS and ED muscle regions and (4) a lower slope at the beginning of the finger movement to tendon displacement relationship, presenting a distinct period with little to no tendon displacement. Our study indicates that primarily the movement independence of the index finger is affected by aging. This can partly be attributed to a muscle activation pattern that is more evenly distributed over the finger-specific FDS and ED muscle regions in the elderly.
Collapse
|
8
|
Katharesan V, Deery S, Johnson IP. Neuroprotective effect of acute prior inflammation with lipopolysaccharide for adult male rat facial motoneurones. Brain Res 2018; 1696:56-62. [DOI: 10.1016/j.brainres.2018.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022]
|
9
|
Gillon A, Nielsen K, Steel C, Cornwall J, Sheard P. Exercise attenuates age-associated changes in motoneuron number, nucleocytoplasmic transport proteins and neuromuscular health. GeroScience 2018; 40:177-192. [PMID: 29736782 DOI: 10.1007/s11357-018-0020-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/17/2018] [Indexed: 12/31/2022] Open
Abstract
Life expectancy continues to extend, although frailty caused by loss of skeletal muscle mass continues unimpeded. Muscle atrophy caused by withdrawal of motor nerves is a feature of old age, as it is in amyotrophic lateral sclerosis (ALS) in which skeletal muscle denervation results from motoneuron death. In ALS, direct links have been established between motoneuron death and altered nucleocytoplasmic transport, so we ask whether similar defects accompany motoneuron death in normal ageing. We used immunohistochemistry on mouse tissues to explore potential links between neuromuscular junction (NMJ) degeneration, motoneuron death and nucleocytoplasmic transport regulatory proteins. Old age brought neuromuscular degeneration, motoneuron loss and reductions in immunodetectable levels of key nucleocytoplasmic transport proteins in lumbar motoneurons. We then asked whether exercise inhibited these changes and found that active elderly mice experienced less motoneuron death, improved neuromuscular junction morphology and retention of key nucleocytoplasmic transport proteins in lumbar motoneurons. Our results suggest that emergent defects in nucleocytoplasmic transport may contribute to motoneuron death and age-related loss of skeletal muscle mass, and that these defects may be reduced by exercise.
Collapse
Affiliation(s)
- Ashley Gillon
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| | - Kathrine Nielsen
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Charlotte Steel
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Jon Cornwall
- Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Philip Sheard
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| |
Collapse
|
10
|
Deguchi T, Yabuuchi T, Ando R, Ichikawa H, Sugimoto T, Takano-Yamamoto T. Increase of Galanin in Trigeminal Ganglion during Tooth Movement. J Dent Res 2016; 85:658-63. [PMID: 16798869 DOI: 10.1177/154405910608500715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is known that nerve fibers containing neuropeptides such as galanin increase in the periodontal ligament during experimental tooth movement. However, the origin of galanin-containing nerve fibers in the periodontal ligament remains unclear. This study was conducted to examine our hypothesis that the increased galanin nerve fibers have a sensory neuronal origin, and that the peptide is associated with pain transmission and/or periodontal ligament remodeling during experimental tooth movement. In control rats, galanin-immunoreactive trigeminal ganglion cells were very rare and were observed predominantly in small ganglion cells. After 3 days of experimental tooth movement, galanin-immunoreactive trigeminal ganglion cells significantly increased, and the most marked increase was observed at 5 days after experimental tooth movement. Furthermore, their cell size spectrum also significantly changed after 3 and 5 days of movement: Medium-sized and large trigeminal ganglion cells began expressing, and continued to express, galanin until 14 days after experimental tooth movement. These findings suggest that the increase of galanin in the periodontal ligament during experimental tooth movement at least partially originates from trigeminal ganglion neurons and may play a role in pain transmission and/or periodontal remodeling.
Collapse
Affiliation(s)
- T Deguchi
- Department of Orthodontics and Dentofacial Orthopedics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8525, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Katharesan V, Lewis MD, Vink R, Johnson IP. Disparate Changes in Plasma and Brainstem Cytokine Levels in Adult and Ageing Rats Associated with Age-Related Changes in Facial Motor Neuron Number, Snout Muscle Morphology, and Exploratory Behavior. Front Neurol 2016; 7:191. [PMID: 27872607 PMCID: PMC5098431 DOI: 10.3389/fneur.2016.00191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/19/2016] [Indexed: 11/28/2022] Open
Abstract
An overall increase in inflammatory cytokines with age in both the blood and the central nervous system (CNS) has been proposed to explain many aspects of ageing, including decreased motor function and neurodegeneration. This study tests the hypothesis that age-related increases in inflammatory cytokines in the blood and CNS lead to facial motor neuron degeneration. Groups of 3–5 female Sprague-Dawley rats aged 3, 12–18, and 24 months were used. Twelve cytokines interleukin (IL)-1α, IL-β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, tumor necrosis factor-α (TNFα), interferon-γ, and granulocyte macrophage-colony stimulating factor were measured in blood plasma and compared with those in the brainstem after first flushing blood from its vessels. The open-field test was used to measure exploratory behavior, and the morphology of the peripheral target muscle of facial motor neurons quantified. Total numbers of facial motor neurons were determined stereologically in separate groups of 3- and 24-month-old rats. Ageing rats showed a significant 30–42% decrease in blood plasma (peripheral) concentrations of IL-12p70 and TNFα and a significant 43–49% increase in brainstem (central) concentrations of IL-1α, IL-2, IL-4, IL-10, and TNFα. They also showed significant reductions in motor neuron number in the right but not left facial nucleus, reduced exploratory behavior, and increase in peripheral target muscle size. Marginal age-related facial motoneuronal loss occurs in the ageing rat and is characterized by complex changes in the inflammatory signature, rather than a general increase in inflammatory cytokines.
Collapse
Affiliation(s)
- Viythia Katharesan
- Anatomy and Pathology, The University of Adelaide , Adelaide, SA , Australia
| | - Martin David Lewis
- Mind and Brain Theme, South Australian Health and Medical Research Institute , Adelaide, SA , Australia
| | - Robert Vink
- Health Sciences Divisional Office, University of South Australia , Adelaide, SA , Australia
| | - Ian Paul Johnson
- Anatomy and Pathology, The University of Adelaide , Adelaide, SA , Australia
| |
Collapse
|
12
|
Johnson IP. Response: Commentary: Age-related neurodegenerative disease research needs aging models. Front Aging Neurosci 2016; 8:44. [PMID: 26973518 PMCID: PMC4777730 DOI: 10.3389/fnagi.2016.00044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/17/2016] [Indexed: 11/25/2022] Open
Affiliation(s)
- Ian P Johnson
- Discipline of Anatomy and Pathology, The University of Adelaide Adelaide, Australia
| |
Collapse
|
13
|
Sella O, Jones RD, Huckabee ML. Age and gender effects on submental motor-evoked potentials. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9735. [PMID: 25502005 PMCID: PMC4262580 DOI: 10.1007/s11357-014-9735-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
It is not known whether there are age- and/or gender-related differences in magnitude of motor-evoked potentials (MEPs) of the submental muscles. Knowledge of this is important in investigations of neurophysiological aspects of swallowing. Forty healthy participants (20 males, 20 females; 20 young [21-35 years], 20 old [53-88 years]) were recruited. Surface electromyography (EMG) electrodes were placed at midline underlying the submental muscle group. Age- and gender-related differences were evaluated in two neurophysiologic measures of swallowing: MEPs stimulated by single-pulse transcranial magnetic stimulation (TMS) over the motor cortex and surface electromyography (sEMG) recorded from the same submental muscle group during non-stimulated swallows. The older participants had larger MEPs during saliva swallowing than the young participants (p = 0.04, d = 0.86). Conversely, the older participants had lower amplitude submental EMG activity during non-stimulated swallows (p = 0.045, d = 0.67). Gender had no significant effect on MEP magnitude and on submental activity during saliva swallowing. There were no effects of age or gender on MEP latencies. These findings suggest deterioration in muscle function with age in a sample of healthy adults presenting with functional swallowing. We speculate that muscular decline is partially ameliorated by increased cortical activity-i.e., increased submental MEPs-so as to preserve swallowing function in healthy older subjects. These findings emphasize the need for different reference points for evaluation of submental MEPs of different age groups.
Collapse
Affiliation(s)
- Oshrat Sella
- />New Zealand Brain Research Institute, 66 Stewart St, Christchurch, 8011 New Zealand
- />Department of Communication Disorders, University of Canterbury, Christchurch, 8140 New Zealand
- />Department of Communication Sciences and Disorders, University of Haifa, Mount Carmel, 31905 Haifa, Israel
| | - Richard D. Jones
- />New Zealand Brain Research Institute, 66 Stewart St, Christchurch, 8011 New Zealand
- />Department of Communication Disorders, University of Canterbury, Christchurch, 8140 New Zealand
- />Department of Psychology, University of Canterbury, Christchurch, 8140 New Zealand
- />Department of Electrical & Computer Engineering, University of Canterbury, Christchurch, 8140 New Zealand
- />Department of Medical Physics and Bioengineering, Christchurch Hospital, Christchurch, 8011 New Zealand
| | - Maggie-Lee Huckabee
- />New Zealand Brain Research Institute, 66 Stewart St, Christchurch, 8011 New Zealand
- />Department of Communication Disorders, University of Canterbury, Christchurch, 8140 New Zealand
| |
Collapse
|
14
|
Miremami JD, Talauliker PM, Harrison JL, Lifshitz J. Neuropathology in sensory, but not motor, brainstem nuclei of the rat whisker circuit after diffuse brain injury. Somatosens Mot Res 2014; 31:127-35. [DOI: 10.3109/08990220.2014.897602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Using comparative anatomy in the axotomy model to identify distinct roles for microglia and astrocytes in synaptic stripping. ACTA ACUST UNITED AC 2012; 7:55-66. [PMID: 22217547 DOI: 10.1017/s1740925x11000135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The synaptic terminals' withdrawal from the somata and proximal dendrites of injured motoneuron by the processes of glial cells following facial nerve axotomy has been the subject of research for many years. This phenomenon is referred to as synaptic stripping, which is assumed to help survival and regeneration of neurons via reduction of synaptic inputs. Because there is no disruption of the blood-brain barrier or infiltration of macrophages, the axotomy paradigm has the advantage of being able to selectively investigate the roles of resident glial cells in the brain. Although there have been numerous studies of synaptic stripping, the detailed mechanisms are still under debate. Here we suggest that the species and strain differences that are often present in previous work might be related to the current controversies of axotomy studies. For instance, the survival ratios of axotomized neurons were generally found to be higher in rats than in mice. However, some studies have used the axotomy paradigm to follow the glial reactions and did not assess variations in neuronal viability. In the first part of this article, we summarize and discuss the current knowledge on species and strain differences in neuronal survival, glial augmentation and synaptic stripping. In the second part, we focus on our recent findings, which show the differential involvement of microglia and astrocytes in synaptic stripping and neuronal survival. This article suggests that the comparative study of the axotomy paradigm across various species and strains may provide many important and unexpected discoveries on the multifaceted roles of microglia and astrocytes in injury and repair.
Collapse
|
16
|
Park BG, Lee JS, Lee JY, Song DY, Jeong SW, Cho BP. Co-localization of activating transcription factor 3 and phosphorylated c-Jun in axotomized facial motoneurons. Anat Cell Biol 2011; 44:226-37. [PMID: 22025975 PMCID: PMC3195827 DOI: 10.5115/acb.2011.44.3.226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/28/2011] [Accepted: 08/01/2011] [Indexed: 11/27/2022] Open
Abstract
Activating transcription factor 3 (ATF3) and c-Jun play key roles in either cell death or cell survival, depending on the cellular background. To evaluate the functional significance of ATF3/c-Jun in the peripheral nervous system, we examined neuronal cell death, activation of ATF3/c-Jun, and microglial responses in facial motor nuclei up to 24 weeks after an extracranial facial nerve axotomy in adult rats. Following the axotomy, neuronal survival rate was progressively but significantly reduced to 79.1% at 16 weeks post-lesion (wpl) and to 65.2% at 24 wpl. ATF3 and phosphorylated c-Jun (pc-Jun) were detected in the majority of ipsilateral facial motoneurons with normal size and morphology during the early stage of degeneration (1-2 wpl). Thereafter, the number of facial motoneurons decreased gradually, and both ATF3 and pc-Jun were identified in degenerating neurons only. ATF3 and pc-Jun were co-localized in most cases. Additionally, a large number of activated microglia, recognized by OX6 (rat MHC II marker) and ED1 (phagocytic marker), gathered in the ipsilateral facial motor nuclei. Importantly, numerous OX6- and ED1-positive, phagocytic microglia closely surrounded and ingested pc-Jun-positive, degenerating neurons. Taken together, our results indicate that long-lasting co-localization of ATF3 and pc-Jun in axotomized facial motoneurons may be related to degenerative cascades provoked by an extracranial facial nerve axotomy.
Collapse
Affiliation(s)
- Byung Gu Park
- Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju, Korea
| | | | | | | | | | | |
Collapse
|
17
|
Roos PE, Dingwell JB. Influence of simulated neuromuscular noise on movement variability and fall risk in a 3D dynamic walking model. J Biomech 2010; 43:2929-35. [PMID: 20708189 DOI: 10.1016/j.jbiomech.2010.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 07/11/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
People at risk of falling exhibit increased gait variability, which may predict future falls. However, the causal mechanisms underlying these correlations are not well known. Increased neuronal noise associated with aging likely leads to increased gait variability, which could in turn lead to increased fall risk. This paper presents a model of how changes in neuromuscular noise independently affect gait variability and probability of falling, and aims to determine the extent to which changes in gait variability directly predict fall risk. We used a dynamic walking model that incorporates a lateral step controller to maintain lateral stability. Noise was applied to this controller to approximate neuromuscular noise in humans. Noise amplitude was varied between low amplitudes that did not induce falls and high amplitudes for which the model always fell. With increases in noise amplitude, the model fell more often and after fewer steps. Gait variability increased with noise amplitude and predicted increased probability of falling. Importantly, these relationships were not linear. At either low gait variability or very high gait variability, small increases in noise and variability affected probability of falling very little. Conversely, at intermediate noise and/or variability levels, the same small increases resulted in large increases in probability of falling. Our results validate the idea that age-related increases in neuromuscular noise likely play a direct contributing role in increasing fall risk. However, neuromuscular noise remains only one of many important factors that need to be considered. These findings have important implications for fall prevention research and practice.
Collapse
Affiliation(s)
- Paulien E Roos
- Department of Kinesiology, University of Texas, 1 University Station, D3700, Austin, TX 78712-0360, USA
| | | |
Collapse
|
18
|
Fling BW, Knight CA, Kamen G. Relationships between motor unit size and recruitment threshold in older adults: implications for size principle. Exp Brain Res 2009; 197:125-33. [PMID: 19565231 DOI: 10.1007/s00221-009-1898-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 06/08/2009] [Indexed: 11/24/2022]
Abstract
As a part of the aging process, motor unit reorganization occurs in which small motoneurons reinnervate predominantly fast-twitch muscle fibers that have lost their innervation. We examined the relationship between motor unit size and the threshold force for recruitment in two muscles to determine whether older individuals might develop an alternative pattern of motor unit activation. Young and older adults performed isometric contractions ranging from 0 to 50% of maximal voluntary contraction in both the first dorsal interosseous (FDI) and tibialis anterior (TA) muscles. Muscle fiber action potentials were recorded with an intramuscular needle electrode and motor unit size was computed using spike-triggered averaging of the global EMG signal (macro EMG), which was also obtained from the intramuscular needle electrode. As expected, older individuals exhibited larger motor units than young subjects in both the FDI and the TA. However, moderately strong correlations were obtained for the macro EMG amplitude versus recruitment threshold relationship in both the young and older adults within both muscles, suggesting that the size principle of motor unit recruitment seems to be preserved in older adults.
Collapse
Affiliation(s)
- Brett W Fling
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|
19
|
Kovacic U, Sketelj J, Bajrović FF. Chapter 26: Age-related differences in the reinnervation after peripheral nerve injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:465-82. [PMID: 19682655 DOI: 10.1016/s0074-7742(09)87026-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Numerous and extensive functional, structural, and biochemical changes characterize intact aged peripheral nervous system. Functional recovery after peripheral nerve injury depends on survival of injured neurons and functional reinnervation of target tissue by regeneration of injured axons and collateral sprouting of uninjured (intact) adjacent axons. The rate of axonal regeneration becomes slower and its extent (density and number of regenerating axons) decreases in aged animals. Aging also impairs terminal sprouting of regenerated axons and collateral sprouting of intact adjacent axons, thus further limiting target reinnervation and its functional recovery. Decreased survival of aged noninjured and injured neurons, limited intrinsic growth potential of neuron, alteration in its responsiveness to stimulatory or inhibitory environmental factors, and changes in the peripheral neural pathways and target tissues are possible reasons for impaired reinnervation after peripheral nerve injury in old age. The review of present data suggests that this impairment is mostly due to the age-related changes in the peripheral neural pathways and target tissues, and not due to the limited intrinsic growth capacity of neurons or their reduced responsiveness to trophic factors. Age-related alterations in the soluble target derived neurotrophic factors, like nerve growth factor, and nonsoluble extracellular matrix components of neural pathways, like laminin, might be important in this respect.
Collapse
Affiliation(s)
- Uros Kovacic
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
20
|
Schwarz EC, Thompson JM, Connor NP, Behan M. The effects of aging on hypoglossal motoneurons in rats. Dysphagia 2008; 24:40-8. [PMID: 18716837 DOI: 10.1007/s00455-008-9169-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 04/24/2008] [Indexed: 11/28/2022]
Abstract
Aging can result in a loss of neuronal cell bodies and a decrease in neuronal size in some regions of the brain and spinal cord. Motoneuron loss in the spinal cord is thought to contribute to the progressive decline in muscle mass and strength that occurs with age (sarcopenia). Swallowing disorders represent a large clinical problem in elderly persons; however, age-related alterations in cranial motoneurons that innervate muscles involved in swallowing have been understudied. We aimed to determine if age-related alterations occurred in the hypoglossal nucleus in the brainstem. If present, these changes might help explain alterations at the neuromuscular junction and changes in the contractile properties of tongue muscle that have been reported in older rats. We hypothesized that with increasing age there would be a loss of motoneurons and a reduction in neuronal size and the number of primary dendrites associated with each hypoglossal motoneuron. Neurons in the hypoglossal nucleus were visualized with the neuronal marker NeuN in young (9-10 months), middle-aged (24-25 months), and old (32-33 months) male F344/BN rats. Hypoglossal motoneurons were retrograde-labeled with injections of Cholera Toxin beta into the genioglossus muscle of the tongue and visualized using immunocytochemistry. Results indicated that the number of primary dendrites of hypoglossal motoneurons decreased significantly with age, while no age-associated changes were found in the number or size of hypoglossal motoneurons. Loss of primary dendrites could reduce the number of synaptic inputs and thereby impair function.
Collapse
Affiliation(s)
- Emilie C Schwarz
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
21
|
Verdú E, Ceballos D, Vilches JJ, Navarro X. Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst 2008. [DOI: 10.1111/j.1529-8027.2000.00026.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Enrique Verdú
- Neuroplasticity Group, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine,
Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Dolores Ceballos
- Neuroplasticity Group, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine,
Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jorge J. Vilches
- Neuroplasticity Group, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine,
Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Navarro
- Neuroplasticity Group, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine,
Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
22
|
Nagasao J, Hayashi Y, Kawazoe Y, Kawakami E, Watabe K, Oyanagi K. Relationship between ribosomal RNA gene transcription activity and motoneuron death: Observations of avulsion and axotomy of the facial nerve in rats. J Neurosci Res 2008; 86:435-42. [PMID: 17847080 DOI: 10.1002/jnr.21495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Motoneuron number and expression of cytoplasmic RNA and ribosomal RNA (rRNA) gene transcription activity in the facial nucleus were examined quantitatively and chronologically for up to 4 weeks in rats after facial nerve axotomy and avulsion in order to elucidate interrelationships in axonal changes. The right facial nerves of adult Fischer rats were avulsed at a portion of the outlet or axotomized at a portion of the foramen stylomastoideus. The number of large motoneurons in the facial nucleus was reduced by 40% 2 weeks after avulsion and by 70% 4 weeks after avulsion but displayed a 19% loss even 4 weeks after axotomy. The amount of cytoplasmic RNA decreased significantly and progressively from 1 day after avulsion. rRNA gene transcription activity in the large motoneurons of the facial nucleus decreased significantly beginning 30 min after both axotomy and avulsion, but the severity of the decrease was far more marked in the avulsion group, showing a 59% loss from the control value 4 weeks after avulsion. These findings indicate that rRNA gene transcription activity, expression of cytoplasmic RNA, and the number of motoneurons that survive are interrelated and that the decrease in rRNA gene transcription activity is a very early event in the phenomena observed in the axonal reactions of motoneurons.
Collapse
Affiliation(s)
- Jun Nagasao
- Japan Foundation for Neuroscience and Mental Health, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Fendrick SE, Miller KR, Streit WJ. Minocycline does not inhibit microglia proliferation or neuronal regeneration in the facial nucleus following crush injury. Neurosci Lett 2005; 385:220-3. [PMID: 15964677 DOI: 10.1016/j.neulet.2005.05.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 05/13/2005] [Accepted: 05/13/2005] [Indexed: 12/24/2022]
Abstract
Minocycline is thought to be neuroprotective by inhibiting neuroinflammation (microglial activation) associated with neurodegenerative diseases. In this study we investigated the effect of minocycline specifically on microglial mitotic activity and neuronal regeneration within the facial nucleus following a nerve crush injury. Proliferation was measured by labeling the dividing microglia with 3H-thymidine and quantifying labeled cells throughout the facial nucleus on days 2, 3 and 4 post-axotomy. Regeneration patterns of the axotomized motoneurons were studied by labeling regenerating neurons with fluorogold at 7, 14 and 21 days post-axotomy. No significant difference was found between minocycline treated and control rats when comparing the 3H-thymidine labeled microglial cells or fluorogold labeled neurons at these post-injury time points. The findings show that microglia maintain the ability to become activated in vivo even in the presence of high levels of minocycline.
Collapse
Affiliation(s)
- Sarah E Fendrick
- Department of Neuroscience, University of Florida, P.O. Box 100244, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
24
|
Chang HM, Wei IH, Tseng CY, Lue JH, Wen CY, Shieh JY. Differential expression of calcitonin gene-related peptide (CGRP) and choline acetyltransferase (ChAT) in the axotomized motoneurons of normoxic and hypoxic rats. J Chem Neuroanat 2004; 28:239-51. [PMID: 15531135 DOI: 10.1016/j.jchemneu.2004.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 07/23/2004] [Accepted: 07/30/2004] [Indexed: 10/26/2022]
Abstract
We employed a double injury model (axotomy along with hypoxia) to determine how nerve injury and hypoxic insult would affect the expression of calcitonin gene-related peptide (CGRP) and choline acetyltransferase (ChAT) in the hypoglossal nucleus (HN) and nucleus ambiguus (NA). Adult rats were subjected to unilateral vagus and hypoglossal nerve transection, following which half of the animals were kept in an altitude chamber (PO2=380 Torr). The immunoexpression of CGRP and ChAT (CGRP-IR/ChAT-IR) were examined by quantitative immunohistochemistry at 3, 7, 14, 30 and 60 days post-axotomy. The results revealed that CGRP-IR in the HN was increased at 3 days but decreased to basal levels at 7 days following nerve injury. The decline was followed by a second rise in CGRP-IR at 30 days post-axotomy, followed again by a return to basal levels at 60 days. In the NA, CGRP-IR was up-regulated at 3 days and remained increased for up to 60 days after nerve injury. Animals treated with a double injury showed a greater CGRP-IR than normoxic group in both nuclei at all post-axtomized periods. In contrast to CGRP, ChAT-IR was markedly reduced in the HN and NA at 3 days reaching its nadir at 14 days following nerve injury. Hypoxic animals showed a stronger reduction of ChAT-IR in both nuclei at all post-axtomized periods. Results of cell counting showed that neuronal loss was somewhat obvious in hypoxic HN than that of normoxic ones. The present results suggest that up-regulation of CGRP-IR may exert its trophic effects while down-regulation of ChAT-IR may correlate with the poor neurotransmission within the injured neurons. It is speculated that the enhanced expression of CGRP-IR and the pronounced reduction of ChAT-IR in hypoxic rats may result from a drastic shift of intracellular metabolic pathways, which in turn could lead to more metabolic loading to the severely damaged neurons following the double insult.
Collapse
Affiliation(s)
- Hung-Ming Chang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | | | | | | | | | | |
Collapse
|
25
|
Franchi G, Veronesi C. Long-term motor cortex reorganization after facial nerve severing in newborn rats. Eur J Neurosci 2004; 20:1885-96. [PMID: 15380010 DOI: 10.1111/j.1460-9568.2004.03635.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using the model of facial nerve injury, we have compared the effect of injury in newborn and adult rats on the adult rat motor cortex (M1). To this end, the facial nerve was severed in 10 newborn rats 2 days after birth (Newborn group) and in 10 adult rats (Adult group). In both the Control (contralateral to untouched nerve) and the Experimental (contralateral to severed nerve) hemisphere of each rat, the M1 output organization was assessed by intracortical microstimulation. Our findings demonstrated that: (i) there is no statistical difference in the percentage of movement sites and in current thresholds required to evoke movement in Control hemispheres between the Adult and Newborn groups of rats; (ii) in Adult Experimental hemispheres, neck sites expand in the medial part of the vibrissae representation more extensively than shown in Newborn Experimental hemispheres; (iii) in Newborn Experimental hemispheres eye sites expand in the medial part of the vibrissae representation more extensively than in Adult Experimental hemispheres (these sites overlap the cortical region where electrical stimulation evokes neck movement in Adult Experimental hemispheres) and (iv) in both Newborn and Adult Experimental hemispheres, forelimb sites expand similarly thereby overlapping the same cortical region, corresponding to the lateral part of the vibrissae representation. We conclude that, when the facial nerve injury is performed in the newborn rat, the pattern of movement representation differs from that obtained with the same lesion in the mature brain only in the frontal cortex corresponding to the medial part of the normal vibrissae representation.
Collapse
Affiliation(s)
- Gianfranco Franchi
- Centro di Neuroscienze e Dipartimento di Scienze Biomediche e Terapie Avanzate, Sezione di Fisiologia umana, Università di Ferrara, 44100 Ferrara, Italy.
| | | |
Collapse
|
26
|
Abstract
Experimental models such as the facial nerve axotomy paradigm in rodents allow the systematic and detailed study of the response of neurones and their microenvironment to various types of challenges. Well-studied experimental examples include peripheral nerve trauma, the retrograde axonal transport of neurotoxins and locally enhanced inflammation following the induction of experimental autoimmune encephalomyelitis in combination with axotomy. These studies have led to novel insights into the regeneration programme of the motoneurone, the role of microglia and astrocytes in synaptic plasticity and the biology of glial cells. Importantly, many of the findings obtained have proven to be valid in other functional systems and even across species barriers. In particular, microglial expression of major histocompatibility complex molecules has been found to occur in response to various types of neuronal damage and is now regarded as a characteristic component of "glial inflammation". It is found in the context of numerous neurodegenerative disorders including Parkinson's and Alzheimer's disease. The detachment of afferent axonal endings from the surface membrane of regenerating motoneurones and their subsequent displacement by microglia ("synaptic stripping") and long-lasting insulation by astrocytes have also been confirmed in humans. The medical implications of these findings are significant. Also, the facial nerve system of rats and mice has become the best studied and most widely used test system for the evaluation of neurotrophic factors.
Collapse
Affiliation(s)
- Linda B Moran
- Department of Neuropathology, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College London, Charing Cross Campus, Fulham Palace Road, London W6 8RF, UK
| | | |
Collapse
|
27
|
Aperghis M, Johnson IP, Patel N, Khadir A, Cannon J, Goldspink G. Age, diet and injury affect the survival of facial motoneurons. Neuroscience 2003; 117:97-104. [PMID: 12605896 DOI: 10.1016/s0306-4522(02)00762-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using the model of facial nerve avulsion, we have compared the effects of injury, age and diet on motoneuronal survival. One to four weeks after nerve avulsion, 50-75% motoneuron loss was quantified in ad libitum-fed rats aged 7 days (neonate), 6 months (adult) and 24 months (aging) at the time of injury. Evidence of apoptosis was found for neonatal rats at 3 days post-injury, but not for neonates examined 7 days or adult or aging rats examined 1 month after injury. Non-operated, ad libitum-fed rats showed no significant loss of facial motoneurons by 24 months. Surprisingly, non-operated rats whose food intake was restricted to 15 g standard rat chow per day from the age of 6 months lost 50% of their motoneurons by 24 months. Facial nerve avulsion of 24-month-old rats raised on this restricted diet did not result in any additional loss of motoneurons one month after injury. These results challenge the common view that aging results in neuronal loss and that dietary restriction is universally beneficial.
Collapse
Affiliation(s)
- M Aperghis
- Department of Anatomy and Developmental Biology, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | | | | | |
Collapse
|
28
|
Goettl VM, Neff NH, Hadjiconstantinou M. Sciatic nerve axotomy in aged rats: response of motoneurons and the effect of GM1 ganglioside treatment. Brain Res 2003; 968:44-53. [PMID: 12644263 DOI: 10.1016/s0006-8993(02)04247-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The number, size, and staining intensity of choline acetyltransferase (ChAT)-immunopositive cells in the retrodorsal lateral nucleus (RDLN) of the spinal cord were studied in young (3-5 months old) and aged (22-24 months old) rats following left sciatic nerve distal transection (axotomy) and treatment with GM1 ganglioside. The cell size and the ChAT immunostaining density were decreased in the RDLN of non-manipulated as well as in the contralateral intact side of axotomized aged rats. Axotomy had no effect on the number of RDLN motoneurons in both aged and young rats. In the young rats, there was a decrease in the size of motoneurons 7 days post-axotomy and a partial spontaneous recovery occurred by 21 days. Axotomy did not reduce further the size of aged motoneurons, however. The ChAT staining intensity of the axotomized RDLN declined in both age groups after 7 days, and there was spontaneous near normal recovery by 21 days. In the aged rats, GM1 administration for 7 days corrected the cell size and ChAT immunoreactivity of the contralateral intact RDLN. With regard to axotomized RDLN neurons, 7 days of GM1 restored the cell size but not the ChAT immunostaining in young animals. The same treatment schedule, however, corrected both cell size and staining in aged rats. Administration of GM1 for 21 days had no further effect on the morphometric parameters of the axotomized motoneurons in aged rats, but slightly enhanced the recovery of ChAT immunostaining in young rats. Thus, it appears that GM1 facilitates the phenotypic recovery of RDLN motoneurons during aging and after axotomy.
Collapse
Affiliation(s)
- Virginia M Goettl
- Department of Pharmacology, The Ohio State University College of Medicine and Public Health, 43210, Columbus, OH, USA
| | | | | |
Collapse
|
29
|
Snyder SK, Byrnes KR, Borke RC, Sanchez A, Anders JJ. Quantitation of calcitonin gene-related peptide mRNA and neuronal cell death in facial motor nuclei following axotomy and 633 nm low power laser treatment. Lasers Surg Med 2002; 31:216-22. [PMID: 12224097 DOI: 10.1002/lsm.10098] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND OBJECTIVES A persistent increase in calcitonin gene-related peptide (CGRP) immunoreactivity in motoneurons may serve as an indicator for regeneration after peripheral nerve injury [Borke et al., J Neurocytol 1993;22:141-153]. STUDY DESIGN/MATERIALS AND METHODS We examined the effects of low power laser treatment (633 nm) on axotomy-induced changes in alpha-CGRP mRNA and long-term neuronal survival in facial motoneurons. A quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay for alpha-CGRP mRNA was used to detect changes in the response to axotomy and laser irradiation. Cell counts of neurons in injured and non-injured facial motor nuclei of laser-treated and non-treated rats were done to estimate neuronal survival. RESULTS A 10-fold increase (P < 0.0001) in mRNA for alpha-CGRP at 11 days post-transection and an almost threefold increase (P < 0.0001) in neuronal survival at 6-9 months post-transection were found in 633 nm light treated rats. DISCUSSION These findings demonstrate that 633 nm laser light upregulates CGRP mRNA and support the theory that laser irradiation increases the rate of regeneration, target reinnervation, and neuronal survival of the axotomized neuron.
Collapse
Affiliation(s)
- Sara K Snyder
- Laboratory for Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
30
|
Barras FM, Pasche P, Bouche N, Aebischer P, Zurn AD. Glial cell line-derived neurotrophic factor released by synthetic guidance channels promotes facial nerve regeneration in the rat. J Neurosci Res 2002; 70:746-55. [PMID: 12444596 DOI: 10.1002/jnr.10434] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Regeneration of the human facial nerve after lesion is often limited, leading to severe functional impairments, in particular when repair is delayed for several months, when cross-facial nerve grafts have to be performed, or in elderly patients. To improve the outcome, the potential accelerating and maturating effects of the neurotrophic factors glial cell line-derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3) on nerve regeneration were assessed using an axotomy model of the rat facial nerve. One-centimeter-long synthetic guidance channels releasing the neurotrophic factors over several weeks were used to bridge an 8 mm nerve gap, a distance that does not allow regeneration in the absence of growth factors. Nerve cables regenerated in the presence of GDNF showed a large number of myelinated axons 6 weeks after grafting (871 +/- 373, n = 5), whereas only 106 +/- 86 (n = 5) myelinated axons were counted in the presence of NT-3. Retrograde labeling with fluorogold revealed 981 +/- 450 (n = 5) and 53 +/- 38 (n = 5) retrogradely labeled motoneurons in the facial nucleus in the presence of GDNF and NT-3, respectively. No regenerated axons or retrogradely labeled cells were observed in the absence of growth factors (n = 6). These results demonstrate that GDNF, as previously described for the sciatic nerve, a mixed sensory and motor nerve, is also very efficient in promoting regeneration of the facial nerve, an essentially pure motor nerve. GDNF may therefore be useful in improving facial nerve regeneration in the clinic.
Collapse
Affiliation(s)
- Florian M Barras
- Department of ENT and Head and Neck Surgery, University Medical School, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Gillingwater TH, Ribchester RR. Compartmental neurodegeneration and synaptic plasticity in the Wld(s) mutant mouse. J Physiol 2001; 534:627-39. [PMID: 11483696 PMCID: PMC2278742 DOI: 10.1111/j.1469-7793.2001.00627.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2001] [Accepted: 06/04/2001] [Indexed: 12/13/2022] Open
Abstract
This review focuses on recent developments in our understanding of neurodegeneration at the mammalian neuromuscular junction. We provide evidence to support a hypothesis of compartmental neurodegeneration, whereby synaptic degeneration occurs by a separate, distinct mechanism from cell body and axonal degeneration. Studies of the spontaneous mutant Wld(s) mouse, in which Wallerian degeneration is characteristically slow, provide key evidence in support of this hypothesis. Some features of synaptic degeneration in the absence of Wallerian degeneration resemble synapse elimination in neonatal muscle. This and other forms of synaptic plasticity may be accessible to further investigations, exploiting advantages afforded by the Wld(s) mutant, or transgenic mice that express the Wld(s) gene.
Collapse
Affiliation(s)
- T H Gillingwater
- Department of Neuroscience, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | | |
Collapse
|
32
|
Wiberg M, Vedung S, Stålberg E. Neuronal loss after transsection of the facial nerve: a morphological and neurophysiological study in monkeys. SCANDINAVIAN JOURNAL OF PLASTIC AND RECONSTRUCTIVE SURGERY AND HAND SURGERY 2001; 35:135-40. [PMID: 11484522 DOI: 10.1080/028443101300165264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Functional recovery after nerve lesions seems to depend on peripheral as well as central factors. To investigate the central neuronal loss after transsection of a pure motor nerve, the middle branch of the facial nerve on one side was transsected and immediately repaired microsurgically by epineural suturing. After a period of 6-15 months, a quantitative neurophysiological recording was made to estimate muscle response. A nerve tracer was injected into the mimic muscles innervated by the nerve to label the surviving motor neurons within the facial nucleus. The opposite side was used as the control in all cases. After the regenerative period, a mean loss of 15% of the total cell number was observed within the facial nucleus compared with the opposite side. The cell loss comprised all types of neurons. This amount of neuronal loss was followed by an even greater loss of muscle response when a quantitative neurophysiological recording was made after nerve regeneration. The results are discussed in relation to loss of nerve elements after nerve lesions and its effect on functional recovery.
Collapse
Affiliation(s)
- M Wiberg
- Department of Hand and Plastic Surgery, University Hospital, Umeå, Sweden
| | | | | |
Collapse
|
33
|
Bergman E, Kullberg S, Ming Y, Ulfhake B. Upregulation of GFRalpha-1 and c-ret in primary sensory neurons and spinal motoneurons of aged rats. J Neurosci Res 1999; 57:153-65. [PMID: 10398293 DOI: 10.1002/(sici)1097-4547(19990715)57:2<153::aid-jnr1>3.0.co;2-a] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aging is associated with a decline in neuromuscular and somatosensory functions. Senile muscle atrophy, considered to be of neurogenic origin, is prevalent, and sensory thresholds increase with age. However, the loss of motoneurons and primary sensory neurons is small, while sensory and motor innervation appears disturbed due to aging-related axon lesions. One mechanism which may play a role in this process is altered trophin signaling. We here report that the glial cell line-derived neurotrophic factor (GDNF) receptor GFRalpha-1 mRNA and GFRalpha-1 protein-like immunoreactivity are upregulated in spinal motoneurons, and in dorsal root ganglion neurons of 30-month-old rats. The established signaling mechanism for the GDNF/GFRalpha-1 complex is through binding to the tyrosine kinase receptor encoded by the c-ret proto-oncogene, and we also show here that c-ret mRNA is upregulated in both motoneurons and primary sensory neurons of aged rats. The findings reported here, combined with evidence presented in other studies of changes in p75(NTR) and trk receptor expressions in aging primary sensory neurons and motoneurons, point at marked alterations in trophin signaling in senescence.
Collapse
Affiliation(s)
- E Bergman
- Chemical Neurotransmission Unit, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
34
|
Johnson H, Hökfelt T, Ulfhake B. Expression of p75(NTR), trkB and trkC in nonmanipulated and axotomized motoneurons of aged rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 69:21-34. [PMID: 10350634 DOI: 10.1016/s0169-328x(99)00068-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several lines of evidence indicate that adult neurons remain dependent on neurotrophins and that changes in tissue expression of neurotrophins and/or their receptors may play a role in senile neurodegeneration. We have studied the expression of p75NTR, trkB and trkC, respectively, in lumbar motoneurons of young adult (2-3 months) and aged (30 months) rats subjected to sciatic transection using in situ hybridization and immunohistochemistry. Nonmanipulated age-matched animals were processed in parallel. In nonmanipulated aged rats, high levels of p75NTR could be seen in a number of motoneurons (10-15%), while in young adult animals no p75NTR could be detected. Seven days following sciatic axotomy, a conspicuous ipsilateral upregulation p75NTR was observed in young adult rats. Also in aged rats there was a marked ipsilateral increase in number of p75NTR expressing neurons ( approximately 100%). In comparison to young adult rats, aged rats showed a decreased expression of both trkB (5/6 animals) and trkC (6/6 animals). Furthermore, in response to sciatic transection, 3 out of 5 aged rats did not show an increased expression of trkB. In aged rats, axotomy did not induce any significant change in trkC expression. In the young adult rats, we recorded a side-to-side effect with lower values ipsilaterally, however, it cannot be excluded that this difference was caused by an upregulation in the contralateral motoneurons. Oligonucleotide probes against BDNF and NT3 mRNA showed only very few faintly positive neurons in both age groups. Our results indicate that the pattern of regulatory changes of NT receptors in response to axotomy is different in aged and young adult rats. The lack of covariation between p75NTR and trkB and trkC regulation in aged rats indicates a changed role for p75NTR in senescent motoneurons.
Collapse
Affiliation(s)
- H Johnson
- Department of Neuroscience, Karolinska Institutet, Division of Neuroanatomy and Neuronal Plasticity, S-171 77, Stockholm, Sweden.
| | | | | |
Collapse
|