1
|
Cheng X, Tan Y, Li H, Zhang Z, Hui S, Zhang Z, Peng W. Mechanistic Insights and Potential Therapeutic Implications of NRF2 in Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8253-8278. [PMID: 38483656 DOI: 10.1007/s12035-024-04097-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/04/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a complication of diabetes, especially type 2 diabetes (T2D), characterized by damage in the central nervous system and cognitive impairment, which has gained global attention. Despite the extensive research aimed at enhancing our understanding of DE, the underlying mechanism of occurrence and development of DE has not been established. Mounting evidence has demonstrated a close correlation between DE and various factors, such as Alzheimer's disease-like pathological changes, insulin resistance, inflammation, and oxidative stress. Of interest, nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor with antioxidant properties that is crucial in maintaining redox homeostasis and regulating inflammatory responses. The activation and regulatory mechanisms of NRF2 are a relatively complex process. NRF2 is involved in the regulation of multiple metabolic pathways and confers neuroprotective functions. Multiple studies have provided evidence demonstrating the significant involvement of NRF2 as a critical transcription factor in the progression of DE. Additionally, various molecules capable of activating NRF2 expression have shown potential in ameliorating DE. Therefore, it is intriguing to consider NRF2 as a potential target for the treatment of DE. In this review, we aim to shed light on the role and the possible underlying mechanism of NRF2 in DE. Furthermore, we provide an overview of the current research landscape and address the challenges associated with using NRF2 activators as potential treatment options for DE.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Yejun Tan
- School of Mathematics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| |
Collapse
|
2
|
Hagan B, Mujumdar R, Sahoo JP, Das A, Dutta A. Technical feasibility of multimodal imaging in neonatal hypoxic-ischemic encephalopathy from an ovine model to a human case series. Front Pediatr 2023; 11:1072663. [PMID: 37425273 PMCID: PMC10323750 DOI: 10.3389/fped.2023.1072663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) secondary to perinatal asphyxia occurs when the brain does not receive enough oxygen and blood. A surrogate marker for "intact survival" is necessary for the successful management of HIE. The severity of HIE can be classified based on clinical presentation, including the presence of seizures, using a clinical classification scale called Sarnat staging; however, Sarnat staging is subjective, and the score changes over time. Furthermore, seizures are difficult to detect clinically and are associated with a poor prognosis. Therefore, a tool for continuous monitoring on the cot side is necessary, for example, an electroencephalogram (EEG) that noninvasively measures the electrical activity of the brain from the scalp. Then, multimodal brain imaging, when combined with functional near-infrared spectroscopy (fNIRS), can capture the neurovascular coupling (NVC) status. In this study, we first tested the feasibility of a low-cost EEG-fNIRS imaging system to differentiate between normal, hypoxic, and ictal states in a perinatal ovine hypoxia model. Here, the objective was to evaluate a portable cot-side device and perform autoregressive with extra input (ARX) modeling to capture the perinatal ovine brain states during a simulated HIE injury. So, ARX parameters were tested with a linear classifier using a single differential channel EEG, with varying states of tissue oxygenation detected using fNIRS, to label simulated HIE states in the ovine model. Then, we showed the technical feasibility of the low-cost EEG-fNIRS device and ARX modeling with support vector machine classification for a human HIE case series with and without sepsis. The classifier trained with the ovine hypoxia data labeled ten severe HIE human cases (with and without sepsis) as the "hypoxia" group and the four moderate HIE human cases as the "control" group. Furthermore, we showed the feasibility of experimental modal analysis (EMA) based on the ARX model to investigate the NVC dynamics using EEG-fNIRS joint-imaging data that differentiated six severe HIE human cases without sepsis from four severe HIE human cases with sepsis. In conclusion, our study showed the technical feasibility of EEG-fNIRS imaging, ARX modeling of NVC for HIE classification, and EMA that may provide a biomarker of sepsis effects on the NVC in HIE.
Collapse
Affiliation(s)
- Brian Hagan
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| | - Radhika Mujumdar
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| | - Jagdish P. Sahoo
- Department of Neonatology, IMS & SUM Hospital, Bhubaneswar, India
| | - Abhijit Das
- Department of Neurology, The Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
3
|
Fang W, Huang X, Wu K, Zong Y, Yu J, Xu H, Shi J, Wei J, Zhou X, Jiang C. Activation of the GABA-alpha receptor by berberine rescues retinal ganglion cells to attenuate experimental diabetic retinopathy. Front Mol Neurosci 2022; 15:930599. [PMID: 36017075 PMCID: PMC9396352 DOI: 10.3389/fnmol.2022.930599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThe aim of this study was to investigate the role and mechanism of berberine (BBR) in the protection of injured retinal ganglion cells (RGCs) in diabetic retinopathy (DR).MethodsExperimental diabetic retinopathy rat model was successfully induced by a single intraperitoneal injection of streptozotocin (STZ, 60 mg/kg) in male SD rats with sufficient food and water for 8 weeks. Animals were randomly divided into four groups: (1) non-diabetic, (2) diabetic, (3) diabetic + BBR + PBS, and (4) diabetic + BBR + SR95531. BBR (100 mg/kg) was given daily by gavage to rats in the group (3) and group (4) for 8 weeks, and weekly intravitreal injections were conducted to rats in the group (3) with 5 μL of 1×PBS and rats in the group (4) with 5 μL of GABA-alpha receptor antagonist SR95531 to investigate the underlying mechanisms. The survival and apoptosis of RGCs were observed by fluorescence gold labeling technology and TUNEL staining. Visual function was evaluated by visual electrophysiological examination. Western blotting and immunofluorescence staining were used to analyze the expression of GABA-alpha receptors in RGCs.ResultsIn an animal model, BBR can increase the survival of RGCs, reduce RGCs apoptosis, and significantly improve the visual function. The reduction of GABA, PKC-α, and Bcl-2 protein expression caused by DR can be considerably increased by BBR. SR95531 inhibits BBR's protective effect on RGC and visual function, as well as its upregulation of PKC-α and Bcl-2.ConclusionBBR is a promising preventive or adjuvant treatment for DR complications, and its key protective effect may involve the regulation of RGC apoptosis through the GABA-alpha receptor/protein kinase C-alpha (GABAAR/PKC-α) pathway.
Collapse
Affiliation(s)
- Wangyi Fang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- Department of Ophthalmology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojing Huang
- Department of Ophthalmology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Kaicheng Wu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yuan Zong
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jian Yu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Huan Xu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jiemei Shi
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jiaojiao Wei
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Xujiao Zhou
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- Xujiao Zhou
| | - Chunhui Jiang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- *Correspondence: Chunhui Jiang
| |
Collapse
|
4
|
Calvo-Flores Guzmán B, Kim S, Chawdhary B, Peppercorn K, Tate WP, Waldvogel HJ, Faull RLM, Montgomery J, Kwakowsky A. Amyloid-Beta 1-42 -Induced Increase in GABAergic Tonic Conductance in Mouse Hippocampal CA1 Pyramidal Cells. Molecules 2020; 25:molecules25030693. [PMID: 32041202 PMCID: PMC7037727 DOI: 10.3390/molecules25030693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023] Open
Abstract
Alzheimer’s disease (AD) is a complex and chronic neurodegenerative disorder that involves a progressive and severe decline in cognition and memory. During the last few decades a considerable amount of research has been done in order to better understand tau-pathology, inflammatory activity and neuronal synapse loss in AD, all of them contributing to cognitive decline. Early hippocampal network dysfunction is one of the main factors associated with cognitive decline in AD. Much has been published about amyloid-beta1-42 (Aβ1-42)-mediated excitotoxicity in AD. However, increasing evidence demonstrates that the remodeling of the inhibitory gamma-aminobutyric acid (GABAergic) system contributes to the excitatory/inhibitory (E/I) disruption in the AD hippocampus, but the underlying mechanisms are not well understood. In the present study, we show that hippocampal injection of Aβ1-42 is sufficient to induce cognitive deficits 7 days post-injection. We demonstrate using in vitro whole-cell patch-clamping an increased inhibitory GABAergic tonic conductance mediated by extrasynaptic type A GABA receptors (GABAARs), recorded in the CA1 region of the mouse hippocampus following Aβ1-42 micro injection. Such alterations in GABA neurotransmission and/or inhibitory GABAARs could have a significant impact on both hippocampal structure and function, causing E/I balance disruption and potentially contributing to cognitive deficits in AD.
Collapse
Affiliation(s)
- Beatriz Calvo-Flores Guzmán
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (B.C.-F.G.); (S.K.); (B.C.); (H.J.W.); (R.L.F.)
| | - SooHyun Kim
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (B.C.-F.G.); (S.K.); (B.C.); (H.J.W.); (R.L.F.)
| | - Bhavya Chawdhary
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (B.C.-F.G.); (S.K.); (B.C.); (H.J.W.); (R.L.F.)
| | - Katie Peppercorn
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand; (K.P.); (W.P.T.)
| | - Warren P Tate
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand; (K.P.); (W.P.T.)
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (B.C.-F.G.); (S.K.); (B.C.); (H.J.W.); (R.L.F.)
| | - Richard LM Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (B.C.-F.G.); (S.K.); (B.C.); (H.J.W.); (R.L.F.)
| | - Johanna Montgomery
- Centre for Brain Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand;
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (B.C.-F.G.); (S.K.); (B.C.); (H.J.W.); (R.L.F.)
- Correspondence: ; Tel.: +64-9923-9346
| |
Collapse
|
5
|
Rubin BR, Milner TA, Pickel VM, Coleman CG, Marques-Lopes J, Van Kempen TA, Kazim SF, McEwen BS, Gray JD, Pereira AC. Sex and age differentially affect GABAergic neurons in the mouse prefrontal cortex and hippocampus following chronic intermittent hypoxia. Exp Neurol 2019; 325:113075. [PMID: 31837319 DOI: 10.1016/j.expneurol.2019.113075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Obstructive sleep apnea (OSA), a chronic sleep disorder characterized by repetitive reduction or cessation of airflow during sleep, is widely prevalent and is associated with adverse neurocognitive sequelae including increased risk of Alzheimer's disease (AD). In humans, OSA is more common in elderly males. OSA is characterized by sleep fragmentation and chronic intermittent hypoxia (CIH), and recent epidemiological studies point to CIH as the best predictor of neurocognitive sequelae associated with OSA. The sex- and age- specific effects of OSA-associated CIH on specific cell populations such as γ-aminobutyric acid (GABA)-ergic neurons in the hippocampus and the medial prefrontal cortex (mPFC), regions important for cognitive function, remain largely unknown. The present study examined the effect of 35 days of either moderate (10% oxygen) or severe (5% oxygen) CIH on GABAergic neurons in the mPFC and hippocampus of young and aged male and female mice as well as post-accelerated ovarian failure (AOF) female mice. In the mPFC and hippocampus, the number of GABA-labeled neurons increased in aged and young severe CIH males compared to controls but not in young moderate CIH males. This change was not representative of the individual GABAergic cell subpopulations, as the number of parvalbumin-labeled neurons decreased while the number of somatostatin-labeled neurons increased in the hippocampus of severe CIH young males only. In all female groups, the number of GABA-labeled cells was not different between CIH and controls. However, in the mPFC, CIH increased the number of parvalbumin-labeled neurons in young females and the number of somatostatin-labeled cells in AOF females but decreased the number of somatostatin-labeled cells in aged females. In the hippocampus, CIH decreased the number of somatostatin-labeled neurons in young females. CIH decreased the density of vesicular GABA transporter in the mPFC of AOF females only. These findings suggest sex-specific changes in GABAergic neurons in the hippocampus and mPFC with males showing an increase of this cell population as compared to their female counterparts following CIH. Age at exposure and severity of CIH also differentially affect the GABAergic cell population in mice.
Collapse
Affiliation(s)
- Batsheva R Rubin
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America.
| | - Teresa A Milner
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America.
| | - Virginia M Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America
| | - Christal G Coleman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America
| | - Tracey A Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America
| | - Syed Faraz Kazim
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America; Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America
| | - Ana C Pereira
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America; Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| |
Collapse
|
6
|
Glinski DA, Purucker ST, Van Meter RJ, Black MC, Henderson WM. Endogenous and exogenous biomarker analysis in terrestrial phase amphibians ( Lithobates sphenocephala) following dermal exposure to pesticide mixtures. ENVIRONMENTAL CHEMISTRY (COLLINGWOOD, VIC.) 2018; 16:55-67. [PMID: 34316289 PMCID: PMC8312641 DOI: 10.1071/en18163] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pesticide mixtures are frequently co-applied throughout an agricultural growing season to maximize crop yield. Therefore, non-target ecological species (e.g., amphibians) may be exposed to several pesticides at any given time on these agricultural landscapes. The objectives of this study were to quantify body burdens in terrestrial phase amphibians and translate perturbed metabolites to their corresponding biochemical pathways affected by exposure to pesticides as both singlets and in combination. Southern leopard frogs (Lithobates sphenocephala) were exposed either at maximum or 1/10th maximum application rate to single, double, or triple pesticide mixtures of bifenthrin (insecticide), metolachlor (herbicide), and triadimefon (fungicide). Tissue concentrations demonstrate both facilitated and competitive uptake of pesticides when in mixtures. Metabolomic profiling of amphibian livers identified metabolites of interest for both application rates, however; magnitude of changes varied for the two exposure rates. Exposure to lower concentrations demonstrated down regulation in amino acids, potentially due to their being utilized for glutathione metabolism and/or increased energy demands. Amphibians exposed to the maximum application rate resulted in up regulation of amino acids and other key metabolites likely due to depleted energy resources. Coupling endogenous and exogenous biomarkers of pesticide exposure can be utilized to form vital links in an ecological risk assessment by relating internal dose to pathophysiological outcomes in non-target species.
Collapse
Affiliation(s)
- Donna A. Glinski
- Grantee to U.S. Environmental Protection Agency via Oak Ridge Institute of Science and Education, Athens, GA, USA 30605
- Department of Environmental Health Science, Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA 30602
- Corresponding Author: Donna A. Glinski,
| | - S. Thomas Purucker
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Athens, GA, USA 30605
| | - Robin J. Van Meter
- Departments of Biology and Environmental Science/Studies, Washington College, Chestertown, MD, USA 21620
| | - Marsha C. Black
- Department of Environmental Health Science, Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA 30602
| | - W. Matthew Henderson
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Athens, GA, USA 30605
| |
Collapse
|
7
|
Pereira AC, Mao X, Jiang CS, Kang G, Milrad S, McEwen BS, Krieger AC, Shungu DC. Dorsolateral prefrontal cortex GABA deficit in older adults with sleep-disordered breathing. Proc Natl Acad Sci U S A 2017; 114:10250-10255. [PMID: 28874569 PMCID: PMC5617247 DOI: 10.1073/pnas.1700177114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sleep-disordered breathing (SDB) is a common disorder in aging that is associated with cognitive decline, including significant executive dysfunction, for which the neurobiological underpinnings remain poorly understood. Using proton magnetic resonance spectroscopy (1H MRS), this study assessed whether dysregulation of the homeostatic balance of the major inhibitory and excitatory amino acid neurotransmitter systems of γ-aminobutyric acid (GABA) and glutamate, respectively, play a role in SDB. Levels of GABA and those of the combined resonances of glutamate and glutamine (Glx), were measured by 1H MRS in the left dorsolateral prefrontal cortex (l-DLPFC) and bilateral hippocampal regions of 19 older adults (age ± SD: 66.1 ± 1.9 years) with moderate to severe SDB, defined as having an Apnea-Hypopnea Index (AHI) greater than 15 as assessed by polysomnography, and in 14 older adults (age ± SD: 62.3 ± 1.3 years) without SDB (AHI < 5). In subjects with SDB, levels of l-DLPFC GABA, but not Glx, were significantly lower than in control subjects (P < 0.0002). Additionally, there was a negative correlation between l-DLPFC GABA levels, but not Glx, and SDB severity by AHI (r = -0.68, P < 0.0001), and a positive correlation between l-DLPFC GABA levels, but not Glx, and minimal oxygen saturation during sleep (r = 0.62, P = 0.0005). By contrast, no group differences or oxygenation associations were found for levels of GABA or Glx in right or left hippocampal region. These findings are interpreted in terms of a pathophysiological model of SDB in which hypoxia-mediated inhibitory neurotransmission deficit in DLPFC could lead to hyperexcitability and, potentially neuronal dysfunction and cognitive decline.
Collapse
Affiliation(s)
- Ana C Pereira
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065;
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY 10029
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Xiangling Mao
- Laboratory for Advanced MRS Research, Department of Radiology, Weill Cornell Medicine, New York, NY 10065
| | - Caroline S Jiang
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065
| | - Guoxin Kang
- Laboratory for Advanced MRS Research, Department of Radiology, Weill Cornell Medicine, New York, NY 10065
| | - Sara Milrad
- Center for Sleep Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065;
| | - Ana C Krieger
- Center for Sleep Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Dikoma C Shungu
- Laboratory for Advanced MRS Research, Department of Radiology, Weill Cornell Medicine, New York, NY 10065;
| |
Collapse
|
8
|
GABAA Receptors: Involvement in the Formation of Respiratory Reactions to Hypoxic Stimulation under Conditions of Mitochondrial Dysfunction. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9625-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Correlation-Based Network Generation, Visualization, and Analysis as a Powerful Tool in Biological Studies: A Case Study in Cancer Cell Metabolism. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8313272. [PMID: 27840831 PMCID: PMC5090126 DOI: 10.1155/2016/8313272] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 02/02/2023]
Abstract
In the last decade vast data sets are being generated in biological and medical studies. The challenge lies in their summary, complexity reduction, and interpretation. Correlation-based networks and graph-theory based properties of this type of networks can be successfully used during this process. However, the procedure has its pitfalls and requires specific knowledge that often lays beyond classical biology and includes many computational tools and software. Here we introduce one of a series of methods for correlation-based network generation and analysis using freely available software. The pipeline allows the user to control each step of the network generation and provides flexibility in selection of correlation methods and thresholds. The pipeline was implemented on published metabolomics data of a population of human breast carcinoma cell lines MDA-MB-231 under two conditions: normal and hypoxia. The analysis revealed significant differences between the metabolic networks in response to the tested conditions. The network under hypoxia had 1.7 times more significant correlations between metabolites, compared to normal conditions. Unique metabolic interactions were identified which could lead to the identification of improved markers or aid in elucidating the mechanism of regulation between distantly related metabolites induced by the cancer growth.
Collapse
|
10
|
Han M, Chang J, Kim J. Loss of divalent metal transporter 1 function promotes brain copper accumulation and increases impulsivity. J Neurochem 2016; 138:918-28. [PMID: 27331785 DOI: 10.1111/jnc.13717] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022]
Abstract
The divalent metal transporter 1 (DMT1) is a major iron transporter required for iron absorption and erythropoiesis. Loss of DMT1 function results in microcytic anemia. While iron plays an important role in neural function, the behavioral consequences of DMT1 deficiency are largely unexplored. The goal of this study was to define the neurobehavioral and neurochemical phenotypes of homozygous Belgrade (b/b) rats that carry DMT1 mutation and explore potential mechanisms of these phenotypes. The b/b rats (11-12 weeks old) and their healthy littermate heterozygous (+/b) Belgrade rats were subject to elevated plus maze tasks. The b/b rats spent more time in open arms, entered open arms more frequently and traveled more distance in the maze than +/b controls, suggesting increased impulsivity. Impaired emotional behavior was associated with down-regulation of GABA in the hippocampus in b/b rats. Also, b/b rats showed increased GABAA receptor α1 and GABA transporter, indicating altered GABAergic function. Furthermore, metal analysis revealed that b/b rats have decreased total iron, but normal non-heme iron, in the brain. Interestingly, b/b rats exhibited unusually high copper levels in most brain regions, including striatum and hippocampus. Quantitative PCR analysis showed that both copper importer copper transporter 1 and exporter copper-transporting ATPase 1 were up-regulated in the hippocampus from b/b rats. Finally, b/b rats exhibited increased 8-isoprostane levels and decreased glutathione/glutathione disulfide ratio in the hippocampus, reflecting elevated oxidative stress. Combined, our results suggest that copper loading in DMT1 deficiency could induce oxidative stress and impair GABA metabolism, which promote impulsivity-like behavior. Iron-copper model: Mutations in the divalent metal transporter 1 (DMT1) decrease body iron status and up-regulate copper absorption, which leads to copper loading in the brain and consequently increases metal-induced oxidative stress. This event disrupts GABAergic neurotransmission and promotes impulsivity-like behavior. Our model provides better understanding of physiological risks associated with imbalanced metal metabolism in mental function and, more specifically, the interactions with GABA and redox control in the treatment of emotional disorders.
Collapse
Affiliation(s)
- Murui Han
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA.
| |
Collapse
|
11
|
Salminen A, Jouhten P, Sarajärvi T, Haapasalo A, Hiltunen M. Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer's disease. Neurochem Int 2015; 92:13-24. [PMID: 26617286 DOI: 10.1016/j.neuint.2015.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022]
Abstract
We have previously observed that the conversion of mild cognitive impairment to definitive Alzheimer's disease (AD) is associated with a significant increase in the serum level of 2,4-dihydroxybutyrate (2,4-DHBA). The metabolic generation of 2,4-DHBA is linked to the activation of the γ-aminobutyric acid (GABA) shunt, an alternative energy production pathway activated during cellular stress, when the function of Krebs cycle is compromised. The GABA shunt can be triggered by local hypoperfusion and subsequent hypoxia in AD brains caused by cerebral amyloid angiopathy. Succinic semialdehyde dehydrogenase (SSADH) is a key enzyme in the GABA shunt, converting succinic semialdehyde (SSA) into succinate, a Krebs cycle intermediate. A deficiency of SSADH activity stimulates the conversion of SSA into γ-hydroxybutyrate (GHB), an alternative route from the GABA shunt. GHB can exert not only acute neuroprotective activities but unfortunately also chronic detrimental effects which may lead to cognitive impairment. Subsequently, GHB can be metabolized to 2,4-DHBA and secreted from the brain. Thus, the activation of the GABA shunt and the generation of GHB and 2,4-DHBA can have an important role in the early phase of AD pathogenesis.
Collapse
Affiliation(s)
- Antero Salminen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | - Paula Jouhten
- VTT Technical Research Centre of Finland, FIN-00014 Helsinki, Finland; EMBL European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Timo Sarajärvi
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Mikko Hiltunen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland; Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
12
|
Voytenko LP, Lushnikova IV, Savotchenko AV, Isaeva EV, Skok MV, Lykhmus OY, Patseva MA, Skibo GG. Hippocampal GABAergic interneurons coexpressing alpha7-nicotinic receptors and connexin-36 are able to improve neuronal viability under oxygen-glucose deprivation. Brain Res 2015; 1616:134-45. [PMID: 25966616 DOI: 10.1016/j.brainres.2015.04.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/10/2015] [Accepted: 04/30/2015] [Indexed: 01/09/2023]
Abstract
The hippocampal interneurons are very diverse by chemical profiles and rather inconsistent by sensitivity to CI. Some hippocampal GABAergic interneurons survive certain time after ischemia while ischemia-sensitive interneurons and pyramidal neurons are damaged. GABAergic signaling, nicotinic receptors expressing α7-subunit (α7nAChRs(+)) and connexin-36 (Cx36(+), electrotonic gapjunctions protein) contradictory modulate post-ischemic environment. We hypothesized that hippocampal ischemia-resistant GABAergic interneurons coexpressing glutamate decarboxylase-67 isoform (GAD67(+)), α7nAChRs(+), Cx36(+) are able to enhance neuronal viability. To check this hypothesis the histochemical and electrophysiological investigations have been performed using rat hippocampal organotypic culture in the condition of 30-min oxygen-glucose deprivation (OGD). Post-OGD reoxygenation (4h) revealed in CA1 pyramidal layer numerous damaged cells, decreased population spike amplitude and increased pair-pulse depression. In these conditions GAD67(+) interneurons displayed the OGD-resistance and significant increase of GABA synthesis/metabolism (GAD67-immunofluorescence, mitochondrial activity). The α7nAChRs(+) and Cx36(+) co-localizations were revealed in resistant GAD67(+) interneurons. Under OGD: GABAA-receptors (GABAARs) blockade increased cell damage and exacerbated the pair-pulse depression in CA1 pyramidal layer; α7nAChRs and Cx36-channels separate blockades sufficiently decreased cell damage while interneuronal GAD67-immunofluorescence and mitochondrial activity were similar to the control. Thus, hippocampal GABAergic interneurons co-expressing α7nAChRs and Cx36 remained resistant certain time after OGD and were able to modulate CA1 neuron survival through GABAARs, α7nAChRs and Cx36-channels activity. The enhancements of the neuronal viability together with GABA synthesis/metabolism normalization suggest cooperative neuroprotective mechanism that could be used for increase in efficiency of therapeutic strategies against post-ischemic pathology.
Collapse
Affiliation(s)
- L P Voytenko
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine.
| | - I V Lushnikova
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - A V Savotchenko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Ukraine
| | - E V Isaeva
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Ukraine
| | - M V Skok
- Palladin Institute of Biochemistry, Kiev, Ukraine
| | - O Yu Lykhmus
- Palladin Institute of Biochemistry, Kiev, Ukraine
| | - M A Patseva
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - G G Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| |
Collapse
|
13
|
Aiba I, Shuttleworth CW. Characterization of inhibitory GABA-A receptor activation during spreading depolarization in brain slice. PLoS One 2014; 9:e110849. [PMID: 25338191 PMCID: PMC4206427 DOI: 10.1371/journal.pone.0110849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/24/2014] [Indexed: 12/28/2022] Open
Abstract
Spreading depolarization (SD) is a slowly propagating wave of near complete depolarizations of neurons and glia. Previous studies have reported large GABA releases during SD, but there is limited understanding of how GABA release and receptor activation are regulated and influence the propagating SD wavefront, as well as an excitatory phase immediately following the passage of SD. The present study characterized GABA-A type receptor (GABAAR) currents during SD generated by KCl microinjection in acute hippocampal slices from adult mice. Spontaneous GABAAR-mediated currents (sIPSCs) were initially enhanced, and were followed by a large outward current at the wavefront. sIPSC were then transiently supressed during the late SD phase, resulting in a significant reduction of the sIPSC/sEPSC ratio. The large outward current generated during SD was eliminated by the GABAAR antagonist gabazine, but the channel potentiator/agonist propofol failed to potentiate the current, likely because of a ceiling effect. Extracellular Cl− decreases recorded during SD were reduced by the antagonist but were not increased by the potentiator. Together with effects of GABAAR modulators on SD propagation rate, these results demonstrate a significant inhibitory role of the initial GABAAR activation and suggest that intracellular Cl− loading is insufficient to generate excitatory GABAAR responses during SD propagation. These results provide a mechanistic explanation for facilitating effects of GABAAR antagonists, and the lack of inhibitory effect of GABAAR potentiators on SD propagation. In addition, selective suppression of GABA transmission in the late SD period and the lack of effect of GABAA modulators on the duration of SD suggests that GABA modulation may not be effective approach to protect neurons during the vulnerable phase of SD.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
14
|
Guidoni L, Ricci-Vitiani L, Rosi A, Palma A, Grande S, Luciani AM, Pelacchi F, di Martino S, Colosimo C, Biffoni M, De Maria R, Pallini R, Viti V. 1H NMR detects different metabolic profiles in glioblastoma stem-like cells. NMR IN BIOMEDICINE 2014; 27:129-145. [PMID: 24142746 DOI: 10.1002/nbm.3044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 06/02/2023]
Abstract
The metabolic profiles of glioblastoma stem-like cells (GSCs) growing in neurospheres were examined by (1)H NMR spectroscopy. Spectra of two GSC lines, labelled 1 and 83, from tumours close to the subventricular zone of the temporal lobe were studied in detail and compared with those of neural stem/progenitor cells from the adult olfactory bulb (OB-NPCs) and of the T98G glioblastoma cell line. In both GSCs, signals from myoinositol (Myo-I), UDP-hexosamines (UDP-Hex) and glycine indicated an astrocyte/glioma metabolism. For line 1, the presence of signals from N-acetyl aspartate, GABA and creatine pointed to a neuronal fingerprint. These metabolites were almost absent from line 83 spectra, whereas lipid signals, absent from normal neural lineages, were intense in line 83 spectra and remained low in those of line 1, irrespective of apoptotic fate. Spectra of OB-NPC cells displayed strong similarities with those from line 1, with low lipid signals and clearly detectable neuronal signals. In contrast, the spectral profile of line 83 was more similar to that of T98G, displaying high lipids and nearly complete absence of the neuronal markers. A mixed neural-astrocyte metabolic phenotype with a strong neuronal fingerprint was therefore found in line 1, while an astrocytic/glioma-like metabolism prevailed in line 83. We found a signal assigned to the amide proton of N-acetyl galactosamine in GSC lines and in OB-NPC spectra, whereas it was absent from those of T98G cells. This signal may be related to a stem-cell-specific protein glycosylation pattern and is therefore suggested as a marker of cell multipotency. Other GSC lines from patients with different clinical outcomes were then examined. Unsupervised analysis of spectral data from 13 lines yielded two clusters, with six lines resembling spectral features of line 1 and seven resembling those of line 83, suggesting that distinct metabolic phenotypes may be present in GSC lines.
Collapse
Affiliation(s)
- Laura Guidoni
- Department of Technology and Health and INFN Sanità Group, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Role of Glutamate NMDA Receptors in the Control of Respiration in Mitochondrial Dysfunction in Brainstem Neurons. NEUROPHYSIOLOGY+ 2012. [DOI: 10.1007/s11062-012-9275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Aging- and Experimental Mitochondrial Dysfunction-Related Modifications of Energy Metabolism in Brainstem Neurons. NEUROPHYSIOLOGY+ 2012. [DOI: 10.1007/s11062-012-9261-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Role of Glutamate and GABA in Mechanisms Underlying Respiratory Control. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Cardoso S, Carvalho C, Santos R, Correia S, Santos MS, Seiça R, Oliveira CR, Moreira PI. Impact of STZ-induced hyperglycemia and insulin-induced hypoglycemia in plasma amino acids and cortical synaptosomal neurotransmitters. Synapse 2010; 65:457-66. [PMID: 20853444 DOI: 10.1002/syn.20863] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 08/25/2010] [Indexed: 01/21/2023]
Abstract
In this work, we evaluated the effects of streptozotocin (STZ)-induced hyperglycemia and an acute episode of insulin-induced hypoglycemia in plasma amino acids and cortical neurotransmitters. For that purpose, we used citrate (vehicle)-treated Wistar rats, STZ-treated rats [i.p., 50 mg/kg body weight], and STZ-treated rats injected with insulin [s.c., dose adjusted with blood glucose levels] 1 h prior to sacrifice to induce an acute episode of hypoglycemia. Plasma was collected for determination of amino acids levels. In addition, cortical synaptosomal preparations were obtained and the total levels of neurotransmitters, levels of aspartate, glutamate, taurine, and GABA released by the action of KCl, iodoacetic acid (IAA), ouabain, and veratridine, membrane potential and ATP levels were evaluated. Compared with control rats, plasma from hypoglycemic rats presented increased levels of aspartate, glutamate, glutamine, and taurine whereas GABA levels were decreased in STZ and hypoglycemic rats. Similarly, glutamate and taurine levels were increased in hypoglycemic synaptosomes while GABA decreased in hypoglycemic and STZ-diabetic synaptosomes. The depolarizing agent KCl promoted an increase in aspartate, glutamate, and taurine release from hypoglycemic synaptosomes. The highest release of neurotransmitters occurred in the presence of veratridine and ouabain, two other depolarizing agents, in all groups of experimental animals. However, a higher release of glutamate was observed in the diabetic and hypoglycemic synaptosomes. No alterations were observed in synaptosomal membrane potential and ATP levels. These results show that in the presence of a metabolic insult a higher release of excitatory amino acids occurs, which may underlay the neuronal injury observed in type 1 diabetic patients under insulin therapy.
Collapse
Affiliation(s)
- Susana Cardoso
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Rao R, Ennis K, Long JD, Ugurbil K, Gruetter R, Tkac I. Neurochemical changes in the developing rat hippocampus during prolonged hypoglycemia. J Neurochem 2010; 114:728-38. [PMID: 20477939 DOI: 10.1111/j.1471-4159.2010.06797.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hypoglycemia is common during development and is associated with the risk of neurodevelopmental deficits in human infants. The effects of hypoglycemia on the developing hippocampus are poorly understood. The sequential changes in energy substrates, amino acids and phosphocreatine were measured from the hippocampus during 180 min of insulin-induced hypoglycemia (blood glucose < 2.5 mmol/L) in 14-day-old rats using in vivo(1)H NMR spectroscopy. Hypoglycemia resulted in neuroglycopenia (brain glucose < 0.5 micromol/g). However, the phosphocreatine/creatine (PCr/Cr) ratio was maintained in the physiological range until approximately 150 min of hypoglycemia, indicating that energy supply was sufficient to meet the energy demands. Lactate concentration decreased soon after the onset of neuroglycopenia. Beyond 60 min, glutamine and glutamate became the major energy substrates. A precipitous decrease in the PCr/Cr ratio, indicative of impending energy failure occurred only after significant depletion of these amino acids. Once glutamate and glutamine were significantly exhausted, aspartate became the final energy source. N-acetylaspartate concentration remained unaltered, suggesting preservation of neuronal/mitochondrial integrity during hypoglycemia. Correction of hypoglycemia normalized the PCr/Cr ratio and partially restored the amino acids to pre-hypoglycemia levels. Compensatory neurochemical changes maintain energy homeostasis during prolonged hypoglycemia in the developing hippocampus.
Collapse
Affiliation(s)
- Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Anju TR, Peeyush Kumar T, Paulose CS. Decreased GABAA receptors functional regulation in the cerebral cortex and brainstem of hypoxic neonatal rats: effect of glucose and oxygen supplementation. Cell Mol Neurobiol 2010; 30:599-606. [PMID: 20033840 DOI: 10.1007/s10571-009-9485-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
Abstract
Hypoxia in neonates can lead to biochemical and molecular alterations mediated through changes in neurotransmitters resulting in permanent damage to brain. In this study, we evaluated the changes in the receptor status of GABA(A) in the cerebral cortex and brainstem of hypoxic neonatal rats and hypoxic rats supplemented with glucose and oxygen using binding assays and gene expression of GABA(Aalpha1) and GABA(Agamma5). In the cerebral cortex and brainstem of hypoxic neonatal rats, a significant decrease in GABA(A) receptors was observed, which accounts for the respiratory inhibition. Hypoxic rats supplemented with glucose alone and with glucose and oxygen showed a reversal of the GABA(A) receptors, andGABA(Aalpha1) and GABA(Agamma5) gene expression to control. Glucose acts as an immediate energy source thereby reducing the ATP-depletion-induced increase in GABA and oxygenation, which helps in encountering anoxia. Resuscitation with oxygen alone was less effective in reversing the receptor alterations. Thus, the results of this study suggest that reduction in the GABA(A) receptors functional regulation during hypoxia plays an important role in mediating the brain damage. Glucose alone and glucose and oxygen supplementation to hypoxic neonatal rats helps in protecting the brain from severe hypoxic damage.
Collapse
Affiliation(s)
- T R Anju
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | | | | |
Collapse
|
21
|
Gupta R, Deshpande SB. 3-Nitropropionic acid depresses spinal reflexes involving GABAergic and glycinergic transmission in neonatal rat spinal cord in vitro. Life Sci 2008; 83:756-60. [PMID: 18930740 DOI: 10.1016/j.lfs.2008.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Revised: 09/13/2008] [Accepted: 09/21/2008] [Indexed: 01/30/2023]
Abstract
AIMS 3-Nitropropionic acid (3-NPA) is a naturally occurring fungal toxin that leads to ATP-depletion by inhibiting mitochondrial succinate dehydrogenase and produces chemical anoxia. The present study was conducted to identify the involvement of inhibitory system in 3-NPA-induced depression of spinal reflexes. METHODS The monosynaptic (MSR) and polysynaptic reflex (PSR) potentials were recorded at ventral root by stimulating the corresponding dorsal root in hemisected (sagitally) spinal cord from 4-8 day old rats. Effect of 3-NPA in the absence and presence of antagonists was evaluated on the reflexes. KEY FINDINGS Superfusion of 3-NPA (3.4 mM) depressed the reflexes in a time-dependent manner abolishing them by 35 min. The T-50 values were around 18 and 16 min for MSR and PSR, respectively. An NMDA receptor antagonist, DL-2-amino-5-phosphonovaleric acid (10 microM) failed to block the 3-NPA (3.4 mM)-induced depression of reflexes. Superfusion of bicuculline (GABAA receptor antagonist; 1 microM), or strychnine (glycineA receptor antagonist; 1 microM) antagonized the 3-NPA-induced depression of reflexes significantly. The T-50 values were 26 and 30 min in bicuculline and strychnine pretreated groups, respectively and were significantly greater than 3-NPA only group. SIGNIFICANCE The results indicate that 3-NPA-induced depression of spinal reflexes is partially mediated by GABAergic and glycinergic inhibitory transmission.
Collapse
Affiliation(s)
- Rajesh Gupta
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, UP, India
| | | |
Collapse
|
22
|
Kumar A, Goyal R. Possible GABAergic Modulation in the Protective Effect of Zolpidem in Acute Hypoxic Stress-induced Behavior Alterations and Oxidative Damage. Neurochem Res 2007; 33:370-7. [PMID: 17768679 DOI: 10.1007/s11064-007-9431-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 06/29/2007] [Indexed: 12/16/2022]
Abstract
Hypoxia is an environmental stressor that is known to elicit alterations in both the autonomic nervous system and endocrine functions. The free radical or oxidative stress theory holds that oxidative reactions are mainly underlying neurodegenerative disorders. In fact among complex metabolic reactions occurring during hypoxia, many could be related to the formation of oxygen derived free radicals, causing a wide spectrum of cell damage. In present study, we investigated possible involvement of GABAergic mechanism in the protective effect of zolpidem against acute hypoxia-induced behavioral modification and biochemical alterations in mice. Mice were subjected to acute hypoxic stress for a period of 2 h. Acute hypoxic stress for 2 h caused significant impairment in locomotor activity, anxiety-like behavior, and antinocioceptive effect in mice. Biochemical analysis revealed a significant increased malondialdehyde, nitrite concentrations and depleted reduced glutathione and catalase levels. Pretreatment with zolpidem (5 and 10 mg/kg, i.p.) significantly improved locomotor activity, anti-anxiety effect, reduced tail flick latency and attenuated oxidative damage (reduced malondialdehyde, nitrite concentration, and restoration of reduced glutathione and catalase levels) as compared to stressed control (hypoxia) (P < 0.05). Besides, protective effect of zolpidem (5 mg/kg) was blocked significantly by picrotoxin (1.0 mg/kg) or flumazenil (2 mg/kg) and potentiated by muscimol (0.05 mg/kg) in hypoxic animals (P < 0.05). These effects were significant as compared to zolpidem (5 mg/kg) per se (P < 0.05). Present study suggest that the possible involvement of GABAergic modulation in the protective effect of zolpidem against hypoxic stress.
Collapse
Affiliation(s)
- Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | | |
Collapse
|
23
|
Rane MJ, Gozal D, Butt W, Gozal E, Pierce WM, Guo SZ, Wu R, Goldbart AD, Thongboonkerd V, McLeish KR, Klein JB. Gamma-amino butyric acid type B receptors stimulate neutrophil chemotaxis during ischemia-reperfusion. THE JOURNAL OF IMMUNOLOGY 2005; 174:7242-9. [PMID: 15905570 DOI: 10.4049/jimmunol.174.11.7242] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Serine/threonine kinase Akt, or protein kinase B, has been shown to regulate a number of neutrophil functions. We sought to identify Akt binding proteins in neutrophils to provide further insights into understanding the mechanism by which Akt regulates various neutrophil functions. Proteomic and immunoprecipitation studies identified gamma-amino butyric acid (GABA) type B receptor 2 (GABA(B)R2) as an Akt binding protein in human neutrophils. Neutrophil lysates subjected to Akt immunoprecipitation followed by immunoblotting with anti-GABA(B)R2 demonstrated Akt association with the intact GABA(B)R. Similar results were obtained when reciprocal immunoprecipitations were performed with anti-GABA(B)R2 Ab. Additionally, GABA(B)R2 and Akt colocalization was demonstrated by confocal microscopy. A GABA(B)R agonist, baclofen, activated Akt and stimulated neutrophil-directed migration in a PI3K-dependent manner, whereas CGP52432, a GABA(B)R antagonist blocked such effects. Baclofen, stimulated neutrophil chemotaxis and tubulin reorganization in a PI3K-dependent manner. Additionally, a GABA(B)R agonist failed to stimulate neutrophil superoxide burst. We are unaware of the association of GABA(B)R with Akt in any cell type. The present study shows for the first time that a brain-specific receptor, GABA(B)R2 is present in human neutrophils and that it is functionally associated with Akt. Intraventricular baclofen pretreatment in rats subjected to a stroke model showed increased migration of neutrophils to the ischemic lesion. Thus, the GABA(B)R is functionally expressed in neutrophils, and acts as a chemoattractant receptor via an Akt-dependent pathway. The GABA(B)R potentially plays a significant role in the inflammatory response and neutrophil-dependent ischemia-reperfusion injury such as stroke.
Collapse
Affiliation(s)
- Madhavi J Rane
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Raman L, Tkac I, Ennis K, Georgieff MK, Gruetter R, Rao R. In vivo effect of chronic hypoxia on the neurochemical profile of the developing rat hippocampus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 156:202-9. [PMID: 16099307 DOI: 10.1016/j.devbrainres.2005.02.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 02/23/2005] [Accepted: 02/27/2005] [Indexed: 01/27/2023]
Abstract
The cognitive deficits observed in children with cyanotic congenital heart disease suggest involvement of the developing hippocampus. Chronic postnatal hypoxia present during infancy in these children may play a role in these impairments. To understand the biochemical mechanisms of hippocampal injury in chronic hypoxia, a neurochemical profile consisting of 15 metabolite concentrations and 2 metabolite ratios in the hippocampus was evaluated in a rat model of chronic postnatal hypoxia using in vivo 1H NMR spectroscopy at 9.4 T. Chronic hypoxia was induced by continuously exposing rats (n = 23) to 10% O2 from postnatal day (P) 3 to P28. Fifteen metabolites were quantified from a volume of 9-11 microl centered on the left hippocampus on P14, P21, and P28 and were compared with normoxic controls (n = 14). The developmental trajectory of neurochemicals in chronic hypoxia was similar to that seen in normoxia. However, chronic hypoxia had an effect on the concentrations of the following neurochemicals: aspartate, creatine, phosphocreatine, GABA, glutamate, glutamine, glutathione, myoinositol, N-acetylaspartate (NAA), phosphorylethanolamine, and phosphocreatine/creatine (PCr/Cr) and glutamate/glutamine (Glu/Gln) ratios (P < 0.001 each, except glutamate, P = 0.04). The increased PCr/Cr ratio is consistent with decreased brain energy consumption. Given the well-established link between excitatory neurotransmission and brain energy metabolism, we postulate that elevated glutamate, Glu/Gln ratio, and GABA indicate suppressed excitatory neurotransmission in an energy-limited environment. Decreased NAA and phosphorylethanolamine suggest reduced neuronal integrity and phospholipid metabolism. The altered hippocampal neurochemistry during its development may underlie some of the cognitive deficits present in human infants at risk of chronic hypoxia.
Collapse
Affiliation(s)
- Lakshmi Raman
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
25
|
Martinez G, Di Giacomo C, Sorrenti V, Carnazza ML, Bisceglie V, Vanella A. Effects of norepinephrine depletion in rats during cerebral post-ischemic reperfusion. Neurotoxicology 2004; 25:877-84. [PMID: 15288518 DOI: 10.1016/j.neuro.2003.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2003] [Accepted: 11/20/2003] [Indexed: 11/20/2022]
Abstract
The present paper reports the effects of norepinephrine depletion in rats, after treatment with N-(2-chloroethyl)-N-ethyl 2-bromobenzylamine (DSP-4) neurotoxin, on partial cerebral ischemia and reperfusion. Histological observations made under experimental conditions of noradrenergic (NA)-depletion demonstrated that neuronal lesions were not exacerbated; in fact, in DSP-4-treated ischemic animals, a minor number of neurons appeared damaged. Our results suggest that neuronal recovery after post-ischemic reperfusion is not affected by NA-depletion. DSP-4 neurotoxin does not induce 5-hydroxy-triptamine (5-HT) depletion.
Collapse
Affiliation(s)
- G Martinez
- Department of Anatomy, Diagnostic Pathology, Legal Medicine and Public Health (G. Ingrassia 1510-1589 Anatomist), Faculty of Medicine, University of Catania, Via S. Sofia 87 (Comparto 10), 95123 Catania, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Allen NJ, Attwell D. The effect of simulated ischaemia on spontaneous GABA release in area CA1 of the juvenile rat hippocampus. J Physiol 2004; 561:485-98. [PMID: 15459240 PMCID: PMC1665352 DOI: 10.1113/jphysiol.2004.070490] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
An early consequence of brain energy deprivation is an increase in the frequency of spontaneous inhibitory and excitatory postsynaptic currents (sIPSCs and sEPSCs), which may disrupt neural information processing. This increase in spontaneous transmitter release has been reported to occur in calcium-free solution and has been attributed either to calcium release from internal stores or to a direct effect of hypoxia on the transmitter release mechanism. Here we investigate the mechanism of the increase in sIPSC frequency that occurs in area CA1 of rat hippocampus during simulated ischaemia, by making patch-clamp recordings from CA1 pyramidal neurones. When recording in whole-cell mode, exposure to ischaemic solution increased the sIPSC frequency 30-fold (to 49 Hz) after 5 min, and doubled the sIPSC amplitude. Ischaemic sIPSCs were action potential independent, vesicular in origin and, contrary to the results of earlier studies which did not buffer extracellular calcium to a low level, dependent on extracellular calcium. The properties of the ischaemic sIPSCs were not affected by depleting intracellular stores of calcium or by blocking the neuronal GABA transporter GAT-1. Recording from neurones using gramicidin-perforated patch-clamping showed a 10-fold smaller, more transient increase in sIPSC frequency during ischaemia, with no change of sIPSC amplitude, suggesting that whole-cell clamp recording increases the ischaemia-induced sIPSC rate and amplitude by controlling the intracellular milieu.
Collapse
Affiliation(s)
- Nicola J Allen
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
27
|
Allen NJ, Káradóttir R, Attwell D. Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy. Pflugers Arch 2004; 449:132-42. [PMID: 15338308 DOI: 10.1007/s00424-004-1318-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Accepted: 05/20/2004] [Indexed: 10/26/2022]
Abstract
A dysfunction of amino acid neurotransmitter transporters occurs in a number of central nervous system disorders, including stroke, epilepsy, cerebral palsy and amyotrophic lateral sclerosis. This dysfunction can comprise a reversal of transport direction, leading to the release of neurotransmitter into the extracellular space, or an alteration in transporter expression level. This review analyses the role of glutamate and GABA transporters in the pathogenesis and therapy of a number of acute and chronic neurological disorders.
Collapse
Affiliation(s)
- Nicola J Allen
- Department of Physiology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | |
Collapse
|
28
|
Jha A, Deshpande SB. Aglycemia and ischemia depress spinal synaptic transmission via inhibitory systems involving NMDA receptors. Eur J Pharmacol 2004; 481:189-96. [PMID: 14642785 DOI: 10.1016/j.ejphar.2003.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of in vitro aglycemia (glucose-free) and ischemia (glucose-free and O(2)-free) were examined on the dorsal root-evoked ventral root spinal monosynaptic and polysynaptic reflexes in neonatal rat spinal cords. Aglycemia and ischemia depressed the reflexes in a time-dependent manner and abolished them by 35 min. The depression by ischemia began immediately while that by aglycemia began after 15 min. The NMDA receptor antagonist, DL-2-amino-5-phosphonovaleric acid (APV), blocked the depression induced by aglycemia completely and that by ischemia partially. Strychnine (glycine(A) receptor antagonist) or bicuculline (GABA(A) receptor antagonist) blocked the aglycemia-induced depression of the reflexes. In the case of ischemia, strychnine but not bicuculline, blocked the depression partially. The results indicate that aglycemia and ischemia depress the synaptic transmission involving NMDA receptors. Aglycemia involves both gamma-aminobutyric acid-ergic and glycinergic inhibitory transmission while ischemia involves other additional mechanisms.
Collapse
Affiliation(s)
- Archana Jha
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
29
|
Allen NJ, Rossi DJ, Attwell D. Sequential release of GABA by exocytosis and reversed uptake leads to neuronal swelling in simulated ischemia of hippocampal slices. J Neurosci 2004; 24:3837-49. [PMID: 15084665 PMCID: PMC6729351 DOI: 10.1523/jneurosci.5539-03.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA release during cerebral energy deprivation (produced by anoxia or ischemia) has been suggested either to be neuroprotective, because GABA will hyperpolarize neurons and reduce release of excitotoxic glutamate, or to be neurotoxic, because activation of GABA(A) receptors facilitates Cl- entry into neurons and consequent cell swelling. We have used the GABA(A) receptors of hippocampal area CA1 pyramidal cells to sense the rise of [GABA](o) occurring in simulated ischemia. Ischemia evoked, after several minutes, a large depolarization to approximately -20 mV. Before this "anoxic depolarization," there was an increase in GABA release by exocytosis (spontaneous IPSCs). After the anoxic depolarization, there was a much larger, sustained release of GABA that was not affected by blocking action potentials, vesicular release, or the glial GABA transporter GAT-3 but was inhibited by blocking the neuronal GABA transporter GAT-1. Blocking GABA(A) receptors resulted in a more positive anoxic depolarization but decreased cell swelling at the time of the anoxic depolarization. The influence of GABA(A) receptors diminished in prolonged ischemia because glutamate release evoked by the anoxic depolarization inhibited GABA(A) receptor function by causing calcium entry through NMDA receptors. These data show that ischemia releases GABA initially by exocytosis and then by reversal of GAT-1 transporters and that the resulting Cl- influx through GABA(A) receptor channels causes potentially neurotoxic cell swelling.
Collapse
Affiliation(s)
- Nicola J Allen
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
30
|
Yelmen KN. The Role of Gamma-Aminobutyric Acid and Glutamate for Hypoxic Ventilatory Response in Anesthetized Rabbits. TOHOKU J EXP MED 2004; 203:219-32. [PMID: 15240932 DOI: 10.1620/tjem.203.219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acute hypoxia produces an increase in ventilation. When the hypoxia is sustained, the initial increase in ventilation is followed by a decrease in ventilation. Hypoxia causes changes in brain neurotransmitters depending on its severity and durations. The purpose of this study was to investigate the role of gamma-aminobutyric acid (GABA) and glutamate for hypoxic ventilatory response in rabbits. The experiments were performed in peripheral chemoreceptors intact and denervated rabbits anesthetized with Na-pentobarbitate. For intracerebroventricular (ICV) injections of reagents in each animal, cannula was placed in left lateral cerebral ventricle by stereotaxic method. After ICV injection of GABA (0.48 mg/kg), air breathing in both groups caused a depression of respiratory activity. On the other hand, after ICV injection of GABA, breathing of hypoxic gas mixture (8% O(2)-92% N(2)) in both groups produced the hypoxic hyperventilation. After ICV injection of GABA, blockade of GABA(A) receptors with bicuculline (0.2 mg/kg) did not prevent the hypoxic hyperventilation. In contrast, after ICV GABA injection, blockade of glutamate NMDA receptors with MK-801 (0.09 mg/kg) completely abolished the hypoxic hyperventilation observed while the animals were breathing hypoxic gas mixture. Our findings suggest that ICV injection of GABA causes respiratory depression in normoxic conditions, and that it increases ventilation in hypoxic conditions with or without peripheral chemoreceptor impulses by increasing glutamate.
Collapse
Affiliation(s)
- Karaturan Nermin Yelmen
- University of Istanbul, Cerrahpasa Medical School, Department of Physiology, Istanbul, Turkey.
| |
Collapse
|
31
|
Ohia SE, Awe SO, Opere CA, LeDay AM, Harris LC, Kulkarni K, Sharif NA. Glucose-Deprivation-Induced [3H]D-Aspartate Release from Isolated Bovine and Human Retinae. J Ocul Pharmacol Ther 2003; 19:599-609. [PMID: 14733717 DOI: 10.1089/108076803322660512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The glucose deprivation-induced release of [3H]D-aspartate was studied in bovine and human retinas in a superfusion apparatus. [3H]D-aspartate release was significantly increased upon omitting glucose in the superfusion buffer. This effect was dependent on external Ca2+ because L- and N-type Ca2+-channel blockers, such as diltiazem (1 microM), nitrendipine (1 microM), and omega-conotoxin (100 nM), significantly reduced the effect of glucose-deprivation induced release of [3H]D-aspartate. Furthermore, while glutamate receptor agonists (L-glutamate, N-methyl-D-aspartate, but not kainate) potentiated the effects of glucose deprivation, antagonists (MK-801, MCPG, ifenprodil, and L-AP3) at these receptors blocked the glucose deprivation-induced release process. Taken together, these studies have demonstrated that under conditions of glucose deprivation, as may happen during ischemic events in vivo, the retinal glutamatergic nerve endings and/or glial cells promote the efflux of [3H]D-aspartate into the extracellular environment. This process appears to be receptor-mediated and dependent on extracellular Ca2+ and is similar to previous reports pertaining to brain tissues.
Collapse
Affiliation(s)
- Sunny E Ohia
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Park YK, Shim ES, Oh JI, Kim JH, Chung YG. Adenosine-mediated synaptic depression and EPSP/spike dissociation following high potassium-induced depolarization in rat hippocampal slices. Brain Res 2003; 975:237-43. [PMID: 12763613 DOI: 10.1016/s0006-8993(03)02628-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Simultaneous recordings of orthodromic PS, fEPSP and antidromic PS revealed EPSP/spike (E-S) dissociation, indicating a conversion of input/output relations from early and brief excitability to a late and prolonged depression during the recovery from depolarization induced by high levels of potassium. E-S potentiation was partially attenuated by pre-treating the slices with BAPTA-AM and lidocaine and totally eliminated by a submaximal concentration of muscimol. The time lag for recovery was decreased by the GABA(A) antagonist and completely eliminated by the A(1) antagonist. From these observations, we conclude that Ca(2+) dependent inhibitory suppression is the main cause of a brief period of E-S potentiation, and accumulation of adenosine is the mechanism responsible for prolonged depression of synaptic transmission
Collapse
Affiliation(s)
- Youn-Kwan Park
- Department of Neurosurgery, Korea University Guro Hospital, 80 Guro-dong, Guro-ku, Seoul 152-703, South Korea.
| | | | | | | | | |
Collapse
|
33
|
Abstract
We investigated the effect of hypoxia on glutamate metabolism and uptake in rat pheochromocytoma (PC12) cells. Various key enzymes relevant to glutamate production, metabolism and transport were coordinately regulated by hypoxia. PC12 cells express two glutamate-metabolizing enzymes, glutamine synthetase (GS) and glutamate decarboxylase (GAD), as well as the glutamate-producing enzyme, phosphate-activated glutaminase (PAG). Exposure to hypoxia (1% O(2)) for 6 h or longer increased expression of GS mRNA and protein and enhanced GS enzymatic activity. In contrast, hypoxia caused a significant decrease in expression of PAG mRNA and protein, and also decreased PAG activity. In addition, hypoxia led to an increase in GAD65 and GAD67 protein levels and GAD enzymatic activity. PC12 cells express three Na(+)-dependent glutamate transporters; EAAC1, GLT-1 and GLAST. Hypoxia increased EAAC1 and GLT-1 protein levels, but had no effect on GLAST. Chronic hypoxia significantly enhanced the Na(+)-dependent component of glutamate transport. Furthermore, chronic hypoxia decreased cellular content of glutamate, but increased that of glutamine. Taken together, the hypoxia-induced changes in enzymes related to glutamate metabolism and transport are consistent with a decrease in the extracellular concentration of glutamate. This may have a role in protecting PC12 cells from the cytotoxic effects of glutamate during chronic hypoxia.
Collapse
Affiliation(s)
- S Kobayashi
- Department of Molecular and Cellular Physiology, University of Cincinnati, OH 45267, USA
| | | |
Collapse
|