1
|
Blickenstorfer Y, Jirasko V, Tanno A, Dräger S, Hoven D, Löhle J, Leuch S, Mamedava Y, Müller SL, Leuzinger K, Osthoff M, Vörös J. Iodide based electrochemical gold quantification method for lateral flow assays. Biosens Bioelectron 2024; 262:116524. [PMID: 38971036 DOI: 10.1016/j.bios.2024.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
The lateral flow assay (LFA) is an ideal technology for at-home medical diagnostic tests due to its ease of use, cost-effectiveness, and rapid results. Despite these advantages, only few LFAs, such as the pregnancy and COVID-19 tests, have been translated from the laboratory to the homes of patients. To date, the medical applicability of LFAs is limited by the fact that they only provide yes/no answers unless combined with optical readers that are too expensive for at-home applications. Furthermore, LFAs are unable to compete with the state-of-the-art technologies in centralized laboratories in terms of detection limits. To address those shortcomings, we have developed an electrochemical readout procedure to enable quantitative and sensitive LFAs. This technique is based on a voltage-triggered in-situ dissolution of gold nanoparticles, the conventional label used to visualize target-specific signals on the test line in LFAs. Following the dissolution, the amount of gold is measured by electroplating onto an electrode and subsequent electrochemical quantification of the deposited gold. The measured current has a low noise, which achieves superior detection limits compared to optical techniques where background light scattering is limiting the readout performance. In addition, the hardware for the readout was developed to demonstrate translatability towards low-cost electronics.
Collapse
Affiliation(s)
- Yves Blickenstorfer
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, ETH Zurich, Zurich, Switzerland; Hemetron Ag, Thalwil, Switzerland
| | - Vlastimil Jirasko
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, ETH Zurich, Zurich, Switzerland; Hemetron Ag, Thalwil, Switzerland
| | - Alexander Tanno
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, ETH Zurich, Zurich, Switzerland; Hemetron Ag, Thalwil, Switzerland
| | - Sarah Dräger
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Darius Hoven
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Josephine Löhle
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, ETH Zurich, Zurich, Switzerland; Hemetron Ag, Thalwil, Switzerland
| | - Stephan Leuch
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Sereina Livia Müller
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Karoline Leuzinger
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Michael Osthoff
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Matwani K, Cornish J, DeBenedictis EA, Heller GT. Micromolar fluoride contamination arising from glass NMR tubes and a simple solution for biomolecular applications. JOURNAL OF BIOMOLECULAR NMR 2024; 78:161-167. [PMID: 39066955 PMCID: PMC11491417 DOI: 10.1007/s10858-024-00442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 07/30/2024]
Abstract
Fluorine (19F) NMR is emerging as an invaluable analytical technique in chemistry, biochemistry, structural biology, material science, drug discovery, and medicine, especially due to the inherent rarity of naturally occurring fluorine in biological, organic, and inorganic compounds. Here, we revisit the under-reported problem of fluoride leaching from new and unused glass NMR tubes. We characterised the leaching of free fluoride from various types of new and unused glass NMR tubes over the course of several hours and quantify this contaminant to be at micromolar concentrations for typical NMR sample volumes across multiple glass types and brands. We find that this artefact is undetectable for samples prepared in quartz NMR tubes within the timeframes of our experiments. We also observed that pre-soaking new glass NMR tubes combined with rinsing removes this contamination below micromolar levels. Given the increasing popularity of 19F NMR across a wide range of fields, increasing popularity of single-use screening tubes, the long collection times required for relaxation studies and samples of low concentrations, and the importance of avoiding contamination in all NMR experiments, we anticipate that our simple solution will be useful to biomolecular NMR spectroscopists.
Collapse
Affiliation(s)
- Khushboo Matwani
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | | | | | - Gabriella T Heller
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
3
|
Analysis of halogens in wastewater with a new prepared ion selective electrode. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Takekiyo T, Yamada N, Amo T, Asano A, Yoshimura Y. Triiodide ion-induced inhibition of amyloid aggregate formation: A case study of α-synuclein. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Wanat K, Brzezińska E. Statistical Methods in the Study of Protein Binding and Its Relationship to Drug Bioavailability in Breast Milk. Molecules 2022; 27:molecules27113441. [PMID: 35684378 PMCID: PMC9182007 DOI: 10.3390/molecules27113441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Protein binding (PB) is indicated as the factor most severely limiting distribution in the organism, reducing the bioavailability of the drug, but also minimizing the penetration of xenobiotics into the fetus or the body of a breastfed child. Therefore, PB is an important aspect to be analyzed and monitored in the design of new drug substances. In this paper, several statistical analyses have been introduced to find the relationship between protein binding and the amount of drug in breast milk and to select molecular descriptors responsible for both pharmacokinetic phenomena. Along with descriptors related to the physicochemical properties of drugs, chromatographic descriptors from TLC and HPLC experiments were also used. Both methods used modification of the stationary phase, using bovine serum albumin (BSA) in TLC and human serum albumin (HSA) in HPLC. The use of the chromatographic data in the protein binding study was found to be positive -the most effective application of normal-phase TLC and HPLCHSA data was found. Statistical analyses also confirmed the prognostic value of affinity chromatography data and protein binding itself as the most important parameters in predicting drug excretion into breast milk.
Collapse
|
6
|
Sun N, Sun B, Li C, Zhang J, Yang W. Effects of Different Pretreatment Methods and Dietary Factors on the Form and Bioavailability of Iodine in Laminaria japonica. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2021.2024313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nan Sun
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Bolun Sun
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Chao Li
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jinjie Zhang
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Li X, Liu H, Yang Z, Duan H, Wang Z, Cheng Z, Song Z, Wu X. Study on the interaction of hyaluronidase with certain flavonoids. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Liu J, Zhou H, Tan Y, Muriel Mundo JL, McClements DJ. Comparison of plant-based emulsifier performance in water-in-oil-in-water emulsions: Soy protein isolate, pectin and gum Arabic. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Liao X, Zhu C, Huang D, Wen X, Zhang SL, Shen Y. Profiling the interaction of a novel toxic pyruvate dehydrogenase kinase inhibitor with human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119733. [PMID: 33827040 DOI: 10.1016/j.saa.2021.119733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
To discover novel pyruvate dehydrogenase kinase (PDK) inhibitors, a new compound 2,2-dichloro-1-(4-((4-isopropylphenyl)amino)-3-nitrophenyl)ethan-1-one, namely XB-1 was identified, which inhibited PDK activity with a half maximal inhibitory concentration (IC50) value of 337.0 nM, and reduced A549 cell proliferation with a half maximal effective concentration (EC50) value of 330.0 nM. However, the compound appears to exhibit a negligible selectivity between cancer cell and normal one, indicating a potential toxicity existed for the compound. Herein, the interaction of the toxic XB-1 to human serum albumin (HSA) was firstly explored by spectroscopic approaches with the aim to reduce/avoid the toxicity of PDK inhibitors in the next hit-to-lead campaign. In detail, it was found that the XB-1 could effectively bind to HSA mainly via hydrogen bond interaction in PBS buffer (pH = 7.4, 10.0 mM), resulting in the formation of HSA-XB-1 complex. The negative value of ΔG showed that the binding of XB-1 to HSA is a spontaneous process. The result from site-selective binding assay suggested that the XB-1 bound to the site I of HSA by competing with warfarin, which was perfect in agreement with the molecular docking method. The results of this paper may offer a valuable theoretical basis to study the toxicity of biofunctional molecules and may offer thoughts about how to avoid/reduce toxicity for a small molecule.
Collapse
Affiliation(s)
- Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chunlei Zhu
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ding Huang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoqing Wen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Yizhong Shen
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
10
|
Śliwińska-Hill U. Spectroscopic studies of simultaneous binding of cyclophosphamide and imatinib mesylate to human holo-transferrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119538. [PMID: 33582440 DOI: 10.1016/j.saa.2021.119538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
The interactions of proteins with drugs are very important from a pharmacological point of view. Holo-transferrin is a blood-plasma glycoprotein whose main function is iron-binding and the transport of other ligands. Additionally, the protein is only transferrin-form recognized by TfR1 and TfR2 receptors at the surface of rapidly proliferating malignant cells. Imatinib mesylate is a tyrosine-kinase inhibitor mainly used in the treatment of blood cancers, frequently in multidrug therapy with cyclophosphamide. In this study the effect of cyclophosphamide on the interaction of imatinib mesylate with human holo-transferrin has been investigated. Using spectroscopic techniques such as fluorescence, circular dichroism, ultraviolet-visible and electrophoretic light scattering additive parameters, system stability and the effect of the ligands on the protein conformation at varying pH values have been defined. Calculated quenching constants are in the order of 2 × 104 M-1 and the type of interaction depends on the reaction medium. Under physiological conditions binding constant is 1.329 × 106 M-1 whereas in an environment similar to that of cancer cells the constant is significantly lower, Ka = 6.060 × 104 M-1. N values are approximate to 1 in all cases. Moreover, some changes are observed in the α-helical structure of the protein after interaction with the drugs and the presence of cyclophosphamide slightly stabilizes the protein secondary structure. All collected data proves the effect of cyclophosphamide on the interaction between imatinib mesylate and human holo-transferrin. It is of great clinical interest due to anticancer, multidrug therapies including both imatinib mesylate and cyclophosphamide.
Collapse
Affiliation(s)
- Urszula Śliwińska-Hill
- Department of Analytical Chemistry, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-566 Wrocław, Poland.
| |
Collapse
|
11
|
Wanat K, Żydek G, Hekner A, Brzezińska E. In silico Plasma Protein Binding Studies of Selected Group of Drugs Using TLC and HPLC Retention Data. Pharmaceuticals (Basel) 2021; 14:ph14030202. [PMID: 33671019 PMCID: PMC7997166 DOI: 10.3390/ph14030202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 11/21/2022] Open
Abstract
Plasma protein binding is an important determinant of the pharmacokinetic properties of chemical compounds in living organisms. The aim of the present study was to determine the index of protein binding affinity based on chromatographic experiments. The question is which chromatographic environment will best mimic the drug–protein binding conditions. Retention data from normal phase thin-layer liquid chromatography (NP TLC), reversed phase (RP) TLC and HPLC chromatography experiments with 129 active pharmaceutical ingredients (APIs) were collected. The stationary phase of the TLC plates was modified with protein and the HPLC column was filled with immobilized human serum albumin. In both chromatographic methods, the mobile phase was based on a buffer with a pH of 7.4 to mimic physiological conditions. Chemometric analyses were performed to compare multiple linear regression models (MLRs) with retention data, using protein binding values as the dependent variable. In the course of the analysis, APIs were divided into acidic, basic and neutral groups, and separate models were created for each group. The MLR models had a coefficient of determination between 0.73 and 0.91, with the highest values from NP TLC data.
Collapse
Affiliation(s)
- Karolina Wanat
- Correspondence: ; Tel.: +48-608-717-573 or +48-42-677-92-11
| | | | | | | |
Collapse
|
12
|
Kheirdoosh F, Kashanian S, Khodaei MM, Sariaslani M, Falsafi M, Moghadam NH, Salehzadeh S, Pazhavand M, Kashanian M. Spectroscopic studies on the interaction of aspartame with human serum albumin. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:300-316. [PMID: 33455539 DOI: 10.1080/15257770.2021.1872792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this work the binding of artificial sweetener aspartame with human serum albumin (HSA) was studied at physiological pH. Binding studies of aspartame (APM) with HSA are useful to understand APM -HSA interaction, mechanism and providing guidance for the application and design of new and more efficient artificial sweeteners. The interaction was investigated by spectrophotometric, spectrofluorometric competition experiment and circular dichroism (CD) techniques. The results indicated that the binding of APM to HSA caused fluorescence quenching of HSA through static quenching mechanism with binding constant 1.42 × 10+4 M-1 at 298 K and the number of binding sites is approximately one. Thermodynamic parameters, enthalpy changes (ΔH) and entropy changes (ΔS) were calculated to be -41.20 kJ mol-1 and -58.19 J mol-1 K-1, respectively, according to van't Hoff equation, which indicated that reaction is enthalpically driven. Quenching of the fluorescence of HSA was found to be a static quenching process. The binding constants and number of binding sites were obtained at three different temperatures (298, 308 and 318 K). Combining above results and those of spectrofluorometric competition experiment and circular dichroism (CD), indicated that APM binds to HSA via Sudlow's site I. Furthermore, the study of molecular docking on HSA binding also indicated that APM can strongly bind to the site I (subdomain IIA) of HSA mainly by hydrophobic interaction and hydrogen bond interactions exist between APM and HSA.
Collapse
Affiliation(s)
- Fahimeh Kheirdoosh
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Soheila Kashanian
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Nano drug delivery research center, Kermanshah University of medical sciences, Kermanshah, Iran
| | - Mohammad Mehdi Khodaei
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Mahya Sariaslani
- School of Paramedical, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Monireh Falsafi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | | | | | - Mahsa Pazhavand
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Mahdi Kashanian
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Fries MR, Conzelmann NF, Günter L, Matsarskaia O, Skoda MWA, Jacobs RMJ, Zhang F, Schreiber F. Bulk Phase Behavior vs Interface Adsorption: Specific Multivalent Cation and Anion Effects on BSA Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:139-150. [PMID: 33393312 DOI: 10.1021/acs.langmuir.0c02618] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Proteins are ubiquitous and play a critical role in many areas from living organisms to protein microchips. In humans, serum albumin has a prominent role in the foreign body response since it is the first protein which will interact with, e.g., an implant or stent. In this study, we focused on the influence of salts (i.e., different cations (Y3+, La3+) and anions (Cl-, I-) on bovine serum albumin (BSA) in terms of its bulk behavior as well as the role of charges for protein adsorption at the solid-liquid interface in order to understand and control the underlying molecular mechanisms and interactions. This is part of our group's effort to gain a deeper understanding of protein-protein and protein-surface interactions in the presence of multivalent ions. In the bulk, we established two new phase diagrams and found not only multivalent cation-triggered phase transitions, but also a dependence of the protein behavior on the type of anion. The attractive interactions between proteins were observed to increase from Cl- < NO3- < I-, resulting in iodide preventing re-entrant condensation and promoting liquid-liquid phase separation in bulk. Using ellipsometry and a quartz-crystal microbalance with dissipation (QCM-D), we obtained insight into the growth of the protein adsorption layer. Importantly, we found that phase transitions at the substrate can be triggered by certain interface properties, whether they exist in the bulk solution or not. Through the use of a hydrophilic, negatively charged surface (native silica), the direct binding of anions to the interface was prevented. Interestingly, this led to re-entrant adsorption even in the absence of re-entrant condensation in bulk. However, the overall amount of adsorbed protein was enhanced through stronger attractive protein-protein interactions in the presence of iodide salts. These findings illustrate how carefully chosen surface properties and salts can directly steer the binding of anions and cations, which guide protein behavior, thus paving the way for specific/triggered protein-protein, protein-salt, and protein-surface interactions.
Collapse
Affiliation(s)
- Madeleine R Fries
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Nina F Conzelmann
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Luzie Günter
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Olga Matsarskaia
- Institut Max von Laue - Paul Langevin (ILL), CS20156, F-38042 Grenoble, France
| | - Maximilian W A Skoda
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, United Kingdom
| | - Robert M J Jacobs
- Department for Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Fajun Zhang
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Frank Schreiber
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
- Center for Light-Matter Interaction, Sensors & Analytics LISA+, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
14
|
Huang G, Ma J, Li J, Yan L. Removal of 1,2-benzanthracene via the intercalation of 1,2-benzanthracene with DNA and magnetic bead-based separation. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 40:137-156. [PMID: 33124510 DOI: 10.1080/15257770.2020.1839905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study, DNA-functionalize-magnetic beads were investigated as sorbent materials for effective removing 1,2-benzanthracene (BaA) from water. In order to reveal the removal mechanism, the interaction mode between BaA and DNA was evaluated by using various characterization tools such as UV-visible and circular dichroism spectroscopy, fluorescence and resonance scattering spectroscopy, and agarose gel electrophoresis. In the presence of BaA, the melting temperature of DNA increased from 76.2 °C to 82.3 °C, which closely related to the intercalating of BaA. It was found that a part of the ethidium bromide (EB) binding sites to DNA were occupied by BaA in EB competing study. The results indicated that a new complex appeared between hsDNA and BaA, and the number of the binding sites (n) and the binding constants (KA) at different temperatures were obtained. DNA binding saturation value (≈0.80) was obtained by resonance scattering spectra study. BaA could be enriched and removed by DNA-functionalize-magnetic beads via the intercalation, and the removal efficiency was 97.73% when the initial concentration was 2.45 x10-6 mol·L-1 (559.31 μg/L).
Collapse
Affiliation(s)
- Guoxia Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, Guangxi, P. R. China
| | - Ji Ma
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, Guangxi, P. R. China
| | - Junsheng Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, Guangxi, P. R. China
| | - Liujuan Yan
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, Guangxi, P. R. China
| |
Collapse
|
15
|
Musa KA, Ning T, Mohamad SB, Tayyab S. Intermolecular recognition between pyrimethamine, an antimalarial drug and human serum albumin: Spectroscopic and docking study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Study on the interaction between lovastatin and three digestive enzymes and the effect of naringin and vitamin C on it by spectroscopy and docking methods. Int J Biol Macromol 2020; 155:1440-1449. [DOI: 10.1016/j.ijbiomac.2019.11.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/22/2023]
|
17
|
Tarannum A, Arif Z, Alam K, Moinuddin. Glycation, nitro-oxidation and glyco-nitro-oxidation of human serum albumin: A physico-chemical study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Li X, Yang L, Wang Y, Du Z, Mao X, Sun D, Liu J, Zhou Y, Xu X. Studies on binding of single-stranded DNA with reduced graphene oxide-silver nanocomposites. IET Nanobiotechnol 2020; 14:308-313. [PMID: 32463021 PMCID: PMC8676041 DOI: 10.1049/iet-nbt.2019.0377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/21/2020] [Indexed: 11/20/2022] Open
Abstract
The binding reaction of reduced graphene oxide-silver nanocomposites (rGO-AgNCs) with calf thymus single-stranded DNA (ssDNA) was studied by ultraviolet-visible absorption, fluorescence spectroscopy and circular dichroism (CD), using berberine hemisulphate (BR) dye as a fluorescence probe. The absorbance of ssDNA increases, but the fluorescence intensity is quenched with the addition of rGO-AgNCs. The binding of rGO-AgNCs with ssDNA was able to increase the quenching effects of BR and ssDNA, and induce the changes in CD spectra. All of the evidence indicated that there was a relatively strong interaction between ssDNA and rGO-AgNCs. The data obtained from fluorescence experiments revealed that the quenching process of ssDNA caused by rGO-AgNCs is primarily due to complex formation, i.e. static quenching. The increasing trend of the binding equilibrium constant (Ka) with rising temperature indicated that the binding process was an endothermic reaction. The calculated thermodynamic parameters showed that the binding process was thermodynamically spontaneous, and hydrophobic association played predominant roles in the binding of ssDNA to the surface of rGO-AgNCs.
Collapse
Affiliation(s)
- Xi Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, People's Republic of China
| | - Linqing Yang
- Program for Scientific Research Innovation Team in Precision Medicine of Gynecologic Oncology, Affiliated Hospital of Jining Medical University, Jining 272067, Shandong Province, People's Republic of China
| | - Yunfei Wang
- Program for Scientific Research Innovation Team in Precision Medicine of Gynecologic Oncology, Affiliated Hospital of Jining Medical University, Jining 272067, Shandong Province, People's Republic of China
| | - Zhongyu Du
- College of Basic Medical, Jining Medical University, Jining 272067, Shandong Province, People's Republic of China
| | - Xuyan Mao
- College of Basic Medical, Jining Medical University, Jining 272067, Shandong Province, People's Republic of China
| | - Dezhi Sun
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong Province, People's Republic of China
| | - Jun Liu
- College of Basic Medical, Jining Medical University, Jining 272067, Shandong Province, People's Republic of China
| | - Yu Zhou
- School of Public Health, Jining Medical College, Jining 272067, Shandong Province, People's Republic of China
| | - Xiangyu Xu
- College of Basic Medical, Jining Medical University, Jining 272067, Shandong Province, People's Republic of China.
| |
Collapse
|
19
|
Wanat K, Khakimov B, Brzezińska E. Comparison of statistical methods for predicting penetration capacity of drugs into human breast milk using physicochemical, pharmacokinetic and chromatographic descriptors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:457-475. [PMID: 32627677 DOI: 10.1080/1062936x.2020.1772365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
In silico methods are often used for predicting pharmacokinetic properties of drugs due to their simplicity and cost-effectiveness. This study evaluates the penetration of 83 active pharmaceutical ingredients into human breast milk with an experimental milk-to-plasma ratio (M/P) obtained from the literature. Multiple linear regression (MLR), partial least squares (PLS) and random forest (RF) regression methods were compared to uncover the relationship between physicochemical, pharmacokinetic and membrane crossing properties of active pharmaceutical ingredients (APIs) using their rapid reference measurement value (Rf values), thin-layer chromatography (TLC) data from albumin-impregnated plates. Molecular descriptors of APIs proven to be important for their crossing into breast milk, including protein binding, ionisation state and lipophilicity and TLC data, have been included in the development of the prediction models. The best regression results were achieved by MLR (r 2 = 0.83 and r 2 = 0.86, n = 28) and RF (r 2 = 0.85, n = 58). In addition, the discriminant function analysis (DFA) was performed on acidic, basic and neutral drugs separately and showed a prediction accuracy of 93%, with M/P included as the discriminating variable.
Collapse
Affiliation(s)
- K Wanat
- Department of Analytical Chemistry, Medical University of Lodz , Lodz, Poland
| | - B Khakimov
- Department of Food Science, University of Copenhagen , Frederiksberg, Denmark
| | - E Brzezińska
- Department of Analytical Chemistry, Medical University of Lodz , Lodz, Poland
| |
Collapse
|
20
|
Duan R, Wu D, Tang L, Hu X, Cheng L, Yang H, Li H, Geng F. Interactions of the cis and trans states of an azobenzene photoswitch with lysozyme induced by red and blue light. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117965. [PMID: 31869683 DOI: 10.1016/j.saa.2019.117965] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/20/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Exploring the interaction between an azobenzene-based photoswitch and natural protein can help elucidate how the photo-control of an optical molecule participates in the transmission and delivery of proteins, as well as the effects of azo-switch trans and cis states on protein configurations. In this study, fluorescence analysis, circular dichroism spectroscopy, molecular docking, and molecular dynamics simulations were used to study the interaction among different configurations of tetra-ortho-methoxy substituted azobenzene di-maleimide (toM-ABDM), a red light-induced optical azo-switch, and lysozyme (LYZ). Results showed that toM-ABDM caused the static quenching of LYZ. The cis toM-ABDM had stronger binding affinity than trans toM-ABDM. The noncovalent interaction, hydrogen bonds and van der Waals forces, could not regulate the conformation of LYZ in photo-control. A binding model of toM-ABDM and LYZ in different forms induced by red and blue light was further established by computer simulation.
Collapse
Affiliation(s)
- Ran Duan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China.
| | - Lan Tang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Xia Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Hongqin Yang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Hanmei Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| |
Collapse
|
21
|
Xu X, Zhao M, Han Q, Wang H, Zhang H, Wang Y. Effects of piceatannol on the structure and activities of bovine serum albumin: A multi-spectral and molecular modeling studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117706. [PMID: 31753657 DOI: 10.1016/j.saa.2019.117706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Piceatannol (PIC) displays a wide spectrum of biological activities, such as antioxidation, antibacterial activity and anti-inflammation, but the biochemical and molecular mechanism is not fully understood. In this study, the interaction of PIC with bovine serum albumin (BSA) was studied by fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, circular dichroism spectroscopy and molecular simulation. The effects of PIC on BSA non-enzymatic glycosylation, fibrillation, thermal stability, and structure information were also studied. The results showed that the formation of PIC-BSA complex by mainly hydrogen-bonding forces resulted in the conformational changes of protein. PIC inhibited the formation of β-sheets structures of BSA. BSA still maintained the esterase-like good activity in the presence of PIC. In addition, PIC significantly reduced the degree of BSA glycosylation. These results provided a basis for the molecular interaction between PIC and protein, and suggested the potential effect of PIC in preventing the progression of diabetes mellitus.
Collapse
Affiliation(s)
- Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, B508, No. 364 Building, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China.
| | - Mengshu Zhao
- Center for Molecular Metabolism, Nanjing University of Science and Technology, B508, No. 364 Building, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China
| | - Qianqian Han
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, People's Republic of China
| | - Huijie Wang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, People's Republic of China
| | - Hongmei Zhang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, People's Republic of China
| | - Yanqing Wang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, People's Republic of China.
| |
Collapse
|
22
|
Almutairi FM, Ajmal MR, Siddiqi MK, Amir M, Khan RH. Multi-spectroscopic and molecular docking technique study of the azelastine interaction with human serum albumin. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127147] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Musa KA, Ridzwan NFW, Mohamad SB, Tayyab S. Exploring the combination characteristics of lumefantrine, an antimalarial drug and human serum albumin through spectroscopic and molecular docking studies. J Biomol Struct Dyn 2020; 39:691-702. [PMID: 31913089 DOI: 10.1080/07391102.2020.1713215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Binding of lumefantrine (LUM), an antimalarial drug to human serum albumin (HSA), the main carrier protein in human blood circulation was investigated using fluorescence quenching titration, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking. LUM-induced quenching of the protein (HSA) fluorescence was characterized as static quenching, as revealed by the decrease in the value of the Stern-Volmer quenching constant, Ksv with increasing temperature, thus suggesting LUM-HSA complex formation. This was also confirmed from the UV-vis absorption spectral results. Values of the association constant, Ka for LUM-HSA interaction were found to be within the range, 7.27-5.01 × 104 M-1 at three different temperatures, i.e. 288 K, 298 K and 308 K, which indicated moderate binding affinity between LUM and HSA. The LUM-HSA complex was stabilized by hydrophobic interactions, H-bonds, as well as van der Waals forces, as predicted from the thermodynamic data (ΔS = +50.34 J mol-1 K-1 and ΔH = -12.3 kJ mol-1) of the binding reaction. Far-UV and near-UV CD spectral results demonstrated smaller changes in both secondary and tertiary structures of HSA upon LUM binding, while three-dimensional fluorescence spectra suggested alterations in the microenvironment around protein fluorophores (Trp and Tyr). LUM binding to HSA offered stability to the protein against thermal stress. Competitive drug displacement results designated Sudlow's Site I, located in subdomain IIA of HSA as the preferred binding site of LUM on HSA, which was well supported by molecular docking analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kabiru Abubakar Musa
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Nor Farrah Wahidah Ridzwan
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin B Mohamad
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | - Saad Tayyab
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Chowdhury S, Bhuiya S, Haque L, Das S. In-depth investigation of the binding of flavonoid taxifolin with bovine hemoglobin at physiological pH: Spectroscopic and molecular docking studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117513. [PMID: 31521000 DOI: 10.1016/j.saa.2019.117513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The use of bioactive flavonoids as drugs has long mesmerized the scientific world. Their small size and planar structure enables them to interact with limitless substrates especially biomolecules. Taxifolin is a flavonoid well known for its anti-oxidizing and metal chelating properties. Its interaction with a few biomolecules has been studied so far to exploit its pharmacological activities. Hemoglobin, an iron containing macromolecule acts as a major carrier protein and is also associated with the occurrence of many diseases. Our present study lays emphasis on the interaction of flavanonol taxifolin with bovine hemoglobin at physiological pH. This was achieved by monitoring the changes in the absorbance, fluorescence, anisotropic, lifetime and circular dichroic spectra. Benesi-Hildebrand plot determined a binding constant value of 20.0 × 103 M-1 at 25 °C. Stern-Volmer quenching studies reveal that the binding is associated with a static mode of quenching. The complexation is thermodynamically favored as indicated by the negative value of enthalpy and positive value of entropy changes seen from the van't Hoff plot. Theoretical DFT calculations were used to find out an optimized geometry and HOMO-LUMO energy gap for taxifolin. Molecular docking studies revealed the location of taxifolin inside the hemoglobin moiety.
Collapse
Affiliation(s)
- Susmita Chowdhury
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Sutanwi Bhuiya
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Lucy Haque
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Suman Das
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| |
Collapse
|
25
|
Kabir MZ, Roslan AA, Ridzwan NFW, Mohamad SB, Tayyab S. Biomolecular interaction of a platelet aggregation inhibitor, 3,4-methylenedioxy-β-nitrostyrene with human serum albumin: multi-spectral and computational characterization. J Biomol Struct Dyn 2019; 38:2693-2703. [PMID: 31271347 DOI: 10.1080/07391102.2019.1640133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Molecular interaction of the 3,4-methylenedioxy-β-nitrostyrene (MNS), an inhibitor of platelet aggregation with the main transport protein, albumin from human serum (HSA) was explored using absorption, fluorescence and circular dichroism (CD) spectroscopy in combination with in silico analyses. The MNS-HSA complexation was corroborated from the fluorescence and absorption spectral results. Implication of static quenching mechanism for MNS-HSA system was predicted from the Stern-Volmer constant, KSV-temperature relationship as well as the bimolecular quenching rate constant, kq values. Stabilization of the complex was affirmed by the value of the binding constant (Ka = 0.56-1.48 × 104 M-1). Thermodynamic data revealed that the MNS-HSA association was spontaneously driven mainly through hydrophobic interactions along with van der Waal's interaction and H-bonds. These results were well supported by in silico interpretations. Far-UV and near-UV CD spectral results manifested small variations in the protein's secondary and tertiary structures, respectively, while three-dimensional fluorescence spectra displayed microenvironmental fluctuations around protein's fluorophores, upon MNS binding. Significant improvement in the protein's thermostability was evident from the temperature-stability results of MNS-bound HSA. Binding locus of MNS, as identified by competitive drug displacement findings as well as in silico analysis, was found to be located in subdomain IIA (Sudlow's site I) of the protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Zahirul Kabir
- Faculty of Science, Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Amira Adlin Roslan
- Faculty of Science, Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Nor Farrah Wahidah Ridzwan
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin B Mohamad
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia.,Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | - Saad Tayyab
- Faculty of Science, Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia.,Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
DNA interaction, docking, molecular modelling and biological studies of o-Vanillin derived Schiff base metal complexes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Khan MS, Rehman MT, Bhat SA, Tabrez S, Hussain A, Husain FM, AlAjmi MF, Alamery SF, Sumbul S. Food additive dye (quinoline yellow) promotes unfolding and aggregation of myoglobin: A spectroscopic and molecular docking analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:216-226. [PMID: 30785041 DOI: 10.1016/j.saa.2019.01.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Protein aggregation leads to vast conformational changes and plays a key role in the pathogenesis of various neurodegenerative diseases including Alzheimer's and Parkinson's. In the current piece of work, we have explored the interaction of quinoline yellow (QY) with myoglobin (Mb) at two different pH (3.5 and 7.4). Various spectroscopic techniques such as turbidity, Rayleigh light scattering (RLS), UV-Vis absorbance, fluorescence resonance energy transfer (FRET), far UV-CD along with transmission electron microscopy (TEM) and molecular docking have been utilized to characterize dye-induced aggregation in Mb. Binding results showed that interaction between QY and myoglobin is spontaneous and static in nature with high KSV value of 2.14 × 104 M-1. On the other hand, thermodynamics studies (∆H & ∆S) revealed that complex formation was driven by hydrogen and Van der Walls forces. Molecular docking analysis showed strong binding affinity (Kd = 4.95 × 104 M-1) between QY and Mb at Pro100, Ile101, Lys102, Glu105, Glu136, Arg139, Lys140, and Ala143 residues. The intrinsic fluorescence and circular dichroism studies indicated that QY induced conformational changes in Mb at pH 3.5. Turbidity and RLS studies showed aggregation of Mb in the presence of QY (0.2-5 mM). Moreover, kinetics data revealed nucleation independent aggregation of myoglobin in the presence of QY. TEM analysis further established amorphous nature of Mb aggregate induced by QY. At pH (7.4), QY was unable to induce aggregation in myoglobin; it might be due to repulsive nature of negatively charged dye and myoglobin or partially altered states of protein could be pre-requisite for binding and aggregation.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheraz Ahmad Bhat
- Department of Biochemistry, Kashmir University, Jammu and Kashmir, India
| | - Shams Tabrez
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salman Freeh Alamery
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sadia Sumbul
- Department of Chemistry, Collage of Science Princess Noura Bint Abdul Rahman University, Riyadh, Saudi Arabia.
| |
Collapse
|
28
|
Deshpande AS, Ramireddy S, Sudandiradoss C, Noor A, Sen P. Streptozocin; a GLUT2 binding drug, interacts with human serum albumin at loci h6 DOM3-h7 DOM3. Int J Biol Macromol 2019; 128:923-933. [PMID: 30716368 DOI: 10.1016/j.ijbiomac.2019.01.217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Streptozocin (STZ) is a broad range antibiotic, highly genotoxic, antineoplastic and hyperglycemic. HSA is the most abundant protein in physiology and it binds to almost all exogenic and endogenic ligands, including drugs. STZ-induced fluorescence quenching of HSA has been done at pH 7.4, pH 3.5 and at pH 7.4 with 4.5 M urea at temperatures 286 K, 291 K, and 306 K. Ksv found to be 103 M-1, binding constant 1.5X103M-1 and binding sites ~1. But, Ksv for HSA and glucopyranose interaction was found lesser than that of HSA-STZ binding. Binding of STZ/glucopyranose on HSA seems to result in complex formation as calculated Kq > 1010 M-1 s-1. The number of binding sites, binding constants, and binding energies were increased with temperature. The ΔG0, ΔH0, and ΔS0 for HSA-STZ interaction were found to be -17.7 × 103 J·mol-1; 2.34 × 105 J·mol-1 and 841 JK-1 mol-1 respectively at pH 7.4 and 291 K. The comparative bindings of N, F and I states of HSA with STZ and their molecular docking analyses indicate that IIIA-B junction (i.e., inter-helix h6DOM3-h7DOM3) is the probable binding site, a locus close to fatty acid binding site-5. These results could be useful for therapeutic and analytical exploitation of STZ, as albumin used as the vehicle for drug delivery.
Collapse
Affiliation(s)
- Amogh S Deshpande
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Sriroopreddy Ramireddy
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - C Sudandiradoss
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Ayesha Noor
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Priyankar Sen
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
29
|
|
30
|
Yang J, Chen Y, Liu Z, Yang L, Tang J, Miao M, Gan N, Li H. Differences between the binding modes of enantiomers S/R-nicotine to acetylcholinesterase. RSC Adv 2019; 9:1428-1440. [PMID: 35518031 PMCID: PMC9059617 DOI: 10.1039/c8ra09963d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 01/05/2023] Open
Abstract
Nicotine causes neurotoxic effects because it quickly penetrates the blood–brain barrier after entering the human body. Acetylcholinesterase (AChE) is a key enzyme in the central and peripheral nervous system associated with neurotoxicity. In this study, a spectroscopic method and computer simulation were applied to explore the mode of interaction between AChE and enantiomers of nicotine (S/R-nicotine). Fluorescence spectroscopy showed that the quenching mechanism of endogenous fluorescence of AChE by S/R-nicotine was static, as confirmed by the time-resolved steady-state fluorescence. The binding strength of both nicotine to AChE was weak (S-AChE: Ka = 80.06 L mol−1, R-AChE: Ka = 173.75 L mol−1). The main driving forces of S-AChE system interaction process were van der Waals force and hydrogen bonding, whereas that of R-AChE system was electrostatic force. Computer simulations showed that there were other important forces involved. S/R-Nicotine had a major binding site on AChE, and molecular docking showed that they bound mainly to the cavities enclosed by the active sites (ES, PAS, OH, AACS, and AP) in the protein. UV-vis spectroscopy and 3D spectroscopy indicated that nicotine significantly affected the microenvironment of Trp amino acids in AChE. The CD spectra indicated that S-nicotine increased the α-helical structure of AChE, but the overall conformation did not change significantly. By contrast, R-nicotine significantly changed the secondary structure of AChE. 5,5′-Dithiobis-2-nitrobenzoic acid (DTNB) method indicated that S and R nicotine produced different degrees of inhibition on the catalytic activity of AChE. Both experimental methods and computer simulations showed that R-nicotine had a significantly higher effect on AChE than S-nicotine. This research comprehensively and systematically analyzed the mode of interaction between nicotine and AChE for neurotoxicity assessment. Study on the binding modes of AChE to S/R-nicotine.![]()
Collapse
Affiliation(s)
- Ji Yang
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd
| | - Yongkuan Chen
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd
- Kunming
- China
| | - Zhihua Liu
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd
- Kunming
- China
| | - Liu Yang
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd
- Kunming
- China
| | - Jianguo Tang
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd
- Kunming
- China
| | - Mingming Miao
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd
- Kunming
- China
| | - Na Gan
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Hui Li
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| |
Collapse
|
31
|
Circuncisão AR, Catarino MD, Cardoso SM, Silva AMS. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Mar Drugs 2018; 16:md16110400. [PMID: 30360515 PMCID: PMC6266857 DOI: 10.3390/md16110400] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 01/31/2023] Open
Abstract
Seaweeds are well-known for their exceptional capacity to accumulate essential minerals and trace elements needed for human nutrition, although their levels are commonly very variable depending on their morphological features, environmental conditions, and geographic location. Despite this variability, accumulation of Mg, and especially Fe, seems to be prevalent in Chlorophyta, while Rhodophyta and Phaeophyta accumulate higher concentrations of Mn and I, respectively. Both red and brown seaweeds also tend to accumulate higher concentrations of Na, K, and Zn than green seaweeds. Their valuable mineral content grants them great potential for application in the food industry as new ingredients for the development of numerous functional food products. Indeed, many studies have already shown that seaweeds can be used as NaCl replacers in common foods while increasing their content in elements that are oftentimes deficient in European population. In turn, high concentrations of some elements, such as I, need to be carefully addressed when evaluating seaweed consumption, since excessive intake of this element was proven to have negative impacts on health. In this regard, studies point out that although very bioaccessible, I bioavailability seems to be low, contrarily to other elements, such as Na, K, and Fe. Another weakness of seaweed consumption is their capacity to accumulate several toxic metals, which can pose some health risks. Therefore, considering the current great expansion of seaweed consumption by the Western population, specific regulations on this subject should be laid down. This review presents an overview of the mineral content of prevalent edible European macroalgae, highlighting the main factors interfering in their accumulation. Furthermore, the impact of using these marine vegetables as functional ingredients or NaCl replacers in foods will be discussed. Finally, the relationship between macroalgae’s toxic metals content and the lack of European legislation to regulate them will be addressed.
Collapse
Affiliation(s)
- Ana R Circuncisão
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| | - Marcelo D Catarino
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| | - Susana M Cardoso
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| | - Artur M S Silva
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
32
|
Chanphai P, Ouellette V, Bérubé G, Tajmir-Riahi H. Conjugation of testo and testo-Pt(II) with serum proteins: Loading efficacy and protein conformation. Int J Biol Macromol 2018; 118:1112-1119. [DOI: 10.1016/j.ijbiomac.2018.06.186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 01/02/2023]
|
33
|
Gu Y, Wang Y, Zhang H. Study on the interactions between toxic nitroanilines and lysozyme by spectroscopic approaches and molecular modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 202:260-268. [PMID: 29793147 DOI: 10.1016/j.saa.2018.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/06/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Being exogenous environmental pollutants, nitroanilines (NAs) are highly toxic and have mutagenic and carcinogenic activity. Being lack of studies on interactions between NAs and lysozyme at molecular level, the binding interactions of lysozyme with o-nitroaniline (oNA), m-nitroaniline (mNA) and p-nitroaniline (pNA) were investigated by means of steady-state fluorescence, synchronous fluorescence, UV-vis absorption spectroscopy, as well as molecular modeling. The experimental results revealed that the fluorescence of lysozyme is quenched by oNA and mNA through a static quenching, while the fluorescence quenching triggered by pNA is a combined dynamic and static quenching. The number of binding sites (n) and the binding constant (Kb) corresponding thermodynamic parameters ΔH⊖, ΔS⊖, ΔG⊖ at different temperatures were calculated. The reactions between NAs and lysozyme were spontaneous and entropy driven and the binding of NAs to lysozyme induced conformation changes of lysozyme. The difference of the position of -NO2 group affected the binding and the binding constants Kb decreased in the following pattern: Kb (pNA) >Kb (mNA) >Kb (oNA). Molecular docking studies were performed to reveal the most favorable binding sites of NAs on lysozyme. Our recently results could offer mechanistic insights into the nature of the binding interactions between NAs and lysozyme and provide information about the toxicity risk of NAs to human health.
Collapse
Affiliation(s)
- Yunlan Gu
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| | - Yanqing Wang
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Hongmei Zhang
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| |
Collapse
|
34
|
Sen S, Paul BK, Guchhait N. Binding interaction of phenazinium-based cationic photosensitizers with human hemoglobin: Exploring the effects of pH and chemical structure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 186:88-97. [DOI: 10.1016/j.jphotobiol.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 12/27/2022]
|
35
|
Baltazar C, Mun R, Tajmir-Riahi H, Bariyanga J. Spectroscopic studies on the interaction of mimosine with BSA and DNA. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Makarska-Bialokoz M. Interactions of hemin with bovine serum albumin and human hemoglobin: A fluorescence quenching study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:23-32. [PMID: 29212045 DOI: 10.1016/j.saa.2017.11.063] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 05/28/2023]
Abstract
The binding interactions between hemin (Hmi) and bovine serum albumin (BSA) or human hemoglobin (HHb), respectively, have been examined in aqueous solution at pH=7.4, applying UV-vis absorption, as well as steady-state, synchronous and three-dimensional fluorescence spectra techniques. Representative results received for both BSA and HHb intrinsic fluorescence proceeding from the interactions with hemin suggest the formation of stacking non-covalent and non-fluorescent complexes in both the Hmi-BSA and Hmi-HHb systems, with highly possible concurrent formation of a coordinate bond between a group on the protein surface and the metal in Hmi molecule. All the values of calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants point to the involvement of static quenching in both the systems studied. The blue shift in the synchronous fluorescence spectra imply the participation of both tryptophan and tyrosine residues in quenching of BSA and HHb intrinsic fluorescence. Depicted outcomes suggest that hemin is supposedly able to influence the physiological functions of BSA and HHb, the most important blood proteins, particularly in case of its overuse.
Collapse
Affiliation(s)
- Magdalena Makarska-Bialokoz
- Department of Inorganic Chemistry, Maria Curie-Sklodowska University, M. C. Sklodowska Sq. 2, 20-031 Lublin, Poland.
| |
Collapse
|
37
|
Bordbar M, Tavoosi F, Yeganeh-Faal A, Zebarjadian MH. Interaction study of some macrocyclic inorganic schiff base complexes with calf thymus DNA using spectroscopic and voltammetric methods. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.09.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Huang S, Xie J, Cui J, Liu L, Liang Y, Liu Y, Xiao Q. Comparative investigation of binding interactions between three steroidal compounds and human serum albumin: Multispectroscopic and molecular modeling techniques. Steroids 2017; 128:136-146. [PMID: 28962852 DOI: 10.1016/j.steroids.2017.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/10/2017] [Accepted: 09/23/2017] [Indexed: 02/06/2023]
Abstract
Steroidal compounds have attracted great attentions in biomedical and pharmacological areas. The investigation of structural influences during protein-compound interactions helps in understanding both the biological effects and the mechanism behind bioactivities of steroidal compounds. Herein, the structural influences of three steroidal complexes were investigated based on their binding interactions with human serum albumin (HSA) by multispectroscopic methods and molecular modeling techniques. Three steroidal compounds bonded with HSA to form three HSA-compound complexes, and van der Waals force and hydrogen bond played major roles in stabilizing these complexes. Detailed binding conformation of three steroidal compounds and HSA was further investigated by molecular modeling techniques. The changes of microenvironments and conformations of HSA were significant and the biological activity of HSA was weakened in the present of three steroidal compounds. The space steric hindrance was responsible for differences in the binding interactions between HSA and three steroidal compounds. These results provided the molecular understanding of binding interactions of protein with steroidal compounds and the strategy for research of structural influences.
Collapse
Affiliation(s)
- Shan Huang
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Jiangning Xie
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Jianguo Cui
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China.
| | - Liang Liu
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Yu Liang
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Yi Liu
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Qi Xiao
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China.
| |
Collapse
|
39
|
Cui SF, Li W, Zhou CH. Molecular spectroscopic studies examining the interactions between phenobarbital and human serum albumin in alcohol consumption. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 44:321-328. [PMID: 29095046 DOI: 10.1080/00952990.2017.1387265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alcohol dependence is associated with a wide range of serious mental, physical, and social consequences and is one of the most common chronic diseases worldwide. Barbiturates, which are a first-line treatment in the clinic for alcohol withdrawal, may result in combined barbiturate and alcohol use. Their co-use abuse may promote synergistic effects between barbiturates and alcohol in vivo. OBJECTIVE To investigate the effects of different alcohol concentrations on the synergistic effects of phenobarbital and alcohol. METHODS The interactions between phenobarbital and human serum albumin (HSA) and the effects of different alcohol concentrations on the binding behaviors of the phenobarbital-HSA system were investigated by molecular docking and spectroscopic methods, including fluorescence spectroscopy and UV-visible absorption spectroscopy. RESULTS Experimental results revealed that phenobarbital can be stored and carried by HSA. The presence of alcohol (≤1.96 × 10-2 M) can increase the proportion of free phenobarbital and shorten the half-life and storage time of phenobarbital in the blood, thereby enhancing its bioactive efficacy. The binding constants (Kb) of the phenobarbital-HSA system decrease in the presence of alcohol (≥2.61 × 10-2 M), which suggests that phenobarbital should be quickly cleared from blood, thereby decreasing the activity of phenobarbital. CONCLUSIONS The effects of alcohol on the transposition of phenobarbital by HSA at the beginning of the barbiturate metabolic process play an important role in the synergistic effects of phenobarbital and alcohol. This mechanism may be significant for the clinical dosage of patients with alcohol dependence.
Collapse
Affiliation(s)
- Sheng-Feng Cui
- a Center for Physical and Chemical Evidence Examination, Department of Public Security Technology , Railway Police College , Zhengzhou , P.R. China
| | - Wei Li
- a Center for Physical and Chemical Evidence Examination, Department of Public Security Technology , Railway Police College , Zhengzhou , P.R. China
| | - Cheng-He Zhou
- b Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering , Southwest University , Chongqing , P.R. China
| |
Collapse
|
40
|
Domínguez-González MR, Chiocchetti GM, Herbello-Hermelo P, Vélez D, Devesa V, Bermejo-Barrera P. Evaluation of Iodine Bioavailability in Seaweed Using in Vitro Methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8435-8442. [PMID: 28853868 DOI: 10.1021/acs.jafc.7b02151] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to the high levels of iodine present in seaweed, the ingestion of a large amount of this type of food can produce excessive intake of iodine. However, the food after ingestion undergoes different chemistry and physical processes that can modify the amount of iodine that reaches the systemic circulation (bioavailability). Studies on the bioavailability of iodine from food are scarce and indicate that the bioavailable amount is generally lower than ingested. Iodine in vitro bioavailability estimation from different commercialized seaweed has been studied using different in vitro approaches (solubility, dialyzability, and transport and uptake by intestinal cells). Results indicate that iodine is available after gastrointestinal digestion for absorption (bioaccessibility: 49-82%), kombu being the seaweed with the highest bioaccessibility. The incorporation of dialysis cell cultures to elucidate bioavailability modifies the estimation of the amount of iodine that may reach the systemic circulation (dialysis, 5-28%; cell culture, ≤3%). The paper discusses advantages and drawbacks of these methodologies for iodine bioavailability in seaweed.
Collapse
Affiliation(s)
- M Raquel Domínguez-González
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - Gabriela M Chiocchetti
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Paloma Herbello-Hermelo
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Pilar Bermejo-Barrera
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| |
Collapse
|
41
|
Yuan L, Liu M, Liu G, Li D, Wang Z, Wang B, Han J, Zhang M. Competitive binding of (-)-epigallocatechin-3-gallate and 5-fluorouracil to human serum albumin: A fluorescence and circular dichroism study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:584-592. [PMID: 27776313 DOI: 10.1016/j.saa.2016.10.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/06/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
Combination therapy with more than one therapeutic agent can improve therapeutic efficiency and decrease drug resistance. In this study, the interactions of human serum albumin (HSA) with individual or combined anticancer drugs, (-)-epigallocatechin-3-gallate (EGCG) and 5-fluorouracil (FU), were investigated by fluorescence and circular dichroism (CD) spectroscopy. The results demonstrated that the interaction of EGCG or FU with HSA is a process of static quenching and EGCG formed a more stable complex. The competitive experiments of site markers suggested that both anti-carcinogens mainly bound to site I (subdomain IIA). The interaction forces which play important roles in the binding process were discussed based on enthalpy and entropy changes. Moreover, the competition binding model for a ternary system was proposed so as to precisely calculate the binding parameters. The results demonstrated that one drug decreased the binding affinity of another drug with HSA, resulting in the increasing free drug concentration at the action sites. CD studies indicated that there was an alteration in HSA secondary structure due to the binding of EGCG and FU. It can be concluded that the combination of EGCG with FU may enhance anticancer efficacy. This finding may provide a theoretical basis for clinical treatments.
Collapse
Affiliation(s)
- Lixia Yuan
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Guiqin Liu
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Dacheng Li
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Zhengping Wang
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Bingquan Wang
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jun Han
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Min Zhang
- School of Agriculture, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
42
|
Guo Z, Kong Z, Wei Y, Li H, Wang Y, Huang A, Ma L. Effects of gene carrier polyethyleneimines on the structure and binding capability of bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:783-791. [PMID: 27810769 DOI: 10.1016/j.saa.2016.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/10/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
Polyethyleneimine (PEI), one of the most effective non-viral gene carriers, is also cytotoxic, however the molecular basis is poorly understood. Little is known about the effects of PEI on the structure and functions of the biomacromolecules. In this work, fluorescence, UV-vis absorption, circular dichroism (CD) spectroscopy and zeta-potential measurement were conducted to reveal the interaction between PEIs (average molecular weight 25, 10 and 1.8kDa) and bovine serum albumin (BSA), and to evaluate the effects on the conformation of BSA as long as its binding capability to the model compounds, 8-anilino-1-naphthalenesulfonic acid (ANS) and quercetin. PEIs were found to complex with BSA and induced a conformational change of the protein by a major reduction of α-helix at PEI concentration <0.2mg·mL-1 and an increase at higher PEI concentration. The binding efficacy of ANS and quercetin to BSA was greatly reduced by the competitive binding by PEI and influenced by the conformational change of BSA, which was found to display a similar trend to the change of the α-helix content of the protein. The polymer size played an important role in PEI-BSA interaction. PEI of higher molecular weight was more favorable to interact with BSA and more efficient to perturb the conformation and binding capability of the protein.
Collapse
Affiliation(s)
- Zhiyong Guo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Zhijie Kong
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yanshan Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Hua Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yajing Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Aimin Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Lin Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
43
|
Śliwińska-Hill U. Interaction of imatinib mesylate with human serum transferrin: The comparative spectroscopic studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:468-475. [PMID: 27718450 DOI: 10.1016/j.saa.2016.09.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Abstract
Imatinib mesylate (Imt) is a tyrosine kinase inhibitor mainly used in the treatment of Philadelphia chromosome-positive chronic myelogenous leukemia (Ph+CML). Human serum transferrin is the most abundant serum protein responsible for the transport of iron ions and many endogenous and exogenous ligands. In this study the mechanism of interactions between the imatinib mesylate and all states of transferrin (apo-Tf, Htf and holo-Tf) has been investigated by fluorescence, ultraviolet-visible (UV-vis), circular dichroism (CD) and zeta potential spectroscopic methods. Based on the experimental results it was proved that under physiological conditions the imatinib mesylate binds to the each form of transferrin with a binding constant c.a. 105M-1. The thermodynamic parameters indicate that hydrogen bonds and van der Waals were involved in the interaction of apo-Tf with the drug and hydrophobic and ionic strength participate in the reaction of Htf and holo-Tf with imatinib mesylate. Moreover, it was shown that common metal ions, Zn2+ and Ca2+ strongly influenced apo-Tf-Imt binding constant. The CD studies showed that there are no conformational changes in the secondary structure of the proteins. No significant changes in secondary structure of the proteins upon binding with the drug and instability of apo-Tf-Imt system are the desirable effects from pharmacological point of view.
Collapse
Affiliation(s)
- Urszula Śliwińska-Hill
- Department of Analytical Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-566 Wrocław, Poland.
| |
Collapse
|
44
|
Chao J, Wang H, Song K, Wang Y, Zuo Y, Zhang L, Zhang B. Host-guest inclusion system of ferulic acid with p-Sulfonatocalix[n]arenes: Preparation, characterization and antioxidant activity. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.11.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Banipal TS, Kaur A, Banipal PK. Physicochemical aspects of the energetics of binding of sulphanilic acid with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 170:214-225. [PMID: 27450119 DOI: 10.1016/j.saa.2016.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/10/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
The thermodynamic study of the binding of sulphanilic acid with model transport protein bovine serum albumin is a promising approach in the area of synthesizing new sulfa drugs with improved therapeutic effect. Thus, such binding studies play an important role in the rational drug design process. The binding between sulphanilic acid and bovine serum albumin has been studied using calorimetry, light scattering in combination with spectroscopic and microscopic techniques. The calorimetric data reveals the presence of two sequential nature of binding sites where the first binding site has stronger affinity (~10(4)M(-1)) and second binding site has weaker affinity (~10(3)M(-1)). However, the spectroscopic (absorption and fluorescence) results suggest the presence of single low affinity binding site (~10(3)M(-1)) on protein. The contribution of polar and non-polar interactions to the binding process has been explored in the presence of various additives. It is found that sulphanilic acid binds with high affinity at Sudlow site II and with low affinity at Sudlow site I of protein. Light scattering and circular dichroism measurements have been used to study the effect on the molecular topology and conformation of protein, respectively. Thus these studies provide important insights into the binding of sulphanilic acid with bovine serum albumin both quantitatively and qualitatively.
Collapse
Affiliation(s)
- Tarlok S Banipal
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Amandeep Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Parampaul K Banipal
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
46
|
Studies on binding mechanism between carotenoids from sea buckthorn and thermally treated α-lactalbumin. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.07.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Jellali S, Diamantopoulos E, Haddad K, Anane M, Durner W, Mlayah A. Lead removal from aqueous solutions by raw sawdust and magnesium pretreated biochar: Experimental investigations and numerical modelling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 180:439-449. [PMID: 27266649 DOI: 10.1016/j.jenvman.2016.05.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 06/06/2023]
Abstract
Lead removal from aqueous solutions by raw cypress (Cupressus sempervirens L.) sawdust (RCS) and its derivative magnesium pretreated biochar (Mg-B) was investigated under static and dynamic conditions through batch and column assays. The Hydrus-1D model was used to estimate the transport parameters of the lead measured breakthrough curves. The batch experiments results showed that Mg-B was very efficient in removing lead compared to RCS and several other previously tested natural and modified materials. The column experiments results indicated that for both RCS and Mg-B, lead breakthrough curves and the related removal efficiencies were mainly dependent on the used initial concentration and the adsorbents bed height. The use of Hydrus-1D showed that the two-site chemical non-equilibrium model describes better the experimental lead breakthrough curves for both RCS and Mg-B as the equilibrium model.
Collapse
Affiliation(s)
- Salah Jellali
- Water Research and Technologies Centre (CERTE), Wastewaters and Environment Laboratory, Tunisia.
| | | | - Khouloud Haddad
- Water Research and Technologies Centre (CERTE), Wastewaters and Environment Laboratory, Tunisia
| | - Makram Anane
- Water Research and Technologies Centre (CERTE), Wastewaters and Environment Laboratory, Tunisia
| | - Wolfgang Durner
- Technical University of Braunschweig, Institute of Geoecology, Germany
| | - Ammar Mlayah
- Water Research and Technologies Centre (CERTE), Wastewaters and Environment Laboratory, Tunisia
| |
Collapse
|
48
|
Tayyab S, Izzudin MM, Kabir MZ, Feroz SR, Tee WV, Mohamad SB, Alias Z. Binding of an anticancer drug, axitinib to human serum albumin: Fluorescence quenching and molecular docking study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:386-394. [PMID: 27424099 DOI: 10.1016/j.jphotobiol.2016.06.049] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 12/17/2022]
Abstract
Binding characteristics of a promising anticancer drug, axitinib (AXT) to human serum albumin (HSA), the major transport protein in human blood circulation, were studied using fluorescence, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking analysis. A gradual decrease in the Stern-Volmer quenching constant with increasing temperature revealed the static mode of the protein fluorescence quenching upon AXT addition, thus confirmed AXT-HSA complex formation. This was also confirmed from alteration in the UV-vis spectrum of HSA upon AXT addition. Fluorescence quenching titration results demonstrated moderately strong binding affinity between AXT and HSA based on the binding constant value (1.08±0.06×10(5)M(-1)), obtained in 10mM sodium phosphate buffer, pH7.4 at 25°C. The sign and magnitude of the enthalpy change (∆H=-8.38kJmol(-1)) as well as the entropy change (∆S=+68.21Jmol(-1)K(-1)) clearly suggested involvement of both hydrophobic interactions and hydrogen bonding in AXT-HSA complex formation. These results were well supported by molecular docking results. Three-dimensional fluorescence spectral results indicated significant microenvironmental changes around Trp and Tyr residues of HSA upon complexation with AXT. AXT binding to the protein produced significant alterations in both secondary and tertiary structures of HSA, as revealed from the far-UV and the near-UV CD spectral results. Competitive drug displacement results obtained with phenylbutazone (site I marker), ketoprofen (site II marker) and hemin (site III marker) along with molecular docking results suggested Sudlow's site I, located in subdomain IIA of HSA, as the preferred binding site of AXT.
Collapse
Affiliation(s)
- Saad Tayyab
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia.
| | - Mohamad Mirza Izzudin
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Md Zahirul Kabir
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Shevin R Feroz
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Wei-Ven Tee
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin B Mohamad
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | - Zazali Alias
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Bolattin MB, Nandibewoor ST, Joshi SD, Dixit SR, Chimatadar SA. Interaction of Hydralazine with Human Serum Albumin and Effect of β-Cyclodextrin on Binding: Insights from Spectroscopic and Molecular Docking Techniques. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00517] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mallavva B. Bolattin
- P.
G. Department of Studies in Chemistry, Karnatak University, Pavate Nagar, Dharwad-580 003, Karnataka India
| | - Sharanappa T. Nandibewoor
- P.
G. Department of Studies in Chemistry, Karnatak University, Pavate Nagar, Dharwad-580 003, Karnataka India
| | - Shrinivas D. Joshi
- Novel
Drug Design and Discovery Laboratory, Department of Pharmaceutical
Chemistry, S.E.T’s College of Pharmacy, Sangolli Rayanna Nagar, Dharwad 580 002, Karnataka, India
| | - Sheshagiri R. Dixit
- Novel
Drug Design and Discovery Laboratory, Department of Pharmaceutical
Chemistry, S.E.T’s College of Pharmacy, Sangolli Rayanna Nagar, Dharwad 580 002, Karnataka, India
| | - Shivamurti A. Chimatadar
- P.
G. Department of Studies in Chemistry, Karnatak University, Pavate Nagar, Dharwad-580 003, Karnataka India
| |
Collapse
|
50
|
Ajmal MR, Abdelhameed AS, Alam P, Khan RH. Interaction of new kinase inhibitors cabozantinib and tofacitinib with human serum alpha-1 acid glycoprotein. A comprehensive spectroscopic and molecular Docking approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 159:199-208. [PMID: 26851488 DOI: 10.1016/j.saa.2016.01.049] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/15/2016] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
In the current study we have investigated the interaction of newly approved kinase inhibitors namely Cabozantinib (CBZ) and Tofacitinib (TFB) with human Alpha-1 acid glycoprotein (AAG) under simulated physiological conditions using fluorescence quenching measurements, circular dichroism, dynamic light scattering and molecular docking methods. CBZ and TFB binds to AAG with significant affinity and the calculated binding constant for the drugs lie in the order of 10(4). With the increase in temperature the binding constant values decreased for both CBZ and TFB. The fluorescence resonance energy transfer (FRET) from AAG to CBZ and TFB suggested the fluorescence intensity of AAG was quenched by the two studied drugs via the formation of a non-fluorescent complex in the static manner. The molecular distance r value calculated from FRET is around 2 nm for both drugs, fluorescence spectroscopy data was employed for the study of thermodynamic parameters, standard Gibbs free energy change at 300 K was calculated as -5.234 kcal mol(-1) for CBZ-AAG interaction and -6.237 kcal mol(-1) for TFB-AAG interaction, standard enthalpy change and standard entropy change for CBZ-AAG interaction are -9.553 kcal mol(-1) and -14.618 cal mol(-1) K(-1) respectively while for AAG-TFB interaction, standard enthalpy and standard entropy change was calculated as 4.019 kcal mol(-1) and 7.206 cal mol(-1) K(-1) respectively. Protein binding of the two drugs caused the tertiary structure alterations. Dynamic light scattering measurements demonstrated the reduction in the hydrodynamic radii of the protein. Furthermore molecular docking results suggested the Hydrophobic interaction and hydrogen bonding were the interactive forces in the binding process of CBZ to AAG while in case of TFB only hydrophobic interactions were found to be involved, overlap of the binding site for two studied drugs on the AAG molecule was revealed by docking results.
Collapse
Affiliation(s)
- Mohammad Rehan Ajmal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|