1
|
Li Y, Feng M, Guo T, Wang Z, Zhao Y. Tailored Beta-Lapachone Nanomedicines for Cancer-Specific Therapy. Adv Healthc Mater 2023; 12:e2300349. [PMID: 36970948 DOI: 10.1002/adhm.202300349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Nanotechnology shows the power to improve efficacy and reduce the adverse effects of anticancer agents. As a quinone-containing compound, beta-lapachone (LAP) is widely employed for targeted anticancer therapy under hypoxia. The principal mechanism of LAP-mediated cytotoxicity is believed due to the continuous generation of reactive oxygen species with the aid of NAD(P)H: quinone oxidoreductase 1 (NQO1). The cancer selectivity of LAP relies on the difference between NQO1 expression in tumors and that in healthy organs. Despite this, the clinical translation of LAP faces the problem of narrow therapeutic window that is challenging for dose regimen design. Herein, the multifaceted anticancer mechanism of LAP is briefly introduced, the advance of nanocarriers for LAP delivery is reviewed, and the combinational delivery approaches to enhance LAP potency in recent years are summarized. The mechanisms by which nanosystems boost LAP efficacy, including tumor targeting, cellular uptake enhancement, controlled cargo release, enhanced Fenton or Fenton-like reaction, and multidrug synergism, are also presented. The problems of LAP anticancer nanomedicines and the prospective solutions are discussed. The current review may help to unlock the potential of cancer-specific LAP therapy and speed up its clinical translation.
Collapse
Affiliation(s)
- Yaru Li
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Meiyu Feng
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Tao Guo
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Zheng Wang
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
Ivan M, Fishel ML, Tudoran OM, Pollok KE, Wu X, Smith PJ. Hypoxia signaling: Challenges and opportunities for cancer therapy. Semin Cancer Biol 2022; 85:185-195. [PMID: 34628029 PMCID: PMC8986888 DOI: 10.1016/j.semcancer.2021.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
Hypoxia is arguably the first recognized cancer microenvironment hallmark and affects virtually all cellular populations present in tumors. During the past decades the complex adaptive cellular responses to oxygen deprivation have been largely elucidated, raising hope for new anti cancer agents. Despite undeniable preclinical progress, therapeutic targeting of tumor hypoxia is yet to transition from bench to bedside. This review focuses on new pharmacological agents that exploit tumor hypoxia or interfere with hypoxia signaling and discusses strategies to maximize their therapeutic impact.
Collapse
Affiliation(s)
- Mircea Ivan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Melissa L Fishel
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, IU Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Oana M Tudoran
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Cluj, Romania
| | - Karen E Pollok
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xue Wu
- Ohio State University, Columbus, OH, USA
| | - Paul J Smith
- School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Luo S, Liang C, Zhang Q, Zhang P. Iridium photosensitizer constructed liposomes with hypoxia-activated prodrug to destrust hepatocellular carcinoma. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Kang D, Cheung ST, Wong-Rolle A, Kim J. Enamine N-Oxides: Synthesis and Application to Hypoxia-Responsive Prodrugs and Imaging Agents. ACS CENTRAL SCIENCE 2021; 7:631-640. [PMID: 34056093 PMCID: PMC8155465 DOI: 10.1021/acscentsci.0c01586] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 05/10/2023]
Abstract
Tumor hypoxia induces the large-scale adaptive reprogramming of cancer cells, promoting their transformation into highly invasive and metastatic species that lead to highly negative prognoses for cancer patients. We describe the synthesis and application of a hypoxia-responsive trigger derived from previously inaccessible enamine N-oxide structures. Hypoxia-dependent reduction of this motif by hemeproteins results in the concomitant activation of a caged molecule and a latent electrophile. We exploit the former in a hypoxia-activated prodrug application using a caged staurosporine molecule as a proof-of-principle. We demonstrate the latter in in vivo tumor labeling applications with enamine-N-oxide-modified near-infrared probes. Hypoxia-activated prodrug development has long been complicated by the heterogeneity of tumor hypoxia in patients. The dual drug release and imaging modalities of the highly versatile enamine N-oxide motif present an attractive opportunity for theranostic development that can address the need not only for new therapeutics but paired methods for patient stratification.
Collapse
|
5
|
Al-Hilal TA, Hossain MA, Alobaida A, Alam F, Keshavarz A, Nozik-Grayck E, Stenmark KR, German NA, Ahsan F. Design, synthesis and biological evaluations of a long-acting, hypoxia-activated prodrug of fasudil, a ROCK inhibitor, to reduce its systemic side-effects. J Control Release 2021; 334:237-247. [PMID: 33915222 DOI: 10.1016/j.jconrel.2021.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023]
Abstract
ROCK, one of the downstream regulators of Rho, controls actomyosin cytoskeleton organization, stress fiber formation, smooth muscle contraction, and cell migration. ROCK plays an important role in the pathologies of cerebral and coronary vasospasm, hypertension, cancer, and arteriosclerosis. Pharmacological-induced systemic inhibition of ROCK affects both the pathological and physiological functions of Rho-kinase, resulting in hypotension, increased heart rate, decreased lymphocyte count, and eventually cardiovascular collapse. To overcome the adverse effects of systemic ROCK inhibition, we developed a bioreductive prodrug of a ROCK inhibitor, fasudil, that functions selectively under hypoxic conditions. By masking fasudil's active site with a bioreductive 4-nitrobenzyl group, we synthesized a prodrug of fasudil that is inactive in normoxia. Reduction of the protecting group initiated by hypoxia reveals an electron-donating substituent that leads to fragmentation of the parent molecule. Under normoxia the fasudil prodrug displayed significantly reduced activity against ROCK compared to its parent compound, but under severe hypoxia the prodrug was highly effective in suppressing ROCK activity. Under hypoxia the prodrug elicited an antiproliferative effect on disease-afflicted pulmonary arterial smooth muscle cells and pulmonary arterial endothelial cells. The prodrug displayed a long plasma half-life, remained inactive in the blood, and produced no drop in systemic blood pressure when compared with fasudil-treated controls. Due to its selective nature, our hypoxia-activated fasudil prodrug could be used to treat diseases where tissue-hypoxia or hypoxic cells are the pathological basis of the disease.
Collapse
Affiliation(s)
- Taslim A Al-Hilal
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Department of Pharmaceutical Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Mohammad Anwar Hossain
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Ahmed Alobaida
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Department of Pharmaceutics, School of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Farzana Alam
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Ali Keshavarz
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Eva Nozik-Grayck
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R Stenmark
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Department of Pharmaceutical and Biomedical Sciences, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA.
| |
Collapse
|
6
|
Kang D, Kim J. Bioorthogonal Retro-Cope Elimination Reaction of N, N-Dialkylhydroxylamines and Strained Alkynes. J Am Chem Soc 2021; 143:5616-5621. [PMID: 33829777 DOI: 10.1021/jacs.1c00885] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A bioorthogonal reaction between N,N-dialkylhydroxylamines and cyclooctynes is described. This reaction features a highly regioselective transformation between small, easily functionalizable reaction components with second-order rate constants reaching 84 M-1 s-1. The reaction is orthogonal to the inverse-electron demand Diels-Alder reactions between tetrazine and strained alkenes, and its components exhibit exquisite stability and chemoselectivity in cell lysate. This retro-Cope elimination reaction introduces a new member to the bioorthogonal reaction compendium outside the prolific class of cycloaddition reactions.
Collapse
Affiliation(s)
- Dahye Kang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Justin Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Human Family 1-4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Arch Toxicol 2021; 95:395-472. [PMID: 33459808 DOI: 10.1007/s00204-020-02971-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic activation of drugs, natural products, physiological compounds, and general chemicals by the catalytic activity of cytochrome P450 enzymes belonging to Families 1-4. The data were collected from > 5152 references. The total number of data entries of reactions catalyzed by P450s Families 1-4 was 7696 of which 1121 (~ 15%) were defined as bioactivation reactions of different degrees. The data were divided into groups of General Chemicals, Drugs, Natural Products, and Physiological Compounds, presented in tabular form. The metabolism and bioactivation of selected examples of each group are discussed. In most of the cases, the metabolites are directly toxic chemicals reacting with cell macromolecules, but in some cases the metabolites formed are not direct toxicants but participate as substrates in succeeding metabolic reactions (e.g., conjugation reactions), the products of which are final toxicants. We identified a high level of activation for three groups of compounds (General Chemicals, Drugs, and Natural Products) yielding activated metabolites and the generally low participation of Physiological Compounds in bioactivation reactions. In the group of General Chemicals, P450 enzymes 1A1, 1A2, and 1B1 dominate in the formation of activated metabolites. Drugs are mostly activated by the enzyme P450 3A4, and Natural Products by P450s 1A2, 2E1, and 3A4. Physiological Compounds showed no clearly dominant enzyme, but the highest numbers of activations are attributed to P450 1A, 1B1, and 3A enzymes. The results thus show, perhaps not surprisingly, that Physiological Compounds are infrequent substrates in bioactivation reactions catalyzed by P450 enzyme Families 1-4, with the exception of estrogens and arachidonic acid. The results thus provide information on the enzymes that activate specific groups of chemicals to toxic metabolites.
Collapse
|
8
|
He Z, Dai Y, Li X, Guo D, Liu Y, Huang X, Jiang J, Wang S, Zhu G, Zhang F, Lin L, Zhu JJ, Yu G, Chen X. Hybrid Nanomedicine Fabricated from Photosensitizer-Terminated Metal-Organic Framework Nanoparticles for Photodynamic Therapy and Hypoxia-Activated Cascade Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804131. [PMID: 30565431 DOI: 10.1002/smll.201804131] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/09/2018] [Indexed: 06/09/2023]
Abstract
During photodynamic therapy (PDT), severe hypoxia often occurs as an undesirable limitation of PDT owing to the O2 -consuming photodynamic process, compromising the effectiveness of PDT. To overcome this problem, several strategies aiming to improve tumor oxygenation are developed. Unlike these traditional approaches, an opposite method combining hypoxia-activated prodrug and PDT may provide a promising strategy for cancer synergistic therapy. In light of this, azido-/photosensitizer-terminated UiO-66 nanoscale metal-organic frameworks (UiO-66-H/N3 NMOFs) which serve as nanocarriers for the bioreductive prodrug banoxantrone (AQ4N) are engineered. Owing to the effective shielding of the nanoparticles, the stability of AQ4N is well preserved, highlighting the vital function of the nanocarriers. By virtue of strain-promoted azide-alkyne cycloaddition, the nanocarriers are further decorated with a dense PEG layer to enhance their dispersion in the physiological environment and improve their therapeutic performance. Both in vitro and in vivo studies reveal that the O2 -depleting PDT process indeed aggravates intracellular/tumor hypoxia that activates the cytotoxicity of AQ4N through a cascade process, consequently achieving PDT-induced and hypoxia-activated synergistic therapy. Benefiting from the localized therapeutic effect of PDT and hypoxia-activated cytotoxicity of AQ4N, this hybrid nanomedicine exhibits enhanced therapeutic efficacy with negligible systemic toxicity, making it a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Zhimei He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yunlu Dai
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Xiangli Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Dan Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Xiaolin Huang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jingjing Jiang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Sheng Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Lisen Lin
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
9
|
Zhang D, Wu M, Cai Z, Liao N, Ke K, Liu H, Li M, Liu G, Yang H, Liu X, Liu J. Chemotherapeutic Drug Based Metal-Organic Particles for Microvesicle-Mediated Deep Penetration and Programmable pH/NIR/Hypoxia Activated Cancer Photochemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700648. [PMID: 29619314 PMCID: PMC5827097 DOI: 10.1002/advs.201700648] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/06/2017] [Indexed: 05/21/2023]
Abstract
A novel metal-organic particle (MOP) based nanodrug formed by mild self-assembly of chemotherapeutic drugs, including banoxantrone and doxorubicin, through Cu(II)-mediated coordination effects, is reported. In this nanodrug, Cu(II) acts as a bridge to join AQ4N and DOX, and then, self-assembly of [-AQ4N-Cu(II)-(DOX)2-Cu(II)-] n complexes forms nanosized MOPs (referred to as ADMOPs) through multiple interactions including host-metal-guest coordination, hydrophobic interactions, π-stacking, and van der Waals force. The ADMOPs reported here have several important features over conventional drugs, including tumor microenvironment pH-sensitive drug release that can be tracked by "turning on" the fluorescence of AQ4N or DOX through proton competition with Cu(II) to break the coordination bonds and much deeper penetration into solid tumors via microvesicle-mediated intercellular transfer. Most strikingly, the ADMOPs can serve as stimuli-responsive nanocarriers to efficiently load the photosensitizer phthalocyanine due to their inherent highly porous characteristics. Thus, the ADMOPs significantly enhance the chemotherapeutic efficacy by "on-demand" photodynamic therapy, which further induces a hypoxic environment that enhances the reduction of AQ4N to systematically increase the therapeutic efficiency. Taken together, the designed ADMOPs composed of chemotherapeutic drugs may serve as a potential programmable controlled synergistic agent for cancer therapy.
Collapse
Affiliation(s)
- Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
| | - Kun Ke
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
| | - Hongzhi Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
| | - Ming Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
| | - Gang Liu
- Center for Molecular Imaging and Translational MedicineXiamen UniversityXiamen361005P. R. China
| | - Huanghao Yang
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOEFujian Provincial Key Laboratory of Analysis and Detection Technology for Food SafetyCollege of ChemistryFuzhou UniversityFuzhou350002P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
- Liver Disease CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhou350005P. R. China
| |
Collapse
|
10
|
Molecular targeting of hypoxia in radiotherapy. Adv Drug Deliv Rev 2017; 109:45-62. [PMID: 27771366 DOI: 10.1016/j.addr.2016.10.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/02/2016] [Accepted: 10/15/2016] [Indexed: 12/21/2022]
Abstract
Hypoxia (low O2) is an essential microenvironmental driver of phenotypic diversity in human solid cancers. Hypoxic cancer cells hijack evolutionarily conserved, O2- sensitive pathways eliciting molecular adaptations that impact responses to radiotherapy, tumor recurrence and patient survival. In this review, we summarize the radiobiological, genetic, epigenetic and metabolic mechanisms orchestrating oncogenic responses to hypoxia. In addition, we outline emerging hypoxia- targeting strategies that hold promise for individualized cancer therapy in the context of radiotherapy and drug delivery.
Collapse
|
11
|
Pan Y, Ong EC. Cytochrome P450 2W1 (CYP2W1) - ready for use as the biomarker and drug target for cancer? Xenobiotica 2016; 47:923-932. [PMID: 27690753 DOI: 10.1080/00498254.2016.1244370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1. This article aims to evaluate the potentials of using cytochrome P450 2W1 (CYP2W1) as a biomarker and a drug target of cancer because of its characteristic cancer-specific expression. 2. Discrepant findings comparing the expression levels of CYP2W1 in cancer and non-cancer samples were reported. In general, the expression followed a developmental pattern. The demethylation status of CpG island and the expression levels of CYP2W1 genes was positively correlated. 3. CYP2W1 was able to activate several procarcinogens, anticancer pro-drugs and to metabolise many endogenous substances including fatty acids and lysophospholipids. 4. CYP2W1 expression level was suggested to serve as an independent prognostic biomarker in colorectal cancer and hepatocellular carcinoma. The correlation of genetic polymorphisms of CYP2W1 and cancer risk was uncertain. 5. Further characterisation of CYP2W1 structure is suggested to link to its functions. More studies are warranted to reveal the true status and the regulation of CYP2W1 expression across normal and cancer tissues. Catalytic activity of CYP2W1 should be tested on a wider spectrum of endogenous and exogenous substances before its use as the drug target. Larger size of clinical samples can be included to verify the potential of CYP2W1 as the prognostic or cancer risk biomarker.
Collapse
Affiliation(s)
- Yan Pan
- a Department of Biomedical Science , the University of Nottingham Malaysia Campus , Selangor , Malaysia and
| | - Eng Chin Ong
- b Jeffery Cheah School of Medicine and Health Sciences, Monash University Sunway Campus Malaysia , Selangor , Malaysia
| |
Collapse
|
12
|
Guan X. Metabolic Activation and Drug Targeting. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
13
|
Abstract
The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high-priority target and one of the therapeutic strategies designed to eradicate hypoxic cells in tumours is a group of compounds known collectively as hypoxia-activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (1) the ability of oxygen to either reverse or inhibit the activation process and (2) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples.
Collapse
|
14
|
Phillips RM. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemother Pharmacol 2016; 77:441-57. [PMID: 26811177 PMCID: PMC4767869 DOI: 10.1007/s00280-015-2920-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022]
Abstract
The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high-priority target and one of the therapeutic strategies designed to eradicate hypoxic cells in tumours is a group of compounds known collectively as hypoxia-activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (1) the ability of oxygen to either reverse or inhibit the activation process and (2) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples.
Collapse
Affiliation(s)
- Roger M Phillips
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
15
|
Hypoxia-Targeted Drug Q6 Induces G2-M Arrest and Apoptosis via Poisoning Topoisomerase II under Hypoxia. PLoS One 2015. [PMID: 26649750 DOI: 10.1371/journal.pone.0144506.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In spite of the tremendous efforts dedicated to developing hypoxia-activated prodrugs, no agents yet have been approved for clinical therapy. In the present study, the hypoxic selective anti-cancer activity as well as the cellular target of a novel tirapazamine (TPZ) analogue, 7-methyl-3-(3-chlorophenyl)-quinoxaline-2-carbonitrile 1,4-dioxide (Q6) were investigated. Q6 implemented anti-cancer effects via poisoning topoisomerase II (topo II) under hypoxia. Modified trapped in agarose DNA immunostaining (TARDIS) assay showed more topo II-DNA cleavage complexes trapped by Q6 than TPZ at even lower concentration. In addition, by introducing ataxia-telangiectasia-mutated (ATM) kinase inhibitors caffeine and KU-60019, we displayed that Q6-triggered apoptosis was attributed, at least partially, to DNA double-strand breaks generated by the topo II-targeting effect. Collectively, Q6 stood out for its better hypoxia-selectivity and topo II-poisoning than the parental compound TPZ. All these data shed light on the research of Q6 as a promising hypoxia-activated prodrug candidate for human hepatocellular carcinoma therapy.
Collapse
|
16
|
Chang L, Liu X, Wang D, Ma J, Zhou T, Chen Y, Sheng R, Hu Y, Du Y, He Q, Yang B, Zhu H. Hypoxia-Targeted Drug Q6 Induces G2-M Arrest and Apoptosis via Poisoning Topoisomerase II under Hypoxia. PLoS One 2015; 10:e0144506. [PMID: 26649750 PMCID: PMC4674137 DOI: 10.1371/journal.pone.0144506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
In spite of the tremendous efforts dedicated to developing hypoxia-activated prodrugs, no agents yet have been approved for clinical therapy. In the present study, the hypoxic selective anti-cancer activity as well as the cellular target of a novel tirapazamine (TPZ) analogue, 7-methyl-3-(3-chlorophenyl)-quinoxaline-2-carbonitrile 1,4-dioxide (Q6) were investigated. Q6 implemented anti-cancer effects via poisoning topoisomerase II (topo II) under hypoxia. Modified trapped in agarose DNA immunostaining (TARDIS) assay showed more topo II–DNA cleavage complexes trapped by Q6 than TPZ at even lower concentration. In addition, by introducing ataxia-telangiectasia-mutated (ATM) kinase inhibitors caffeine and KU-60019, we displayed that Q6-triggered apoptosis was attributed, at least partially, to DNA double-strand breaks generated by the topo II-targeting effect. Collectively, Q6 stood out for its better hypoxia-selectivity and topo II-poisoning than the parental compound TPZ. All these data shed light on the research of Q6 as a promising hypoxia-activated prodrug candidate for human hepatocellular carcinoma therapy.
Collapse
Affiliation(s)
- Linlin Chang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaowen Liu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Dandan Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jian Ma
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tianyi Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Rong Sheng
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yongzhou Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Du
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
17
|
Wahlang B, Falkner KC, Cave MC, Prough RA. Role of Cytochrome P450 Monooxygenase in Carcinogen and Chemotherapeutic Drug Metabolism. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:1-33. [PMID: 26233902 DOI: 10.1016/bs.apha.2015.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purpose of this chapter is to provide insight into which human cytochromes P450 (CYPs) may be involved in metabolism of chemical carcinogens and anticancer drugs. A historical overview of this field and the development of literature using relevant animal models and expressed human CYPs have provided information about which specific CYPs may be involved in carcinogen metabolism. Definition of the biochemical properties of CYP activity came from several groups who studied the reaction stoichiometry of butter yellow and benzo[α]pyrene, including their role in induction of these enzyme systems. This chapter will list as much as is known about the human CYPs involved in carcinogen and anticancer drug metabolism, as well as summarize studies with rodent CYPs. A review of three major classes of anticancer drugs and their metabolism in humans is covered for cyclophosphamide, procarbazine, and anthracycline antibiotics, cancer chemotherapeutic compounds extensively metabolized by CYPs. The emerging information about human CYP gene polymorphisms as well as other enzymes involved in foreign compound metabolism provides considerable information about how these genetic variants affect carcinogen and anticancer drug metabolism. With information available from individual's genomic sequences, consideration of populations who may be at risk due to environmental exposure to carcinogens or how to optimize their cancer therapy regimens to enhance efficacy of the anticancer drugs appears to be an important field of study to benefit individuals in the future.
Collapse
Affiliation(s)
- B Wahlang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - K Cameron Falkner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Matt C Cave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA; Department of Biochemistry & Molecular Biology, University of Louisville, Louisville, Kentucky, USA
| | - Russell A Prough
- Department of Biochemistry & Molecular Biology, University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
18
|
Guise CP, Mowday AM, Ashoorzadeh A, Yuan R, Lin WH, Wu DH, Smaill JB, Patterson AV, Ding K. Bioreductive prodrugs as cancer therapeutics: targeting tumor hypoxia. CHINESE JOURNAL OF CANCER 2014; 33:80-6. [PMID: 23845143 PMCID: PMC3935009 DOI: 10.5732/cjc.012.10285] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/28/2013] [Accepted: 04/26/2013] [Indexed: 11/11/2022]
Abstract
Hypoxia, a state of low oxygen, is a common feature of solid tumors and is associated with disease progression as well as resistance to radiotherapy and certain chemotherapeutic drugs. Hypoxic regions in tumors, therefore, represent attractive targets for cancer therapy. To date, five distinct classes of bioreactive prodrugs have been developed to target hypoxic cells in solid tumors. These hypoxia-activated prodrugs, including nitro compounds, N-oxides, quinones, and metal complexes, generally share a common mechanism of activation whereby they are reduced by intracellular oxidoreductases in an oxygen-sensitive manner to form cytotoxins. Several examples including PR-104, TH-302, and EO9 are currently undergoing phase II and phase III clinical evaluation. In this review, we discuss the nature of tumor hypoxia as a therapeutic target, focusing on the development of bioreductive prodrugs. We also describe the current knowledge of how each prodrug class is activated and detail the clinical progress of leading examples.
Collapse
Affiliation(s)
- Christopher P Guise
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fabian E, Vogel D, Blatz V, Ramirez T, Kolle S, Eltze T, van Ravenzwaay B, Oesch F, Landsiedel R. Xenobiotic metabolizing enzyme activities in cells used for testing skin sensitization in vitro. Arch Toxicol 2013; 87:1683-96. [DOI: 10.1007/s00204-013-1090-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/27/2013] [Indexed: 01/10/2023]
|
20
|
Abstract
A prodrug is a compound that has negligible, or lower, activity against a specified pharmacological target than one of its major metabolites. Prodrugs can be used to improve drug delivery or pharmacokinetics, to decrease toxicity, or to target the drug to specific cells or tissues. Ester and phosphate hydrolysis are widely used in prodrug design because of their simplicity, but such approaches are relatively ineffective for targeting drugs to specific sites. The activation of prodrugs by the cytochrome P450 system provides a highly versatile approach to prodrug design that is particularly adaptable for targeting drug activation to the liver, to tumors or to hypoxic tissues.
Collapse
Affiliation(s)
- Paul R Ortiz de Montellano
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94158-2517, USA.
| |
Collapse
|
21
|
Jäckh C, Blatz V, Fabian E, Guth K, van Ravenzwaay B, Reisinger K, Landsiedel R. Characterization of enzyme activities of Cytochrome P450 enzymes, Flavin-dependent monooxygenases, N-acetyltransferases and UDP-glucuronyltransferases in human reconstructed epidermis and full-thickness skin models. Toxicol In Vitro 2011; 25:1209-14. [DOI: 10.1016/j.tiv.2011.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 02/17/2011] [Accepted: 03/18/2011] [Indexed: 11/30/2022]
|
22
|
Abstract
Hypoxia is a feature of most tumours, albeit with variable incidence and severity within a given patient population. It is a negative prognostic and predictive factor owing to its multiple contributions to chemoresistance, radioresistance, angiogenesis, vasculogenesis, invasiveness, metastasis, resistance to cell death, altered metabolism and genomic instability. Given its central role in tumour progression and resistance to therapy, tumour hypoxia might well be considered the best validated target that has yet to be exploited in oncology. However, despite an explosion of information on hypoxia, there are still major questions to be addressed if the long-standing goal of exploiting tumour hypoxia is to be realized. Here, we review the two main approaches, namely bioreductive prodrugs and inhibitors of molecular targets upon which hypoxic cell survival depends. We address the particular challenges and opportunities these overlapping strategies present, and discuss the central importance of emerging diagnostic tools for patient stratification in targeting hypoxia.
Collapse
Affiliation(s)
- William R Wilson
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
23
|
Karlou M, Tzelepi V, Efstathiou E. Therapeutic targeting of the prostate cancer microenvironment. Nat Rev Urol 2011; 7:494-509. [PMID: 20818327 DOI: 10.1038/nrurol.2010.134] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Solid tumors can be thought of as multicellular 'organs' that consist of a variety of cells as well as a scaffold of noncellular matrix. Stromal-epithelial crosstalk is integral to prostate cancer progression and metastasis, and androgen signaling is an important component of this crosstalk at both the primary and metastatic sites. Intratumoral production of androgen is an important mechanism of castration resistance and has been the focus of novel therapeutic approaches with promising results. Various other pathways are important for stromal-epithelial crosstalk and represent attractive candidate therapeutic targets. Hedgehog signaling has been associated with tumor progression, growth and survival, while Src family kinases have been implicated in tumor progression and in regulation of cancer cell migration. Fibroblast growth factors and transforming growth factor beta signaling regulate cell proliferation, apoptosis and angiogenesis in the prostate cancer microenvironment. Integrins mediate communication between the cell and the extracellular matrix, enhancing growth, migration, invasion and metastasis of cancer cells. The contribution of stromal-epithelial crosstalk to prostate cancer initiation and progression provides the impetus for combinatorial microenvironment-targeting strategies.
Collapse
Affiliation(s)
- Maria Karlou
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77230-1439, USA
| | | | | |
Collapse
|
24
|
Nishida CR, Lee M, de Montellano PRO. Efficient hypoxic activation of the anticancer agent AQ4N by CYP2S1 and CYP2W1. Mol Pharmacol 2010; 78:497-502. [PMID: 20566689 DOI: 10.1124/mol.110.065045] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AQ4N [1,4-bis{[2-(dimethylamino-N-oxide)ethyl]amino}-5,8-dihydroxyanthracene-9,10-dione], a prodrug with two dimethylamino N-oxide groups, is converted to the topoisomerase II inhibitor AQ4 [1,4-bis{[2-(dimethylamino)ethyl]amino}-5,8-dihydroxy-anthracene-9,10-dione] by reduction of the N-oxides to dimethylamino substituents. Earlier studies showed that several drug-metabolizing cytochrome P450 (P450) enzymes can catalyze this reductive reaction under hypoxic conditions comparable with those in solid tumors. CYP2S1 and CYP2W1, two extrahepatic P450 enzymes identified from the human genome whose functions are unknown, are expressed in hypoxic tumor cells at much higher levels than in normal tissue. Here, we demonstrate that CYP2S1, contrary to a published report (Mol Pharmacol 76:1031-1043, 2009), is efficiently reduced by NADPH-P450 reductase. Most importantly, both CYP2S1 and CYP2W1 are better catalysts for the reductive activation of AQ4N to AQ4 than all previously examined P450 enzymes. The overexpression of CYP2S1 and CYP2W1 in tumor tissues, together with their high catalytic activities for AQ4N activation, suggests that they may be exploited for the localized activation of anticancer prodrugs.
Collapse
Affiliation(s)
- Clinton R Nishida
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, USA
| | | | | |
Collapse
|
25
|
Denny WA. Hypoxia-activated prodrugs in cancer therapy: progress to the clinic. Future Oncol 2010; 6:419-28. [PMID: 20222798 DOI: 10.2217/fon.10.1] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The hypoxic cells common in solid tumors (because of their inefficient blood supply) limit the effectiveness of radiotherapy and many cytotoxic drugs. Nontoxic prodrugs that generate active species in hypoxic tissue by selective bioreduction have long been explored, and the first examples, representing a variety of different chemistries, have now reached advanced clinical trials. In the process, a great deal has been learnt about the properties that such drugs require to be successful, notably, efficient extravascular diffusion, appropriate reduction chemistry and kinetics, and an effective biological profile of the activated species, including a good bystander effect. The critical importance of prodrug diffusion and techniques to quantify this have assisted the development of models to predict the killing of tumor cells, which promises to help accelerate new drug evaluation. A cell cycle-independent mechanism of killing by the released cytotoxin is also a potential advantage, although it is likely that much of the killing will be when out-of-cycle hypoxic cells reoxygenate and resume division.
Collapse
Affiliation(s)
- William A Denny
- Auckland Cancer Society Research Centre, The University of Auckland, New Zealand.
| |
Collapse
|
26
|
Williams KJ, Albertella MR, Fitzpatrick B, Loadman PM, Shnyder SD, Chinje EC, Telfer BA, Dunk CR, Harris PA, Stratford IJ. In vivo activation of the hypoxia-targeted cytotoxin AQ4N in human tumor xenografts. Mol Cancer Ther 2010; 8:3266-75. [PMID: 19996276 DOI: 10.1158/1535-7163.mct-09-0396] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AQ4N (banoxantrone) is a prodrug that, under hypoxic conditions, is enzymatically converted to a cytotoxic DNA-binding agent, AQ4. Incorporation of AQ4N into conventional chemoradiation protocols therefore targets both oxygenated and hypoxic regions of tumors, and potentially will increase the effectiveness of therapy. This current pharmacodynamic and efficacy study was designed to quantify tumor exposure to AQ4 following treatment with AQ4N, and to relate exposure to outcome of treatment. A single dose of 60 mg/kg AQ4N enhanced the response of RT112 (bladder) and Calu-6 (lung) xenografts to treatment with cisplatin and radiation therapy. AQ4N was also given to separate cohorts of tumor-bearing mice 24 hours before tumor excision for subsequent analysis of metabolite levels. AQ4 was detected by high performance liquid chromatography/mass spectrometry in all treated samples of RT112 and Calu-6 tumors at mean concentrations of 0.23 and 1.07 microg/g, respectively. These concentrations are comparable with those shown to be cytotoxic in vitro. AQ4-related nuclear fluorescence was observed in all treated tumors by confocal microscopy, which correlated with the high performance liquid chromatography/mass spectrometry data. The presence of the hypoxic marker Glut-1 was shown by immunohistochemistry in both Calu-6 tumors and RT112 tumors, and colocalization of AQ4 fluorescence and Glut-1 staining strongly suggested that AQ4N was activated in these putatively hypoxic areas. This is the first demonstration that AQ4N will increase the efficacy of chemoradiotherapy in preclinical models; the intratumoral levels of AQ4 found in this study are comparable with tumor AQ4 levels found in a recent phase I clinical study, which suggests that these levels could be potentially therapeutic.
Collapse
Affiliation(s)
- Kaye J Williams
- Experimental Oncology Group, School of Pharmacology & Pharmaceutical Sciences, University of Manchester and Manchester Cancer Research Center, Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Trédan O, Garbens AB, Lalani AS, Tannock IF. The hypoxia-activated ProDrug AQ4N penetrates deeply in tumor tissues and complements the limited distribution of mitoxantrone. Cancer Res 2009; 69:940-7. [PMID: 19176397 DOI: 10.1158/0008-5472.can-08-0676] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxic tumor cells are likely to be resistant to conventional chemotherapy, in large part because many anticancer drugs are unable to penetrate into poorly oxygenated tumor tissue. Here, we used quantitative immunofluorescence to study the distribution of mitoxantrone and AQ4N in tumor tissue. AQ4N is a prodrug activated under hypoxic conditions to AQ4, which is structurally similar to mitoxantrone and inhibits topoisomerase II. We characterized the penetration of mitoxantrone and AQ4N/AQ4 through multilayered cell cultures (MCC) and in relation to blood vessels and hypoxic regions in human tumor xenografts. We also studied tumor growth delay after treatment with each agent alone and with the combination. In both MCC and xenografts, mitoxantrone is taken up by proximal cells and penetrates slowly to distant regions. In contrast, AQ4N rapidly penetrates MCC and tumor tissue in vivo, and AQ4N (or its reduced form AQ4) is detected at high concentration within hypoxic regions. The targeting of mitoxantrone to oxygenated regions and AQ4N/AQ4 to hypoxic tumor regions results in effective drug exposure over the entire tumor after combined treatment and increases tumor growth delay compared with either drug alone. The combination of a clinically used anticancer drug with limited tissue penetration and a structurally related drug activated in regions of tumor hypoxia is an effective strategy to overcome chemoresistance due to the tumor microenvironment. This study supports clinical evaluation of AQ4N in combination with conventional anticancer agents, such as mitoxantrone.
Collapse
Affiliation(s)
- Olivier Trédan
- Division of Medical Oncology and Hematology, Princess Margaret Hospital and University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
28
|
Papadopoulos KP, Goel S, Beeram M, Wong A, Desai K, Haigentz M, Milián ML, Mani S, Tolcher A, Lalani AS, Sarantopoulos J. A phase 1 open-label, accelerated dose-escalation study of the hypoxia-activated prodrug AQ4N in patients with advanced malignancies. Clin Cancer Res 2008; 14:7110-5. [PMID: 18981010 DOI: 10.1158/1078-0432.ccr-08-0483] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE AQ4N is a novel prodrug that is selectively bioreduced to AQ4, a topoisomerase II inhibitor, in hypoxic tumor. This study assessed the maximum tolerated dose and pharmacokinetics of AQ4N when administered weekly in patients with advanced cancers. EXPERIMENTAL DESIGN AQ4N was administered as a 30-minute i.v. infusion on days 1, 8, and 15 of a 28-day cycle in eight dose cohorts ranging from 12 to 1,200 mg/m(2). Accelerated titration design was used and the maximum tolerated dose was defined as the highest dose at which fewer than two of six patients had a dose-limiting toxicity. RESULTS Sixteen patients were treated with cumulative doses of AQ4N ranging from 61.6 through 9,099.1 mg/m(2). A single patient per cohort was treated up to 384 mg/m(2) without toxicities. At 1,200 mg/m(2), two of five patients experienced a dose-limiting toxicity (grade 5 respiratory failure and grade 3 fatigue). Five cohort assigned patients were treated without toxicity at 768 mg/m(2), establishing this dose as the maximum tolerated dose. Among the most common adverse events observed were fatigue (38%), diarrhea (31%), nausea (25%), vomiting (25%), and anorexia (13%). Anticipated blue coloration of body fluids or skin was observed in all patients. The pharmacokinetics of AQ4N were dose proportional over all doses studied. Three patients experienced stable disease, including a patient with collecting duct renal cancer stable for 25 months. CONCLUSION AQ4N is well tolerated when administered weekly on a 3-of-4-week schedule at 768 mg/m(2). Further combination studies investigating the safety and efficacy of AQ4N are ongoing.
Collapse
Affiliation(s)
- Kyriakos P Papadopoulos
- Institute for Drug Development, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cowen RL, Garside EJ, Fitzpatrick B, Papadopoulou MV, Williams KJ. Gene therapy approaches to enhance bioreductive drug treatment. Br J Radiol 2008; 81 Spec No 1:S45-56. [DOI: 10.1259/bjr/55070206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
30
|
Nishida CR, Ortiz de Montellano PR. Reductive heme-dependent activation of the n-oxide prodrug AQ4N by nitric oxide synthase. J Med Chem 2008; 51:5118-20. [PMID: 18681417 DOI: 10.1021/jm800496s] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Anaerobic reduction of anticancer prodrugs is a promising route to achieve targeting and selectivity in anticancer drug design. Most reductive prodrug activations involve simple electron transfer from a flavoprotein and are not amenable to specific targeting. Here, we report that the N-oxide AQ4N is reduced by a nitric oxide synthase. This reduction involves interaction with the heme iron atom in the active site and is thus subject to specific protein constraints.
Collapse
Affiliation(s)
- Clinton R Nishida
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517, USA
| | | |
Collapse
|
31
|
Lavaggi ML, Cabrera M, González M, Cerecetto H. Differential Enzymatic Reductions Governing the Differential Hypoxia-Selective Cytotoxicities of Phenazine 5,10-Dioxides. Chem Res Toxicol 2008; 21:1900-6. [DOI: 10.1021/tx800199v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- María Laura Lavaggi
- Departamento de Química Orgánica, Facultad de Química-Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Mauricio Cabrera
- Departamento de Química Orgánica, Facultad de Química-Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Mercedes González
- Departamento de Química Orgánica, Facultad de Química-Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Hugo Cerecetto
- Departamento de Química Orgánica, Facultad de Química-Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
32
|
Albertella MR, Loadman PM, Jones PH, Phillips RM, Rampling R, Burnet N, Alcock C, Anthoney A, Vjaters E, Dunk CR, Harris PA, Wong A, Lalani AS, Twelves CJ. Hypoxia-Selective Targeting by the Bioreductive Prodrug AQ4N in Patients with Solid Tumors: Results of a Phase I Study. Clin Cancer Res 2008; 14:1096-104. [PMID: 18281542 DOI: 10.1158/1078-0432.ccr-07-4020] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Steward WP, Middleton M, Benghiat A, Loadman PM, Hayward C, Waller S, Ford S, Halbert G, Patterson LH, Talbot D. The use of pharmacokinetic and pharmacodynamic end points to determine the dose of AQ4N, a novel hypoxic cell cytotoxin, given with fractionated radiotherapy in a phase I study. Ann Oncol 2007; 18:1098-103. [PMID: 17442658 DOI: 10.1093/annonc/mdm120] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND AQ4N (1,4-bis[[2-(dimethylamino)ethyl] amino]-5,8-dihydroxyanthracene-9, 10-dione bis-N-oxide dihydrochloride) is a prodrug which is selectively activated within hypoxic tissues to AQ4, a topoisomerase II inhibitor and DNA intercalator. PATIENTS AND METHODS In the phase I study, 22 patients with oesophageal carcinoma received an i.v. infusion of AQ4N (22.5-447 mg/m(2)) followed, 2 weeks later, by further infusion and radiotherapy. Pharmacokinetics and lymphocyte AQ4N and AQ4 levels were measured after the first dose. At 447 mg/m(2), biopsies of tumour and normal tissue were taken after AQ4N administration. RESULTS Drug-related adverse events were blue discolouration of skin and urine, grade 2-3 lymphopenia, grade 1-3 fatigue, grade 1-2 anaemia, leucopenia and nausea. There were no drug-related serious adverse events (SAEs). Three patients had reductions in tumour volume >50%, nine had stable disease. Pharmacokinetics indicated predictable clearance. Plasma area under the curve (AUC) at 447 mg/m(2) exceeded AQ4N concentrations in mice at therapeutic doses and tumour biopsies contained concentrations of AQ4 greater than those in normal tissue. Tumour concentrations of AQ4 exceeded in vitro IC(50) values for most cell lines investigated. CONCLUSIONS No dose-limiting toxic effects were observed and a maximum tolerated dose was not established. Tumour AQ4 concentrations and plasma AUC at 447 mg/m(2) exceeded active levels in preclinical models. This dose was chosen for future studies with radiotherapy.
Collapse
Affiliation(s)
- W P Steward
- Department of Oncology, Leicester Royal Infirmary, Leicester, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
McKeown SR, Cowen RL, Williams KJ. Bioreductive drugs: from concept to clinic. Clin Oncol (R Coll Radiol) 2007; 19:427-42. [PMID: 17482438 DOI: 10.1016/j.clon.2007.03.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 02/20/2007] [Accepted: 03/09/2007] [Indexed: 11/19/2022]
Abstract
One of the key issues for radiobiologists is the importance of hypoxia to the radiotherapy response. This review addresses the reasons for this and primarily focuses on one aspect, the development of bioreductive drugs that are specifically designed to target hypoxic tumour cells. Four classes of compound have been developed since this concept was first proposed: quinones, nitroaromatics, aliphatic and heteroaromatic N-oxides. All share two characteristics: (1) they require hypoxia for activation and (2) this activation is dependent on the presence of specific reductases. The most effective compounds have shown the ability to enhance the anti-tumour efficacy of agents that kill better-oxygenated cells, i.e. radiation and standard cytotoxic chemotherapy agents such as cisplatin and cyclophosphamide. Tirapazamine (TPZ) is the most widely studied of the lead compounds. After successful pre-clinical in vivo combination studies it entered clinical trial; over 20 trials have now been reported. Although TPZ has enhanced some standard regimens, the results are variable and in some combinations toxicity was enhanced. Banoxantrone (AQ4N) is another agent that is showing promise in early phase I/II clinical trials; the drug is well tolerated, is known to locate in the tumour and can be given in high doses without major toxicities. Mitomycin C (MMC), which shows some bioreductive activation in vitro, has been tested in combination trials. However, it is difficult to assign the enhancement of its effects to targeting of the hypoxic cells because of the significant level of its hypoxia-independent toxicity. More specific analogues of MMC, e.g. porfiromycin and apaziquone (EO9), have had variable success in the clinic. Other new drugs that have good pre-clinical profiles are PR 104 and NLCQ-1; data on their clinical safety/efficacy are not yet available. This paper reviews the pre-clinical data and discusses the clinical studies that have been reported.
Collapse
Affiliation(s)
- S R McKeown
- Institute of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK.
| | | | | |
Collapse
|
35
|
Lalani AS, Alters SE, Wong A, Albertella MR, Cleland JL, Henner WD. Selective Tumor Targeting by the Hypoxia-Activated Prodrug AQ4N Blocks Tumor Growth and Metastasis in Preclinical Models of Pancreatic Cancer. Clin Cancer Res 2007; 13:2216-25. [PMID: 17404106 DOI: 10.1158/1078-0432.ccr-06-2427] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The antitumor activities and pharmacokinetics of the hypoxia-activated cytotoxin AQ4N and its metabolites were assessed in several preclinical models of pancreatic cancers. EXPERIMENTAL DESIGN The cytotoxic effects of AQ4N prodrug and its bioreduced form, AQ4, were tested against multiple human tumor cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Nude mice bearing s.c. or orthotopically implanted human BxPC-3 or Panc-1 tumor cells were treated with AQ4N. Tumor growth inhibition, time to progression/end point, and liver metastasis were evaluated in treatment versus control groups. Plasma and tumor levels of AQ4N and its metabolites were quantitated by liquid chromatography-tandem mass spectrometry. RESULTS In contrast to AQ4N, the bioreduced AQ4 metabolite displayed potent cytotoxicity in many human tumor lines, including those derived from human pancreatic adenocarcinomas. Single-agent administration of AQ4N significantly delayed tumor growth, progression, and survival in a manner comparable with gemcitabine in multiple pancreatic tumor models in vivo. Survival increases were accompanied by a reduction in incidence and spread of liver metastasis. Quantitation of AQ4N and its metabolites in tumor-bearing mice showed that the prodrug is rapidly cleared from the circulation by 24 h and neither of the bioreduced metabolites was detected in plasma. In contrast, AQ4N readily penetrated BxPC-3 tumors and the cytotoxic AQ4 metabolite rapidly accumulated in tumor tissues at high levels in a dose-dependent fashion. CONCLUSION AQ4N undergoes rapid and selective conversion into the potent antineoplastic metabolite AQ4 in tumors in vivo and provides proof of principle for the use of hypoxia-activated prodrugs in the treatment against pancreatic cancers.
Collapse
Affiliation(s)
- Alshad S Lalani
- Novacea, Inc., South San Francisco, California and KuDOS Pharmaceuticals Ltd., Cambridge, United Kingdom.
| | | | | | | | | | | |
Collapse
|
36
|
Yin H, Xu Y, Qian X, Li Y, Liu J. Novel N-oxide of naphthalimides as prodrug leads against hypoxic solid tumor: Synthesis and biological evaluation. Bioorg Med Chem Lett 2007; 17:2166-70. [PMID: 17331719 DOI: 10.1016/j.bmcl.2007.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 12/24/2006] [Accepted: 01/25/2007] [Indexed: 11/20/2022]
Abstract
Novel tertiary amine N-oxides of naphthalimides were designed and synthesized as potential anticancer agents against hypoxic solid tumors. Although their ctDNA-binding affinities and cytotoxic activities against usual tumor cell lines were lower than those of corresponding amines, the N-oxides A1 and A4 showed hypoxia preference activities against A375 cells in vitro and might be used as interesting candidates of prodrug leads in hypoxic tumor cells.
Collapse
Affiliation(s)
- Hong Yin
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | |
Collapse
|
37
|
Yakkundi A, McErlane V, Murray M, McCarthy HO, Ward C, Hughes CM, Patterson LH, Hirst DG, McKeown SR, Robson T. Tumor-selective drug activation: a GDEPT approach utilizing cytochrome P450 1A1 and AQ4N. Cancer Gene Ther 2006; 13:598-605. [PMID: 16410820 DOI: 10.1038/sj.cgt.7700933] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Drug metabolizing transgene products, which activate bioreductive cytotoxins, can be used to target treatment-resistant hypoxic tumors. The prodrug AQ4N is bioreduced in hypoxic cells by cytochrome P450s (CYPs) to the cytotoxin AQ4. Previously we have shown that intra-tumoral injection of CYP3A4 and CYP2B6 transgenes with AQ4N and radiation inhibits tumor growth. Here we examine the ability of other CYPs, in particular CYP1A1, to metabolize AQ4N, and to enhance radiosensitization. Metabolism of AQ4N was assessed using microsomes prepared from baculovirus-infected cells transfected with various CYP isoforms. AQ4N metabolism was most efficient with CYP1A1 (66.7 nmol/min/pmol) and 2B6 (34.4 nmol/min/pmol). Transient transfection of human CYP1A1+/-CYP reductase (CYPRED) was investigated in hypoxic RIF-1 mouse cells in vitro using the alkaline comet assay. There was a significant increase in DNA damage following transient transfection of CYP1A1 compared to non-transfected cells; inclusion of CYPRED provided no additional effect. In vivo, a single intra-tumoral injection of a CYP1A1 construct in combination with AQ4N (100 mg/kg i.p.) and 20 Gy X-rays caused a 16-day delay in tumor regrowth compared to tumors receiving AQ4N plus radiation and empty vector (P=0.0344). The results show the efficacy of a CYP1A1-mediated GDEPT strategy for bioreduction of AQ4N.
Collapse
Affiliation(s)
- A Yakkundi
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tang MHY, Helsby NA, Wilson WR, Tingle MD. Aerobic 2- and 4-nitroreduction of CB 1954 by human liver. Toxicology 2005; 216:129-39. [PMID: 16129536 DOI: 10.1016/j.tox.2005.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 07/22/2005] [Accepted: 07/28/2005] [Indexed: 11/24/2022]
Abstract
5-(Aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) is an anti-tumour prodrug which recently entered clinical trials in combination with Escherichia coli nitroreductase in a gene-directed enzyme prodrug therapy (GDEPT) context. A Phase I trial of the prodrug, however, revealed dose-limiting hepatotoxicity (transaminitis). The aim of this study was to find out whether the prodrug undergoes reductive metabolism in human liver to cytotoxic metabolites which may contribute to this clinical toxicity. CB 1954 (2.5-250 microM) was incubated with human liver preparations (2-8 mg/mL of S9, cytosolic or microsomal proteins) in the presence of NAD(P)H (1 mM). The NADH- and NADPH-dependent formation of both 2- and 4-nitroreduction products was demonstrated, with NADPH being the preferred cofactor, by HPLC and mass spectrometry. The major metabolite formed in all three human liver preparations was the 4-hydroxylamine, a potent DNA cross-linking cytotoxin. The 2-hydroxylamine and 2-amine metabolites were also detected, both of which have also been demonstrated to be highly cytotoxic. 2-Nitroreduction was far greater in S9 compared with cytosol and was not detected in microsomal preparations. Although 2- and 4-nitroreduction of CB 1954 was inhibited under hyperoxic conditions, substantial metabolism was observed under atmospheric oxygen levels. These studies demonstrate that human liver is capable of aerobic reductive bioactivation of CB 1954 to cytotoxic metabolites in vitro, possibly involving multiple enzymes, which may account for the clinical hepatotoxicity observed.
Collapse
Affiliation(s)
- Magdalene Huen Yin Tang
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
39
|
Parte P, Kupfer D. OXIDATION OF TAMOXIFEN BY HUMAN FLAVIN-CONTAINING MONOOXYGENASE (FMO) 1 AND FMO3 TO TAMOXIFEN-N-OXIDE AND ITS NOVEL REDUCTION BACK TO TAMOXIFEN BY HUMAN CYTOCHROMES P450 AND HEMOGLOBIN. Drug Metab Dispos 2005; 33:1446-52. [PMID: 15987777 DOI: 10.1124/dmd.104.000802] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tamoxifen (TAM), used as the endocrine therapy of choice for breast cancer, undergoes metabolism primarily forming N-desmethyltamoxifen, 4-hydroxytamoxifen, alpha-hydroxytamoxifen, and tamoxifen-N-oxide (TNO). Our earlier studies demonstrated that flavin-containing monooxygenases (FMOs) catalyze the formation of TNO. The current study demonstrates that human FMO1 and FMO3 catalyze TAM N-oxidation to TNO and that cytochromes P450 (P450s), but not FMOs, reduce TNO to TAM. CYP1A1, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 all reduced TNO, with CYP2A6, CYP1A1, and CYP3A4 producing the greatest reduction. A portion of TAM formed by CYP3A4-mediated reduction of TNO was further metabolized, but not TAM formed by the other P450s. TNO reduction by P450s is extremely rapid with considerable TAM formation detected at the earliest time point that products could be measured. TAM formation exhibited a lack of linearity with incubation time but increased linearly as a function of TNO and P450 concentration. TNO was converted into TAM by reduced hemoglobin (Hb) and NADPH-P450 oxidoreductase, suggesting involvement of the same heme-Fe(2+) complex in both Hb and P450s. The findings raise the question of whether the reductive activity may be nonenzymatic. Results of this in vitro study demonstrate the potential of TAM and TNO to be interconverted metabolically. FMO seems to be the major enzymatic oxidant, whereas several P450 enzymes and even reduced hemoglobin are capable of reducing TNO back to TAM. The possibility that these processes may comprise a metabolic cycle in vivo is discussed in this article.
Collapse
Affiliation(s)
- Priyanka Parte
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | | |
Collapse
|
40
|
|
41
|
McErlane V, Yakkundi A, McCarthy HO, Hughes CM, Patterson LH, Hirst DG, Robson T, McKeown SR. A cytochrome P450 2B6 meditated gene therapy strategy to enhance the effects of radiation or cyclophosphamide when combined with the bioreductive drug AQ4N. J Gene Med 2005; 7:851-9. [PMID: 15712360 DOI: 10.1002/jgm.728] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AQ4N is metabolised in hypoxic cells by cytochrome P450s (CYPs) to the cytotoxin AQ4. Most solid tumours are known to contain regions of hypoxia whereas levels of CYPs have been found to vary considerably. Enhancement of CYP levels may be obtained using gene-directed enzyme prodrug therapy (GDEPT). We have therefore examined the potential of a CYP2B6-mediated GDEPT strategy to enhance the anti-tumour effect of the combination of AQ4N with radiation or cyclophosphamide (CPA). METHODS In vitro and in vivo transient transfection of human CYP2B6 +/- CYP reductase (CYPRED) was investigated in RIF-1 mouse tumours. Efficacy in vitro was assessed using the alkaline comet assay (ACA). In vivo, the time to reach 4x the treatment volume (quadrupling time; VQT) was used as the end point. RESULTS When CYP2B6 was transfected into RIF-1 cells and treated with AQ4N under hypoxic conditions there was a significant increase in DNA damage (measured by the ACA) compared with non-transfected cells. In vivo, a single intra-tumoural injection of a CYP2B6 vector construct significantly enhanced tumour growth delay in combination with AQ4N (100 mg/kg) and 10 Gy X-rays. AQ4N (100 mg/kg) and CPA (100 mg/kg) with CYP2B6 and CYPRED also enhanced tumour growth delay; this effect became significant when the schedule was repeated 14 days later (p = 0.0197). CONCLUSIONS The results show the efficacy of a CYP2B6-mediated GDEPT strategy for bioreduction of AQ4N; this may offer an additional approach to target radiation- and chemo-resistant hypoxic tumours that should enhance overall tumour control.
Collapse
Affiliation(s)
- Verna McErlane
- Radiation Science Research Group, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK
| | | | | | | | | | | | | | | |
Collapse
|
42
|
McErlane V, Yakkundi A, McCarthy HO, Hughes CM, Patterson LH, Hirst DG, Robson T, McKeown SR. A cytochrome P450 2B6 meditated gene therapy strategy to enhance the effects of radiation or cyclophosphamide when combined with the bioreductive drug AQ4N. J Gene Med 2005. [DOI: 10.1002/jgm.728 [doi]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
43
|
Abstract
Systemic cytotoxic (antiproliferative) anticancer drugs rely primarily for their therapeutic effect on cytokinetic differences between cancer and normal cells. One approach aimed at improving the selectivity of tumor cell killing by such compounds is the use of less toxic prodrug forms that can be selectively activated in tumor tissue (tumor-activated prodrugs; TAP). There are several mechanisms potentially exploitable for the selective activation of TAP. Some utilize unique aspects of tumor physiology such as selective enzyme expression or hypoxia. Others are based on tumor-specific delivery techniques, including activation of prodrugs by exogenous enzymes delivered to tumor cells via monoclonal antibodies (ADEPT) or generated in tumor cells from DNA constructs containing the corresponding gene (GDEPT). Whichever activating mechanism is used, only a small proportion of the tumor cells are likely to be competent to activate the prodrug. Therefore, TAP need to fully exploit these "activator" cells by being capable of killing activation-incompetent cells as well via a "bystander effect." A wide variety of chemistries have been explored for the selective activation of TAP. Examples are given of the most important-the reduction of quinones, N-oxides, and nitroaromatics by endogenous enzymes or radiation; the cleavage of amides by endogenous peptidases; and hydrolytic metabolism by a variety of exogenous enzymes, including phosphatases, kinases, amidases, and glycosidases.
Collapse
Affiliation(s)
- William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
44
|
Rooseboom M, Commandeur JNM, Vermeulen NPE. Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol Rev 2004; 56:53-102. [PMID: 15001663 DOI: 10.1124/pr.56.1.3] [Citation(s) in RCA: 370] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The rationale fo the development of prodrugs relies upon delivery of higher concentrations of a drug to target cells compared to administration of the drug itself. In the last decades, numerous prodrugs that are enzymatically activated into anti-cancer agents have been developed. This review describes the most important enzymes involved in prodrug activation notably with respect to tissue distribution, up-regulation in tumor cells and turnover rates. The following endogenous enzymes are discussed: aldehyde oxidase, amino acid oxidase, cytochrome P450 reductase, DT-diaphorase, cytochrome P450, tyrosinase, thymidylate synthase, thymidine phosphorylase, glutathione S-transferase, deoxycytidine kinase, carboxylesterase, alkaline phosphatase, beta-glucuronidase and cysteine conjugate beta-lyase. In relation to each of these enzymes, several prodrugs are discussed regarding organ- or tumor-selective activation of clinically relevant prodrugs of 5-fluorouracil, axazaphosphorines (cyclophosphamide, ifosfamide, and trofosfamide), paclitaxel, etoposide, anthracyclines (doxorubicin, daunorubicin, epirubicin), mercaptopurine, thioguanine, cisplatin, melphalan, and other important prodrugs such as menadione, mitomycin C, tirapazamine, 5-(aziridin-1-yl)-2,4-dinitrobenzamide, ganciclovir, irinotecan, dacarbazine, and amifostine. In addition to endogenous enzymes, a number of nonendogenous enzymes, used in antibody-, gene-, and virus-directed enzyme prodrug therapies, are described. It is concluded that the development of prodrugs has been relatively successful; however, all prodrugs lack a complete selectivity. Therefore, more work is needed to explore the differences between tumor and nontumor cells and to develop optimal substrates in terms of substrate affinity and enzyme turnover rates fo prodrug-activating enzymes resulting in more rapid and selective cleavage of the prodrug inside the tumor cells.
Collapse
Affiliation(s)
- Martijn Rooseboom
- Leiden/Amsterdam Center for Drug Research (L.A.C.D.R.), Division of Molecular Toxicology, Department of Pharmacochemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
45
|
Abstract
The occurrence of hypoxia in solid tumours is increasingly recognized as a limiting factor in the success of both radiotherapy and chemotherapy treatment, but at the same time offers a tumour-specific phenomenon for the activation of prodrugs. However, the design of clinically useful prodrugs that can be selectively activated in hypoxic cells has proved elusive. Specific reasons (activation by oxygen-insensitive two-electron reductases) have been proposed for the failure of quinone-based prodrugs, but a more general contributing factor may be inappropriate clinical trial design, and the failure to understand the critical importance of drug properties, such as efficient extra-vascular diffusion of the prodrug and back-diffusion of the activated drug in the tumour. Activation of prodrugs by therapeutic radiation and the use of hypoxia-selective gene therapy vectors, such as Clostridia, are exciting new mechanisms for prodrug research to explore, but are in much earlier stages of evaluation.
Collapse
|
46
|
Lacombe D, Butler-Smith A, Therasse P, Fumoleau P, Burtles S, Calvert H, Marsoni S, Sessa C, Verweij J. Cancer drug development in Europe: a selection of new agents under development at the European Drug Development Network. Cancer Invest 2003; 21:137-47. [PMID: 12643015 DOI: 10.1081/cnv-120016408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
From may 99, three european leaders in anti-cancer drug development (EORTC, Cancer Research UK, SENDO) have got together to form a network of collaborating groups: the European Drug Development Network. The member organisations have all agreed to join their efforts in developing new drugs. They have acquired a great and efficient expertise in anticancer drug development covering all aspects from drug screening to refinement of trial methodology and translational research. In this paper, the most interesting drugs under development in each of the three organisations are being described and discussed.
Collapse
Affiliation(s)
- D Lacombe
- European Organisation for Research and Treatment of Cancer, Assistant Director/New Drug Development Program, Avenue E. Mounier, 83-b11, 1200 Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
McCarthy HO, Yakkundi A, McErlane V, Hughes CM, Keilty G, Murray M, Patterson LH, Hirst DG, McKeown SR, Robson T. Bioreductive GDEPT using cytochrome P450 3A4 in combination with AQ4N. Cancer Gene Ther 2003; 10:40-8. [PMID: 12489027 DOI: 10.1038/sj.cgt.7700522] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Indexed: 11/09/2022]
Abstract
The bioreductive drug, AQ4N, is metabolized under hypoxic conditions and has been shown to enhance the antitumor effects of radiation and chemotherapy drugs. We have investigated the role of cytochrome P450 3A4 (CYP3A4) in increasing the metabolism of AQ4N using a gene-directed enzyme prodrug therapy (GDEPT) strategy. RIF-1 murine tumor cells were transfected with a mammalian expression vector containing CYP3A4 cDNA. In vitro AQ4N metabolism, DNA damage, and clonogenic cell kill were assessed following exposure of transfected and parental control cells to AQ4N. The presence of exogenous CYP3A4 increased the metabolism of AQ4N and significantly enhanced the ability of the drug to cause DNA strand breaks and clonogenic cell death. Cotransfection of CYP reductase with CYP3A4 showed a small enhancement of the effect in the DNA damage assay only. A single injection of CYP3A4 into established RIF-1 murine tumors increased the metabolism of AQ4N, and when used in combination with radiation, three of nine tumors were locally controlled for >60 days. This is the first demonstration that CYPs alone can be used in a GDEPT strategy for bioreduction of the cytotoxic prodrug, AQ4N. AQ4N is the only CYP-activated bioreductive agent in clinical trials. Combination with a GDEPT strategy may offer a further opportunity for targeting radiation-resistant and chemo-resistant hypoxic tumor cells.
Collapse
Affiliation(s)
- Helen O McCarthy
- Radiation Science Research Group, School of Biomedical Sciences, University of Ulster at Jordanstown, Newtownabbey, County Antrim, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
McCarthy HO, Yakkundi A, McErlane V, Hughes CM, Keilty G, Murray M, Patterson LH, Hirst DG, McKeown SR, Robson T. Bioreductive GDEPT using cytochrome P450 3A4 in combination with AQ4N. Cancer Gene Ther 2002. [DOI: 10.1038/sj.cgt.7700522 [doi]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Patterson LH. Bioreductively activated antitumor N-oxides: the case of AQ4N, a unique approach to hypoxia-activated cancer chemotherapy. Drug Metab Rev 2002; 34:581-92. [PMID: 12214668 DOI: 10.1081/dmr-120005659] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aliphatic amine N-oxides have long been identified as non-toxic metabolites of a large number of tertiary amines drugs. Bioreduction of such N-oxides will generate the active parent amine. This principle has been adopted to develop AQ4N, a di-N-oxide anticancer prodrug with little intrinsic cytotoxicity. However, AQ4N is bioreduced in hypoxic regions of solid tumors and micrometastatic deposits to generate a cytotoxic alkylaminoanthraquinone metabolite. The 4-electron reduction metabolite of AQ4N has high affinity for DNA and is a potent inhibitor of topoisomerase II, a DNA processing enzyme crucial to cell division. The development of AQ4N has proceeded on many fronts in order to establish this unique anticancer prodrug opportunity. Preclinical studies in vivo have demonstrated that although AQ4N has little or no intrinsic cytotoxic activity per se it (i) enhances the antitumor effects of radiation and conventional chemotherapeutic agents, (ii) is pharmacokinetically stable, and (iii) is a substrate for cytochrome P450 (CYP). A study of AQ4N metabolism in vitro and ex vivo using purified CYP enzymes, phenotyped human livers and CYP transfected cell lines shows that CYP3A, 1A and 1B1 family members contribute to AQ4N bioreduction in the absence of oxygen. Importantly AQ4N is shown to be metabolized by tumors known to express CYP isoforms. AQ4N is currently in Phase I clinical trials.
Collapse
Affiliation(s)
- Laurence H Patterson
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University of London, UK.
| |
Collapse
|
50
|
Abstract
This chapter is an update of the data on substrates, reactions, inducers, and inhibitors of human CYP enzymes published previously by Rendic and DiCarlo (1), now covering selection of the literature through 2001 in the reference section. The data are presented in a tabular form (Table 1) to provide a framework for predicting and interpreting the new P450 metabolic data. The data are formatted in an Excel format as most suitable for off-line searching and management of the Web-database. The data are presented as stated by the author(s) and in the case when several references are cited the data are presented according to the latest published information. The searchable database is available either as an Excel file (for information contact the author), or as a Web-searchable database (Human P450 Metabolism Database, www.gentest.com) enabling the readers easy and quick approach to the latest updates on human CYP metabolic reactions.
Collapse
Affiliation(s)
- Slobodan Rendic
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.
| |
Collapse
|