1
|
Kaiya H. Update on Feeding Regulation by Ghrelin in Birds: Focused on Brain Network. Zoolog Sci 2024; 41:39-49. [PMID: 38587516 DOI: 10.2108/zs230071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/21/2023] [Indexed: 04/09/2024]
Abstract
Ghrelin is known to be a feeding stimulatory hormone in mammals, but in birds, in contrast to mammals, the feeding behavior is regulated in inhibitory manners. This is because the neuropeptides associated with the regulation in the brain are different from those in mammals, i.e., it has been shown that, in chickens, a corticotropin-releasing hormone family peptide, urocortin, which is a feeding-inhibitory peptide, is mainly involved in the inhibitory mechanism. However, feeding is also regulated by various neurotransmitters in the brain, and recently, their interaction with the mechanisms underlying feeding inhibition by ghrelin in birds has been intensively studied and clarified. This review summarizes these findings.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Grandsoul Research Institute for Immunology, Inc., Utano, Uda, Nara 633-2221, Japan,
- Faculty of Science, University of Toyama, Toyama, Toyama 930-8555, Japan
| |
Collapse
|
2
|
Saldanha BC, Silva PA, Maximino C, Cardoso GC, Trigo S, Soares MC. The role of serotonin in modulating common waxbill behaviour. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is a monoaminergic neurotransmitter that is known to influence behaviour in various animal species. Its actions, however, are complex and not well-understood yet. Here, we tested whether and how two 5-HT receptor agonists and a 5-HT receptor antagonist influence behaviour in common waxbills (Estrilda astrild), focusing on aggression, movement and feeding. We applied acute administration of either 8-OH-DPAT (a 5-HT1A receptor agonist), fluoxetine (a selective serotonin reuptake inhibitor; SSRI) or WAY 100,635 (a 5-HT1A receptor antagonist), and then quantified behaviour in the context of competition for food. Waxbills treated with the SSRI fluoxetine showed an overall decrease of aggressive behaviour, activity and feeding, while we found no significant effects of treatment with the other serotonergic enhancer (8-OH-DPAT) or with the antagonist WAY 100,635. Since both 8-OH-DPAT and WAY 100,635 act mainly on 5-HT1A receptor pathways, while fluoxetine more generally affects 5-HT pathways, our results suggest that receptors other than 5-HT1A are important for serotonergic modulation of waxbill behaviour.
Significance statement
The serotonergic system is of interest for current behavioural research due to its influence on a range of behaviours, including aggression, affiliative behaviour, feeding and locomotion in various species. There are, however, numerous discrepancies regarding the behavioural effects of serotonin across studies. We used acute pharmacological manipulations of the serotonergic system in common waxbills, using two serotonin enhancers (8-OH-DPAT and fluoxetine) and a serotonin blocker (WAY 100,635). Behavioural effects of these pharmacological manipulations on aggressiveness, movement and feeding, during tests of competition over food, indicated an anxiogenic-like effect of fluoxetine, but not of 8-OH-DPAT and WAY 100,635. This suggests a distinct role for different serotonergic pathways on waxbill behaviour.
Collapse
|
3
|
Wang H, Liu S, Li J, Wang L, Wang X, Zhao J, Jiao H, Lin H. 5-Hydroxytryptophan Suppresses the Abdominal Fat Deposit and Is Beneficial to the Intestinal Immune Function in Broilers. Front Physiol 2020; 11:655. [PMID: 32595527 PMCID: PMC7304481 DOI: 10.3389/fphys.2020.00655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 05/22/2020] [Indexed: 11/24/2022] Open
Abstract
Background Serotonin (5-HT), a monoaminergic neurotransmitter, involves in the regulation of many physiological functions. In the present study, the effects of 5-hydroxytryptophan (5-HTP), the precursor of 5-HT, on lipid metabolism and intestinal immune function in broiler chickens were investigated in chickens. Methods Two hundred broilers were divided randomly into two groups and fed separately with a corn-soybean basal diet (CD) or the basal diet supplemented with 0.2% 5-HTP. Results The results showed that 5-HTP reduced (P < 0.05) feed intake and the abdominal fat pad weight. 5-HTP treatment tended to upregulate the mRNA level of adiponectin receptor 1 (ADP1R) and ADP2R in abdominal fat but had no significant influence on their protein levels (P > 0.05). In 5-HTP-chickens, lipopolysaccharide exposure decreased secretory immunoglobulin A (sIgA) concentrations in serum and the duodenal contents. Expression of mRNA encoding interleukin (IL), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β) decreased after 5-HTP treatment; however, LPS increased expression significantly in 5-HTP-treated chickens compared with CD chickens. In 5-HTP-chickens, the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) were reduced, but the phosphorylation of ribosomal p70S6 kinase (p70S6K) was increased in the duodenum. Conclusion In summary, the result suggests that dietary 5-HTP supplementation reduces accumulation of abdominal fat and is beneficial to intestinal immune function.
Collapse
Affiliation(s)
- Hui Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Shaoqiong Liu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Jun Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Liyuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Xiaojuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jingpeng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Hongchao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
4
|
He YH, Li L, Liang XF, He S, Zhao L, Zhang YP. Inhibitory neurotransmitter serotonin and excitatory neurotransmitter dopamine both decrease food intake in Chinese perch (Siniperca chuatsi). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:175-183. [PMID: 28929258 DOI: 10.1007/s10695-017-0422-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Aminergic neurotransmitters play important roles in the regulation of food intake. However, their effects on feeding in fish have been less explored and still unclear. In the present study, the effects of serotonin (5-HT) and dopamine (DA) on food intake were evaluated through intraventricular (ICV) administration in Chinese perch (Siniperca chuatsi) and the mRNA expression levels of neuropeptide Y (NPY), agouti gene-related protein (AgRP), and pro-opiomelanocortin (POMC) were detected. At 1 h post-injection, 5-HT significantly decreased food intake in a dose-dependent manner. The mRNA expression of NPY and AgRP were significantly decreased (p < 0.05), whereas the mRNA expression of POMC was significantly increased (p < 0.05), suggesting the involvement of NPY, AgRP, and POMC in inhibitory action of 5-HT on food intake in Chinese perch. DA significantly decreased (p < 0.05) food intake and AgRP mRNA expression at 1 h post-injection, indicating the inhibitory effect of DA on food intake might be mediated through AgRP. This might shed new light on the regulation of food intake in Chinese perch.
Collapse
Affiliation(s)
- Yu-Hui He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Ling Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Luo Zhao
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Yan-Peng Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| |
Collapse
|
5
|
Bahry MA, Chowdhury VS, Yang H, Tran PV, Do PH, Han G, Ikeda H, Cockrem JF, Furuse M. Central administration of neuropeptide Y differentially regulates monoamines and corticosterone in heat-exposed fed and fasted chicks. Neuropeptides 2017; 62:93-100. [PMID: 27979380 DOI: 10.1016/j.npep.2016.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/17/2016] [Accepted: 11/27/2016] [Indexed: 12/23/2022]
Abstract
Recently, we demonstrated that brain neuropeptide Y (NPY) mRNA expression was increased in heat exposed chicks. However, the functions of brain NPY during heat stress are unknown. This study was conducted to investigate whether centrally administered NPY affects food intake, rectal temperature, monoamines, stress hormones and plasma metabolites in chicks under high ambient temperatures (HT). Five or six-day-old chicks were centrally injected with 0, 188 or 375pmol of NPY and exposed to either HT (35±1°C) or a control thermoneutral temperature (CT; 30±1°C) for 3h whilst fed or fasted. NPY increased food intake under both CT and HT. NPY reduced rectal temperature 1 and 2h after central administration under CT, but not under HT. Interestingly, NPY decreased brain serotonin and norepinephrine concentrations in fed chicks, but increased concentrations of brain dopamine and its metabolites in fasted and fed chicks, respectively. Plasma epinephrine was decreased by NPY in fed chicks, but plasma concentrations of norepinephrine and epinephrine were increased significantly by NPY in fasted-heat exposed chicks. Furthermore, NPY significantly reduced plasma corticosterone concentrations in fasted chicks. Plasma glucose and triacylglycerol were increased by NPY in fed chicks, but triacylglycerol declined in fasted NPY-injected chicks. In conclusion, brain NPY may attenuate the reduction of food intake during heat stress and the increased brain NPY might be a potential regulator of the monoamines and corticosterone to modulate stress response in heat-exposed chicks.
Collapse
Affiliation(s)
- Mohammad A Bahry
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Vishwajit S Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan.
| | - Hui Yang
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Phuong V Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Phong H Do
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Guofeng Han
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Hiromi Ikeda
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - John F Cockrem
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
6
|
Dos Santos TS, Krüger J, Melleu FF, Herold C, Zilles K, Poli A, Güntürkün O, Marino-Neto J. Distribution of serotonin 5-HT1A-binding sites in the brainstem and the hypothalamus, and their roles in 5-HT-induced sleep and ingestive behaviors in rock pigeons (Columba livia). Behav Brain Res 2015; 295:45-63. [PMID: 25843559 DOI: 10.1016/j.bbr.2015.03.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/20/2015] [Accepted: 03/26/2015] [Indexed: 02/06/2023]
Abstract
Serotonin 1A receptors (5-HT1ARs), which are widely distributed in the mammalian brain, participate in cognitive and emotional functions. In birds, 5-HT1ARs are expressed in prosencephalic areas involved in visual and cognitive functions. Diverse evidence supports 5-HT1AR-mediated 5-HT-induced ingestive and sleep behaviors in birds. Here, we describe the distribution of 5-HT1ARs in the hypothalamus and brainstem of birds, analyze their potential roles in sleep and ingestive behaviors, and attempt to determine the involvement of auto-/hetero-5-HT1ARs in these behaviors. In 6 pigeons, the anatomical distribution of [(3)H]8-OH-DPAT binding in the rostral brainstem and hypothalamus was examined. Ingestive/sleep behaviors were recorded (1h) in 16 pigeons pretreated with MM77 (a heterosynaptic 5-HT1AR antagonist; 23 or 69 nmol) for 20 min, followed by intracerebroventricular ICV injection of 5-HT (N:8; 150 nmol), 8-OH-DPAT (DPAT, a 5-HT1A,7R agonist, 30 nmol N:8) or vehicle. 5-HT- and DPAT-induced sleep and ingestive behaviors, brainstem 5-HT neuronal density and brain 5-HT content were examined in 12 pigeons, pretreated by ICV with the 5-HT neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) or vehicle (N:6/group). The distribution of brainstem and diencephalic c-Fos immunoreactivity after ICV injection of 5-HT, DPAT or vehicle (N:5/group) into birds provided with or denied access to water is also described. 5-HT1ARs are concentrated in the brainstem 5-HTergic areas and throughout the periventricular hypothalamus, preoptic nuclei and circumventricular organs. 5-HT and DPAT produced a complex c-Fos expression pattern in the 5-HT1AR-enriched preoptic hypothalamus and the circumventricular organs, which are related to drinking and sleep regulation, but modestly affected c-Fos expression in 5-HTergic neurons. The 5-HT-induced ingestivebehaviors and the 5-HT- and DPAT-induced sleep behaviors were reduced by MM77 pretreatment. 5,7-DHT increased sleep per se, decreased tryptophan hydroxylase expression in the raphe nuclei and decreased prosencephalic 5-HT release but failed to affect 5-HT- or DPAT-induced drinking or sleep behavior. 5-HT- and DPAT-induced ingestive and sleep behaviors in pigeons appear to be mediated by heterosynaptic and/or non-somatodendritic presynaptic 5-HT1ARs localized to periventricular diencephalic circuits.
Collapse
Affiliation(s)
- Tiago Souza Dos Santos
- Department of Physiological Sciences, CCB, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - Jéssica Krüger
- Department of Physiological Sciences, CCB, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - Fernando Falkenburger Melleu
- Department of Physiological Sciences, CCB, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - Christina Herold
- C & O. Vogt Institute for Brain Research, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, 52425 Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany; JARA - Translational Brain Medicine, 52074 Aachen, Germany.
| | - Anicleto Poli
- Department of Pharmacology, CCB, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - Onur Güntürkün
- Institute for Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44780 Bochum, Germany.
| | - José Marino-Neto
- Department of Physiological Sciences, CCB, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Institute of Biomedical Engineering, EEL-CTC, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
7
|
Pérez Maceira JJ, Mancebo MJ, Aldegunde M. The involvement of 5-HT-like receptors in the regulation of food intake in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 2014; 161:1-6. [PMID: 24365333 DOI: 10.1016/j.cbpc.2013.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/10/2013] [Accepted: 12/14/2013] [Indexed: 01/03/2023]
Abstract
It is known that in fish the serotonergic system is part of the neural network that controls feeding and that a pharmacologically induced increase in the brain 5-HT inhibits food intake. However, nothing is known about the 5-HT receptors involved in this inhibitory effect. In this study, we investigated the effects of several 5-HT1 and 5-HT2 receptor agonists on food intake in rainbow trout. In the first experiment, fish were injected i.p. or i.c.v. with two 5-HT1B receptor agonists, anpirtoline (2mg/kg, i.p.) and CP93129 (100 and 200μg/kg, i.c.v.). Neither of these treatments significantly altered food intake. In a second set of experiments, different groups of fish were injected i.p. (1mg/kg) or i.c.v. (30μg/kg) with the 5-HT1A receptor agonist 8-OH-DPAT. In both cases, administration of the 5-HT1A receptor agonist inhibited food intake. In a third set of experiments, we explored the effects of different 5-HT2 receptor agonists. Different groups of fish were injected i.p. or i.c.v. with the mixed 5-HT2B/2C agonist m-CPP (5mg/kg, i.p.), 5-HT2C agonist MK212 (60μg/kg, i.c.v.) and 5-HT2B agonist BW723C86 (50 and 100μg/kg, i.c.v.). Administration of the 5-HT2B/2C and 5HT2C receptor agonists significantly inhibited food intake. Administration of the lowest dose of the 5-HT2B receptor agonist did not have any significant effect, while administration of the highest dose induced a significant increase in food intake. Activation of the 5-HT1A-like (food intake inhibition) and 5-HT1B-like (no effect on food intake) receptors in the rainbow trout induced different effects on food intake from those observed in mammals. We conclude that in rainbow trout the anorexigenic actions of 5-HT are probably mediated by activation of 5-HT1A and 5-H2C-like receptors.
Collapse
Affiliation(s)
- Jorge J Pérez Maceira
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María J Mancebo
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Aldegunde
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Ortega VA, Lovejoy DA, Bernier NJ. Appetite-suppressing effects and interactions of centrally administered corticotropin-releasing factor, urotensin I and serotonin in rainbow trout (Oncorhynchus mykiss). Front Neurosci 2013; 7:196. [PMID: 24194695 PMCID: PMC3810612 DOI: 10.3389/fnins.2013.00196] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/08/2013] [Indexed: 01/03/2023] Open
Abstract
Corticotropin-releasing factor (CRF), urotensin I (UI) and serotonin (5-HT) are generally recognized as key regulators of the anorexigenic stress response in vertebrates, yet the proximal effects and potential interactions of these central messengers on food intake in salmonids are not known. Moreover, no study to date in fishes has compared the appetite-suppressing effects of CRF and UI using species-specific peptides. Therefore, the objectives of this study were to (1) assess the individual effects of synthesized rainbow trout CRF (rtCRF), rtUI as well as 5-HT on food intake in rainbow trout, and (2) determine whether the CRF and serotonergic systems interact in the regulation of food intake in this species. Intracerebroventricular (icv) injections of rtCRF and rtUI both suppressed food intake in a dose-related manner but rtUI [ED50 = 17.4 ng/g body weight (BW)] was significantly more potent than rtCRF (ED50 = 105.9 ng/g BW). Co-injection of either rtCRF or rtUI with the CRF receptor antagonist α-hCRF(9–41) blocked the reduction in food intake induced by CRF-related peptides. Icv injections of 5-HT also inhibited feeding in a dose-related manner (ED50 = 14.7 ng/g BW) and these effects were blocked by the serotonergic receptor antagonist methysergide. While the anorexigenic effects of 5-HT were reversed by α-hCRF(9–41) co-injection, the appetite-suppressing effects of either rtCRF or rtUI were not affected by methysergide co-injection. These results identify CRF, UI and 5-HT as anorexigenic agents in rainbow trout, and suggest that 5-HT-induced anorexia may be at least partially mediated by CRF- and/or UI-secreting neurons.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Integrative Biology, University of Guelph Guelph, ON, Canada
| | | | | |
Collapse
|
9
|
Zendehdel M, Mokhtarpouriani K, Babapour V, Baghbanzadeh A, Pourrahimi M, Hassanpour S. The effect of serotonergic system on nociceptin/orphanin FQ induced food intake in chicken. J Physiol Sci 2013; 63:271-7. [PMID: 23615894 PMCID: PMC10717312 DOI: 10.1007/s12576-013-0263-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
The present study was designed to examine the effects of intracerebroventricular injection of para-chlorophenylalanine (PCPA) (cerebral serotonin depletive), fluoxetine (selective serotonin reuptake inhibitor), 8-OH-DPAT (5-HT1A autoreceptor agonist) and SB 242084 (5-HT2c receptor antagonist) on nociceptin/orphanin FQ (N/OFQ) induced feeding response in chickens. A guide cannula was surgically implanted into the lateral ventricle of chickens. Before the experiments, 3-h fasting periods had been given to all experimental birds. In experiment 1, chickens were injected with PCPA (1.5 μg) followed by an N/OFQ injection (16 nmol) intracerebroventricularly. In experiment 2, birds received fluoxetine (10 μg) prior to the injection of N/OFQ. In experiment 3, chickens were administered with N/OFQ after the 8-OH-DPAT administration (15.25 nmol). In experiment 4, birds were injected with SB 242084 (1.5 μg) followed by an N/OFQ injection. Cumulative food intake was measured at 3 h post injection. The results of this study show that N/OFQ increases food intake in broiler cockerels (P < 0.05) and that this effect is amplified by pretreatment with PCPA and SB 242084 in an additive manner (P < 0.05). The effect of N/OFQ is not changed by pretreatment with 8-OH-DPAT (P > 0.05). Furthermore, the stimulatory effect of N/OFQ on food intake was significantly attenuated by pretreatment with fluoxetine. These results suggest that N/OFQ induced hyperphagia is mediated by serotonergic mechanisms, and possibly imply an interaction between N/OFQ and the serotonergic system (via 5-HT2C receptors) on food intake in chickens.
Collapse
Affiliation(s)
- Morteza Zendehdel
- Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, 14155-6453, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
10
|
Zendehdel M, Hamidi F, Babapour V, Mokhtarpouriani K, Fard RMN. The effect of melanocortin (Mc3 and Mc4) antagonists on serotonin-induced food and water intake of broiler cockerels. J Vet Sci 2013; 13:229-34. [PMID: 23000579 PMCID: PMC3467397 DOI: 10.4142/jvs.2012.13.3.229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current study was designed to examine the effects of intracerebroventricular injections of SHU9119 [a nonselective melanocortin receptor (McR) antagonist] and MCL0020 (a selective McR antagonist) on the serotonin-induced eating and drinking responses of broiler cockerels deprived of food for 24 h (FD24). For Experiment 1, the chickens were intracerebroventricularly injected with 2.5, 5, and 10 µg serotonin. In Experiment 2, the chickens received 2 nmol SHU9119 before being injected with 10 µg serotonin. For Experiment 3, the chickens were given 10 µg serotonin after receiving 2 nmol MCL0020, and the level of food and water intake was determined 3 h post-injection. Results of this study showed that serotonin decreased food intake but increased water intake among the FD24 broiler cockerels and that these effects occurred in a dose-dependent manner. The inhibitory effect of serotonin on food intake was significantly attenuated by pretreatment with SHU9119 and MCL0020. However, the stimulatory effect of serotonin on water intake was not altered by this pretreatment. These results suggest that serotonin hypophagia and hyperdipsia were mediated by different mechanisms in the central nervous system, and that serotonin required downstream activation of McRs to promote hypophagia but not hyperdipsia in the FD24 chickens.
Collapse
Affiliation(s)
- Morteza Zendehdel
- Section of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, P.O. Box 14155-6453 Tehran, Iran.
| | | | | | | | | |
Collapse
|
11
|
Fang XL, Shu G, Yu JJ, Wang LN, Yang J, Zeng QJ, Cheng X, Zhang ZQ, Wang SB, Gao P, Zhu XT, Xi QY, Zhang YL, Jiang QY. The anorexigenic effect of serotonin is mediated by the generation of NADPH oxidase-dependent ROS. PLoS One 2013; 8:e53142. [PMID: 23326391 PMCID: PMC3541393 DOI: 10.1371/journal.pone.0053142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 11/23/2012] [Indexed: 12/27/2022] Open
Abstract
Serotonin (5-HT) is a central inhibitor of food intake in mammals. Thus far, the intracellular mechanisms for the effect of serotonin on appetite regulation remain unclear. It has been recently demonstrated that reactive oxygen species (ROS) in the hypothalamus are a crucial integrative target for the regulation of food intake. To investigate the role of ROS in the serotonin-induced anorexigenic effects, conscious mice were treated with 5-HT alone or combination with Trolox (a ROS scavenger) or Apocynin (an NADPH oxidase inhibitor) by acute intracerebroventricular injection. Both Trolox and Apocynin reversed the anorexigenic action of 5-HT and the 5-HT-induced hypothalamic ROS elevation. The mRNA and protein expression levels of pro-opiomelanocortin (POMC) were dramatically increased after ICV injection with 5-HT. The anorexigenic action of 5-HT was accompanied by markedly elevated hypothalamic MDA levels and GSH-Px activity, while the SOD activity was decreased. Moreover, 5-HT significantly increased the mRNA expression of UCP-2 but reduced the levels of UCP-3. Both Trolox and Apocynin could block the 5-HT-induced changes in UCP-2 and UCP-3 gene expression. Our study demonstrates for the first time that the anorexigenic effect of 5-HT is mediated by the generation of ROS in the hypothalamus through an NADPH oxidase-dependent pathway.
Collapse
Affiliation(s)
- Xin-Ling Fang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Gang Shu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Jian Yu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Li-Na Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jing Yang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qing-Jie Zeng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiao Cheng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhi-Qi Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Song-Bo Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ping Gao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Tong Zhu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qian-Yun Xi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yong-Liang Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qing-Yan Jiang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- * E-mail:
| |
Collapse
|
12
|
Hoeller AA, dos Santos TS, Bruxel RR, Dallazen AR, do Amaral Silva HT, André ES, Marino-Neto J. Serotonergic control of ingestive and post-ingestive behaviors in pigeons (Columba livia): The role of 5-HT1A receptor-mediated central mechanisms. Behav Brain Res 2013; 236:118-130. [DOI: 10.1016/j.bbr.2012.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/26/2012] [Accepted: 08/16/2012] [Indexed: 12/11/2022]
|
13
|
Intracerebroventricular injection of ghrelin produces hypophagia through central serotonergic mechanisms in chicken. Vet Res Commun 2012; 37:37-41. [PMID: 23065457 DOI: 10.1007/s11259-012-9544-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
It has been stated that central injection of ghrelin is acting as an anorexigenic peptide in chicken. Ghrelin activity was studied through some neuronal pathways. The present study was designed in 4 experiments to examine the hypophagic response of ghrelin through the central serotonergic system in chicken. The guide cannula was surgically implanted in the right lateral ventricle of the chickens. In experiment 1, intacerebroventricular injection with PCPA (1.5 mg) performed followed by ghrelin (0.6 nmol). In experiments 2, 3 and 4 prior to ghrelin injection, chickens received fluoxetine (10 μg), 8-OH-DPAT (15.25 nmol), SB242084 (1.5 μg) respectively via guide cannula intacerebroventricularly. Cumulative food intake was determined at 3 h post injection. The results of this study showed that flouxetine pretreatment significantly amplified ghrelin hypophagia in chicken (p < 0.05). The hypophagic effect of ghrelin was attenuated by pretreatment with PCPA and SB242084 (p < 0.05) but 8-OH-DPAT had no effect. These results suggest that hypophagic effect of ghrelin probably is mediated by serotonergic mechanisms via 5-HT(2C) receptor.
Collapse
|
14
|
Zendehdel M, Taati M, Jonaidi H, Amini E. The role of central 5-HT(2C) and NMDA receptors on LPS-induced feeding behavior in chickens. J Physiol Sci 2012; 62:413-9. [PMID: 22735975 PMCID: PMC10717554 DOI: 10.1007/s12576-012-0218-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/04/2012] [Indexed: 11/25/2022]
Abstract
In mammals, LPS regulate feeding primarily through the 5-HT(1A) and 5-HT(2c) receptors within the brain. However, the central effect of 5-HT(1A) and 5-HT(2c) on LPS-induced feeding behavior has not been studied in non-mammalian species. Also, the role of glutamatergic system in LPS-induced anorexia has never been examined in either mammalian or non-mammalian species. Therefore, in this study, we examined the role of serotonergic and glutamatergic systems on LPS-induced anorexia in chickens. Food intake was measured in chickens after centrally administered lipopolysaccharide (LPS) (20 ng) (0 h), followed by intracerebroventricular (ICV) injection of the 5-HT(1A) autoreceptor agonist (8-OH-DPAT, 61 nmol), 5-HT(2c) receptor antagonist (SB 242084, 30 nm), and NMDA receptor antagonist (DL-AP5, 5 nm) at the onset of anorexia (4 h). In the following experiments, we used DL-AP5 before 5-HT (10 μg) and SB242084 before glutamate (300 nm) for evaluation of the interaction between 5-HTergic and glutamatergic systems on food intake. The results of this study showed that SB 242084 and DL-AP5 significantly attenuated food intake reduction caused by LPS (P < 0.05) but 8-OH-DPAT had no effect. In addition, 5-HT-induced anorexia was significantly attenuated by DL-AP5 pretreatment (P < 0.05), while SB 242084 had no effect on glutamate-induced hypophagia. These results indicated that 5-HT and glutamate (via 5-HT(2c) and NMDA receptor, respectively) dependently regulate LPS-induced hypophagia in chickens.
Collapse
Affiliation(s)
- Morteza Zendehdel
- Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, 14155-6453, Tehran, Iran.
| | | | | | | |
Collapse
|
15
|
dos Santos TS, Meneghelli C, Hoeller AA, Paschoalini MA, Arckens L, Lino-de-Oliveira C, Marino-Neto J. Behavioral profile and Fos activation of serotonergic and non-serotonergic raphe neurons after central injections of serotonin in the pigeon (Columba livia). Behav Brain Res 2011; 220:173-84. [DOI: 10.1016/j.bbr.2011.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 10/24/2022]
|
16
|
Effects of serotonergic drugs on locomotor activity and vigilance states in ring doves. Behav Brain Res 2011; 216:238-46. [DOI: 10.1016/j.bbr.2010.07.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 07/23/2010] [Accepted: 07/31/2010] [Indexed: 11/24/2022]
|
17
|
Campanella LCA, Silva AAD, Gellert DS, Parreira C, Ramos MC, Paschoalini MA, Marino-Neto J. Tonic serotonergic control of ingestive behaviours in the pigeon (Columba livia): The role of the arcopallium. Behav Brain Res 2009; 205:396-405. [DOI: 10.1016/j.bbr.2009.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 07/13/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
|
18
|
Reconciling psychology with economics: Obesity, behavioral biology, and rational overeating. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s10818-009-9067-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Behavioural and electroencephalographic effects of systemic injections of 8-OH-DPAT in the pigeon (Columba livia). Behav Brain Res 2009; 201:244-56. [DOI: 10.1016/j.bbr.2009.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/11/2009] [Accepted: 02/13/2009] [Indexed: 01/16/2023]
|
20
|
Meneghelli C, Rocha NH, Mengatto V, Hoeller AA, Santos TS, Lino-de-Oliveira C, Marino-Neto J. Distribution of tryptophan hydroxylase-immunoreactive neurons in the brainstem and diencephalon of the pigeon (Columba livia). J Chem Neuroanat 2009; 38:34-46. [PMID: 19559984 DOI: 10.1016/j.jchemneu.2009.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Revised: 02/05/2009] [Accepted: 03/29/2009] [Indexed: 11/16/2022]
Abstract
The distribution of tryptophan hydroxylase (TPH)-containing perikarya and processes in the brainstem and diencephalon of the pigeon (Columba livia) were investigated using single-labeling chromogenic and double-labeling fluorescence immunohistochemical methods for TPH and 5-HT. TPH-immunoreactive (TPH-ir) perikarya were seen extending from the caudal medulla to mid-hypothalamic levels, located in brainstem regions previously described as containing 5-HT-ir somata. Brainstem TPH-ir cell clusters (the midline raphe, and the dorsolateral and ventrolateral serotonergic cell groups) and the circumventricular cerebrospinal fluid-contacting neurons in the taenia choroidea (in the caudal brainstem), recessus infundibuli and paraventricular organ (in the hypothalamus) were shown to co-express 5-HT immunoreactivity. However, heavily labeled TPH-ir cell clusters were observed in the nucleus premamillaris (PMM), in the stratum cellulare internum (SCI), in the nucleus paraventricularis magnocellularis (PVN) and in the medial border of the nucleus dorsomedialis anterior thalami (DMA). Double-labeling experiments indicated that none of these medial hypothalamic TPH-ir cells were immunoreactive to 5-HT. These cells correspond to dopamine- and melatonin-containing neurons previously found in the avian hypothalamus, and appear to be comparable to the mammalian TPH-ir hypothalamic A11-A13 catecholaminergic somata, suggesting that they may be a conserved attribute in the amniote medial hypothalamus.
Collapse
Affiliation(s)
- Cristiane Meneghelli
- Department of Physiological Sciences, CCB, Federal University of Santa Catarina, 88049-900 Florianópolis SC, Brazil
| | | | | | | | | | | | | |
Collapse
|
21
|
Saadoun A, Cabrera MC. Hypophagic and dipsogenic effect of the 5-HT1A receptor agonist 8-OH-DPAT in broiler chickens. J Anim Physiol Anim Nutr (Berl) 2009; 92:597-604. [PMID: 19012604 DOI: 10.1111/j.1439-0396.2007.00754.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The effects of the 5-HT(1A) receptor agonist 8-OH-DPAT on food and water intake in male broiler chickens were investigated. The injection of 25 or 50 microg/kg of 8-OH-DPAT 15 min before refeeding in fasted animals produced a decrease in food intake. No effect was observed in drinking. The injection of 25 or 50 microg/kg of the 8-OH-DPAT 60 min after the start of refeeding did not produce any significant modification in food intake. No effect on drinking was recorded. The agonist 8-OH-DPAT injected 15 min before water presentation in water-deprived chickens, produced an increased drinking 60 min after the presentation of water. No effect on food intake was observed. The results show that the effect on food intake of the agonist 8-OH-DPAT in fasted-refed broiler chickens was similar to those observed in mammals and layer-strain chickens. However, the agonist did not alter significantly the food intake when the broilers were fed 60 min before the injection. These results are contrary to the observed effects in mammals and in layer-strain chickens. Probably, the selection for rapid growth rate in broilers causes modifications in the feeding control pattern. The comparison between broilers and layers strain may be a useful tool to elucidate the complex mechanisms involved in food and water intake regulation in chickens.
Collapse
Affiliation(s)
- A Saadoun
- Sección Fisiología y Nutrición, Departamento Básico de Medicina, Facultad de Ciencias & Unidad Asociada, Hospital de Clínicas, Montevideo, Uruguay.
| | | |
Collapse
|
22
|
Behavioral and metabolic effects of central injections of orexins/hypocretins in pigeons (Columba livia). ACTA ACUST UNITED AC 2008; 147:9-18. [DOI: 10.1016/j.regpep.2007.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 11/08/2007] [Accepted: 12/09/2007] [Indexed: 11/22/2022]
|
23
|
Cedraz-Mercez PL, Almeida AC, Thomaz CM, Costa-e-Sousa RH, Olivares EL, Côrtes WS, Medeiros MA, Reis LC. Effect of L-5-Hydroxytryptophan on drinking behavior in Coturnix japonica (Temminck and Schlegel, 1849) (Galliformes: Aves): involvement of renin-angiotensin system. BRAZ J BIOL 2007; 67:771-6. [DOI: 10.1590/s1519-69842007000400027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 04/27/2006] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to explore the role of L-5-hydroxytryptophan (L-HTP) and its relationship with the renin-angiotensin system (RAS) on the drinking behavior in Japanese quails. Normally-hydrated quails that received injections of L-HTP (12.5; 25 and 50 mg.kg-1) by the intracoelomic route (ic) expressed an increase in water intake, which was inhibited by captopril, an angiotensin converting enzyme (ACE) inhibitor. In addition, captopril also induced such a response in birds under previous fluid deprivation. High doses of captopril (35-70 mg.kg-1, sc) in normally-hydrated quails decreased the spontaneous water intake while low doses of captopril (2-5 mg.kg-1, sc) did not prompt water intake after L-HTP administration. Losartan, an AT1 receptor antagonist in mammals, did not change the water intake levels in normally-hydrated or water-deprivated birds. Serotonin (5-HT) injections did not provoke its known dipsogenic response.
Collapse
Affiliation(s)
| | - AC Almeida
- Universidade Federal Rural do Rio de Janeiro, Brazil
| | - CM Thomaz
- Universidade Federal Rural do Rio de Janeiro, Brazil
| | | | - EL Olivares
- Universidade Federal Rural do Rio de Janeiro, Brazil
| | - WS Côrtes
- Universidade Federal Rural do Rio de Janeiro, Brazil
| | - MA Medeiros
- Universidade Federal Rural do Rio de Janeiro, Brazil
| | - LC Reis
- Universidade Federal Rural do Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Da Silva RA, Da Silva ASS, Poffo MJ, Ribas DC, Faria MS, Marino-Neto J, Paschoalini MA. Feeding behavior after metergoline or GR-46611 injections into the paraventricular nucleus of the hypothalamus in the pigeon. Behav Brain Res 2007; 179:248-57. [PMID: 17360049 DOI: 10.1016/j.bbr.2007.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/07/2007] [Accepted: 02/13/2007] [Indexed: 12/16/2022]
Abstract
The present study examined changes in spontaneous behavior of free-feeding pigeons in response to local injections of metergoline (MET, an antagonist of 5-HT(1/2) receptors; 5, 10 and 20 nmol), GR-46611 (GR, a 5-HT(1B/1D) agonist; 0.6 and 6 nmol) or vehicle into the paraventricular hypothalamic nucleus (PVN). When infused into the PVN, MET and GR promptly and reliably elicited feeding at their higher doses, without affecting drinking or non-ingestive behaviors (locomotion, exploration, preening, sleep) during the first hour after injection. Both GR- and MET-evoked ingestive responses were associated only with an increase in feeding duration, with no changes in latency to start feeding. In a second series of experiments, the effective doses of MET (20 nmol) and GR (6 nmol) were injected into other diencephalic areas. This exploratory study revealed that intense feeding responses to both MET and GR local injections are also observed in the n. medialis hypothalami posterioris and in the adjacent n. lateralis hypothalami posterioris (PMH/PLH complex, in the caudoventral hypothalamus) and in the n. magnocellularis preopticus (PPM, in the caudal preoptic region). The behavioral profiles associated with these hyperphagic responses were nucleus-specific: in the PMH/PLH, MET-induced feeding was accompanied by an increase in total feeding duration and by a reduction in the latency to start feeding, while ingestive responses evoked by MET in the PPM were associated only with an increase in feeding duration (similar to that observed in the PVN experiments). No ingestive effects were observed after intracerebroventricular (ICV, lateral ventricle) injections of MET (10, 30, 100 or 300 nmol), while ICV injections of GR (3, 15 or 30 nmol) increased feeding only at the higher dose [Da Silva RA, De Oliveira ST, Hackl LPN, Spilere CI, Faria MS, Marino-Neto J, Paschoalini MA. Ingestive behaviors and metabolic fuels after central injections of 5-HT1A and 5-HT1D/1B receptors agonists in the pigeon. Brain Res, 2004;1026:275-283]. These data indicate the presence of a tonic inhibitory influence on feeding behavior exerted by 5-HT afferents on these hypothalamic areas, and suggest that these inputs, possibly mediated by non-rodent-type 5-HT1D/1B receptors, can affect both satiety and satiation mechanisms.
Collapse
Affiliation(s)
- Renata A Da Silva
- Department of Physiological Sciences - CCB, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Da Silva AA, Campanella LCA, Ramos MC, Faria MS, Paschoalini MA, Marino-Neto J. Ingestive effects of NMDA and AMPA-kainate receptor antagonists microinjections into the lateral hypothalamus of the pigeon (Columba livia). Brain Res 2006; 1115:75-82. [PMID: 16919612 DOI: 10.1016/j.brainres.2006.07.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 07/20/2006] [Accepted: 07/24/2006] [Indexed: 11/28/2022]
Abstract
This study examined the ingestive and behavioral effects of NMDA- and AMPA/kainate glutamatergic receptor blockade in the lateral hypothalamic area (LHy) of free-feeding pigeons (Columba livia). Injections of MK-801 (NMDA receptor antagonist; 6 nmol) or CNQX (AMPA/kainate receptor antagonist; 25.8 nmol) into the LHy of free-feeding pigeons induced significant increases in food intake and in feeding duration, as well as reductions in the latency to start feeding. Duration, latency and volume of water intake, as well as duration of sleep-like behavior, alert immobility, locomotion and preening were not changed by these treatments in the LHy. These results indicate that glutamatergic inputs to cells containing NMDA and/or AMPA receptors located in the LHy could modify both the beginning of a feeding bout (or the end of a period of satiety) and its duration (satiation). Our data also suggest that these inhibitory glutamatergic influences on feeding behavior are tonically active in the LHy.
Collapse
MESH Headings
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Animals
- Appetite Regulation/drug effects
- Appetite Regulation/physiology
- Columbidae/anatomy & histology
- Columbidae/metabolism
- Dizocilpine Maleate/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Feeding Behavior/drug effects
- Feeding Behavior/physiology
- Glutamic Acid/metabolism
- Hypothalamic Area, Lateral/anatomy & histology
- Hypothalamic Area, Lateral/drug effects
- Hypothalamic Area, Lateral/metabolism
- Male
- Microinjections/methods
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Neural Pathways/anatomy & histology
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Satiety Response/drug effects
- Satiety Response/physiology
- Species Specificity
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Amanda A Da Silva
- Department of Physiological Sciences, CCB, Federal University of Santa Catarina, 88040-900 Florianópolis SC, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Cedraz-Mercez PL, Almeida AC, Costa-e-Sousa RH, Badauê-Passos Júnior D, Castilhos LR, Olivares EL, Marinho Júnior A, Medeiros MA, Reis LC. Influence of serotonergic transmission and postsynaptic 5-HT2C action on the feeding behavior of Coturnix japonica (Galliformes: Aves). BRAZ J BIOL 2005; 65:589-95. [PMID: 16532182 DOI: 10.1590/s1519-69842005000400005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the role of 5-HT2C receptors and serotonergic transmission in the feeding behavior control of quails. Administration of serotonin releaser, fenfluramine (FEN) and 5-HT2C agonists, mCPP and MK212, 1.0 and 3.3 mg/Kg induced significant inhibition of food intake in previously fasted fowls (0.71 ± 0.18 g and 0.47 ± 0.2 g; 0.49 ± 0.22 g and 0.48 ± 0.29 g; 0.82 ± 0.13 g and 0.71 ± 0.16 g, respectively). Control groups ranged from 2.89 ± 0.21 g to 2.97 ± 0.22 g, 60 min after reintroduction of food, P < 0.0001). Similar results were obtained with normally fed quails. Both serotonin releaser and 5-HT2C agonists, in a 3.3 mg/Kg dose, induced hypophagy (FEN, 0.78 ± 0.08 g; mCPP, 0.89 ± 0.07 g; MK212, 1.25 ± 0.17 g vs. controls, 2.05 ± 0.12 g, 120 min after food was presented, P < 0.0001 to P < 0.01). Previous administration of 5-HT2C antagonist, LY53857 (5.0 mg/Kg) blocked the hypophagic response induced by 5-HT2C agonists 60 min after food was reintroduced. Current data show a modulatory role of serotonin release and postsynaptic 5-HT2C receptors in the feeding behavior of quails.
Collapse
|
27
|
STIMULATION OF SATIATION RECEPTORS: A NOVEL APPROACH TO WILDLIFE MANAGEMENT. J Wildl Manage 2005. [DOI: 10.2193/0022-541x(2005)69[1475:sosran]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Häckl LPN, de Oliveira Richter G, Serralvo Faria M, Paschoalini MA, Marino-Neto J. Behavioral effects of 8-OH-DPAT injections into pontine and mesencephalic areas containing 5-HT-immunoreactive perikarya in the pigeon. Brain Res 2005; 1035:154-67. [PMID: 15722055 DOI: 10.1016/j.brainres.2004.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 10/28/2004] [Accepted: 12/09/2004] [Indexed: 10/25/2022]
Abstract
This study examined the distribution of 5-HT-immunoreactive perikarya (5-HT-IRp) and the effects of local injections of 8-OH-DPAT into 5-HT-IRp-containing pontine and mesencephalic regions on feeding and drinking behaviors in free-feeding pigeons. When infused into the midline 5-HT-IRp-containing areas, 8-OH-DPAT (6.1 nmol) reliably elicited drinking and, to a lesser extent, feeding responses during the first hour after injection. These responses were significantly higher than the ingestive indexes observed (1) after vehicle (ascorbic acid 0.1%, 200 nl) injections at the same sites and (2) after 8-OH-DPAT injections into adjacent sites devoid of 5-HT-IRp. Increases in drinking were proportionally higher than those observed in feeding and a significant negative correlation was observed between water and food after midline 8-OH-DPAT injections. Similar dipsogenic responses were observed after injections of different 8-OH-DPAT doses (0.6, 2.0, and 6.1 nmol). Pretreatment with local injections of p-MPPI (an antagonist of 5-HT1A receptors) attenuated the ingestive responses evoked by 8-OH-DPAT injections. Injections of 8-OH-DPAT into lateral 5-HT-IRp-containing sites evoked only inconsistent and weak ingestive responses. These results indicate that 5-HT1A receptor-mediated circuits located in the midline superior raphe system of the pigeon may play an important role in mechanisms controlling water intake, similar to that observed in mammals.
Collapse
Affiliation(s)
- Luciane P N Häckl
- Department of Physiological Sciences-CCB, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|
29
|
Da Silva RA, de Oliveira ST, Hackl LPN, Spilere CI, Faria MS, Marino-Neto J, Paschoalini MA. Ingestive behaviors and metabolic fuels after central injections of 5-HT1A and 5-HT1D/1B receptors agonists in the pigeon. Brain Res 2004; 1026:275-83. [PMID: 15488490 DOI: 10.1016/j.brainres.2004.08.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2004] [Indexed: 10/26/2022]
Abstract
The effects of intracerebroventricular injections of 8-OH-DPAT (a 5-HT1A agonist; 3, 15 or 30 nmol) or GR46611 (a 5-HT1B/1D agonist; 3, 15 or 30 nmol) on feeding, drinking, preening and sleep-like behaviors were investigated in free-feeding (FF) pigeons. The effects of these 5-HT agonists on blood glucose and free fatty acids levels were also examined. Injections of 8-OH-DPAT evoked intense lipolytic and dipsogenic effects, but failed to affect feeding, non-ingestive behaviors and glycemic levels. On the other hand, GR46611 evoked significant increases in food intake (at the higher dose), as well as lipolytic and hyperglycemic effects, but left drinking and other non-ingestive behaviors unchanged. These effects are opposed to those found in rodents, and may be associated with the diverse, species-specific nature and distribution of these receptors, underscoring the need to examine the functional aspects of the 5-HT1 receptor family in a more extensive range of non-rodent species.
Collapse
Affiliation(s)
- Renata A Da Silva
- Department of Physiological Sciences, CCB, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The serotonergic system in the telencephalon of the domestic chick was investigated using an antibody specific to serotonin (5-HT). Most parts of the forebrain, such as the different subdivisions of the visual Wulst and the neostriatum, displayed a rather uniform, moderate to dense innervation of serotonergic (5-HT+) fibers. However, some highly distinct area-specific differences could be observed. Primary sensory areas such as the ectostriatum, layer L2 of field L, and the rostral part of the nucleus basalis displayed very few 5-HT+ fibers. In contrast, the dorsal part of the archistriatum intermedium, the nucleus taeniae, a medial part of the lobus parolfactorius and the dorsomedial part of the hippocampus displayed an extremely dense serotonergic innervation. In general, three different types of 5-HT+ axons could be distinguished. The most common was a fine, highly varicose type, whereas beaded axons, exhibiting larger varicosities, and a thick non-varicose type, exhibiting occasional swellings, were much sparser. In summary, these findings indicate that the serotonergic innervation of the avian telencephalon is extensive but site-specific, and is organized in a highly similar way to that in mammals. The high accumulation of 5-HT+ fibers in the dorsal part of the archistriatum intermedium points to a prominent role for 5-HT in fear behavior.
Collapse
Affiliation(s)
- Martin Metzger
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil.
| | | | | |
Collapse
|
31
|
Brun SR, da Luz V, Fernandez M, Paschoalini MA, Marino-Neto J. Atypical angiotensin receptors may mediate water intake induced by central injections of angiotensin II and of serotonin in pigeons. REGULATORY PEPTIDES 2001; 98:127-35. [PMID: 11231042 DOI: 10.1016/s0167-0115(00)00241-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intracerebroventricular (i.c.v.) injection of serotonin (5-HT) in pigeons dose-dependently evokes a prompt and intense drinking behavior, which resembles that evoked by i.c.v. injections of angiotensin II (ANGII) in the same species. In the present study, we have examined the possible participation of central ANGII receptors in both ANGII- and 5-HT-evoked drinking behavior. The effects of i.c.v. injections of 5-HT (155 nmol), avian ANGII ([Asp(1),Val(5)]-ANGII, 0.1 nmol) or vehicle were studied in pigeons pretreated 20 min before with i.c.v. injections of the nonspecific ANGII receptor antagonist [Sar(1),Ile(8)]-ANGII (SAR; 1, 0.1 or 0.01 nmol), the AT(1) receptor antagonist losartan (2 or 4 nmol), the AT(2) receptor antagonist PD 123,319 (2 or 4 nmol) or vehicle (NaCl 0.15 M, 1 microl, n = 8/group). Immediately after treatment, they were given free access to water and drinking behavior was recorded during the next 60 min. At the doses presently used both 5-HT and ANGII treatments evoked comparable water intake amounts with similar behavioral profiles. While pretreatment with SAR dose-dependently reduced the water intake evoked by both 5-HT and ANGII, neither losartan nor PD 123,319 pretreatment affected the drinking induced by these treatments. The present results indicate that ANGII- and 5-HT-induced drinking in pigeons may be mediated by AT receptors possibly different from mammalian AT(1) and AT(2) receptors and suggest that activation of ANGII central circuits is a necessary step for the intense drinking induced by i.c.v. injections of 5-HT in this species.
Collapse
Affiliation(s)
- S R Brun
- Department of Physiological Sciences - CCB, Federal University of Santa Catarina, 88049-900 SC, Florianópolis, Brazil
| | | | | | | | | |
Collapse
|
32
|
Wolff MC, Leander JD. A comparison of the behavioural effects of 5-HT2A and 5-HT2C receptor agonists in the pigeon. Behav Pharmacol 2000; 11:355-64. [PMID: 11103887 DOI: 10.1097/00008877-200008000-00001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activity at the 5-HT2A receptor versus that of the 5-HT2C receptor was studied in three behavioural paradigms. In pigeons trained to discriminate 0.32 mg/kg of 1-(2,5-diemethoxy-4-iodophenyl)-2-aminopropane (DOI) (a mixed 5-HT2A/C receptor agonist) from vehicle, quipazine (0.1-1 mg/kg) and m-chlorophenylpiperazine (mCPP) (1-3 mg/kg) substituted for DOI in a dose-related manner, and this generalization was blocked by MDL100907 (0.0001-0.01 mg/kg), a selective 5-HT2A receptor antagonist. RO60-0175 (a relatively selective 5-HT2C agonist) induced partial substitution at 3 mg/kg that was antagonized by both MDL100907 and by 3 mg/kg of SB242084, a relatively selective 5-HT2C antagonist. MK212 (a mixed 5-HT2C/A agonist) induced partial substitution that was antagonized by SB242084, but not by MDL100907. On a progressive ratio 5 operant schedule (PR5) for food reinforcement, DOI, quipazine, mCPP, MK212 and R060-0175 decreased the break point; mCPP, DOI, MK212 and quipazine also induced vomiting. Although MDL100907 antagonized both the reductions of break point and vomiting, SB242084 only partially attenuated the decrease in break point observed with MK212 and DOI, and was unable to eliminate vomiting. Thus pharmacological activity at the 5-HT2A receptor can be behaviourally distinguished from pharmacological activity at the 5-HT2C receptor in the pigeon. Furthermore, the decrease in the break point of a PR5 schedule induced by 5-HT2C receptor agonists may be related to decreased appetite, whereas that induced by 5-HT2A receptor agonists may be due to unrelated factors, such as emesis.
Collapse
Affiliation(s)
- M C Wolff
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | | |
Collapse
|
33
|
Zeni LA, Seidler HB, De Carvalho NA, Freitas CG, Marino-Neto J, Paschoalini MA. Glutamatergic control of food intake in pigeons: effects of central injections of glutamate, NMDA, and AMPA receptor agonists and antagonists. Pharmacol Biochem Behav 2000; 65:67-74. [PMID: 10638638 DOI: 10.1016/s0091-3057(99)00153-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The possible involvement of glutamatergic mechanisms in the control of food intake was studied in free-feeding and in 24-h food-deprived (FD24) pigeons for 1 h after intracerebroventricular (i.c.v.) treatment with glutamate (Glu, 0, 50, 150, 300, and 600 nmol). Glu injections dose dependently induced decreases (30-65%) in food intake (FI) and feeding duration (FD), and increases in latency to start feeding (LSF) in FD24 animals, but not in free-feeding ones. None of these treatments affected noningestive behaviors (locomotion, sleep, and preening). In FD24 pigeons, i.c.v. treatments with N-methyl-D-aspartic acid (NMDA, 0.1, 1, 4, 8, or 16 nmol) or D,L-alpha-amino-3-hydroxy-isoxazole proprionic acid (AMPA, 0.1, 1, 4, or 8 nmol) decreased FI and FD, but left LSF unchanged compared to vehicle-treated FD24 controls. Kainic acid (0.1, 0.5, and 1 nmol), or [trans-(1S,3R)-ACPD-(5NH4OH)] (ACPD, 0.1, 1, 4, 8, and 16 nmol) left unchanged the ingestive profile of FD24 pigeons. Pretreatment with the NMDA receptor antagonist MK-801 (15 nmol) and the AMPA-kainate receptor antagonist CNQX (390 nmol), 20 min before an i.c.v. injection of Glu (300 nmol) induced a partial blockade of the Glu-induced decreases in FI and FD and completely inhibited the Glu-induced increase in LSF in FD24 pigeons. I.c.v. injections of MK-801 (30 nmol) and of CNQX (780 nmol) increased FI and FD and reduced LSF in free-feeding pigeons. A lower dose of MK-801 (15 nmol) increased FI and FD, but not LSF. Conversely, a lower dose of CNQX (390 nmol) reduced LSF without changing FI or FD. These findings indicate the involvement of Glu as a chemical mediator in the regulation of food intake in the pigeon, possibly acting on multiple central mechanisms in this species through NMDA- and AMPA-sensitive Glu receptors.
Collapse
Affiliation(s)
- L A Zeni
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Hagemann LF, Costa CV, Zeni LZ, Freitas CG, Marino-Neto J, Paschoalini MA. Food intake after adrenaline and noradrenaline injections into the hypothalamic paraventricular nucleus in pigeons. Physiol Behav 1998; 64:645-52. [PMID: 9817576 DOI: 10.1016/s0031-9384(98)00121-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of local injections of adrenaline (Adr, 6 nmol) or noradrenaline (Nor, 16 nmol) into the paraventricular nucleus (PVN) and into other anterior hypothalamic districts on feeding behavior were examined in satiated pigeons bearing a chronically implanted cannula. When infused into the PVN, both Adr and Nor reliably elicited feeding responses during the first hour after the injection. Feeding responses to Adr injections were significantly higher than those evoked by Nor. Other behavioral measurements (sleep, exploratory, and preening) were not affected by these treatments. Local pretreatment with phentolamine (20 nmol) but not with propranolol (20 nmol) abolished the feeding response induced by both Adr and Nor into the PVN. Lateral hypothalamic sites were also shown to respond to catecholamine injections with an increase in feeding, followed also by an increased sleep-like behavior duration. Together with other evidence, the present results indicate that adrenergically mediated circuits into the avian PVN play an important role in the mechanisms of food intake control, equivalent to that observed in mammalian species.
Collapse
Affiliation(s)
- L F Hagemann
- Department of Physiological Sciences-CCB, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | | | | | | |
Collapse
|