1
|
López-Agudelo VA, Baena A, Barrera V, Cabarcas F, Alzate JF, Beste DJV, Ríos-Estepa R, Barrera LF. Dual RNA Sequencing of Mycobacterium tuberculosis-Infected Human Splenic Macrophages Reveals a Strain-Dependent Host-Pathogen Response to Infection. Int J Mol Sci 2022; 23:ijms23031803. [PMID: 35163725 PMCID: PMC8836425 DOI: 10.3390/ijms23031803] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb), leading to pulmonary and extrapulmonary TB, whereby Mtb is disseminated to many other organs and tissues. Dissemination occurs early during the disease, and bacteria can be found first in the lymph nodes adjacent to the lungs and then later in the extrapulmonary organs, including the spleen. The early global gene expression response of human tissue macrophages and intracellular clinical isolates of Mtb has been poorly studied. Using dual RNA-seq, we have explored the mRNA profiles of two closely related clinical strains of the Latin American and Mediterranean (LAM) family of Mtb in infected human splenic macrophages (hSMs). This work shows that these pathogens mediate a distinct host response despite their genetic similarity. Using a genome-scale host–pathogen metabolic reconstruction to analyze the data further, we highlight that the infecting Mtb strain also determines the metabolic response of both the host and pathogen. Thus, macrophage ontogeny and the genetic-derived program of Mtb direct the host–pathogen interaction.
Collapse
Affiliation(s)
- Víctor A. López-Agudelo
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
- Grupo de Bioprocesos, Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
| | - Vianey Barrera
- Programa de Ingeniería Biológica, Universidad Nacional de Colombia, Sede Medellín, Medellín 050010, Colombia;
| | - Felipe Cabarcas
- Grupo Sistemas Embebidos e Inteligencia Computacional (SISTEMIC), Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica (CNSG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Dany J. V. Beste
- Department of Microbial Sciences, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7XH, UK;
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Luis F. Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
- Correspondence:
| |
Collapse
|
2
|
Oh Y, Song SY, Kim HJ, Han G, Hwang J, Kang HY, Oh JI. The Partner Switching System of the SigF Sigma Factor in Mycobacterium smegmatis and Induction of the SigF Regulon Under Respiration-Inhibitory Conditions. Front Microbiol 2020; 11:588487. [PMID: 33304334 PMCID: PMC7693655 DOI: 10.3389/fmicb.2020.588487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
The partner switching system (PSS) of the SigF regulatory pathway in Mycobacterium smegmatis has been previously demonstrated to include the anti-sigma factor RsbW (MSMEG_1803) and two anti-sigma factor antagonists RsfA and RsfB. In this study, we further characterized two additional RsbW homologs and revealed the distinct roles of three RsbW homologs [RsbW1 (MSMEG_1803), RsbW2 (MSMEG_6129), and RsbW3 (MSMEG_1787)] in the SigF PSS. RsbW1 and RsbW2 serve as the anti-sigma factor of SigF and the protein kinase phosphorylating RsfB, respectively, while RsbW3 functions as an anti-SigF antagonist through its protein interaction with RsbW1. Using relevant mutant strains, RsfB was demonstrated to be the major anti-SigF antagonist in M. smegmatis. The phosphorylation state of Ser-63 was shown to determine the functionality of RsfB as an anti-SigF antagonist. RsbW2 was demonstrated to be the only protein kinase that phosphorylates RsfB in M. smegmatis. Phosphorylation of Ser-63 inactivates RsfB to render it unable to interact with RsbW1. Our comparative RNA sequencing analysis of the wild-type strain of M. smegmatis and its isogenic Δaa3 mutant strain lacking the aa3 cytochrome c oxidase of the respiratory electron transport chain revealed that expression of the SigF regulon is strongly induced under respiration-inhibitory conditions in an RsfB-dependent way.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Su-Yeon Song
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hye-Jun Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jihwan Hwang
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Ho-Young Kang
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| |
Collapse
|
3
|
Yang JD, Mott D, Sutiwisesak R, Lu YJ, Raso F, Stowell B, Babunovic GH, Lee J, Carpenter SM, Way SS, Fortune SM, Behar SM. Mycobacterium tuberculosis-specific CD4+ and CD8+ T cells differ in their capacity to recognize infected macrophages. PLoS Pathog 2018; 14:e1007060. [PMID: 29782535 PMCID: PMC6013218 DOI: 10.1371/journal.ppat.1007060] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/01/2018] [Accepted: 04/27/2018] [Indexed: 11/19/2022] Open
Abstract
Containment of Mycobacterium tuberculosis (Mtb) infection requires T cell recognition of infected macrophages. Mtb has evolved to tolerate, evade, and subvert host immunity. Despite a vigorous and sustained CD8+ T cell response during Mtb infection, CD8+ T cells make limited contribution to protection. Here, we ask whether the ability of Mtb-specific T cells to restrict Mtb growth is related to their capacity to recognize Mtb-infected macrophages. We derived CD8+ T cell lines that recognized the Mtb immunodominant epitope TB10.44-11 and compared them to CD4+ T cell lines that recognized Ag85b240-254 or ESAT63-17. While the CD4+ T cells recognized Mtb-infected macrophages and inhibited Mtb growth in vitro, the TB10.4-specific CD8+ T cells neither recognized Mtb-infected macrophages nor restricted Mtb growth. TB10.4-specific CD8+ T cells recognized macrophages infected with Listeria monocytogenes expressing TB10.4. However, over-expression of TB10.4 in Mtb did not confer recognition by TB10.4-specific CD8+ T cells. CD8+ T cells recognized macrophages pulsed with irradiated Mtb, indicating that macrophages can efficiently cross-present the TB10.4 protein and raising the possibility that viable bacilli might suppress cross-presentation. Importantly, polyclonal CD8+ T cells specific for Mtb antigens other than TB10.4 recognized Mtb-infected macrophages in a MHC-restricted manner. As TB10.4 elicits a dominant CD8+ T cell response that poorly recognizes Mtb-infected macrophages, we propose that TB10.4 acts as a decoy antigen. Moreover, it appears that this response overshadows subdominant CD8+ T cell response that can recognize Mtb-infected macrophages. The ability of Mtb to subvert the CD8+ T cell response may explain why CD8+ T cells make a disproportionately small contribution to host defense compared to CD4+ T cells. The selection of Mtb antigens for vaccines has focused on antigens that generate immunodominant responses. We propose that establishing whether vaccine-elicited, Mtb-specific T cells recognize Mtb-infected macrophages could be a useful criterion for preclinical vaccine development.
Collapse
Affiliation(s)
- Jason D. Yang
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Daniel Mott
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rujapak Sutiwisesak
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Yu-Jung Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Fiona Raso
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Britni Stowell
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Greg Hunter Babunovic
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jinhee Lee
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Steve M. Carpenter
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sing Sing Way
- Division of Infectious Disease, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
4
|
Zhang H, Dou X, Li Z, Zhang Y, Zhang J, Guo F, Wang Y, Wang Z, Li T, Gu X, Chen C. Expression and regulation of the ery operon of Brucella melitensis in human trophoblast cells. Exp Ther Med 2016; 12:2723-2728. [PMID: 27698777 DOI: 10.3892/etm.2016.3688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/18/2016] [Indexed: 11/05/2022] Open
Abstract
Brucellosis is primarily a disease of domestic animals in which the bacteria localizes to fetal tissues such as embryonic trophoblast cells and fluids containing erythritol, which stimulates Brucella spp. growth. The utilization of erythritol is a characteristic of the genus Brucella. The ery operon contains four genes (eryA, eryB, eryC and eryD) for the utilization of erythritol, and plays a major role in the survival and multiplication of Brucella spp. The objective of the present study was to conduct a preliminary characterization of differential genes expression of the ery operon at several time points after Brucella infected embryonic trophoblast cells (HPT-8 cells). The result showed that the ery operon expression was higher in HPT-8 cells compared with the medium. The relative expression of eryA, eryB and eryC peaked at 2 h post-infection in HPT-8 cells, and eryD expression peaked at 3 h post-infection. The expression of eryA, eryB and eryC may be inhibited by increased eryD expression. However, the expression of the ery operon was stable in the presence of erythritol in cells. 2308Δery and 027Δery mutants of the ery operon were successfully constructed by homologous recombination, which were attenuated in RAW 264.7 murine macrophages. The characterization of the ery operon genes and their expression profiles in response to Brucella infection further contributes to our understanding of the molecular mechanisms of infection and the pathogenesis of brucellosis.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China; State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Shihezi University, Shihezi, Xinjiang 832000, P.R. China; Co-Innovation Center for Zoonotic Infectious Diseases in The Western Region, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Xiaoxia Dou
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Zhiqiang Li
- School of Life Sciences, Shangqiu Normal University, Shangqiu, Henan 476000, P.R. China
| | - Yu Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Jing Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Fei Guo
- Co-Innovation Center for Zoonotic Infectious Diseases in The Western Region, Shihezi University, Shihezi, Xinjiang 832000, P.R. China; School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Yuanzhi Wang
- Co-Innovation Center for Zoonotic Infectious Diseases in The Western Region, Shihezi University, Shihezi, Xinjiang 832000, P.R. China; School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Zhen Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Tiansen Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Xinli Gu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China; Co-Innovation Center for Zoonotic Infectious Diseases in The Western Region, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| |
Collapse
|
5
|
Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells. J Immunol Res 2015; 2015:747543. [PMID: 26258152 PMCID: PMC4516846 DOI: 10.1155/2015/747543] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/24/2015] [Indexed: 01/16/2023] Open
Abstract
Tuberculosis (TB) remains a serious global public health problem that results in up to 2 million deaths each year. TB is caused by the human pathogen, Mycobacterium tuberculosis (Mtb), which infects primarily innate immune cells patrolling the lung. Innate immune cells serve as barometers of the immune response against Mtb infection by determining the inflammatory milieu in the lungs and promoting the generation of adaptive immune responses. However, innate immune cells are also potential niches for bacterial replication and are readily manipulated by Mtb. Our understanding of the early interactions between Mtb and innate immune cells is limited, especially in the context of human infection. This review will focus on Mtb interactions with human macrophages, dendritic cells, neutrophils, and NK cells and detail evidence that Mtb modulation of these cells negatively impacts Mtb-specific immune responses. Furthermore, this review will emphasize important innate immune pathways uncovered through human immunogenetic studies. Insights into the human innate immune response to Mtb infection are necessary for providing a rational basis for the augmentation of immune responses against Mtb infection, especially with respect to the generation of effective anti-TB immunotherapeutics and vaccines.
Collapse
|
6
|
Prokaryotic expression and functional analysis of the Mb1514 gene in Mycobacterium bovis. Mol Cell Biochem 2013; 385:43-52. [PMID: 24141863 DOI: 10.1007/s11010-013-1813-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 09/13/2013] [Indexed: 12/11/2022]
Abstract
The ability of mycobacteria to grow and invade target tissues is the key component in the process of Mycobacterium bovis infection. Therefore, analysis of the proteins responsible for cell invasion will assist clinicians in combating bovine tuberculosis. The Mb1514 gene of M. bovis encodes a hypothetical invasion protein (designated here as MbINV protein), whose function has not yet been directly identified. In this study, the Mb1514 gene from M. bovis was cloned, and expressed in E. coli. The recombinant MbINV protein (a single band of approximately 28 kDa) was purified for biological analysis. Our data demonstrated that recombinant MbINV protein significantly inhibited the viability of RAW264.7 macrophages in a dose-dependent manner (P < 0.05), and induced cell necrosis, indicating that the protein is toxic. MbINV protein infection significantly enhanced the mRNA expression levels of TNF-α, IL-1β, and NOS2 (P < 0.01), suggesting that MbINV protein may be one of the virulence factors which directly interact with macrophages and modulate the host immune response to M. bovis. An invasion inhibition assay showed that MbINV-inhibited M. bovis invasion of RAW264.7 cells in a concentration-dependant manner, demonstrating it is an invasion protein.
Collapse
|
7
|
Giovannini D, Cappelli G, Jiang L, Castilletti C, Colone A, Serafino A, Wannenes F, Giacò L, Quintiliani G, Fraziano M, Nepravishta R, Colizzi V, Mariani F. A new Mycobacterium tuberculosis smooth colony reduces growth inside human macrophages and represses PDIM Operon gene expression. Does an heterogeneous population exist in intracellular mycobacteria? Microb Pathog 2012; 53:135-46. [DOI: 10.1016/j.micpath.2012.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/18/2012] [Accepted: 06/26/2012] [Indexed: 11/30/2022]
|
8
|
Macdonald SHF, Woodward E, Coleman MM, Dorris ER, Nadarajan P, Chew WM, McLaughlin AM, Keane J. Networked T cell death following macrophage infection by Mycobacterium tuberculosis. PLoS One 2012; 7:e38488. [PMID: 22675566 PMCID: PMC3366923 DOI: 10.1371/journal.pone.0038488] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 05/06/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Depletion of T cells following infection by Mycobacterium tuberculosis (Mtb) impairs disease resolution, and interferes with clinical test performance that relies on cell-mediated immunity. A number of mechanisms contribute to this T cell suppression, such as activation-induced death and trafficking of T cells out of the peripheral circulation and into the diseased lungs. The extent to which Mtb infection of human macrophages affects T cell viability however, is not well characterised. METHODOLOGY/PRINCIPAL FINDINGS We found that lymphopenia (<1.5 × 10(9) cells/l) was prevalent among culture-positive tuberculosis patients, and lymphocyte counts significantly improved post-therapy. We previously reported that Mtb-infected human macrophages resulted in death of infected and uninfected bystander macrophages. In the current study, we sought to examine the influence of infected human alveolar macrophages on T cells. We infected primary human alveolar macrophages (the primary host cell for Mtb) or PMA-differentiated THP-1 cells with Mtb H37Ra, then prepared cell-free supernatants. The supernatants of Mtb-infected macrophages caused dose-dependent, caspase-dependent, T cell apoptosis. This toxic effect of infected macrophage secreted factors did not require TNF-α or Fas. The supernatant cytotoxic signal(s) were heat-labile and greater than 50 kDa in molecular size. Although ESAT-6 was toxic to T cells, other Mtb-secreted factors tested did not influence T cell viability; nor did macrophage-free Mtb bacilli or broth from Mtb cultures. Furthermore, supernatants from Mycobacterium bovis Bacille de Calmette et Guerin (BCG)- infected macrophages also elicited T cell death suggesting that ESAT-6 itself, although cytotoxic, was not the principal mediator of T cell death in our system. CONCLUSIONS Mtb-Infected macrophages secrete heat-labile factors that are toxic to T cells, and may contribute to the immunosuppression seen in tuberculosis as well as interfere with microbial eradication in the granuloma.
Collapse
Affiliation(s)
- Stephen H-F Macdonald
- Department of Clinical Medicine, Trinity Institute of Molecular Medicine, St James's Hospital, Dublin, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Tyagi AK, Nangpal P, Satchidanandam V. Development of vaccines against tuberculosis. Tuberculosis (Edinb) 2011; 91:469-78. [DOI: 10.1016/j.tube.2011.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/14/2011] [Accepted: 01/16/2011] [Indexed: 12/20/2022]
|
10
|
Ward SK, Abomoelak B, Marcus SA, Talaat AM. Transcriptional profiling of mycobacterium tuberculosis during infection: lessons learned. Front Microbiol 2010; 1:121. [PMID: 21738523 PMCID: PMC3125582 DOI: 10.3389/fmicb.2010.00121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 10/12/2010] [Indexed: 12/12/2022] Open
Abstract
Infection with Mycobacterium tuberculosis, the causative agent of tuberculosis, is considered one of the biggest infectious disease killers worldwide. A significant amount of attention has been directed toward revealing genes involved in the virulence and pathogenesis of this air-born pathogen. With the advances in technologies for transcriptional profiling, several groups, including ours, took advantage of DNA microarrays to identify transcriptional units differentially regulated by M. tuberculosis within a host. The main idea behind this approach is that pathogens tend to regulate their gene expression levels depending on the host microenvironment, and preferentially express those needed for survival. Identifying this class of genes will improve our understanding of pathogenesis. In our case, we identified an in vivo expressed genomic island that was preferentially active in murine lungs during early infection, as well as groups of genes active during chronic tuberculosis. Other studies have identified additional gene groups that are active during macrophage infection and even in human lungs. Despite all of these findings, one of the lingering questions remaining was whether in vivo expressed transcripts are relevant to the virulence, pathogenesis, and persistence of the organism. The work of our group and others addressed this question by examining the contribution of in vivo expressed genes using a strategy based on gene deletions followed by animal infections. Overall, the analysis of most of the in vivo expressed genes supported a role of these genes in M. tuberculosis pathogenesis. Further, these data suggest that in vivo transcriptional profiling is a valid approach to identify genes required for bacterial pathogenesis.
Collapse
Affiliation(s)
- Sarah K Ward
- Department of Pathobiological Sciences, University of Wisconsin-Madison Madison, WI, USA
| | | | | | | |
Collapse
|
11
|
Single nucleotide polymorphisms in cell wall biosynthesis-associated genes and phylogeny of Mycobacterium tuberculosis lineages. INFECTION GENETICS AND EVOLUTION 2010; 10:459-66. [DOI: 10.1016/j.meegid.2010.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 11/20/2022]
|
12
|
Speranza V, Colone A, Cicconi R, Palmieri G, Giovannini D, Grassi M, Mattei M, Sali M, Delogu G, Andreola F, Colizzi V, Mariani F. Recombinant BCG-Rv1767 amount determines, in vivo, antigen-specific T cells location, frequency, and protective outcome. Microb Pathog 2010; 48:150-9. [PMID: 20219669 DOI: 10.1016/j.micpath.2010.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 02/18/2010] [Indexed: 02/04/2023]
Abstract
One possibility to improve the efficacy of BCG vaccine against TB is to create a recombinant BCG (r-BCG), increasing the expression of mycobacterial antigens, to ameliorate the response to BCG. Here we describe a new r-BCG expressing the gene Rv1767, induced by Mycobacterium tuberculosis during its survival in human macrophages. The r-BCG elicited a specific T cells response in Balb/c mice higher than wt BCG. The r-BCG amount used to immunise mice determined diverse Th1/Th2 equilibriums, which was not the same in spleen and Lymph Nodes. Differences in cytokines production were found for IL-10, IL-4, TNF-alpha, and Arginase-1, which, in some conditions, resulted higher in r-BCG as compared to wt BCG-immunised mice. The immunisation with r-BCG-Rv1767 induced a lesser protective activity than wt BCG in a mouse model of TB. This reduction might likely be explained by the specific T cells phenotype and setting existing before MTB challenge, induced by either the single or the triple dose of r-BCG. The use of this model may help to highlight the capacity of different M. tuberculosis antigens to induce a protective immune response, actually not necessarily embodied by an increased frequency of Antigen-specific effector memory T cells.
Collapse
Affiliation(s)
- Viviana Speranza
- Institute of Neurobiology and Molecular Medicine, National Research Council, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Alonso-Hearn M, Eckstein TM, Sommer S, Bermudez LE. A Mycobacterium avium subsp. paratuberculosis LuxR regulates cell envelope and virulence. Innate Immun 2009; 16:235-47. [PMID: 19710090 DOI: 10.1177/1753425909339811] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis adapts to the environment via the regulation of genes affecting its envelope's composition. Bacteria grown in milk (in vivo conditions) presented differences in the cell wall-associated lipids and in the expression of genes involved in lipid metabolism (FadE8, FadE6 and MAP1420) and host cell invasion (MAP1203, LprL). A different lipid profile was also observed in the envelope of intracellular bacteria after 1 h of infection. Intracellular bacteria showed up-regulation of a LuxR regulator which controls the envelope's composition by up-regulation of FadE8, MAP1420, MAP1203 and LprL and by down-regulation of pks12, mmpL2 and MAP2594. A LuxR-overexpressing strain with a lipid-deficient envelope phenotype, infected epithelial cells more efficiently than the wild-type bacteria; however, it was not more resistant than the wild-type strain to the action of bactericidal proteins. Here we show that LuxR regulates virulence determinants and is involved in mycobacteria adaptation to the host.
Collapse
Affiliation(s)
- Marta Alonso-Hearn
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | |
Collapse
|
14
|
Design of immunogenic peptides from Mycobacterium tuberculosis genes expressed during macrophage infection. Tuberculosis (Edinb) 2009; 89:210-7. [DOI: 10.1016/j.tube.2009.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 11/21/2022]
|
15
|
Jain R, Dey B, Dhar N, Rao V, Singh R, Gupta UD, Katoch VM, Ramanathan VD, Tyagi AK. Enhanced and enduring protection against tuberculosis by recombinant BCG-Ag85C and its association with modulation of cytokine profile in lung. PLoS One 2008; 3:e3869. [PMID: 19052643 PMCID: PMC2586085 DOI: 10.1371/journal.pone.0003869] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 11/10/2008] [Indexed: 11/24/2022] Open
Abstract
Background The variable efficacy (0–80%) of Mycobacterium bovis Bacille Calmette Guréin (BCG) vaccine against adult tuberculosis (TB) necessitates development of alternative vaccine candidates. Development of recombinant BCG (rBCG) over-expressing promising immunodominant antigens of M. tuberculosis represents one of the potential approaches for the development of vaccines against TB. Methods/Principal Findings A recombinant strain of BCG - rBCG85C, over expressing the antigen 85C, a secretory immuno-dominant protein of M. tuberculosis, was evaluated for its protective efficacy in guinea pigs against M. tuberculosis challenge by aerosol route. Immunization with rBCG85C resulted in a substantial reduction in the lung (1.87 log10, p<0.01) and spleen (2.36 log10, p<0.001) bacillary load with a commensurate reduction in pathological damage, when compared to the animals immunized with the parent BCG strain at 10 weeks post-infection. rBCG85C continued to provide superior protection over BCG even when post-challenge period was prolonged to 16 weeks. The cytokine profile of pulmonary granulomas revealed that the superior protection imparted by rBCG85C was associated with the reduced levels of pro-inflammatory cytokines - interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, moderate levels of anti-inflammatory cytokine - transforming growth factor (TGF)-β along with up-regulation of inducible nitric oxide synthase (iNOS). In addition, the rBCG85C vaccine induced modulation of the cytokine levels was found to be associated with reduced fibrosis and antigen load accompanied by the restoration of normal lung architecture. Conclusions/Significance These results clearly indicate the superiority of rBCG85C over BCG as a promising prophylactic vaccine against TB. The enduring protection observed in this study gives enough reason to postulate that if an open-ended study is carried out with low dose of infection, rBCG85C vaccine in all likelihood would show enhanced survival of guinea pigs.
Collapse
Affiliation(s)
- Ruchi Jain
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Bappaditya Dey
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Neeraj Dhar
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- Laboratory of Bacteriology, Global Health Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Vivek Rao
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- Division of mycobacterial research, The National Institute for Medical Research, The Ridgeweay Mill Hill, London, United Kingdom
| | - Ramandeep Singh
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Umesh D. Gupta
- National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Tajganj, Agra, India
| | - V. M. Katoch
- National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Tajganj, Agra, India
| | - V. D. Ramanathan
- Department of Clinical Pathology, Tuberculosis Research Center, Chetpet, Chennai, India
| | - Anil K. Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
16
|
Gebhard S, Hümpel A, McLellan AD, Cook GM. The alternative sigma factor SigF of Mycobacterium smegmatis is required for survival of heat shock, acidic pH and oxidative stress. MICROBIOLOGY-SGM 2008; 154:2786-2795. [PMID: 18757812 DOI: 10.1099/mic.0.2008/018044-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The alternative sigma factor SigF of Mycobacterium tuberculosis has been characterized in detail as a general-stress, stationary-phase sigma factor involved in the virulence of the bacterium. While a homologous gene has been annotated in the genome of the fast-growing Mycobacterium smegmatis, little experimental evidence is available on the function of this gene. Here, we demonstrate that SigF of M. smegmatis is required for resistance to hydrogen peroxide, heat shock and acidic pH, but not for survival in human neutrophils. No difference in sensitivity to isoniazid was observed between the wild-type strain and the DeltasigF mutant, suggesting that SigF-mediated resistance to hydrogen peroxide was via a pathway independent of KatG or AhpC. RT-PCR and 5'-RACE (rapid amplification of cDNA ends) analyses showed that sigF of M. smegmatis was co-transcribed with rsbW (thought to encode an anti-sigma factor for SigF) and MSMEG_1802 (unknown function) and was expressed from two promoters, one upstream of MSMEG_1802 and the second upstream of rsbW. Analysis of transcriptional lacZ fusion constructs in the sigF-deletion background revealed that the MSMEG_1802 promoter was dependent on SigF for expression. Moreover, MSMEG_1802-lacZ was induced twofold upon entry into stationary phase, while exposure of exponentially growing cultures to various stress conditions (e.g. heat, cold, ethanol, hydrogen peroxide or different pH values) did not lead to induction of MSMEG_1802-lacZ. Expression of rsbW-lacZ was independent of SigF and remained constant throughout the growth cycle and under various stress conditions unless the bacteria were challenged with d-cycloserine.
Collapse
Affiliation(s)
- Susanne Gebhard
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Anja Hümpel
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Alexander D McLellan
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
17
|
Matsunaga I, Naka T, Talekar RS, McConnell MJ, Katoh K, Nakao H, Otsuka A, Behar SM, Yano I, Moody DB, Sugita M. Mycolyltransferase-mediated glycolipid exchange in Mycobacteria. J Biol Chem 2008; 283:28835-41. [PMID: 18703502 DOI: 10.1074/jbc.m805776200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trehalose dimycolate (TDM), also known as cord factor, is a major surface glycolipid of the cell wall of mycobacteria. Because of its potent biological functions in models of infection, adjuvancy, and immunotherapy, it is important to determine how its biosynthesis is regulated. Here we show that glucose, a host-derived product that is not readily available in the environment, causes Mycobacterium avium to down-regulate TDM expression while up-regulating production of another major glycolipid with immunological roles in T cell activation, glucose monomycolate (GMM). In vitro, the mechanism of reciprocal regulation of TDM and GMM involves competitive substrate selection by antigen 85A. The switch from TDM to GMM biosynthesis occurs near the physiological concentration of glucose present in mammalian hosts. We further demonstrate that GMM is produced in vivo by mycobacteria growing in mouse lung. These results establish an enzymatic pathway for GMM production. More generally, these observations provide a specific enzymatic mechanism for dynamic alterations of cell wall glycolipid remodeling in response to the transition from noncellular to cellular growth environments, including factors that are monitored by the host immune system.
Collapse
Affiliation(s)
- Isamu Matsunaga
- Laboratory of Cell Regulation, Institute for Virus Research, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Volpe E, Cappelli G, Grassi M, Martino A, Serafino A, Colizzi V, Sanarico N, Mariani F. Gene expression profiling of human macrophages at late time of infection with Mycobacterium tuberculosis. Immunology 2006; 118:449-60. [PMID: 16895554 PMCID: PMC1782319 DOI: 10.1111/j.1365-2567.2006.02378.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 02/24/2006] [Accepted: 03/08/2006] [Indexed: 12/15/2022] Open
Abstract
Macrophages play an essential role in the immune response to Mycobacterium tuberculosis (Mtb). Previous transcriptome surveys, by means of micro- and macroarrays, investigated the cellular gene expression profile during the early phases of infection (within 48 hr). However, Mtb remains within the host macrophages for a longer period, continuing to influence the macrophage gene expression and, consequently, the environment in which it persists. Therefore, we studied the transcription patterns of human macrophages for up to 7 days after infection with Mtb. We used a macroarray approach to study 858 human genes involved in immunoregulation, and we confirmed by quantitative real-time reverse transcriptase polymerase chain reaction (q-rt RT-PCR) and by enzyme-linked immunosorbent assay the most relevant modulations. We constantly observed the up-regulation in infected macrophages versus uninfected, of the following genes: interleukin-1 beta and interleukin-8, macrophage inflammatory protein-1 alpha, growth-related oncogene-beta, epithelial cell-derived neutrophil-activating peptide-78, macrophage-derived chemokine, and matrix metalloproteinase-7; whereas macrophage colony-stimulating factor-receptor and CD4 were down-regulated in infected macrophages. Mtb is able to withstand this intense cytokine microenvironment and to survive inside the human macrophage. Therefore we simultaneously investigated by q-rt RT-PCR the modulation of five mycobacterial genes: the alternative sigma factors sigA, sigE and sigG, the alpha-crystallin (acr) and the superoxide dismutase C (sodC) involved in survival mechanisms. The identified host and mycobacterial genes that were expressed until 7 days after infection, could have a role in the interplay between the host immune defences and the bacterial escape mechanisms.
Collapse
Affiliation(s)
- Elisabetta Volpe
- Department of Biology, University of Rome ‘Tor Vergata’Rome, Italy
- Institute of Neurobiology and Molecular Medicine, National Research CouncilRome, Italy
| | - Giulia Cappelli
- Institute of Neurobiology and Molecular Medicine, National Research CouncilRome, Italy
| | - Manuela Grassi
- Institute of Neurobiology and Molecular Medicine, National Research CouncilRome, Italy
| | - Angelo Martino
- Unit of Cellular Immunology, National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCSRome, Italy
| | - Annalucia Serafino
- Institute of Neurobiology and Molecular Medicine, National Research CouncilRome, Italy
| | - Vittorio Colizzi
- Department of Biology, University of Rome ‘Tor Vergata’Rome, Italy
| | - Nunzia Sanarico
- Department of Biology, University of Rome ‘Tor Vergata’Rome, Italy
- Institute of Neurobiology and Molecular Medicine, National Research CouncilRome, Italy
| | - Francesca Mariani
- Institute of Neurobiology and Molecular Medicine, National Research CouncilRome, Italy
| |
Collapse
|
19
|
Gao LY, Pak M, Kish R, Kajihara K, Brown EJ. A mycobacterial operon essential for virulence in vivo and invasion and intracellular persistence in macrophages. Infect Immun 2006; 74:1757-67. [PMID: 16495549 PMCID: PMC1418628 DOI: 10.1128/iai.74.3.1757-1767.2006] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to invade and grow in macrophages is necessary for Mycobacterium tuberculosis to cause disease. We have found a Mycobacterium marinum locus of two genes that is required for both invasion and intracellular survival in macrophages. The genes were designated iipA (mycobacterial invasion and intracellular persistence) and iipB. The iip mutant, which was created by insertion of a kanamycin resistance gene cassette at the 5' region of iipA, was completely avirulent to zebra fish. Expression of the M. tuberculosis orthologue of iipA, Rv1477, fully complemented the iip mutant for infectivity in vivo, as well as for invasion and intracellular persistence in macrophages. In contrast, the iipB orthologue, Rv1478, only partially complemented the iip mutant in vivo and restored invasion but not intracellular growth in macrophages. While IipA and IipB differ at their N termini, they are highly similar throughout their C-terminal NLPC_p60 domains. The p60 domain of Rv1478 is fully functional to replace that of Rv1477, suggesting that the N-terminal sequence of Rv1477 is required for full virulence in vivo and in macrophages. Further mutations demonstrated that both Arg-Gly-Asp (RGD) and Asp-Cys-Ser-Gly (DCSG) sequences in the p60 domain are required for function. The iip mutant exhibited increased susceptibility to antibiotics and lysozyme and failed to fully separate daughter cells in liquid culture, suggesting a role for iip genes in cell wall structure and function. Altogether, these studies demonstrate an essential role for a p60-containing protein, IipA, in the pathogenesis of M. marinum infection.
Collapse
Affiliation(s)
- Lian-Yong Gao
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, 600 16th St., Campus Box 2140, San Francisco, CA 94143-2140, USA
| | | | | | | | | |
Collapse
|
20
|
Cappelli G, Volpe E, Grassi M, Liseo B, Colizzi V, Mariani F. Profiling of Mycobacterium tuberculosis gene expression during human macrophage infection: Upregulation of the alternative sigma factor G, a group of transcriptional regulators, and proteins with unknown function. Res Microbiol 2006; 157:445-55. [PMID: 16483748 DOI: 10.1016/j.resmic.2005.10.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 08/18/2005] [Accepted: 10/09/2005] [Indexed: 11/22/2022]
Abstract
Mycobacterium tuberculosis is one of the most prolific pathogens worldwide, and its virulence resides in its capacity to survive in human macrophages. In the present study, we analyzed the gene expression profile of M. tuberculosis H37Rv in macrophages and synthetic medium at the whole genome level. Out of 3875 spots tested, 970 genes passed the statistical significance filter (t scores +/-2.5). A total of 22% of those assayed were found to be active genes (up- or downregulated), representing 5.5% of the whole MTB genome. Interestingly, 32.5% of the genes induced in our macrophage experiments are still classified as hypothetical proteins; 19.5% take part in the cell wall and processes (half of which are membrane proteins); 16% are involved in regulation and information pathways; and the PE family accounts for 3.6% of total induced genes. It is important to note that in the course of MTB replication in macrophages, we observed the upregulation of alternative sigma factor sigG and 13 MTB transcriptional regulators. The data for a selected group of upregulated genes were confirmed by real-time RT-PCR. The global MTB transcriptome described in this study suggests an intracellular MTB actively sensing its environment; it repairs and synthesizes its cell wall and DNA, so as to either repair oxidative and nitrosative damage and/or to augment its copy number and evade host cell killing. As far as we know, this is the first study describing MTB expression profiles using whole genome macroarrays during primary human macrophage infection.
Collapse
Affiliation(s)
- Giulia Cappelli
- Institute of Neurobiology and Molecular Medicine, National Research Council, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Lee KS, Park JK, Lim JH, Kim SY, Shin AR, Yang CS, Oh JH, Kwon YM, Song CH, Jo EK, Kim HJ. Identification of Proteins Induced at Hypoxic and Low pH Conditions inMycobacterium tuberculosisH37Rv. ACTA ACUST UNITED AC 2006. [DOI: 10.4167/jbv.2006.36.2.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kil-Soo Lee
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Jeong-Kyu Park
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Jae-Hyun Lim
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Su-Young Kim
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - A-Rum Shin
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Chul-Su Yang
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Jae-Hee Oh
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Yu-Mi Kwon
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| | - Hwa-Jung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Jung-ku, Daejeon 301-747, Korea
| |
Collapse
|
22
|
Amoudy HA, Al-Turab MB, Mustafa AS. Identification of transcriptionally active open reading frames within the RD1 genomic segment of Mycobacterium tuberculosis. Med Princ Pract 2006; 15:137-44. [PMID: 16484842 DOI: 10.1159/000090919] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Accepted: 09/11/2005] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To identify transcriptionally active open reading frames (ORFs), predicted by bioinformatics, within RD1 genomic segment of Mycobacterium tuberculosis using reverse transcription-polymerase chain reaction (RT-PCR). MATERIALS AND METHODS M. tuberculosis H37Rv was grown in Middlebrook 7H9 medium for 8 weeks and total RNA was isolated using standard procedures. The cDNA was synthesized using first-strand cDNA synthesis kit and general primers provided in the kit [pd (N)6, and/or Not I-d(T)18] as well as forward primers specific for each predicted RD1 ORF. Specific forward and reverse primers in PCR were used to amplify ORF-specific cDNA. The amplified products were identified on the basis of size using agarose gel electrophoresis, and their identity was confirmed by DNA sequencing. RESULTS RT-PCR demonstrated expression of 13 of the 14 bioinformatics-predicted ORFs within RD1 genomic segment of M. tuberculosis. However, cDNA synthesis and PCR amplifications of specific products varied with respect to primer requirement and reaction conditions, respectively. All ORFs of <1.5 kb were amplified in standard RT-PCR, whereas several large-size ORFs (>1.5 kb) required internal primers for amplification in semi-nested RT-PCR. The sequencing of RT-PCR-amplified products of ORFs confirmed their identity. CONCLUSION Bioinformatics analysis of DNA can accurately predict ORFs within M. tuberculosis-specific genomic regions, and RT-PCR is a suitable technique to confirm their expression in bacteria.
Collapse
Affiliation(s)
- Hanady A Amoudy
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait.
| | | | | |
Collapse
|
23
|
Forero M, Puentes A, Cortés J, Castillo F, Vera R, Rodríguez LE, Valbuena J, Ocampo M, Curtidor H, Rosas J, García J, Barrera G, Alfonso R, Patarroyo MA, Patarroyo ME. Identifying putative Mycobacterium tuberculosis Rv2004c protein sequences that bind specifically to U937 macrophages and A549 epithelial cells. Protein Sci 2005; 14:2767-80. [PMID: 16199660 PMCID: PMC2253216 DOI: 10.1110/ps.051592505] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Virulence and immunity are still poorly understood in Mycobacterium tuberculosis. The H37Rv M. tuberculosis laboratory strain genome has been completely sequenced, and this along with proteomic technology represent powerful tools contributing toward studying the biology of target cell interaction with a facultative bacillus and designing new strategies for controlling tuberculosis. Rv2004c is a putative M. tuberculosis protein that could have specific mycobacterial functions. This study has revealed that the encoding gene is present in all mycobacterium species belonging to the M. tuberculosis complex. Rv2004c gene transcription was observed in all of this complex's strains except Mycobacterium bovis and Mycobacterium microti. Rv2004c protein expression was confirmed by using antibodies able to recognize a 54-kDa molecule by immunoblotting, and its location was detected on the M. tuberculosis surface by transmission electron microscopy, suggesting that it is a mycobacterial surface protein. Binding assays led to recognizing high activity binding peptides (HABP); five HABPs specifically bound to U937 cells, and six specifically bound to A549 cells. HABP circular dichroism suggested that they had an alpha-helical structure. HABP-target cell interaction was determined to be specific and saturable; some of them also displayed greater affinity for A549 cells than U937 cells. The critical amino acids directly involved in their interaction with U937 cells were also determined. Two probable receptor molecules were found on U937 cells and five on A549 for the two HABPs analyzed. These observations have important biological significance for studying bacillus-target cell interactions and implications for developing strategies for controlling this disease.
Collapse
Affiliation(s)
- Martha Forero
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá 020304, Colombia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Grassi M, Volpe E, Colizzi V, Mariani F. An improved, real-time PCR assay for the detection of GC-rich and low abundance templates of Mycobacterium tuberculosis. J Microbiol Methods 2005; 64:406-10. [PMID: 15979747 DOI: 10.1016/j.mimet.2005.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 05/04/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
The detection of low abundance mRNA and/or GC-rich targets is very difficult using real-time PCR, often requiring laborious optimization procedures. This work shows that formamide is a useful PCR additive, increasing the sensitivity and specificity of SYBR Green real-time PCR to detect low abundance mycobacterial RNA from infected samples.
Collapse
Affiliation(s)
- Manuela Grassi
- Institute Neurobiology and Molecular Medicine, Molec. Med. Section, National Research Council, Via del Fosso del Cavaliere, 100, 00133, Rome, Italy
| | | | | | | |
Collapse
|
25
|
Takakura S, Tsuchiya S, Fujihara N, Kudo T, Iinuma Y, Mitarai S, Ichiyama S, Yasukawa K, Ishiguro T. Isothermal RNA sequence amplification method for rapid antituberculosis drug susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol 2005; 43:2489-91. [PMID: 15872291 PMCID: PMC1153809 DOI: 10.1128/jcm.43.5.2489-2491.2005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 01/03/2005] [Indexed: 11/20/2022] Open
Abstract
RNA transcript quantification by an isothermal sequence amplification reaction was evaluated for susceptibility testing of 15 Mycobacterium tuberculosis strains. Agreement with the proportion method on Ogawa egg medium and the BACTEC MGIT 960 system was 100 and 87% for rifampin, 93 and 100% for isoniazid, 60 and 53% for ethambutol, and 80 and 80% for streptomycin, respectively.
Collapse
Affiliation(s)
- Shunji Takakura
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Kyoto, 606-8507, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Parrish NM, Ko CG, Hughes MA, Townsend CA, Dick JD. Effect of n-octanesulphonylacetamide (OSA) on ATP and protein expression in Mycobacterium bovis BCG. J Antimicrob Chemother 2004; 54:722-9. [PMID: 15355939 DOI: 10.1093/jac/dkh408] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To determine the effect on BCG of n-octanesulphonylacetamide (OSA), a novel compound of the class beta-sulphonylcarboxamides, which has potent in vitro activity against pathogenic mycobacteria. METHODS AND RESULTS The effect of OSA in BCG was examined using two-dimensional protein electrophoresis. Treatment of BCG with OSA resulted in overexpression of two proteins identified as the b-subunit of ATP synthase (Rv1306) and a 17 kDa heat shock protein (Rv0251c). [35S]Methionine pulse-labelling revealed that overexpression occurred within as little as 3.5 h post-exposure. These results were confirmed by RT-PCR. ATP levels decreased in OSA-treated BCG at 5 min, and 1, 3 and 24 h, with a 64%, 45%, 54% and 73% reduction in ATP, respectively. Only dicyclohexylcarbodiimide (DCCD), a known ATP synthase inhibitor, had a similar effect. No appreciable difference in ATP level was observed in BCG treated with standard antimycobacterial drugs, additional respiratory chain inhibitors or a fatty acid synthase inhibitor at a comparable time-point. Protein synthesis decreased within 5 min of exposure to OSA (56%), DCCD (74%) and thenoyltrifluoroacetone (TTFA) (77%). Ethanol (2.3%) potentiated the activity of OSA. In contrast, no synergic effect was observed with streptomycin and ethanol. Mycolic acid levels decreased 79% with DCCD, 46% with TTFA, a complex II inhibitor, and 43% with OSA compared with untreated controls. CONCLUSIONS Our results suggest that OSA may interfere directly or indirectly with ATP synthase and possibly other components of the mycobacterial respiratory chain. These effects may hinder energy production, leading to interruption in the synthesis of large macromolecules including proteins and mycolic acids.
Collapse
Affiliation(s)
- Nicole M Parrish
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
27
|
Ronning DR, Vissa V, Besra GS, Belisle JT, Sacchettini JC. Mycobacterium tuberculosis antigen 85A and 85C structures confirm binding orientation and conserved substrate specificity. J Biol Chem 2004; 279:36771-7. [PMID: 15192106 DOI: 10.1074/jbc.m400811200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maintenance of the highly hydrophobic cell wall is central to the survival of Mycobacterium tuberculosis within its host environment. The antigen 85 proteins (85A, 85B, and 85C) of M. tuberculosis help maintain the integrity of the cell wall 1) by catalyzing the transfer of mycolic acids to the cell wall arabinogalactan and 2) through the synthesis of trehalose dimycolate (cord factor). Additionally, these secreted proteins allow for rapid invasion of alveolar macrophages via direct interactions between the host immune system and the invading bacillus. Here we describe two crystal structures: the structure of antigen 85C co-crystallized with octylthioglucoside as substrate, resolved to 2.0 A, and the crystal structure of antigen 85A, which was solved at a resolution of 2.7 A. The structure of 85C with the substrate analog identifies residues directly involved in substrate binding. Elucidation of the antigen 85A structure, the last of the three antigen 85 homologs to be solved, shows that the active sites of the three antigen 85 proteins are virtually identical, indicating that these share the same substrate. However, in contrast to the high level of conservation within the substrate-binding site and the active site, surface residues disparate from the active site are quite variable, indicating that three antigen 85 enzymes are needed to evade the host immune system.
Collapse
Affiliation(s)
- Donald R Ronning
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | | | | | |
Collapse
|
28
|
Gu S, Chen J, Dobos KM, Bradbury EM, Belisle JT, Chen X. Comprehensive Proteomic Profiling of the Membrane Constituents of a Mycobacterium tuberculosis Strain. Mol Cell Proteomics 2003; 2:1284-96. [PMID: 14532352 DOI: 10.1074/mcp.m300060-mcp200] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis is an infectious microorganism that causes human tuberculosis. The cell membranes of pathogens are known to be rich in possible diagnostic and therapeutic protein targets. To compliment the M. tuberculosis genome, we have profiled the membrane protein fraction of the M. tuberculosis H37Rv strain using an analytical platform that couples one-dimensional SDS gels to a microcapillary liquid chromatography-nanospray-tandem mass spectrometer. As a result, 739 proteins have been identified by two or more distinct peptide sequences and have been characterized. Interestingly, approximately 450 proteins represent novel identifications, 79 of which are membrane proteins and more than 100 of which are membrane-associated proteins. The physicochemical properties of the identified proteins were studied in detail, and then biological functions were obtained by sorting them according to Sanger Institute gene function category. Many membrane proteins were found to be involved in the cell envelope, and those proteins with energy metabolic functions were also identified in this study.
Collapse
Affiliation(s)
- Sheng Gu
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | | | | | | | | | | |
Collapse
|
29
|
Ciccone R, Mariani F, Cavone A, Persichini T, Venturini G, Ongini E, Colizzi V, Colasanti M. Inhibitory effect of NO-releasing ciprofloxacin (NCX 976) on Mycobacterium tuberculosis survival. Antimicrob Agents Chemother 2003; 47:2299-302. [PMID: 12821482 PMCID: PMC161842 DOI: 10.1128/aac.47.7.2299-2302.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the antimycobacterial activity of NCX 976, a new molecule obtained adding a NO moiety to the fluoroquinolone ciprofloxacin, on Mycobacterium tuberculosis H37Rv strain, both in a cell-free model and in infected human macrophages. Unlike unaltered ciprofloxacin, NCX976 displayed a marked activity also at low-nanomolar concentrations.
Collapse
Affiliation(s)
- R Ciccone
- Department of Biology, University of Rome "Tor Vergata," Bresso, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Tuberculosis (TB), one of the oldest known human diseases. is still is one of the major causes of mortality, since two million people die each year from this malady. TB has many manifestations, affecting bone, the central nervous system, and many other organ systems, but it is primarily a pulmonary disease that is initiated by the deposition of Mycobacterium tuberculosis, contained in aerosol droplets, onto lung alveolar surfaces. From this point, the progression of the disease can have several outcomes, determined largely by the response of the host immune system. The efficacy of this response is affected by intrinsic factors such as the genetics of the immune system as well as extrinsic factors, e.g., insults to the immune system and the nutritional and physiological state of the host. In addition, the pathogen may play a role in disease progression since some M. tuberculosis strains are reportedly more virulent than others, as defined by increased transmissibility as well as being associated with higher morbidity and mortality in infected individuals. Despite the widespread use of an attenuated live vaccine and several antibiotics, there is more TB than ever before, requiring new vaccines and drugs and more specific and rapid diagnostics. Researchers are utilizing information obtained from the complete sequence of the M. tuberculosis genome and from new genetic and physiological methods to identify targets in M. tuberculosis that will aid in the development of these sorely needed antitubercular agents.
Collapse
Affiliation(s)
- Issar Smith
- TB Center, Public Health Research Institute, International Center for Public Health, Newark, New Jersey 07103-3535, USA.
| |
Collapse
|
31
|
Abstract
This review provides a discussion on the current information about the response of Mycobacterium tuberculosis to the environment encountered in the macrophage. We focus on the types of genes shown to be upregulated when the pathogen grows in macrophages and discuss the possible roles of these genes in adaptation to the conditions in the eukaryotic cell, in the context of enhancing the survival of the pathogen during infection.
Collapse
Affiliation(s)
- Eugenie Dubnau
- TB Center, Public Health Research Institute of the International Center of Public Health, 225 Warren Street, Newark, NJ 07103, USA
| | | |
Collapse
|
32
|
Shi L, Jung YJ, Tyagi S, Gennaro ML, North RJ. Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc Natl Acad Sci U S A 2003; 100:241-6. [PMID: 12506197 PMCID: PMC140939 DOI: 10.1073/pnas.0136863100] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lung is the primary target of infection with Mycobacterium tuberculosis. It is well established that, in mouse lung, expression of adaptive, Th1-mediated host immunity inhibits further multiplication of M. tuberculosis. Here, real-time RT-PCR was used to define the pattern of expression against time of lung infection of key genes involved in Th1-mediated immunity and of selected genes of M. tuberculosis. Inhibition of bacterial multiplication was preceded by increased mRNA synthesis for IFN-gamma and inducible NO synthase (NOS2) and by NOS2 protein synthesis in infected macrophages. Concurrently, the pattern of transcription of bacterial genes underwent dramatic changes. mRNA synthesis increased for alpha-crystallin (acr), rv2626c, and rv2623 and decreased for superoxide dismutase C (sodC), sodA, and fibronectin-binding protein B (fbpB). This pattern of M. tuberculosis transcription is characteristic of the nonreplicating persistence [Wayne, L. G. & Sohaskey, C. D. (2001) Annu. Rev. Microbiol. 55, 139-163] associated with adaptation of tubercle bacilli to hypoxia in vitro. Based on this similarity, we infer that host immunity induces bacterial growth arrest. In IFN-gamma gene-deleted mice, bacterial growth was not controlled; NOS2 protein was not detected in macrophages; sodC, sodA, and fbpB transcription showed no decrease; and acr, rv2626c, and rv2623 transcription increased only at the terminal stages of lung pathology. These findings define the transcription signature of M. tuberculosis as it transitions from growth to persistence in the mouse lung. The bacterial transcription changes measured at onset of Th1-mediated immunity are likely induced, directly or indirectly, by nitric oxide generated by infected macrophages.
Collapse
Affiliation(s)
- Lanbo Shi
- Public Health Research Institute, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
33
|
Fenhalls G, Stevens-Muller L, Warren R, Carroll N, Bezuidenhout J, Van Helden P, Bardin P. Localisation of mycobacterial DNA and mRNA in human tuberculous granulomas. J Microbiol Methods 2002; 51:197-208. [PMID: 12133612 DOI: 10.1016/s0167-7012(02)00076-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In situ hybridisation was used to detect the presence of Mycobacterium tuberculosis in paraffin-embedded lung tissue of nine patients diagnosed with tuberculosis (TB). Mycobacterial DNA was found in all nine patients and in 175 out of 191 granulomas examined. A combination of in situ hybridisation and immunohistochemistry techniques demonstrated that mycobacterial DNA was associated with CD68-positive cells with the morphology of macrophages and giant cells. Mycobacterial DNA was also found within the necrotic regions of some granulomas. mRNA for the mycobacterial RNA polymerase beta subunit (rpoB) was detected by RNA: RNA in situ hybridisation. The rpoB mRNA was also localised to CD68-positive cells with the morphology of macrophages and to giant cells of certain necrotic granulomas. No rpoB mRNA was found in the necrotic regions of granulomas. Mycobacterial DNA was detected in 92% of patient granulomas of which 8% were positive for rpoB mRNA. The ability to identify mycobacterial RNA transcripts within human tuberculous granulomas affords us the opportunity to analyse the interplay between pathogen gene expression and the human immune response and should provide valuable insight into the mechanisms used by M. tuberculosis to persist within the human host.
Collapse
Affiliation(s)
- Gael Fenhalls
- MRC Center for Molecular and Cellular Biology, University of Stellenbosch Medical School, Cape Town, South Africa.
| | | | | | | | | | | | | |
Collapse
|
34
|
Ewann F, Jackson M, Pethe K, Cooper A, Mielcarek N, Ensergueix D, Gicquel B, Locht C, Supply P. Transient requirement of the PrrA-PrrB two-component system for early intracellular multiplication of Mycobacterium tuberculosis. Infect Immun 2002; 70:2256-63. [PMID: 11953357 PMCID: PMC127906 DOI: 10.1128/iai.70.5.2256-2263.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptive regulation of gene expression in response to environmental changes is a general property of bacterial pathogens. By screening an ordered transposon mutagenesis library of Mycobacterium tuberculosis, we have identified three mutants containing a transposon in the coding sequence or in the 5' regions of genes coding for two-component signal transduction systems (trcS, regX3, prrA). The intracellular multiplication capacity of the three mutants was investigated in mouse bone marrow-derived macrophages. Only the prrA mutant showed a defect in intracellular growth during the early phase of infection, and this defect was fully reverted when the mutant was complemented with prrA-prrB wild-type copies. The mutant phenotype was transient, as after 1 week this strain recovered full growth capacity to reach levels similar to that of the wild type at day 9. Moreover, a transient induction of prrA promoter activity was observed during the initial phase of macrophage infection, as shown by a prrA promoter-gfp fusion in M. bovis BCG infecting the mouse macrophages. The concordant transience of the prrA mutant phenotype and prrA promoter activity indicates that the PrrA-PrrB two-component system is involved in the environmental adaptation of M. tuberculosis, specifically in an early phase of the intracellular growth, and that, similar to other facultative intracellular parasites, M. tuberculosis can use genes temporarily required at different stages in the course of macrophage infection.
Collapse
Affiliation(s)
- Fanny Ewann
- Laboratoire des Mécanismes Moléculaires de la Pathogenèse Bactérienne, INSERM U447, Institut Pasteur de Lille, F-59019 Lille Cedex
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Purkayastha A, McCue LA, McDonough KA. Identification of a Mycobacterium tuberculosis putative classical nitroreductase gene whose expression is coregulated with that of the acr aene within macrophages, in standing versus shaking cultures, and under low oxygen conditions. Infect Immun 2002; 70:1518-29. [PMID: 11854240 PMCID: PMC127740 DOI: 10.1128/iai.70.3.1518-1529.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis remains a leading killer worldwide, and new approaches for its treatment and prevention are urgently needed. This effort will benefit greatly from a better understanding of gene regulation in Mycobacterium tuberculosis, particularly with respect to this pathogen's response to its host environment. We examined the behavior of two promoters from the divergently transcribed M. tuberculosis genes acr/hspX/Rv2031c (alpha-crystallin homolog) and Rv2032/acg (acr-coregulated gene) by using a promoter-GFP fusion assay in Mycobacterium bovis BCG. We found that Rv2032 is a novel macrophage-induced gene whose expression is coregulated with that of acr. Relative levels of intracellular induction for both promoters were significantly affected by shallow standing versus shaking bacterial culture conditions prior to macrophage infection, and both promoters were strongly induced under low oxygen conditions. Deletion analyses showed that DNA sequences within a 43-bp region were required for expression of these promoters under all conditions. Multiple sequence alignment and database searches performed with PROBE indicated that Rv2032 is one of eight M. tuberculosis genes of previously unknown function that belong to an unusual superfamily of classical nitroreductases, which may have a role for bacteria within the host environment. These findings show that mycobacterial culture conditions can greatly influence the results and interpretation of subsequent gene regulation experiments. We propose that these differences might be exploited for dissection of the regulatory factors that affect mycobacterial gene expression within the host.
Collapse
Affiliation(s)
- Anjan Purkayastha
- Department of Biomedical Sciences, University of Albany School of Public Health, Albany, New York 12201-2002, USA
| | | | | |
Collapse
|
36
|
Cappelli G, Volpe P, Sanduzzi A, Sacchi A, Colizzi V, Mariani F. Human macrophage gamma interferon decreases gene expression but not replication of Mycobacterium tuberculosis: analysis of the host-pathogen reciprocal influence on transcription in a comparison of strains H37Rv and CMT97. Infect Immun 2001; 69:7262-70. [PMID: 11705896 PMCID: PMC98810 DOI: 10.1128/iai.69.12.7262-7270.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2001] [Accepted: 08/15/2001] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis is an intracellular pathogen that readily survives and replicates in human macrophages (MPhi). Host cells have developed different mycobactericidal mechanisms, including the production of inflammatory cytokines. The aim of this study was to compare the MPhi response, in terms of cytokine gene expression, to infection with the M. tuberculosis laboratory strain H37Rv and the clinical M. tuberculosis isolate CMT97. Both strains induce the production of interleukin-12 (IL-12) and IL-16 at comparable levels. However, the clinical isolate induces a significantly higher and more prolonged MPhi activation, as shown by reverse transcription-PCR analysis of IL-1beta, IL-6, IL-10, transforming growth factor beta, tumor necrosis factor alpha, and gamma interferon (IFN-gamma) transcripts. Interestingly, when IFN-gamma transcription is high, the number of M. tuberculosis genes expressed decreases and vice versa, whereas no mycobactericidal effect was observed in terms of bacterial growth. Expression of 11 genes was also studied in the two M. tuberculosis strains by infecting resting or activated MPhi and compared to bacterial intracellular survival. In both cases, a peculiar inverse correlation between expression of these genes and multiplication was observed. The number and type of genes expressed by the two strains differed significantly.
Collapse
Affiliation(s)
- G Cappelli
- Institute of Neurobiology and Molecular Medicine, National Research Council, Rome, Italy
| | | | | | | | | | | |
Collapse
|
37
|
D'orazio M, Folcarelli S, Mariani F, Colizzi V, Rotilio G, Battistoni A. Lipid modification of the Cu,Zn superoxide dismutase from Mycobacterium tuberculosis. Biochem J 2001; 359:17-22. [PMID: 11563965 PMCID: PMC1222117 DOI: 10.1042/0264-6021:3590017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The leader sequence of Mycobacterium tuberculosis Cu,Zn superoxide dismutase (Cu,ZnSOD) contains a prokaryotic membrane lipoprotein attachment site. In the present study, we have found that the protein, which exhibits detectable SOD activity, is lipid-modified and associated with the bacterial membrane when expressed either in M. tuberculosis or in Escherichia coli. These results provide the first demonstration of lipid modification of a Cu,ZnSOD. An analysis of the sodC genes present in available databases indicates that the same signal for lipid modification is also present in the sodC gene products from other mycobacteria and Gram-positive bacteria and, uniquely, in two distinct sodC gene products from the Gram-negative bacterium Salmonella typhimurium. Evidence is also provided for an up-regulation of M. tuberculosis sodC in response to phagocytosis by human macrophages, suggesting that Cu,ZnSOD is involved in the mechanisms that facilitate mycobacterial intracellular growth.
Collapse
Affiliation(s)
- M D'orazio
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | | | | | |
Collapse
|