1
|
Manley K, Bravo-Nuevo A, Minton AR, Sedano S, Marcy A, Reichman M, Tobia A, Artlett CM, Gilmour SK, Laury-Kleintop LD, Prendergast GC. Preclinical study of the long-range safety and anti-inflammatory effects of high-dose oral meglumine. J Cell Biochem 2019; 120:12051-12062. [PMID: 30809852 DOI: 10.1002/jcb.28492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/14/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Meglumine is a methylamino derivative of sorbitol that is an approved drug excipient. Recent preclinical studies suggest that administration of high-dose oral meglumine can exert beneficial medicinal effects to treat diabetes, obesity, and fatty liver disease (NAFLD/nonalcoholic steatohepatitis [NASH]). Here we address gaps in knowledge about the pharmacology and toxicology of this substance administered at high concentrations to explore its medicinal potential. We observed that high-dose meglumine limited secretion of proinflammatory cytokines and cell adhesion molecules from activated human THP-1 or murine RAW264.7 monocytes. Preclinical pharmacokinetic analysis in Swiss mice confirmed that meglumine was orally available. Informed by this data, oral doses of 18 to 75 mM meglumine were administered ad libitum in the drinking water of Sprague-Dawley rats and two cohorts of C57BL/6 mice housed in different vivariums. In a 32-week study, urinary isoprostane levels trended lower in subjects consistent with the possibility of anti-inflammatory effects. In full lifespan studies, there was no detrimental effect on longevity. Heart function evaluated in C57BL/6 mice using an established noninvasive cardiac imaging system showed no detrimental effects on ejection fraction, fractional shortening, left ventricle function or volume, and cardiac output in mice up to 15-month old, with a potential positive trend in heart function noted in elderly mice consistent with earlier reported benefits on muscle stamina. Finally, in a transgenic model of inflammation-associated skin carcinogenesis, the incidence, number, and growth of skin tumors trended lower in subjects receiving meglumine. Overall, the evidence obtained illustrating the long-range safety of high-dose oral meglumine support the rationale for its evaluation as a low-cost modality to limit diabetes, hypertriglyceridemia, and NAFLD/NASH.
Collapse
Affiliation(s)
- Kaylend Manley
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | | | - Allyson R Minton
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Summer Sedano
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Alice Marcy
- Dynamis Pharmaceuticals Inc, Jenkintown, Pennsylvania
| | - Melvin Reichman
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Annette Tobia
- Dynamis Pharmaceuticals Inc, Jenkintown, Pennsylvania
| | - Carol M Artlett
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Susan K Gilmour
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | | | | |
Collapse
|
2
|
Chang YW, Singh KP. Arsenic-Induced Neoplastic Transformation Involves Epithelial-Mesenchymal Transition and Activation of the β-Catenin/c-Myc Pathway in Human Kidney Epithelial Cells. Chem Res Toxicol 2019; 32:1299-1309. [PMID: 31120745 DOI: 10.1021/acs.chemrestox.9b00089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arsenic contamination is a serious environmental and public health issue worldwide including the United States. Accumulating evidence suggests that kidney is one of the target organs for arsenic-induced carcinogenesis. However, the mechanism of arsenic-induced renal carcinogenesis is not well understood. Therefore, the objective of this study was to evaluate the carcinogenicity of chronic exposure to an environmentally relevant concentration of arsenic on kidney epithelial cells and identify the molecular mechanism underlying this process. HK-2 kidney epithelial cells were treated with arsenic for acute, long-term, and chronic durations, and cellular responses to arsenic exposure at these time points were evaluated by the changes in growth, morphology, and expression of genes. The results revealed a significant growth increase after long-term and chronic exposure to arsenic in HK-2 cells. The morphological changes of EMT and stem cell sphere formation were also observed in long-term arsenic exposed cells. The anchorage-independent growth assay for colony formation and cell maintenance in cancer stem cell medium further confirmed neoplastic transformation and the induced cancer stem cell properties of arsenic-exposed cells. Additionally, the expression of marker genes confirmed the increased growth, EMT, and stemness during arsenic-induced carcinogenesis. Moreover, the increase expression of β-catenin and c-Myc further suggested the role of these signaling molecules during carcinogenesis in HK-2 cells. In summary, results of this study suggest that chronic exposure to arsenic even at a relatively lower concentration can induce neoplastic transformation through acquisitions of EMT, stemness, and MET phenotypes, which might be related to the β-catenin/c-Myc signaling pathway.
Collapse
Affiliation(s)
- Yu-Wei Chang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) , Texas Tech University , Lubbock , Texas , United States
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) , Texas Tech University , Lubbock , Texas , United States
| |
Collapse
|
3
|
Targeting polyamine metabolism for cancer therapy and prevention. Biochem J 2017; 473:2937-53. [PMID: 27679855 DOI: 10.1042/bcj20160383] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
The chemically simple, biologically complex eukaryotic polyamines, spermidine and spermine, are positively charged alkylamines involved in many crucial cellular processes. Along with their diamine precursor putrescine, their normally high intracellular concentrations require fine attenuation by multiple regulatory mechanisms to keep these essential molecules within strict physiologic ranges. Since the metabolism of and requirement for polyamines are frequently dysregulated in neoplastic disease, the metabolic pathway and functions of polyamines provide rational drug targets; however, these targets have been difficult to exploit for chemotherapy. It is the goal of this article to review the latest findings in the field that demonstrate the potential utility of targeting the metabolism and function of polyamines as strategies for both chemotherapy and, possibly more importantly, chemoprevention.
Collapse
|
4
|
Xu L, Long J, Wang P, Liu K, Mai L, Guo Y. Association between the ornithine decarboxylase G316A polymorphism and breast cancer survival. Oncol Lett 2015; 10:485-491. [PMID: 26171056 DOI: 10.3892/ol.2015.3201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/19/2015] [Indexed: 11/05/2022] Open
Abstract
Ornithine decarboxylase (ODC) is a significant rate-limiting enzyme in polyamine synthesis, required for normal cell growth, and is highly expressed in various malignancies, including colorectal and breast cancer. In the present study, the associations between the ODC G316A single nucleotide polymorphism (SNP) and breast cancer-specific survival were investigated. In addition, the functional effects of this SNP were examined in the MCF-7 human breast cancer cell line. The present study recruited 300 stage I-III breast cancer cases, which were diagnosed at the Affiliated Cancer Hospital of Zhengzhou University (Zhengzhou, China) between 2002 and 2003, with follow-up visits conducted until May 2013. ODC G316A was genotyped (ODC GG vs. ODC AG/AA) in the 300 cases and the association of the genotypes with cancer-specific survival was analyzed. In the MCF-7 cell line, the ODC allele-specific binding of E-box transcription factors was determined using western blot and chromatin immunoprecipitation assays. Survival differences were observed between the two genotypes: Compared with the ODC GG genotype, patients with ODC GA/AA exhibited significantly higher survival rates (P<0.05). In cultured cells, the ODC SNP, which is flanked by two E-boxes, appeared to predict ODC promoter activity. Furthermore, the E-box activator c-MYC and repressor MAX interactor 1 were found to preferentially bind to ODC minor A-alleles compared with major G-alleles, in cultured MCF-7 cells. In conclusion, the results of the current study suggest that the regulation of ODC may affect survival in breast cancer patients and indicate a model in which the ODC SNP may be protective for breast adenoma recurrence and detrimental for survival following a diagnosis of breast cancer.
Collapse
Affiliation(s)
- Linping Xu
- Department of Scientific Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Jianping Long
- Department of Breast Surgery, Maternity and Child-Care Hospital of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Peng Wang
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Kangdong Liu
- Department of Scientific Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Ling Mai
- Department of Scientific Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yongjun Guo
- Department of Scientific Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
5
|
Chilakapati J, Wallace K, Hernandez-Zavala A, Moore T, Ren H, Kitchin KT. Pharmacokinetic and Genomic Effects of Arsenite in Drinking Water on Mouse Lung in a 30-Day Exposure. Dose Response 2015; 13:1559325815592392. [PMID: 26674514 PMCID: PMC4674186 DOI: 10.1177/1559325815592392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The 2 objectives of this subchronic study were to determine the arsenite drinking water exposure dependent increases in female C3H mouse liver and lung tissue arsenicals and to characterize the dose response (to 0, 0.05, 0.25, 1, 10, and 85 ppm arsenite in drinking water for 30 days and a purified AIN-93M diet) for genomic mouse lung expression patterns. Mouse lungs were analyzed for inorganic arsenic, monomethylated, and dimethylated arsenicals by hydride generation atomic absorption spectroscopy. The total lung mean arsenical levels were 1.4, 22.5, 30.1, 50.9, 105.3, and 316.4 ng/g lung tissue after 0, 0.05, 0.25, 1, 10, and 85 ppm, respectively. At 85 ppm, the total mean lung arsenical levels increased 14-fold and 131-fold when compared to either the lowest noncontrol dose (0.05 ppm) or the control dose, respectively. We found that arsenic exposure elicited minimal numbers of differentially expressed genes (DEGs; 77, 38, 90, 87, and 87 DEGs) after 0.05, 0.25, 1, 10, and 85 ppm, respectively, which were associated with cardiovascular disease, development, differentiation, apoptosis, proliferation, and stress response. After 30 days of arsenite exposure, this study showed monotonic increases in mouse lung arsenical (total arsenic and dimethylarsinic acid) concentrations but no clear dose-related increases in DEG numbers.
Collapse
Affiliation(s)
| | - Kathleen Wallace
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Durham, NC, USA
| | - Araceli Hernandez-Zavala
- Sección de Investigación y Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Tanya Moore
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Durham, NC, USA
| | - Hongzu Ren
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Durham, NC, USA
| | - Kirk T. Kitchin
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Durham, NC, USA
| |
Collapse
|
6
|
Hunt KM, Srivastava RK, Elmets CA, Athar M. The mechanistic basis of arsenicosis: pathogenesis of skin cancer. Cancer Lett 2014; 354:211-9. [PMID: 25173797 PMCID: PMC4193806 DOI: 10.1016/j.canlet.2014.08.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 12/25/2022]
Abstract
Significant amounts of arsenic have been found in the groundwater of many countries including Argentina, Bangladesh, Chile, China, India, Mexico, and the United States with an estimated 200 million people at risk of toxic exposure. Although chronic arsenic poisoning damages many organ systems, it usually first presents in the skin with manifestations including hyperpigmentation, hyperkeratoses, Bowen's disease, squamous cell carcinoma, and basal cell carcinoma. Arsenic promotes oxidative stress by upregulating nicotinamide adenine dinucleotide phosphate oxidase, uncoupling nitric oxide synthase, and by depleting natural antioxidants such as nitric oxide and glutathione in addition to targeting other proteins responsible for the maintenance of redox homeostasis. It causes immune dysfunction and tissue inflammatory responses, which may involve activation of the unfolded protein response signaling pathway. In addition, the dysregulation of other molecular targets such as nuclear factor kappa B, Hippo signaling protein Yap, and the mineral dust-induced proto-oncogene may orchestrate the pathogenesis of arsenic-mediated health effects. The metalloid decreases expression of tumor suppressor molecules and increases expression of pro-inflammatory mitogen-activated protein kinase pathways leading to a tumor-promoting tissue microenvironment. Cooperation of upregulated signal transduction molecules with DNA damage may abrogate apoptosis, promote proliferation, and enhance cell survival. Genomic instability via direct DNA damage and weakening of several cellular DNA repair mechanisms could also be important cancer development mechanisms in arsenic-exposed populations. Thus, arsenic mediates its toxicity by generating oxidative stress, causing immune dysfunction, promoting genotoxicity, hampering DNA repair, and disrupting signal transduction, which may explain the complex disease manifestations seen in arsenicosis.
Collapse
Affiliation(s)
- Katherine M Hunt
- University of Alabama at Birmingham, University of Alabama School of Medicine, 1670 University Blvd., Birmingham, Alabama 35233, USA
| | - Ritesh K Srivastava
- Department of Dermatology and Skin Disease Research Center, University of Alabama at Birmingham, VH 509, 1530 3rd Ave. S., Birmingham, Alabama 35294, USA
| | - Craig A Elmets
- Department of Dermatology and Skin Disease Research Center, University of Alabama at Birmingham, VH 509, 1530 3rd Ave. S., Birmingham, Alabama 35294, USA
| | - Mohammad Athar
- Department of Dermatology and Skin Disease Research Center, University of Alabama at Birmingham, VH 509, 1530 3rd Ave. S., Birmingham, Alabama 35294, USA.
| |
Collapse
|
7
|
Bunjobpol W, Dulloo I, Igarashi K, Concin N, Matsuo K, Sabapathy K. Suppression of acetylpolyamine oxidase by selected AP-1 members regulates DNp73 abundance: mechanistic insights for overcoming DNp73-mediated resistance to chemotherapeutic drugs. Cell Death Differ 2014; 21:1240-9. [PMID: 24722210 PMCID: PMC4085530 DOI: 10.1038/cdd.2014.41] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 02/17/2014] [Accepted: 02/28/2014] [Indexed: 12/18/2022] Open
Abstract
Enhanced resistance to chemotherapy has been correlated with high levels of Delta-Np73 (DNp73), an anti-apoptotic protein of the p53 tumor-suppressor family which inhibits the pro-apoptotic members such as p53 and TAp73. Although genotoxic drugs have been shown to induce DNp73 degradation, lack of mechanistic understanding of this process precludes strategies to enhance the targeting of DNp73 and improve treatment outcomes. Antizyme (Az) is a mediator of ubiquitin-independent protein degradation regulated by the polyamine biosynthesis pathway. We show here that acetylpolyamine oxidase (PAOX), a catabolic enzyme of this pathway, upregulates DNp73 levels by suppressing its degradation via the Az pathway. Conversely, downregulation of PAOX activity by siRNA-mediated knockdown or chemical inhibition leads to DNp73 degradation in an Az-dependent manner. PAOX expression is suppressed by several genotoxic drugs, via selected members of the activator protein-1 (AP-1) transcription factors, namely c-Jun, JunB and FosB, which are required for stress-mediated DNp73 degradation. Finally, chemical- and siRNA-mediated inhibition of PAOX significantly reversed the resistant phenotype of DNp73-overexpressing cancer cells to genotoxic drugs. Together, these data define a critical mechanism for the regulation of DNp73 abundance, and reveal that inhibition of PAOX could widen the therapeutic index of cytotoxic drugs and overcome DNp73-mediated chemoresistance in tumors.
Collapse
Affiliation(s)
- W Bunjobpol
- Laboratory of Molecular Carcinogenesis, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, Singapore
| | - I Dulloo
- Laboratory of Molecular Carcinogenesis, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, Singapore
| | - K Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15Inohana, Chiba, Japan
| | - N Concin
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Anichstrasse 35, Innsbruck, Austria
| | - K Matsuo
- Department of Microbiology and Immunology, School of Medicine, Keio University, 35 Shinanomachi, Tokyo, Japan
| | - K Sabapathy
- Laboratory of Molecular Carcinogenesis, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8, College Road, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, 8, Medical Drive, Singapore, Singapore
| |
Collapse
|
8
|
Hayes CS, Shicora AC, Keough MP, Snook AE, Burns MR, Gilmour SK. Polyamine-blocking therapy reverses immunosuppression in the tumor microenvironment. Cancer Immunol Res 2013; 2:274-85. [PMID: 24778323 DOI: 10.1158/2326-6066.cir-13-0120-t] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Correcting T-cell immunosuppression may unleash powerful antitumor responses; however, knowledge about the mechanisms and modifiers that may be targeted to improve therapy remains incomplete. Here, we report that polyamine elevation in cancer, a common metabolic aberration in aggressive lesions, contributes significantly to tumor immunosuppression and that a polyamine depletion strategy can exert antitumor effects that may also promote immunity. A polyamine-blocking therapy (PBT) that combines the well-characterized ornithine decarboxylase (ODC) inhibitor difluoromethylornithine (DFMO) with AMXT 1501, a novel inhibitor of the polyamine transport system, blocked tumor growth in immunocompetent mice but not in athymic nude mice lacking T cells. PBT had little effect on the proliferation of epithelial tumor cells, but it increased the number of apoptotic cells. Analysis of CD45(+) tumor immune infiltrates revealed that PBT decreased levels of Gr-1(+)CD11b(+) myeloid suppressor cells and increased CD3(+) T cells. Strikingly, in a model of neoadjuvant therapy, mice administered with PBT one week before surgical resection of engrafted mammary tumors exhibited resistance to subsequent tumor rechallenge. Collectively, our results indicate that therapies targeting polyamine metabolism do not act exclusively as antiproliferative agents, but also act strongly to prevent immune escape by the tumor. PBT may offer a general approach to heighten immune responses in cancer.
Collapse
Affiliation(s)
- Candace S Hayes
- Authors' Affiliations: Aminex Therapeutics, Inc., Kenmore, Washington
| | | | | | | | | | | |
Collapse
|
9
|
Inflammation, carcinogenesis and neurodegeneration studies in transgenic animal models for polyamine research. Amino Acids 2013; 46:521-30. [PMID: 23933909 DOI: 10.1007/s00726-013-1572-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/26/2013] [Indexed: 12/18/2022]
Abstract
Natural polyamines (PA) are cationic molecules affecting cell growth and proliferation. An association between increased polyamine biosynthesis and inflammation-induced carcinogenesis has been recognised. On the other hand, there are indications that inflammatory stimuli can up-regulate polyamine catabolism and that altered polyamine metabolism could affect pro- and anti-inflammatory cytokines. Since the polyamine content is strictly related to cell growth, a consistent number of evidences relate polyamine metabolism dysfunction with cancer. The increase of polyamine levels in malignant and proliferating cells attracted the interest of scientists during last decades, addressing polyamine depletion as a new strategy to inhibit carcinogenesis. Several studies suggest that PA also play an important role in neurodegeneration, but the mechanisms by which they participate in neuronal death are still unclear. Furthermore, the role of endogenous PA in normal brain functioning is yet to be elucidated. The consequences of an alteration of polyamine metabolism have also been approached in vivo with the use of transgenic animals overexpressing or devoid of some enzymes involved in polyamine metabolism. In the present work we review the experimental investigation carried out on inflammation, cancerogenesis and neurodegeneration using transgenic animals engineered as models for polyamine research.
Collapse
|
10
|
Hayes CS, DeFeo-Mattox K, Woster PM, Gilmour SK. Elevated ornithine decarboxylase activity promotes skin tumorigenesis by stimulating the recruitment of bulge stem cells but not via toxic polyamine catabolic metabolites. Amino Acids 2013; 46:543-52. [PMID: 23884694 DOI: 10.1007/s00726-013-1559-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/03/2013] [Indexed: 12/17/2022]
Abstract
Elevated expression of ornithine decarboxylase (ODC), the regulatory enzyme in polyamine biosynthesis, targeted to the epidermis is sufficient to promote skin tumor development following a single subthreshold dose of dimethylbenz(a)anthracene (DMBA). Since skin tumor promotion involves recruitment of hair follicle bulge stem cells harboring genetic lesions, we assessed the effect of increased epidermal ODC on recruitment of bulge stem cells in ODC-ER transgenic mice in which ODC activity is induced de novo in adult skin with 4-hydroxytamoxifen (4OHT). Bromodeoxyuridine-pulse labeling and use of K15.CrePR1;R26R;ODC-ER triple transgenic mice demonstrated that induction of ODC activity is sufficient to recruit bulge stem cells in quiescent skin. Because increased ODC activity not only stimulates proliferation but also increases reactive oxygen species (ROS) generation via subsequent induction of polyamine catabolic oxidases, we used an inhibitor of polyamine catabolic oxidase activity, MDL72527, to investigate whether ROS generation by polyamine catabolic oxidases contributes to skin tumorigenesis in DMBA-initiated ODC-ER transgenic skin. Newborn ODC-ER transgenic mice and their normal littermates were initiated with a single topical dose of DMBA. To assess tumor development originating from dormant bulge stem cells that possess DMBA-initiated mutations, epidermal ODC activity was induced in ODC-ER mice with 4OHT 5 weeks after DMBA initiation followed by MDL72527 treatment. MDL72527 treatment resulted in a shorter tumor latency time, increased tumor burden, increased conversion to carcinomas, and lower tumor levels of p53. Thus, elevated epidermal ODC activity promotes tumorigenesis by stimulating the recruitment of bulge stem cells but not via ROS generation by polyamine catabolic oxidases.
Collapse
Affiliation(s)
- Candace S Hayes
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA
| | | | | | | |
Collapse
|
11
|
Gamble LD, Hogarty MD, Liu X, Ziegler DS, Marshall G, Norris MD, Haber M. Polyamine pathway inhibition as a novel therapeutic approach to treating neuroblastoma. Front Oncol 2012. [PMID: 23181218 PMCID: PMC3499881 DOI: 10.3389/fonc.2012.00162] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Polyamines are highly regulated essential cations that are elevated in rapidly proliferating tissues, including diverse cancers. Expression analyses in neuroblastomas suggest that up-regulation of polyamine pro-synthetic enzymes and down-regulation of catabolic enzymes is associated with poor prognosis. Polyamine sufficiency may be required for MYCN oncogenicity in MYCN amplified neuroblastoma, and targeting polyamine homeostasis may therefore provide an attractive therapeutic approach. ODC1, an oncogenic MYCN target, is rate-limiting for polyamine synthesis, and is overexpressed in many cancers including neuroblastoma. Inhibition of ODC1 by difluoromethylornithine (DFMO) decreased tumor penetrance in TH-MYCN mice treated pre-emptively, and extended survival and synergized with chemotherapy in treating established tumors in both TH-MYCN and xenograft models. Efforts to augment DFMO activity, or otherwise maximally reduce polyamine levels, are focused on antagonizing polyamine uptake or augmenting polyamine export or catabolism. Since polyamine inhibition appears to be clinically well tolerated, these approaches, particularly when combined with chemotherapy, have great potential for improving neuroblastoma outcome in both MYCN amplified and non-MYCN amplified neuroblastomas.
Collapse
Affiliation(s)
- Laura D Gamble
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
12
|
Olsen RR, Zetter BR. Evidence of a role for antizyme and antizyme inhibitor as regulators of human cancer. Mol Cancer Res 2011; 9:1285-93. [PMID: 21849468 DOI: 10.1158/1541-7786.mcr-11-0178] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Antizyme and its endogenous antizyme inhibitor have recently emerged as prominent regulators of cell growth, transformation, centrosome duplication, and tumorigenesis. Antizyme was originally isolated as a negative modulator of the enzyme ornithine decarboxylase (ODC), an essential component of the polyamine biosynthetic pathway. Antizyme binds ODC and facilitates proteasomal ODC degradation. Antizyme also facilitates degradation of a set of cell cycle regulatory proteins, including cyclin D1, Smad1, and Aurora A kinase, as well as Mps1, a protein that regulates centrosome duplication. Antizyme has been reported to function as a tumor suppressor and to negatively regulate tumor cell proliferation and transformation. Antizyme inhibitor binds to antizyme and suppresses its known functions, leading to increased polyamine synthesis, increased cell proliferation, and increased transformation and tumorigenesis. Gene array studies show antizyme inhibitor to be amplified in cancers of the ovary, breast, and prostate. In this review, we summarize the current literature on the role of antizyme and antizyme inhibitor in cancer, discuss how the ratio of antizyme to antizyme inhibitor can influence tumor growth, and suggest strategies to target this axis for tumor prevention and treatment.
Collapse
Affiliation(s)
- Rachelle R Olsen
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, MA, USA
| | | |
Collapse
|
13
|
Zhang Y, Wang Q, Guo X, Miller R, Guo Y, Yang HS. Activation and up-regulation of translation initiation factor 4B contribute to arsenic-induced transformation. Mol Carcinog 2011; 50:528-38. [PMID: 21268130 PMCID: PMC3110507 DOI: 10.1002/mc.20733] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/03/2010] [Accepted: 12/08/2010] [Indexed: 01/23/2023]
Abstract
Arsenic is a known human carcinogen. However, the mechanism of how arsenic induces cell transformation remains unclear. In this study, we demonstrated that long-term exposure to sodium arsenite at low-dose (2 µM) increases cell proliferation and neoplastic transformation in a mouse epidermal cell model, JB6 promotion-susceptible cells. The phosphorylation of AKT and its downstream targets, 70-kDa ribosomal protein S6 kinase (p70S6K) and translation initiation factor 4B (eIF4B), are increased in the arsenite treated cells, indicating that long-term arsenite treatment activates AKT-p70S6K signaling pathway. In addition, long-term exposure to arsenite up-regulates eIF4B expression and increases the rate of translation. Knockdown of eIF4B expression resulted in inhibition of arsenic-induced cell proliferation, transformation, and translation. Moreover, the expression of c-Myc which is up-regulated by long-term arsenite treatment is inhibited by eIF4B knockdown. Taken together, these results indicate that activation and up-regulation of eIF4B contributes to arsenic-induced transformation in JB6 cells.
Collapse
Affiliation(s)
- Yong Zhang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY40536, USA
- Institute and Department of Urology, Peking University First Hospital, Beijing, China
| | - Qing Wang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY40536, USA
| | - Xiaoling Guo
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY40536, USA
- Department of Oral and Maxillofacial Surgery, and School and Hospital of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Robert Miller
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY40536, USA
| | - Yinglu Guo
- Institute and Department of Urology, Peking University First Hospital, Beijing, China
| | - Hsin-Sheng Yang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY40536, USA
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40536, USA
| |
Collapse
|
14
|
Tokar EJ, Benbrahim-Tallaa L, Ward JM, Lunn R, Sams RL, Waalkes MP. Cancer in experimental animals exposed to arsenic and arsenic compounds. Crit Rev Toxicol 2010; 40:912-27. [PMID: 20812815 PMCID: PMC3076186 DOI: 10.3109/10408444.2010.506641] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inorganic arsenic is a ubiquitous environmental contaminant that has long been considered a human carcinogen. Recent studies raise further concern about the metalloid as a major, naturally occurring carcinogen in the environment. However, during this same period it has proven difficult to provide experimental evidence of the carcinogenicity of inorganic arsenic in laboratory animals and, until recently, there was considered to be a lack of clear evidence for carcinogenicity of any arsenical in animals. More recent work with arsenical methylation metabolites and early life exposures to inorganic arsenic has now provided evidence of carcinogenicity in rodents. Given that tens of millions of people worldwide are exposed to potentially unhealthy levels of environmental arsenic, in vivo rodent models of arsenic carcinogenesis are a clear necessity for resolving critical issues, such as mechanisms of action, target tissue specificity, and sensitive subpopulations, and in developing strategies to reduce cancers in exposed human populations. This work reviews the available rodent studies considered relevant to carcinogenic assessment of arsenicals, taking advantage of the most recent review by the International Agency for Research on Cancer (IARC) that has not yet appeared as a full monograph but has been summarized (IARC, 2009 , IARC Special Report: Policy, Vol. 10. Lyon: IARC Press, 453–454). Many valid studies show that arsenic can interact with other carcinogens/agents to enhance oncogenesis, and help elucidate mechanisms, and these too are summarized in this review. Finally, this body of rodent work is discussed in light of its impact on mechanisms and in the context of the persistent argument that arsenic is not carcinogenic in animals.
Collapse
Affiliation(s)
- Erik J. Tokar
- National Toxicology Program, National Institute of Environmental Health Sciences and Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | | | - Jerold M. Ward
- Global VetPathology, 10513 Wayridge Drive, Montgomery Village, MD
| | - Ruth Lunn
- Report on Carcinogens Office, National Toxicology Program, National Institute of Environmental Health Science, Research Triangle Park, NC
| | - Reeder L. Sams
- National Center for Environmental Assessment, Office of Research and Development, US EPA, Research Triangle Park, NC
| | - Michael P. Waalkes
- National Toxicology Program, National Institute of Environmental Health Sciences and Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, Research Triangle Park, NC
| |
Collapse
|
15
|
Kitchin KT, Conolly R. Arsenic-induced carcinogenesis--oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment. Chem Res Toxicol 2010; 23:327-35. [PMID: 20035570 DOI: 10.1021/tx900343d] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exposure to inorganic arsenic (iAs) induces cancer in human lungs, urinary bladder, skin, kidney, and liver, with the majority of deaths from lung and bladder cancer. To date, cancer risk assessments for iAs have not relied on mechanistic data, as we have lacked sufficient understanding of arsenic's pharmacokinetics and mode(s) of carcinogenic action (MOA). Furthermore, while there are vast amounts of toxicological data on iAs, relatively little of it has been collected using experimental designs that efficiently support development of biologically based dose-response (BBDR) models and subsequently risk assessment. This review outlines an efficient approach to the development of a BBDR model for iAs that would reduce uncertainties in its cancer risk assessment. This BBDR-based approach is illustrated by using oxidative stress as the carcinogenic MOA for iAs but would be generically applicable to other MOAs. Six major research needs that will facilitate BBDR model development for arsenic-induced cancer are (1) MOA research, which is needed to reduce the uncertainty in risk assessment; (2) development and integration of the pharmacodynamic component (MOA) of the BBDR model; (3) dose-response and extrapolation model selection; (4) the determination of internal human speciated arsenical concentrations to improve physiologically based pharmacokinetic (PBPK) models; (5) animal models of arsenic carcinogenesis; and (6) the determination of the low dose human relationship for death from cancer, particularly in lungs and urinary bladder. The major parts of the BBDR model are arsenic exposure, a physiologically based pharmacokinetic model, reactive species, antioxidant defenses, oxidative stress, cytotoxicity, growth factors, transcription factors, DNA damage, chromosome damage, cell proliferation, mutation accumulation, and cancer. The BBDR model will need to be developed concurrently with data collection so that model uncertainties can be identified and addressed through an iterative process of targeted additional research.
Collapse
Affiliation(s)
- Kirk T Kitchin
- Mail Drop B143-06, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | |
Collapse
|
16
|
Delker DA, Geter DR, Roop BC, Ward WO, Ahlborn GJ, Allen JW, Nelson GM, Ouyang M, Welsh W, Chen Y, O'Brien T, Kitchin KT. Oncogene expression profiles in K6/ODC mouse skin and papillomas following a chronic exposure to monomethylarsonous acid. J Biochem Mol Toxicol 2010; 23:406-18. [PMID: 20024957 DOI: 10.1002/jbt.20304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously observed that a chronic drinking water exposure to monomethylarsonous acid [MMA(III)], a cellular metabolite of inorganic arsenic, increases tumor frequency in the skin of keratin VI/ornithine decarboxylase (K6/ODC) transgenic mice. To characterize gene expression profiles predictive of MMA(III) exposure and mode of action of carcinogenesis, skin and papilloma RNA was isolated from K6/ODC mice administered 0, 10, 50, and 100 ppm MMA(III) in their drinking water for 26 weeks. Following RNA processing, the resulting cRNA samples were hybridized to Affymetrix Mouse Genome 430A 2.0 GeneChips(R). Micoarray data were normalized using MAS 5.0 software, and statistically significant genes were determined using a regularized t-test. Significant changes in bZIP transcription factors, MAP kinase signaling, chromatin remodeling, and lipid metabolism gene transcripts were observed following MMA(III) exposure as determined using the Database for Annotation, Visualization and Integrated Discovery 2.1 (DAVID) (Dennis et al., Genome Biol 2003;4(5):P3). MMA(III) also caused dose-dependent changes in multiple Rho guanine nucleotide triphosphatase (GTPase) and cell cycle related genes as determined by linear regression analyses. Observed increases in transcript abundance of Fosl1, Myc, and Rac1 oncogenes in mouse skin support previous reports on the inducibility of these oncogenes in response to arsenic and support the relevance of these genomic changes in skin tumor induction in the K6/ODC mouse model.
Collapse
Affiliation(s)
- Don A Delker
- National Health and Environmental Effects Research Laboratory, Office of Research and Development Environmental Carcinogenesis Division, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rounbehler RJ, Li W, Hall MA, Yang C, Fallahi M, Cleveland JL. Targeting ornithine decarboxylase impairs development of MYCN-amplified neuroblastoma. Cancer Res 2009; 69:547-53. [PMID: 19147568 PMCID: PMC2749594 DOI: 10.1158/0008-5472.can-08-2968] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroblastoma is a pediatric malignancy that arises from the neural crest, and patients with high-risk neuroblastoma, which typically harbor amplifications of MYCN, have an extremely poor prognosis. The tyrosine hydroxylase (TH) promoter-driven TH-MYCN transgenic mouse model faithfully recapitulates many hallmarks of human MYCN-amplified neuroblastoma. A key downstream target of Myc oncoproteins in tumorigenesis is ornithine decarboxylase (Odc), the rate-limiting enzyme of polyamine biosynthesis. Indeed, sustained treatment with the Odc suicide inhibitor alpha-difluoromethylornithine (DFMO) or Odc heterozygosity markedly impairs lymphoma development in Emicro-Myc transgenic mice, and these effects are linked to the induction of the cyclin-dependent kinase (Cdk) inhibitor p27(Kip1), which is normally repressed by Myc. Here, we report that DFMO treatment, but not Odc heterozygosity, impairs MYCN-induced neuroblastoma and that, in this malignancy, transient DFMO treatment is sufficient to confer protection. The selective anticancer effects of DFMO on mouse and human MYCN-amplified neuroblastoma also rely on its ability to disable the proliferative response of Myc, yet in this tumor context, DFMO targets the expression of the p21(Cip1) Cdk inhibitor, which is also suppressed by Myc oncoproteins. These findings suggest that agents, such as DFMO, that target the polyamine pathway may show efficacy in high-risk, MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Robert J Rounbehler
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA
| | | | | | | | | | | |
Collapse
|
18
|
Ahlborn GJ, Nelson GM, Ward WO, Knapp G, Allen JW, Ouyang M, Roop BC, Chen Y, O'Brien T, Kitchin KT, Delker DA. Dose response evaluation of gene expression profiles in the skin of K6/ODC mice exposed to sodium arsenite. Toxicol Appl Pharmacol 2008; 227:400-16. [DOI: 10.1016/j.taap.2007.10.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/02/2007] [Accepted: 10/29/2007] [Indexed: 12/13/2022]
|
19
|
Miller TJ, Honchel R, Espandiari P, Knapton A, Zhang J, Sistare FD, Hanig JP. The utility of the K6/ODC transgenic mouse as an alternative short term dermal model for carcinogenicity testing of pharmaceuticals. Regul Toxicol Pharmacol 2007; 50:87-97. [PMID: 18069108 DOI: 10.1016/j.yrtph.2007.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 10/16/2007] [Accepted: 10/17/2007] [Indexed: 11/19/2022]
Abstract
The use of transgenic rodents may overcome many limitations of traditional cancer studies. Regulatory perspectives continue to evolve as new models are developed and validated. The transgenic mouse, K6/ODC, develops epidermal tumors when exposed to genotoxic carcinogens. In this study, K6/ODC mice were evaluated for model fitness and health robustness in a 36-week study to determine oncogenic risk of residual DNA in vaccines from neoplastic cell substrates. K6/ODC and C57BL/6 mice were treated with T24-H-ras expression plasmid, carrier vector DNA, or saline topically or by subcutaneous injection. One group of K6/ODC mice received 7,12-dimethylbenz-[a]anthracene [DMBA] dermally. Only DMBA-treated mice developed papillomas by six weeks, increasing in incidence to 25 weeks. By week 11, many K6/ODC mice showed severe dehydration and dermal eczema. By week 32, (6/8) surviving K6/ODC mice showed loss of mobility and balance. Microscopic evaluation of tissues revealed dermal/sebaceous gland hyperplasia, follicular dystrophy, splenic atrophy, and amyloid deposition/neutrophilic infiltration within liver, heart, and spleen, in all K6/ODC mice. Pathology was not detected in C57BL/6 mice. Progressive adverse health, decreased survival, and failure to develop papillomas to the H-ras plasmid suggest that K6/ODC mice may be an inappropriate alternative model for detection of oncogenic DNA and pharmaceutical carcinogenicity testing.
Collapse
Affiliation(s)
- T J Miller
- Division of Applied Pharmacology Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Gilmour SK. Polyamines and nonmelanoma skin cancer. Toxicol Appl Pharmacol 2007; 224:249-56. [PMID: 17234230 PMCID: PMC2098876 DOI: 10.1016/j.taap.2006.11.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/15/2006] [Accepted: 11/16/2006] [Indexed: 12/31/2022]
Abstract
Elevated levels of polyamines have long been associated with skin tumorigenesis. Tightly regulated metabolism of polyamines is critical for cell survival and normal skin homeostasis, and these controls are dysregulated in skin tumorigenesis. A key enzyme in polyamine biosynthesis, ornithine decarboxylase (ODC) is upregulated in skin tumors compared to normal skin. Use of transgenic mouse models has demonstrated that polyamines play an essential role in the early promotional phase of skin tumorigenesis. The formation of skin tumors in these transgenic mice is dependent upon polyamine biosynthesis, especially putrescine, since treatment with inhibitors of ODC activity blocks the formation of skin tumors and causes the rapid regression of existing tumors. Although the mechanism by which polyamines promote skin tumorigenesis are not well understood, elevated levels of polyamines have been shown to stimulate epidermal proliferation, alter keratinocyte differentiation status, increase neovascularization, and increase synthesis of extracellular matrix proteins in a manner similar to that seen in wound healing. It is becoming increasingly apparent that elevated polyamine levels activate not only epidermal cells but also underlying stromal cells in the skin to promote the development and progression of skin tumors. The inhibition of polyamine biosynthesis has potential to be an effective chemoprevention strategy for nonmelanoma skin cancer.
Collapse
Affiliation(s)
- Susan K Gilmour
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA.
| |
Collapse
|
21
|
Folate deficiency enhances arsenic effects on expression of genes involved in epidermal differentiation in transgenic K6/ODC mouse skin. Toxicology 2007; 241:134-45. [DOI: 10.1016/j.tox.2007.08.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 08/23/2007] [Accepted: 08/27/2007] [Indexed: 11/24/2022]
|
22
|
Casero RA, Marton LJ. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 2007; 6:373-90. [PMID: 17464296 DOI: 10.1038/nrd2243] [Citation(s) in RCA: 588] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The polyamines spermidine and spermine and their diamine precursor putrescine are naturally occurring, polycationic alkylamines that are essential for eukaryotic cell growth. The requirement for and the metabolism of polyamines are frequently dysregulated in cancer and other hyperproliferative diseases, thus making polyamine function and metabolism attractive targets for therapeutic intervention. Recent advances in our understanding of polyamine function, metabolic regulation, and differences between normal cells and tumour cells with respect to polyamine biology, have reinforced the interest in this target-rich pathway for drug development.
Collapse
Affiliation(s)
- Robert A Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.
| | | |
Collapse
|
23
|
Soffritti M, Belpoggi F, Degli Esposti D, Lambertini L. Results of a long-term carcinogenicity bioassay on Sprague-Dawley rats exposed to sodium arsenite administered in drinking water. Ann N Y Acad Sci 2006; 1076:578-91. [PMID: 17119234 DOI: 10.1196/annals.1371.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Arsenic (As) is a metal found in nature whose acute and chronic toxic effects have been known for decades. Hundreds of millions of people are at risk of exposure to As and its various chemical forms which can occur in the occupational and general environment in air, water, soil, food, and medicines. Several epidemiological studies have shown that prolonged exposure to As can induce various types of malignant tumors in humans, namely, skin, lung, liver, kidney, and bladder cancers. These effects have been observed particularly in geographic areas where people are exposed to well water with high concentrations of As. While the risks of As at high concentrations are well documented, there is still a great deal of uncertainty regarding the risk of exposure to As at very low levels. This uncertainty is due to the absence of adequate epidemiological data and the insufficiency of experimental data currently available. Given the limited evidence demonstrating the carcinogenic potential of As in animals, a long-term carcinogenicity bioassay on sodium arsenite (NaAsO(2)) was performed at the Cesare Maltoni Cancer Research Center (CMCRC) of the European Ramazzini Foundation (ERF). NaAsO(2) was administrated with drinking water at concentrations of 200, 100, 50, or 0 mg/L, for 104 weeks to Sprague-Dawley rats (50/sex/group), 8 weeks old at the start of the study. The animals were monitored until spontaneous death at which time each animal underwent complete necropsy. Histopathological evaluation of all pathological lesions and of all organs and tissues collected was routinely performed on each animal. The results demonstrate that in our experimental conditions NaAsO(2) induces sparse benign and malignant tumors among treated rats. The types of tumors observed are infrequent in the strain of Sprague-Dawley rats of the colony used in our laboratory, namely, lung adenomas and carcinomas, kidney adenomas/papillomas and carcinomas, and bladder carcinomas. Notably, an elevated incidence of these types of oncological lesions is also observed among people living in geographical areas where As is present at higher concentrations in drinking water.
Collapse
Affiliation(s)
- Morando Soffritti
- Cesare Maltoni Cancer Research Center, European Foundation of Oncology and Environmental Sciences B. Ramazzini, 40010 Bentivoglio, Bologna, Italy.
| | | | | | | |
Collapse
|
24
|
Hughes MF. Biomarkers of exposure: a case study with inorganic arsenic. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1790-6. [PMID: 17107869 PMCID: PMC1665401 DOI: 10.1289/ehp.9058] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The environmental contaminant inorganic arsenic (iAs) is a human toxicant and carcinogen. Most mammals metabolize iAs by reducing it to trivalency, followed by oxidative methylation to pentavalency. iAs and its methylated metabolites are primarily excreted in urine within 4-5 days by most species and have a relatively low rate of bioaccumulation. Intra- and interindividual differences in the methylation of iAs may affect the adverse health effects of arsenic. Both inorganic and organic trivalent arsenicals are more potent toxicants than pentavalent forms. Several mechanisms of action have been proposed for arsenic-induced toxicity, but a scientific consensus has not been achieved. Biomarkers of exposure may be used to quantify exposure to iAs. The most common biomarker of exposure for iAs is the measurement of total urinary arsenic. However, consumption of seafood containing high concentrations of organic arsenic can confound estimation of iAs exposure. Because these organic species are thought to be relatively nontoxic, their presence in urine may not represent increased risk. Speciation of urinary arsenic into inorganic and organic forms, and even oxidation state, gives a more definitive indication of the exposure to iAs. Questions still remain, however, as to how reliably the measurement of urinary arsenic, either total or speciated, may predict arsenic concentrations at target tissues as well as how this measurement could be used to assess chronic exposures to iAs.
Collapse
Affiliation(s)
- Michael F Hughes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| |
Collapse
|
25
|
Wang YH, Chen YH, Wu TN, Lin YJ, Tsai HJ. A keratin 18 transgenic zebrafish Tg(k18(2.9):RFP) treated with inorganic arsenite reveals visible overproliferation of epithelial cells. Toxicol Lett 2006; 163:191-7. [PMID: 16376500 DOI: 10.1016/j.toxlet.2005.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 10/25/2005] [Accepted: 10/25/2005] [Indexed: 01/15/2023]
Abstract
Inorganic arsenic has strong human carcinogenic potential, but the availability of an animal model to study toxicity is extremely limited. Here, we used the transgenic zebrafish line Tg(k18(2.9):RFP) as an animal model to study arsenite toxicity. This line was chosen because the red fluorescent protein (RFP) is expressed in stratified epithelia (including skin), due to the RFP reporter driven by the promoter of the zebrafish keratin 18 gene. We titrated doses of inorganic arsenite for zebrafish embryos and found that arsenite exposure at 50 microM for 120 h was suitable for mimicking a long-term, chronic effect. When embryos derived from Tg(k18(2.9):RFP) adults were treated with this arsenite dose and time of exposure, abnormal phenotypes were not noticeable under the light microscope. However, arsenic keratosis was visible in the epithelial cells under the fluorescent microscope. Morphological defects became more severe with increased dose and exposure duration, suggesting that the severity of skin lesions was dose- and time-dependent. Histochemical examination of keratosis after 4',6'-diamidino-2-phenylindole hydrochloride (DAPI) staining showed that the epithelial cells overproliferated after treatment with arsenite. Therefore, this Tg(k18(2.9):RFP) zebrafish line is an excellent model for studying toxicity induced by inorganic arsenite and may have potential for studying other environmental pollutants.
Collapse
Affiliation(s)
- Yun-Hsin Wang
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | | | | | | | | |
Collapse
|
26
|
Waalkes MP, Liu J, Ward JM, Diwan BA. Enhanced urinary bladder and liver carcinogenesis in male CD1 mice exposed to transplacental inorganic arsenic and postnatal diethylstilbestrol or tamoxifen. Toxicol Appl Pharmacol 2006; 215:295-305. [PMID: 16712894 DOI: 10.1016/j.taap.2006.03.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 03/17/2006] [Accepted: 03/19/2006] [Indexed: 11/27/2022]
Abstract
Pregnant CD1 mice received 85 ppm arsenite in the drinking water from gestation day 8 to 18, groups (n = 35) of male offspring were subsequently injected on postpartum days 1 through 5 with diethylstilbestrol (DES; 2 microg/pup/day) or tamoxifen (TAM; 10 microg/pup/day), and tumor formation was assessed over 90 weeks. Arsenic alone increased hepatocellular carcinoma (14%), adenoma (23%) and total tumors (31%) compared to control (0, 2 and 2%, respectively). Arsenic alone also increased lung adenocarcinoma, adrenal cortical adenoma and renal cystic tubular hyperplasia compared to control. Compared to arsenic alone, arsenic plus DES increased liver tumor incidence in mice at risk 2.2-fold and increased liver tumor multiplicity (tumors/liver) 1.8-fold. The treatments alone did not impact urinary bladder carcinogenesis, but arsenic plus TAM significantly increased formation of urinary bladder transitional cell tumors (papilloma and carcinoma; 13%) compared to control (0%). Urinary bladder proliferative lesions (combined tumors and hyperplasia) were also increased by arsenic plus TAM (40%) or arsenic plus DES (43%) compared to control (0%) or the treatments alone. Urinary bladder proliferative lesions occurred in the absence of any evidence of uroepithelial cytotoxic lesions. Urinary bladder lesions and hepatocellular carcinoma induced by arsenic plus TAM and/or DES overexpressed estrogen receptor-alpha, indicating that aberrant estrogen signaling may have been a factor in the enhanced carcinogenic response. Thus, in male CD1 mice, gestational arsenic exposure alone induced liver adenoma and carcinoma, lung adenocarcinoma, adrenal adenoma and renal cystic hyperplasia. Furthermore, DES enhanced transplacental arsenic-induced hepatocarcinogenesis. In utero arsenic also initiated urinary bladder tumor formation when followed by postnatal TAM and uroepithelial proliferative lesions when followed by TAM or DES.
Collapse
Affiliation(s)
- Michael P Waalkes
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
27
|
Young L, Salomon R, Au W, Allan C, Russell P, Dong Q. Ornithine decarboxylase (ODC) expression pattern in human prostate tissues and ODC transgenic mice. J Histochem Cytochem 2005; 54:223-9. [PMID: 16234506 DOI: 10.1369/jhc.5a6672.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ornithine decarboxylase (ODC) is the key enzyme in the polyamine synthesis pathway and is overexpressed in a variety of cancers. We have performed a detailed immunostaining analysis of the expression of ODC in normal, benign prostatic hyperplasia (BPH), and cancerous prostate tissues. We conclude that ODC is overexpressed in both BPH and neoplastic tissues and that ODC overexpression appears to be an early event in prostate carcinogenesis. The extent of overexpression decreases as cancer progresses. Interestingly, ODC overexpression was also detected in patients who underwent androgen ablation therapy, suggesting ODC overexpression may contribute to the androgen-independent survival of prostate cancer cells. ODC is perinuclear localized in BPH samples but is diffusely cytoplasmic in cancer samples. Having shown ODC overexpression in human prostate cancer, we developed prostate-specific ODC transgenic mice to further investigate whether ODC overexpression alone is a causal factor in prostate carcinogenesis. RT-PCR and immunostaining confirmed that ODC was overexpressed in a subset of prostate epithelial cells. Although minor nucleoli enlargements in some tissues were detected, gross morphological changes were not observed in transgenic prostates. Therefore, overexpression of ODC alone in this subset of prostate epithelial cells is not sufficient to induce prostate carcinogenesis.
Collapse
Affiliation(s)
- Lei Young
- Blackburn Bld. D06, Western Ave., University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
28
|
Bennion BJ, Cosman M, Lightstone FC, Knize MG, Montgomery JL, Bennett LM, Felton JS, Kulp KS. PhIP Carcinogenicity in Breast Cancer: Computational and Experimental Evidence for Competitive Interactions with Human Estrogen Receptor. Chem Res Toxicol 2005; 18:1528-36. [PMID: 16533016 DOI: 10.1021/tx0501031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many carcinogens have been shown to cause tissue specific tumors in animal models. The mechanism for this specificity has not been fully elucidated and is usually attributed to differences in organ metabolism. For heterocyclic amines, potent carcinogens that are formed in well-done meat, the ability to either bind to the estrogen receptor and activate or inhibit an estrogenic response will have a major impact on carcinogenicity. Here, we describe our work with the human estrogen receptor alpha (ERalpha), the mutagenic/carcinogenic heterocyclic amines PhIP, MeIQx, and IFP, and the hydroxylated metabolite of PhIP, N2-hydroxy-PhIP. We demonstrate both by computational docking and NMR analysis that PhIP binds with the ligand binding domain (LBD). This binding competes with estradiol (E2) in the native E2 binding cavity of the receptor. In vitro assays show that PhIP, in contrast to the other heterocyclic amines, increases cell proliferation in MCF-7 human breast cancer cells and activates the ERalpha receptor. We also find that other heterocyclic amines and N2-hydroxy-PhIP inhibit ERalpha activation. We propose that the mechanism for the tissue-specific carcinogenicity seen in the rat breast tumors and the presumptive human breast cancer associated with the consumption of well-done meat maybe mediated by this receptor activation.
Collapse
Affiliation(s)
- Brian J Bennion
- Biosciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wanibuchi H, Salim EI, Kinoshita A, Shen J, Wei M, Morimura K, Yoshida K, Kuroda K, Endo G, Fukushima S. Understanding arsenic carcinogenicity by the use of animal models. Toxicol Appl Pharmacol 2004; 198:366-76. [PMID: 15276416 DOI: 10.1016/j.taap.2003.10.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 10/08/2003] [Indexed: 12/22/2022]
Abstract
Although numerous epidemiological studies have indicated that human arsenic exposure is associated with increased incidences of bladder, liver, skin, and lung cancers, limited attempts have been made to understand mechanisms of carcinogenicity using animal models. Dimethylarsinic acid (DMA), an organic arsenic compound, is a major metabolite of ingested inorganic arsenics in mammals. Recent in vitro studies have proven DMA to be a potent clastogenic agent, capable of inducing DNA damage including double strand breaks and cross-link formation. In our attempts to clarify DMA carcinogenicity, we have recently shown carcinogenic effects of DMA and its related metabolites using various experimental protocols in rats and mice: (1) a multi-organ promotion bioassay in rats; (2) a two-stage promotion bioassay by DMA of rat urinary bladder and liver carcinogenesis; (3) a 2-year carcinogenicity test of DMA in rats; (4) studies on the effects of DMA on lung carcinogenesis in rats; (5) promotion of skin carcinogenesis by DMA in keratin (K6)/ornithine decarboxylase (ODC) transgenic mice; (6) carcinogenicity of DMA in p53(+/-) knockout and Mmh/8-OXOG-DNA glycolase (OGG1) mutant mice; (7) promoting effects of DMA and related organic arsenicals in rat liver; (8) promoting effects of DMA and related organic arsenicals in a rat multi-organ carcinogenesis test; and (9) 2-year carcinogenicity tests of monomethylarsonic acid (MMA) and trimethylarsine oxide (TMAO) in rats. The results revealed that the adverse effects of arsenic occurred either by promoting and initiating carcinogenesis. These data, as covered in the present review, suggest that several mechanisms may be involved in arsenic carcinogenesis.
Collapse
Affiliation(s)
- Hideki Wanibuchi
- Department of Pathology, Osaka City University Medical School, Osaka 545-8585, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Waalkes MP, Liu J, Ward JM, Diwan BA. Mechanisms underlying arsenic carcinogenesis: hypersensitivity of mice exposed to inorganic arsenic during gestation. Toxicology 2004; 198:31-8. [PMID: 15138027 DOI: 10.1016/j.tox.2004.01.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inorganic arsenic is an important human carcinogen of unknown etiology. Defining carcinogenic mechanisms is critical to assessing the human health hazard of arsenic exposure but requires appropriate model systems. It has proven difficult to induced tumors in animals with inorganic arsenic alone. Several groups have studied the carcinogenic potential of inorganic arsenic in rodents, finding it to act as co-promoter or co-carcinogen, but not as a complete carcinogen. As gestation is a time of high sensitivity to chemical carcinogenesis, we performed two in utero exposure studies with inorganic arsenic. In the first study, pregnant mice received drinking water containing sodium arsenite at 0 (control), 42.5 and 85 ppm arsenic from gestation day 8 to 18, and the offspring were observed for up to 90 weeks. As adults, male offspring developed hepatocellular carcinoma (HCC) and adrenal tumors after in utero arsenite exposure. Although liver tumors were not induced by arsenic in female offspring, they did develop lung carcinoma, ovarian tumors, and uterine and oviduct preneoplasia. In a second study, the same doses of arsenic were used and the skin tumor promoting phorbol ester, TPA, was applied to the skin after birth in an effort to promote skin tumors potentially initiated by arsenic in utero. TPA did not promote dermal tumors after in utero arsenite exposure. Otherwise, results from the second chronic study largely duplicated the first and, irrespective of additional TPA exposure, arsenic exposure in utero induced HCC and adrenal tumors in males and ovarian tumors in females. In addition, combined arsenic and TPA induced a significant increase in hepatocellular tumors in female offspring, although arsenic alone was not effective. Thus, in utero inorganic arsenic exposure can act as a complete carcinogen in mice, with brief exposures consistently inducing tumors at several sites. In addition, it appears gestational arsenic can act as a tumor initiator in the female mouse liver, inducing liver lesions that can be promoted by TPA.
Collapse
Affiliation(s)
- Michael P Waalkes
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, 111 Alexander Drive, P.O. Box 12233, MD F0-09, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
31
|
Chen Y, Hu J, Boorman D, Klein-Szanto A, O'Brien TG. Therapy of murine squamous cell carcinomas with 2-difluoromethylornithine. J Carcinog 2004; 3:10. [PMID: 15175104 PMCID: PMC436064 DOI: 10.1186/1477-3163-3-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 06/02/2004] [Indexed: 11/23/2022] Open
Abstract
Targeted overexpression of an ornithine decarboxylase (ODC) transgene to mouse skin (the K6/ODC mouse) significantly enhances susceptibility to carcinogenesis. While in most strain backgrounds the predominant tumor type resulting from initiation-promotion protocols is benign squamous papilloma, K6/ODC mice on a FVB/N background develop malignant squamous cell carcinomas (SCCs) rapidly and in high multiplicity after carcinogen treatment. We have investigated the utility of polyamine-based therapy against SCCs in this model using the ODC inhibitor 2-difluoromethylornithine delivered orally. At a 2% concentration in drinking water, DFMO caused rapid tumor regression, but in most cases, tumors eventually regrew rapidly even in the presence of DFMO. The tumors that regrew were spindle cell carcinomas, an aggressive undifferentiated variant of SCC. At 1% DFMO in the drinking water, tumors also responded rapidly, but tumor regrowth did not occur. The majority of DFMO-treated SCCs were classified as complete responses, and in some cases, apparent tumor cures were achieved. The enzymatic activity of ODC, the target of DFMO, was substantially reduced after treatment with 1% DFMO and the high SCC polyamine levels, especially putrescine, were also significantly lowered. Based on the results of BrdUrd labeling and TUNEL assays, the effect of DFMO on SCC growth was accompanied by a significant reduction in tumor proliferation with no increase in the apoptotic index. These results demonstrate that SCCs, at least in the mouse, are particularly sensitive to polyamine-based therapy.
Collapse
Affiliation(s)
- Yan Chen
- Lankenau Institute for Medical Research 100 Lancaster Avenue, Wynnewood, PA 19096, USA
| | - Juncai Hu
- Lankenau Institute for Medical Research 100 Lancaster Avenue, Wynnewood, PA 19096, USA
| | - David Boorman
- Lankenau Institute for Medical Research 100 Lancaster Avenue, Wynnewood, PA 19096, USA
| | | | - Thomas G O'Brien
- Lankenau Institute for Medical Research 100 Lancaster Avenue, Wynnewood, PA 19096, USA
| |
Collapse
|
32
|
Visvanathan K, Helzlsouer KJ, Boorman DW, Strickland PT, Hoffman SC, Comstock GW, O'Brien TG, Guo Y. Association Among an Ornithine Decarboxylase Polymorphism, Androgen Receptor Gene (CAG) Repeat Length and Prostate Cancer Risk. J Urol 2004; 171:652-5. [PMID: 14713779 DOI: 10.1097/01.ju.0000108384.74718.73] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE A single nucleotide substitution of guanine to adenine (A) at base +316 in the ornithine decarboxylase (ODC) gene may be associated with greater ODC expression and increased tumor growth. ODC is induced by androgens in human prostatic epithelial cells, presumably via transcriptional activation of androgen receptor (AR) and also by nicotine. A nested case-control study was done to examine the association between this ODC genotype and prostate cancer risk, and whether it varies by AR gene CAG repeat length and smoking. MATERIALS AND METHODS A total of 164 cases were matched to 2 controls each from a community based cohort. ODC and AR genotyping was performed using a TaqMan (PE Applied Biosystems, Foster City, California) based assay and automated fragment analysis, respectively. Conditional logistic regression was used to estimate the OR and 95% CI. RESULTS The presence of the ODC A allele was not significantly associated with an increased risk of prostate cancer (OR 1.33, 95% CI 0.90 to 1.96). However, men who inherited at least 1 ODC A alleles and less than 22 AR CAG repeats were at twice the risk of prostate cancer compared with those with 2 guanine alleles and 22 or greater AR CAG repeats (OR 2.09, 95% CI 1.23 to 3.57). Smoking was associated with prostate cancer only in men carrying a least 1 ODC A allele (p interaction = 0.02). CONCLUSIONS The ODC A allele was not associated with a statistically significant increased risk of prostate cancer. However, this association may vary according to the number of CAG repeats in the AR receptor and smoking status.
Collapse
Affiliation(s)
- Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ahmad S, Kitchin KT, Cullen WR. Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin. Toxicol Lett 2002; 133:47-57. [PMID: 12076509 DOI: 10.1016/s0378-4274(02)00079-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. With ascorbic acid the rate of iron release from HLF by DMA(V) was intermediate (3.37 nM/min, P<0.05) and by DMA(III) was much higher (16.3 nM/min, P<0.001). No pBR322 plasmid DNA damage was observed from in vitro exposure to arsenate (iAs(V)), arsenite (iAs(III)), monomethylarsonic acid (MMA(V)), monomethylarsonous acid (MMA(III)) or DMA(V) alone. DNA damage was observed following DMA(III) exposure; coexposure to DMA(III) and HLF caused more DNA damage; considerably higher amounts of DNA damage was caused by coexposure of DMA(III), HLF and ascorbic acid. Diethylenetriaminepentaacetic acid (an iron chelator), significantly inhibited DNA damage. Addition of catalase (which can increase Fe(2+) concentrations) further increased the plasmid DNA damage. Iron-dependent DNA damage could be a mechanism of action of human arsenic carcinogenesis.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- Mercer University School of Medicine, Division of Basic Medical Sciences, 1550 College Street,, Macon, GA 31207, USA
| | | | | |
Collapse
|
34
|
Abstract
As inorganic arsenic is a proven human carcinogen, significant effort has been made in recent decades in an attempt to understand arsenic carcinogenesis using animal models, including rodents (rats and mice) and larger mammals such as beagles and monkeys. Transgenic animals were also used to test the carcinogenic effect of arsenicals, but until recently all models had failed to mimic satisfactorily the actual mechanism of arsenic carcinogenicity. However, within the past decade successful animal models have been developed using the most common strains of mice or rats. Thus dimethylarsinic acid (DMA), an organic arsenic compound which is the major metabolite of inorganic arsenicals in mammals, has been proven to be tumorigenic in such animals. Reports of successful cancer induction in animals by inorganic arsenic (arsenite and arsenate) have been rare, and most carcinogenetic studies have used organic arsenicals such as DMA combined with other tumor initiators. Although such experiments used high concentrations of arsenicals for the promotion of tumors, animal models using doses of arsenicals species closed to the exposure level of humans in endemic areas are obviously the most significant. Almost all researchers have used drinking water or food as the pathway for the development of animal model test systems in order to mimic chronic arsenic poisoning in humans; such pathways seem more likely to achieve desirable results.
Collapse
Affiliation(s)
- Jian Ping Wang
- National Research Center for Environmental Toxicology, University of Queensland, 39 Kessels Road, Coopers Plains, Brisbane, Qld 4108, Australia
| | | | | | | |
Collapse
|
35
|
Abstract
Exposure to the metalloid arsenic is a daily occurrence because of its environmental pervasiveness. Arsenic, which is found in several different chemical forms and oxidation states, causes acute and chronic adverse health effects, including cancer. The metabolism of arsenic has an important role in its toxicity. The metabolism involves reduction to a trivalent state and oxidative methylation to a pentavalent state. The trivalent arsenicals, including those methylated, have more potent toxic properties than the pentavalent arsenicals. The exact mechanism of the action of arsenic is not known, but several hypotheses have been proposed. At a biochemical level, inorganic arsenic in the pentavalent state may replace phosphate in several reactions. In the trivalent state, inorganic and organic (methylated) arsenic may react with critical thiols in proteins and inhibit their activity. Regarding cancer, potential mechanisms include genotoxicity, altered DNA methylation, oxidative stress, altered cell proliferation, co-carcinogenesis, and tumor promotion. A better understanding of the mechanism(s) of action of arsenic will make a more confident determination of the risks associated with exposure to this chemical.
Collapse
Affiliation(s)
- Michael F Hughes
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, MD-74, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
36
|
Peng B, Sharma R, Mass MJ, Kligerman AD. Induction of genotoxic damage is not correlated with the ability to methylate arsenite in vitro in the leukocytes of four mammalian species. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2002; 39:323-332. [PMID: 12112384 DOI: 10.1002/em.10080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Arsenic is a natural drinking water contaminant that impacts the health of large populations of people throughout the world; however, the mode or mechanism by which arsenic induces cancer is unclear. In a series of in vitro studies, we exposed leukocytes from humans, mice, rats, and guinea pigs to a range of sodium arsenite concentrations to determine whether the lymphocytes from these species showed differential sensitivity to the induction of micronuclei (MN) assessed in cytochalasin B-induced binucleate cells. We also determined the capacity of the leukocytes to methylate arsenic by measuring the production of MMA [monomethylarsinic acid (MMA(V)) and monomethylarsonous acid (MMA(III))] and DMA [dimethylarsinic acid (DMA(V)) and dimethylarsonous acid (DMA(III))]. The results indicate that cells treated for 2 hr at the G(0) stage of the cell cycle with sodium arsenite showed only very small to negligible increases in MN after mitogenic stimulation. Treatment of actively cycling cells produced induction of MN with increasing arsenite concentration, with the human, rat, and mouse lymphocytes being much more sensitive to MN induction than those of the guinea pig. These data gave an excellent fit to a linear model. The leukocytes of all four species, including the guinea pig (a species previously thought not to methylate arsenic), were able to methylate arsenic, but there was no clear correlation between the ability to methylate arsenic and the induction of MN.
Collapse
Affiliation(s)
- B Peng
- Environmental Carcinogenesis Division MD-68, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | | | | | |
Collapse
|
37
|
Sistare FD, Thompson KL, Honchel R, DeGeorge J. Evaluation of the Tg.AC transgenic mouse assay for testing the human carcinogenic potential of pharmaceuticals--practical pointers, mechanistic clues, and new questions. Int J Toxicol 2002; 21:65-79. [PMID: 11936901 DOI: 10.1080/10915810252826028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Transgenic mouse strains with genetic alterations known to play a role in the multistage process of carcinogenesis are being used increasingly as models for evaluating the human carcinogenic potential of chemicals and pharmaceuticals. The Tg.AC transgenic mouse is one of the strains currently being used in such alternative short-term carcinogenicity testing protocols. This review is focused on recent data from studies designed to evaluate this model's ability to discriminate carcinogens from noncarcinogens. Details relating to protocol design that can significantly impact study outcome are described. Data relating to mechanisms of chemical tumor induction in the Tg.AC model are reviewed, and questions have been formulated to encourage research to further guide appropriate future applications of this model.
Collapse
Affiliation(s)
- Frank D Sistare
- Center for Drug Evaluation and Research, Food and Drug Administration, Laurel, Maryland 20708, USA.
| | | | | | | |
Collapse
|
38
|
Wang Y, Devereux W, Woster PM, Casero RA. Cloning and characterization of the mouse polyamine-modulated factor-1 (mPMF-1) gene: an alternatively spliced homologue of the human transcription factor. Biochem J 2001; 359:387-92. [PMID: 11583586 PMCID: PMC1222158 DOI: 10.1042/0264-6021:3590387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The natural polyamines and their analogues have been implicated in transcriptional regulation of specific genes. Human polyamine-modulated factor-1 (hPMF-1) was the first polyamine-responsive transcription factor identified. Here the mouse homologue of the hPMF-1 gene is described. Interestingly, the mouse gene (mPMF-1) codes for two alternatively spliced mRNAs. Both of the mouse splice variants, mPMF-1S and mPMF-1L, possess C-terminal coiled-coil domains nearly identical to that found in hPMF-1 and are highly homologous with the human protein. The C-terminal coiled-coil structure is necessary for transcriptional activation. However, the shorter protein, mPMF-1S, does not contain an N-terminal coiled-coil region as do both hPMF-1 and the longer mPMF-1L. mPMF-1L mRNA codes for a protein of 202 amino acids, 37 amino acids longer than the human protein. By contrast, mPMF-1S codes for only 133 amino acids, as a result of two exons being omitted compared with mPMF-1L. Both mouse transcription factors can interact with Nrf-2 (nuclear factor-E2-related factor 2), the normal partner of hPMF-1, substantiating the importance of the C-terminal coiled-coil region responsible for this interaction. Finally, the expression of mPMF-1 is induced when mouse M1 myeloid leukaemia cells are exposed to polyamine analogues, suggesting control similar to that observed for the hPMF-1.
Collapse
Affiliation(s)
- Y Wang
- The Johns Hopkins Oncology Center, Bunting Blaustein Cancer Research Building, Room 551, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
39
|
Basu A, Mahata J, Gupta S, Giri AK. Genetic toxicology of a paradoxical human carcinogen, arsenic: a review. Mutat Res 2001; 488:171-94. [PMID: 11344043 DOI: 10.1016/s1383-5742(01)00056-4] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Arsenic is widely distributed in nature in air, water and soil in the form of either metalloids or chemical compounds. It is used commercially, as pesticide, wood preservative, in the manufacture of glass, paper and semiconductors. Epidemiological and clinical studies indicate that arsenic is a paradoxical human carcinogen that does not easily induce cancer in animal models. It is one of the toxic compounds known in the environment. Intermittent incidents of arsenic contamination in ground water have been reported from several parts of the world. Arsenic containing drinking water has been associated with a variety of skin and internal organ cancers. The wide human exposure to this compound through drinking water throughout the world causes great concern for human health. In the present review, we have attempted to evaluate and update the mutagenic and genotoxic effects of arsenic and its compounds based on available literature.
Collapse
Affiliation(s)
- A Basu
- Division of Human Genetics and Genomics, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Calcutta 700032, India
| | | | | | | |
Collapse
|
40
|
Kitchin KT. Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol 2001; 172:249-61. [PMID: 11312654 DOI: 10.1006/taap.2001.9157] [Citation(s) in RCA: 492] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in our knowledge of arsenic carcinogenesis include the development of rat or mouse models for all human organs in which inorganic arsenic is known to cause cancer-skin, lung, urinary bladder, liver, and kidney. Tumors can be produced from either promotion of carcinogenesis protocols (mouse skin and lungs, rat bladder, kidney, liver, and thyroid) or from complete carcinogenesis protocols (rat bladder and mouse lung). Experiments with p53(+/-) and K6/ODC transgenic mice administered dimethylarsinic acid or arsenite have shown some degree of carcinogenic, cocarcinogenic, or promotional activity in skin or bladder. At present, with the possible exception of skin, the arsenic carcinogenesis models in wild-type animals are more highly developed than in transgenic mice. Recent advances in arsenic metabolism have suggested that methylation of inorganic arsenic may be a toxification, rather than a detoxification, pathway and that trivalent methylated arsenic metabolites, particularly monomethylarsonous acid and dimethylarsinous acid, have a great deal of biological activity. Accumulating evidence indicates that these trivalent, methylated, and relatively less ionizable arsenic metabolites may be unusually capable of interacting with cellular targets such as proteins and even DNA. In risk assessment of environmental arsenic, it is important to know and to utilize both the mode of carcinogenic action and the shape of the dose-response curve at low environmental arsenic concentrations. Although much progress has been recently made in the area of arsenic's possible mode(s) of carcinogenic action, a scientific concensus has not yet been reached. In this review, nine different possible modes of action of arsenic carcinogenesis are presented and discussed-induced chromosomal abnormalities, oxidative stress, altered DNA repair, altered DNA methylation patterns, altered growth factors, enhanced cell proliferation, promotion/progression, gene amplification, and suppression of p53.
Collapse
Affiliation(s)
- K T Kitchin
- Environmental Carcinogenesis Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711, USA
| |
Collapse
|
41
|
Yamanaka K, Mizol M, Kato K, Hasegawa A, Nakano M, Okada S. Oral administration of dimethylarsinic acid, a main metabolite of inorganic arsenic, in mice promotes skin tumorigenesis initiated by dimethylbenz(a)anthracene with or without ultraviolet B as a promoter. Biol Pharm Bull 2001; 24:510-4. [PMID: 11379771 DOI: 10.1248/bpb.24.510] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Concerning arsenic-induced tumorigenesis, an animal model must be developed for understanding the mechanism of human carcinogenesis by arsenics. To determine whether orally administered dimethylarsinic acid (DMA) promotes and causes the progression of skin tumorigenesis, an animal protocol by topical application of dimethylbenz(a)anthracene (DMBA) with or without UVB, a tumor promoter, in hairless mice was used. The administration of DMA by the oral route promoted not only the formation of papillomas induced by DMBA alone but also the formation of malignant tumors induced by way of the formation of atypical keratoses by treatment with DMBA and UVB. A phenomenon, the progression of keratoses-->atypical keratoses-->squamous cell carcinomas (SCCs), observed in the present study may resemble the development of tumors in arsenic-exposed humans. We also discussed the involvement of a reactive oxygen species (ROS), e.g., the dimethylarsenic peroxy radical [(CH3)2AsOO.], produced during the metabolic processing of DMA, in skin and in multi-organ tumorigenesis.
Collapse
Affiliation(s)
- K Yamanaka
- College of Pharmacy, Nihon University, Funabashi, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|