1
|
Kekana MTM, Mosuang TE, Ntsendwana B, Sikhwivhilu LM, Mahladisa MA. Notable synthesis, properties and chemical gas sensing trends on molybdenum disulphides and diselenides two-dimensional nanostructures: A critical review. CHEMOSPHERE 2024; 366:143497. [PMID: 39389376 DOI: 10.1016/j.chemosphere.2024.143497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Evaluation of synthesis methods, notable properties, and chemical gas sensing properties of molybdenum disulphides and diselenides two-dimensional nanosheets is unfold. This is motivated by the fact that the two dichalcogenides have good sensitivity and selectivity to different harmful gases at ambient temperatures. Synthesis methods explored include exceptional top-down and bottom-up approaches, which consider physical and chemical compositional inceptions. Mechanical exfoliation in both molybdenum disulphides and diselenides nanosheets demonstrate good crystalline purity with structural alterations under varying stacking conditions. These chalcogenides exhibit low energy band gaps of ±1.80 eV for MoS2 and ±1.60 eV for MoSe2, which reduces with introduction of impurities. Thus, upon doping with other metal elements, a transformation from either n-type or p-type semiconductors is normally observed, leading to tuneable electronic properties. Thus, different gases such as methane, ethanol, toluene, ammonia, nitrogen oxide have been systematically detected using molybdenum disulphide and diselenide based thin films as sensing platforms. This review highlights structural, electronic and morphological characteristics of the two dichalcogenides which influences the sensitivity and selectivity ability for a couple of gases at ambient temperatures. The strategies for enhancing the selectivity by introducing defects, impurities and interfacing with other composites expanding the choice of these gases wider is also discussed in details. The review also provides overviews of challenges and limitations that open new research avenues to further enriching both chalcogenides as flexible, stable and cost effective state-of-the-art chemical gas sensors.
Collapse
Affiliation(s)
- M T M Kekana
- University of Limpopo, Department of Physics, Private Bag x1106, Sovenga, 0727, South Africa; Advanced Materials Division/MINTEK, Private Bag X3015, Randburg, 2125, Gauteng Province, South Africa
| | - T E Mosuang
- University of Limpopo, Department of Physics, Private Bag x1106, Sovenga, 0727, South Africa.
| | - B Ntsendwana
- Advanced Materials Division/MINTEK, Private Bag X3015, Randburg, 2125, Gauteng Province, South Africa
| | - L M Sikhwivhilu
- Advanced Materials Division/MINTEK, Private Bag X3015, Randburg, 2125, Gauteng Province, South Africa; Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| | - M A Mahladisa
- University of Limpopo, Department of Physics, Private Bag x1106, Sovenga, 0727, South Africa
| |
Collapse
|
2
|
Cho S, Jo H, Hwang YJ, Kim C, Jo YH, Yun JW. Potential impact of underlying diseases influencing ADME in nonclinical safety assessment. Food Chem Toxicol 2024; 188:114636. [PMID: 38582343 DOI: 10.1016/j.fct.2024.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Nonclinical studies involve in vitro, in silico, and in vivo experiments to assess the toxicokinetics, toxicology, and safety pharmacology of drugs according to regulatory requirements by a national or international authority. In this review, we summarize the potential effects of various underlying diseases governing the absorption, distribution, metabolism, and excretion (ADME) of drugs to consider the use of animal models of diseases in nonclinical trials. Obesity models showed alterations in hepatic metabolizing enzymes, transporters, and renal pathophysiology, which increase the risk of drug-induced toxicity. Diabetes models displayed changes in hepatic metabolizing enzymes, transporters, and glomerular filtration rates (GFR), leading to variability in drug responses and susceptibility to toxicity. Animal models of advanced age exhibited impairment of drug metabolism and kidney function, thereby reducing the drug-metabolizing capacity and clearance. Along with changes in hepatic metabolic enzymes, animal models of metabolic syndrome-related hypertension showed renal dysfunction, resulting in a reduced GFR and urinary excretion of drugs. Taken together, underlying diseases can induce dysfunction of organs involved in the ADME of drugs, ultimately affecting toxicity. Therefore, the use of animal models of representative underlying diseases in nonclinical toxicity studies can be considered to improve the predictability of drug side effects before clinical trials.
Collapse
Affiliation(s)
- Sumin Cho
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Harin Jo
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeon Jeong Hwang
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yong Hyeon Jo
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Inai Y, Izawa T, Kamei T, Fujiwara S, Tanaka M, Yamate J, Kuwamura M. Difference in the Mechanism of Iron Overload-Enhanced Acute Hepatotoxicity Induced by Thioacetamide and Carbon Tetrachloride in Rats. Toxicol Pathol 2024; 52:55-66. [PMID: 38528719 DOI: 10.1177/01926233241235623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Iron overload has been recognized as a risk factor for liver disease; however, little is known about its pathological role in the modification of liver injury. The purpose of this study is to investigate the influence of iron overload on liver injury induced by two hepatotoxicants with different pathogenesis in rats. Rats were fed a control (Cont), 0.8% high-iron (0.8% Fe), or 1% high-iron diet (1% Fe) for 4 weeks and were then administered with saline, thioacetamide (TAA), or carbon tetrachloride (CCl4). Hepatic and systemic iron overload were seen in the 0.8% and 1% Fe groups. Twenty-four hours after administration, hepatocellular necrosis induced by TAA and hepatocellular necrosis, degeneration, and vacuolation induced by CCl4, as well as serum transaminase values, were exacerbated in the 0.8% and 1% Fe groups compared to the Cont group. On the other hand, microvesicular vacuolation induced by CCl4 was decreased in 0.8% and 1% Fe groups. Hepatocellular DNA damage was increased by iron overload in both models, whereas a synergistic effect of oxidative stress by excess iron and hepatotoxicant was only present in the CCl4 model. The data showed that dietary iron overload exacerbates TAA- and CCl4-induced acute liver injury with different mechanisms.
Collapse
Affiliation(s)
- Yohei Inai
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Tomomi Kamei
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Sho Fujiwara
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
4
|
Han HY, Park SM, Ko JW, Oh JH, Kim SK, Kim TW. Integrated transcriptomic analysis of liver and kidney after 28 days of thioacetamide treatment in rats. Toxicol Res 2023; 39:201-211. [PMID: 37008694 PMCID: PMC10050285 DOI: 10.1007/s43188-022-00156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Thioacetamide (TAA) was developed as a pesticide; however, it was soon found to cause hepatic and renal toxicity. To evaluate target organ interactions during hepatotoxicity, we compared gene expression profiles in the liver and kidney after TAA treatment. Sprague-Dawley rats were treated daily with oral TAA and then sacrificed, and their tissues were evaluated for acute toxicity (30 and 100 mg/kg bw/day), 7-day (15 and 50 mg/kg bw/day), and 4-week repeated-dose toxicity (10 and 30 mg/kg). After the 4-week repeated toxicity study, total RNA was extracted from the liver and kidneys, and microarray analysis was performed. Differentially expressed genes were selected based on fold change and significance, and gene functions were analyzed using ingenuity pathway analysis. Microarray analysis showed that significantly regulated genes were involved in liver hyperplasia, renal tubule injury, and kidney failure in the TAA-treated group. Commonly regulated genes in the liver or kidney were associated with xenobiotic metabolism, lipid metabolism, and oxidative stress. We revealed changes in the molecular pathways of the target organs in response to TAA and provided information on candidate genes that can indicate TAA-induced toxicity. These results may help elucidate the underlying mechanisms of target organ interactions during TAA-induced hepatotoxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00156-y.
Collapse
Affiliation(s)
- Hyoung-Yun Han
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-Ro, Yuseong-Gu, Daejeon, 34114 Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| | - Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-Ro, Yuseong-Gu, Daejeon, 34114 Republic of Korea
- College of Pharmacy, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34131 Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine and Institute of Veterinary Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134 Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-Ro, Yuseong-Gu, Daejeon, 34114 Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34131 Republic of Korea
| | - Tae-Won Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134 Republic of Korea
| |
Collapse
|
5
|
Allangawi A, Alsayed Jalal K, ayub K, Amjad Gilani M, Mahmood T. Chemical sensing ability of aminated graphdiyne (GDY-NH2) toward highly toxic organic volatile pollutants. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
6
|
Öeren M, Walton PJ, Suri J, Ponting DJ, Hunt PA, Segall MD. Predicting Regioselectivity of AO, CYP, FMO, and UGT Metabolism Using Quantum Mechanical Simulations and Machine Learning. J Med Chem 2022; 65:14066-14081. [PMID: 36239985 DOI: 10.1021/acs.jmedchem.2c01303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unexpected metabolism in modification and conjugation phases can lead to the failure of many late-stage drug candidates or even withdrawal of approved drugs. Thus, it is critical to predict the sites of metabolism (SoM) for enzymes, which interact with drug-like molecules, in the early stages of the research. This study presents methods for predicting the isoform-specific metabolism for human AOs, FMOs, and UGTs and general CYP metabolism for preclinical species. The models use semi-empirical quantum mechanical simulations, validated using experimentally obtained data and DFT calculations, to estimate the reactivity of each SoM in the context of the whole molecule. Ligand-based models, trained and tested using high-quality regioselectivity data, combine the reactivity of the potential SoM with the orientation and steric effects of the binding pockets of the different enzyme isoforms. The resulting models achieve κ values of up to 0.94 and AUC of up to 0.92.
Collapse
Affiliation(s)
- Mario Öeren
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K
| | - Peter J Walton
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K.,School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - James Suri
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K.,School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, U.K
| | - Peter A Hunt
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K
| | - Matthew D Segall
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K
| |
Collapse
|
7
|
Huang L, Li X, Han R, Li Y, Xu L, Zeng Z, Wu K. Solubility measurement, correlation and mixing properties of thioacetamide in fifteen pure solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Investigation of the protective and therapeutic effects of thiamine in thioacetamide-induced liver injury. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Hussein RM, Sawy DM, Kandeil MA, Farghaly HS. Chlorogenic acid, quercetin, coenzyme Q10 and silymarin modulate Keap1-Nrf2/heme oxygenase-1 signaling in thioacetamide-induced acute liver toxicity. Life Sci 2021; 277:119460. [PMID: 33811899 DOI: 10.1016/j.lfs.2021.119460] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The normal functioning of Kelch-like ECH-associated protein-1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) complex is necessary for the cellular protection against oxidative stress. We investigated the effect of chlorogenic acid (CGA), quercetin (Qt), coenzyme Q10 (Q10) and silymarin on the expression of Keap1/Nrf2 complex and its downstream target; heme oxygenase-1 (HO-1) as well as inflammation and apoptosis in an acute liver toxicity model induced by thioacetamide (TAA). MAIN METHODS Wistar rats were divided into 13 groups: Control, silymarin, CGA, Qt, Q10, TAA (single dose 50 mg/kg, i.p.), TAA + silymarin (400 mg/kg, p.o.), TAA + CGA (100 & 200 mg/kg, p.o.), TAA + Qt (200 &300 mg/kg, p.o.) and TAA+ Q10 (30&50 mg/kg, p.o.) and treated for 8 days. KEY FINDINGS The results showed improved liver functions and hepatic tissue integrity in all tested doses of TAA + silymarin, TAA + CGA, TAA + Qt and TAA + Q10 groups compared to the TAA group. Furthermore, these groups showed significantly lower ROS, malondialdehyde and nitric oxide levels but higher glutathione content and superoxide dismutase activity compared to the TAA group, p < 0.05. In these groups, Keap1 expression was significantly decreased while Nrf2 expression and HO-1 activity were increased. In addition, the number of apoptotic cells and the expression level of TNF-α in the liver tissues were significantly decreased compared to the TAA group. SIGNIFICANCE CGA, Qt, Q10 and silymarin protect against TAA-induced acute liver toxicity via antioxidant, anti-inflammatory, anti-apoptotic activities and regulating Keap1-Nrf2/HO-1 expression.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Mutah University, 61710 Al-Karak, Jordan; Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, 62514 Beni-Suef, Egypt.
| | - Doaa M Sawy
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hatem S Farghaly
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
10
|
Al-Attar AM, Alrobai AA, Almalki DA. Effect of Olea oleaster and Juniperus procera leaves extracts on thioacetamide induced hepatic cirrhosis in male albino mice. Saudi J Biol Sci 2015; 23:363-71. [PMID: 27081362 PMCID: PMC4818330 DOI: 10.1016/j.sjbs.2015.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 02/08/2023] Open
Abstract
The effect of Olea oleaster and Juniperus procera leaves extracts and their combination on thioacetamide (TAA)-induced hepatic cirrhosis were investigated in male albino mice. One hundred sixty mice were used in this study and were randomly distributed into eight groups of 20 each. Mice of group 1 served as controls. Mice of group 2 were treated with TAA. Mice of group 3 were exposed to TAA and supplemented with O. oleaster leaves extracts. Mice of group 4 were treated with TAA and supplemented with J. procera leaves extracts. Mice of group 5 were subjected to TAA and supplemented with O. oleaster and J. procera leaves extracts. Mice of groups 6, 7 and 8 were supplemented with O. oleaster, J. procera, and O. oleaster and J. procera leaves extracts respectively. Administration of TAA for six and twelve weeks resulted in a decline in body weight gain and increased the levels of serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin. Histopathological evaluations of hepatic sections from mice treated with TAA showed severe alterations including increase of fibrogenesis processes with structural damage. Treatment of mice with these extracts showed a pronounced attenuation in TAA induced hepatic cirrhosis associated with physiological and histopathological alterations. Finally, this study suggests that the supplementation of these extracts may act as antioxidant agents and could be an excellent adjuvant support in the therapy of hepatic cirrhosis.
Collapse
Affiliation(s)
- Atef M Al-Attar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 139109, Jeddah 21323, Saudi Arabia
| | - Ali A Alrobai
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 139109, Jeddah 21323, Saudi Arabia
| | - Daklallah A Almalki
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 139109, Jeddah 21323, Saudi Arabia
| |
Collapse
|
11
|
|
12
|
Yeh CN, Weng WH, Lenka G, Tsao LC, Chiang KC, Pang ST, Chen TW, Jan YY, Chen MF. cDNA microarray profiling of rat cholangiocarcinoma induced by thioacetamide. Mol Med Rep 2013; 8:350-60. [PMID: 23754683 DOI: 10.3892/mmr.2013.1516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/14/2013] [Indexed: 11/06/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant neoplasm affecting thousands of individuals worldwide. CCA develops through a multistep process. In the current study, an oral thioacetamide (TAA)‑induced model of rat CCA was established which generates the histological progression of human CCA, particularly the mass‑forming type. Seven male Sprague‑Dawley rats were treated with TAA for 24 weeks to induce CCA. Following the generation of the rat CCA model, whole rat genomic oligo microarray was performed to examine gene expression profiles in CCA and non‑cancerous liver samples. In brief, 10,427 genes were found to be differentially expressed (8,318 upregulated and 3,489 downregulated) in CCA compared with non‑tumor liver tissue. The top 50 genes (upregulated or downregulated) were selected and their functional involvement in various pathways associated with cancer progression was analyzed, including cell proliferation, apoptosis, metabolism and the cell cycle. In addition, increased expression of CLCA3, COL1A2, DCN, GLIPr2 and NID1, and decreased expression of CYP2C7 and SLC10A1 were validated by quantitative real‑time PCR. Immunohistochemical analysis was performed to determine the protein expression levels of GLIPr2 and SLC10A1. The gene expression profiling performed in this study provides a unique opportunity for understanding the carcinogenesis of TAA‑induced CAA. In addition, expression profiling of a number of specific genes is likely to provide important novel biomarkers for the diagnosis of CCA and the development of novel therapeutic strategies for CCA.
Collapse
Affiliation(s)
- Chun-Nan Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou 333, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Matsuo Y, Irie K, Kiyonari H, Okuyama H, Nakamura H, Son A, Lopez-Ramos DA, Tian H, Oka SI, Okawa K, Kizaka-Kondoh S, Masutani H, Yodoi J. The protective role of the transmembrane thioredoxin-related protein TMX in inflammatory liver injury. Antioxid Redox Signal 2013; 18:1263-72. [PMID: 22924822 PMCID: PMC3584524 DOI: 10.1089/ars.2011.4430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIMS Accumulating evidence indicates that oxidative stress is associated with inflammation, and the cellular redox status can determine the sensitivity and the final outcome in response to inflammatory stimuli. To control the redox balance, mammalian cells contain a variety of oxidoreductases belonging to the thioredoxin superfamily. The large number of these enzymes suggests a complex mechanism of redox regulation in mammals, but the precise function of each family member awaits further investigations. RESULTS We generated mice deficient in transmembrane thioredoxin-related protein (TMX), a transmembrane oxidoreductase in the endoplasmic reticulum (ER). When exposed to lipopolysaccharide (LPS) and d-(+)-galactosamine (GalN) to induce inflammatory liver injury, mutant mice were highly susceptible to the toxicants and developed severe liver damage. LPS-induced production of inflammatory mediators was equivalent in both wild-type and TMX(-/-) mice, whereas neutralization of the proinflammatory cytokine tumor necrosis factor-α suppressed the toxic effects of LPS/GalN in the mutant mice. Liver transcriptional profiles revealed enhanced activation of the p53-signaling pathway in the TMX(-/-) mice after LPS/GalN treatment. Furthermore, TMX deficiency also caused increased sensitivity to thioacetamide, which exerts its hepatotoxicity through the generation of reactive oxygen species. INNOVATION The present study is the first to address the role of the oxidoreductase TMX in inflammatory liver injury. The phenotype of mice deficient in TMX suggests a functional link between redox regulation in the ER and susceptibility to oxidative tissue damage. CONCLUSION We conclude that TMX plays a major role in host defense under the type of inflammatory conditions associated with oxidative stress.
Collapse
Affiliation(s)
- Yoshiyuki Matsuo
- Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abbasi MH, Akhtar T, Malik IA, Fatima S, Khawar B, Mujeeb KA, Mustafa G, Hussain S, Iqbal J, Sheikh N. Acute and Chronic Toxicity of Thioacteamide and Alterations in Blood Cell Indices in Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.41032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Esmat AY, Said MM, Soliman AA, El-Masry KS, Badiea EA. Bioactive compounds, antioxidant potential, and hepatoprotective activity of sea cucumber (Holothuria atra) against thioacetamide intoxication in rats. Nutrition 2013; 29:258-67. [DOI: 10.1016/j.nut.2012.06.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/02/2012] [Accepted: 06/04/2012] [Indexed: 11/29/2022]
|
16
|
Amin ZA, Bilgen M, Alshawsh MA, Ali HM, Hadi AHA, Abdulla MA. Protective Role of Phyllanthus niruri Extract against Thioacetamide-Induced Liver Cirrhosis in Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:241583. [PMID: 22649471 PMCID: PMC3357973 DOI: 10.1155/2012/241583] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/13/2012] [Accepted: 02/27/2012] [Indexed: 01/26/2023]
Abstract
A preclinical study was performed to determine if the extract from Phyllanthus niruri (PN) plays a protective role against liver cirrhosis induced by thioacetamide (TAA) in rats. Initially, acute toxicity was tested and the results showed that the extract was benign when applied to healthy rats. Next, the therapeutic effect of the extract was investigated using five groups of rats: control, TAA, silymarin, and PN high dose and low dose groups. Significant differences were observed between the TAA group and the other groups regarding body and liver weights, liver biochemical parameters, total antioxidant capacity, lipid peroxidation, and oxidative stress enzyme levels. Gross visualization indicated coarse granules on the surface of the hepatotoxic rats' livers, in contrast to the smoother surface in the livers of the silymarin and PN-treated rats. Histopathological analysis revealed necrosis, lymphocytes infiltration in the centrilobular region, and fibrous connective tissue proliferation in the livers of the hepatotoxic rats. But, the livers of the treated rats had comparatively minimal inflammation and normal lobular architecture. Silymarin and PN treatments effectively restored these measurements closer to their normal levels. Progression of liver cirrhosis induced by TAA in rats can be intervened using the PN extract and these effects are comparable to those of silymarin.
Collapse
Affiliation(s)
- Zahra A. Amin
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mehmet Bilgen
- Health and Translational Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohammed A. Alshawsh
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hapipah M. Ali
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - A. Hamid A. Hadi
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mahmood A. Abdulla
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Wong WL, Abdulla MA, Chua KH, Kuppusamy UR, Tan YS, Sabaratnam V. Hepatoprotective Effects of Panus giganteus (Berk.) Corner against Thioacetamide- (TAA-) Induced Liver Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:170303. [PMID: 22649470 PMCID: PMC3357533 DOI: 10.1155/2012/170303] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 02/23/2012] [Indexed: 12/17/2022]
Abstract
Panus giganteus, a culinary and medicinal mushroom consumed by selected indigenous communities in Malaysia, is currently being considered for large scale cultivation. This study was undertaken to investigate the hepatoprotective effects of P. giganteus against thioacetamide- (TAA-) induced liver injury in Sprague-Dawley rats. The rats were injected intraperitoneally with TAA thrice weekly and were orally administered freeze-dried fruiting bodies of P. giganteus (0.5 or 1 g/kg) daily for two months, while control rats were given vehicle or P. giganteus only. After 60 days, rats administered with P. giganteus showed lower liver body weight ratio, restored levels of serum liver biomarkers and oxidative stress parameters comparable to treatment with the standard drug silymarin. Gross necropsy and histopathological examination further confirmed the hepatoprotective effects of P. giganteus. This is the first report on hepatoprotective effects of P. giganteus. The present study showed that P. giganteus was able to prevent or reduce the severity of TAA-induced liver injury.
Collapse
Affiliation(s)
- Wei-Lun Wong
- Mushroom Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mahmood Ameen Abdulla
- Mushroom Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kek-Heng Chua
- Mushroom Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Mushroom Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yee-Shin Tan
- Mushroom Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Chang HM, Liao YW, Chiang CH, Chen YJ, Lai YH, Chang YL, Chen HL, Jeng SY, Hsieh JH, Peng CH, Li HY, Chien Y, Chen SY, Chen LK, Huo TI. Improvement of carbon tetrachloride-induced acute hepatic failure by transplantation of induced pluripotent stem cells without reprogramming factor c-Myc. Int J Mol Sci 2012; 13:3598-3617. [PMID: 22489170 PMCID: PMC3317730 DOI: 10.3390/ijms13033598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/13/2012] [Accepted: 02/28/2012] [Indexed: 12/19/2022] Open
Abstract
The only curative treatment for hepatic failure is liver transplantation. Unfortunately, this treatment has several major limitations, as for example donor organ shortage. A previous report demonstrated that transplantation of induced pluripotent stem cells without reprogramming factor c-Myc (3-genes iPSCs) attenuates thioacetamide-induced hepatic failure with minimal incidence of tumorigenicity. In this study, we investigated whether 3-genes iPSC transplantation is capable of rescuing carbon tetrachloride (CCl4)-induced fulminant hepatic failure and hepatic encephalopathy in mice. Firstly, we demonstrated that 3-genes iPSCs possess the capacity to differentiate into hepatocyte-like cells (iPSC-Heps) that exhibit biological functions and express various hepatic specific markers. 3-genes iPSCs also exhibited several antioxidant enzymes that prevented CCl4-induced reactive oxygen species production and cell death. Intraperitoneal transplantation of either 3-genes iPSCs or 3-genes iPSC-Heps significantly reduced hepatic necrotic areas, improved hepatic functions, and survival rate in CCl4-treated mice. CCl4-induced hepatic encephalopathy was also improved by 3-genes iPSC transplantation. Hoechst staining confirmed the successful engraftment of both 3-genes iPSCs and 3-genes iPSC-Heps, indicating the homing properties of these cells. The most pronounced hepatoprotective effect of iPSCs appeared to originate from the highest antioxidant activity of 3-gene iPSCs among all transplanted cells. In summary, our findings demonstrated that 3-genes iPSCs serve as an available cell source for the treatment of an experimental model of acute liver diseases.
Collapse
Affiliation(s)
- Hua-Ming Chang
- Department of Optics and Photonics, National Central University, Chung-Li, Taiwan; E-Mails: (H.-M.C.); (S.-Y.C.)
| | - Yi-Wen Liao
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; E-Mails: (Y.-W.L.); (H.-L.C.)
| | - Chih-Hung Chiang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; E-Mails: (C.-H.C.); (Y.-L.C.)
- Division of Urology, Department of Surgery, Taipei Veterans General Hospital and Su-Ao/Yuan-Shan Branch, Yilan County, Taiwan; E-Mails: (S.-Y.J.); (J.-H.H.)
| | - Yi-Jen Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; E-Mails: (Y.-J.C.); (Y.-H.L.); (C.-H.P.); (H.-Y.L.); (L.-K.C.)
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ying-Hsiu Lai
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; E-Mails: (Y.-J.C.); (Y.-H.L.); (C.-H.P.); (H.-Y.L.); (L.-K.C.)
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuh-Lih Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; E-Mails: (C.-H.C.); (Y.-L.C.)
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hen-Li Chen
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; E-Mails: (Y.-W.L.); (H.-L.C.)
| | - Shaw-Yeu Jeng
- Division of Urology, Department of Surgery, Taipei Veterans General Hospital and Su-Ao/Yuan-Shan Branch, Yilan County, Taiwan; E-Mails: (S.-Y.J.); (J.-H.H.)
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; E-Mails: (Y.-J.C.); (Y.-H.L.); (C.-H.P.); (H.-Y.L.); (L.-K.C.)
| | - Jung-Hung Hsieh
- Division of Urology, Department of Surgery, Taipei Veterans General Hospital and Su-Ao/Yuan-Shan Branch, Yilan County, Taiwan; E-Mails: (S.-Y.J.); (J.-H.H.)
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; E-Mails: (Y.-J.C.); (Y.-H.L.); (C.-H.P.); (H.-Y.L.); (L.-K.C.)
| | - Chi-Hsien Peng
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; E-Mails: (Y.-J.C.); (Y.-H.L.); (C.-H.P.); (H.-Y.L.); (L.-K.C.)
- Shin Kong Wu Ho-Su Memorial Hospital and Fu-Jen Catholic University, Taipei, Taiwan
| | - Hsin-Yang Li
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; E-Mails: (Y.-J.C.); (Y.-H.L.); (C.-H.P.); (H.-Y.L.); (L.-K.C.)
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yueh Chien
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; E-Mails: (Y.-J.C.); (Y.-H.L.); (C.-H.P.); (H.-Y.L.); (L.-K.C.)
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (Y.C.); (T.-I.H.); Tel.: +886-2-28757394 (Y.C.); +886-2-28757394 (T.-I.H.); Fax: +886-2-28757396 (Y.C.); +886-2-28757396 (T.-I.H.)
| | - Szu-Yu Chen
- Department of Optics and Photonics, National Central University, Chung-Li, Taiwan; E-Mails: (H.-M.C.); (S.-Y.C.)
| | - Liang-Kung Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; E-Mails: (Y.-J.C.); (Y.-H.L.); (C.-H.P.); (H.-Y.L.); (L.-K.C.)
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Teh-Ia Huo
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; E-Mails: (C.-H.C.); (Y.-L.C.)
- Division of Gastroenterology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (Y.C.); (T.-I.H.); Tel.: +886-2-28757394 (Y.C.); +886-2-28757394 (T.-I.H.); Fax: +886-2-28757396 (Y.C.); +886-2-28757396 (T.-I.H.)
| |
Collapse
|
19
|
Fedejko-Kap B, Niemira M, Radominska-Pandya A, Mazerska Z. Flavin monooxygenases, FMO1 and FMO3, not cytochrome P450 isoenzymes, contribute to metabolism of anti-tumour triazoloacridinone, C-1305, in liver microsomes and HepG2 cells. Xenobiotica 2011; 41:1044-55. [DOI: 10.3109/00498254.2011.604743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Shaker ME, Salem HA, Shiha GE, Ibrahim TM. Nilotinib counteracts thioacetamide-induced hepatic oxidative stress and attenuates liver fibrosis progression. Fundam Clin Pharmacol 2011; 25:248-57. [PMID: 20408881 DOI: 10.1111/j.1472-8206.2010.00824.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of this study was to evaluate and compare the effects of imatinib and nilotinib to that of silymarin on established liver fibrosis and oxidative stress in a thioacetamide (TAA) rat model. Male Wistar rats received intraperitoneal (i.p.) injections of TAA (150mg/kg, twice weekly) for 12weeks. Daily treatments with imatinib (10mg/kg), nilotinib (10mg/kg), and silymarin (100mg/kg) were administered orally during the last 4weeks of TAA-administration. At the end of the study, hepatic damage was evaluated by analysis of liver function tests in serum. Hepatic histopathology and collagen content were employed to quantify liver fibrosis. Hepatic oxidative stress was assessed by measuring malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), total nitrate/nitrite (NOx), and reduced glutathione (GSH) contents, as well as myeloperoxidase (MPO) and superoxide dismutase (SOD) activities. Nilotinib, silymarin and, to a lesser extent, imatinib treatments ameliorated TAA-induced hepatic oxidative stress and damage as indicated by hepatic MDA, 4-HNE, NOx, GSH, MPO and SOD levels, as well as liver function tests. Hepatic histopathology results revealed that nilotinib, imatinib, and silymarin treatments decreased the mean score of fibrosis in TAA-treated rats by 24, 14, and 3%, respectively. However, nilotinib and silymarin, but not imatinib, treatments decreased hepatic collagen content in TAA-treated rats by 17 and 36%, respectively. In conclusion, we demonstrated for the first time that nilotinib not only protected against hepatic oxidative stress, but also slowed down liver fibrosis progression. Thus, we provide the first evidence that nilotinib might be a promising anti-fibrotic drug.
Collapse
Affiliation(s)
- Mohamed E Shaker
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt.
| | | | | | | |
Collapse
|
21
|
The toxic effect of thioacetamide on rat liver in vitro. Toxicol In Vitro 2010; 24:2097-103. [PMID: 20600801 DOI: 10.1016/j.tiv.2010.06.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 05/07/2010] [Accepted: 06/08/2010] [Indexed: 01/23/2023]
Abstract
Thioacetamide (TAA) is a hepatotoxin frequently used for experimental purposes which produces centrilobular necrosis after a single dose administration. In spite of the fact that oxidative stress seems to play a very important role in the mechanism of TAA-induced injury, the effect of TAA on hepatocytes in primary culture with respect to the influence on mitochondria has yet to be verified. Hepatocytes were incubated for 24h in a medium containing TAA (0-70 mmol/l). Glutathione content (GSH/GSSG), reactive oxygen species and malondialdehyde formation were assessed as markers of cell redox state. Toxicity was determined by lactate dehydrogenase leakage and WST-1 assay. The functional capacity of hepatocytes was evaluated from albumin and urea production. Mitochondrial metabolism was assessed by measuring mitochondrial membrane potential and oxygen consumption. Our results show that a profound decrease in the GSH level in hepatocytes precedes a sharp rise in endogenous ROS production. ROS production correlates with an increase in lipoperoxidation. Mitochondria are affected by TAA secondarily as a consequence of oxidative stress. Oxidation of the NADH-dependent substrates of respiratory Complex I is significantly more sensitive to the toxic action of TAA than oxidation of the flavoprotein-dependent substrate of Complex II. Mitochondria can also maintain their membrane potential better when they utilize succinate as a respiratory substrate. It appears that GSH should be depleted below a certain critical level in order to cause a marked increase in lipid peroxidation. Mitochondrial injury can then occur and cell death develops.
Collapse
|
22
|
Karantonis HC, Gribilas G, Stamoulis I, Giaginis C, Spiliopoulou C, Kouraklis G, Demopoulos C, Theocharis SE. Platelet-activating factor involvement in thioacetamide-induced experimental liver fibrosis and cirrhosis. Dig Dis Sci 2010; 55:276-84. [PMID: 19242794 DOI: 10.1007/s10620-009-0745-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 01/27/2009] [Indexed: 12/13/2022]
Abstract
Platelet-activating factor (PAF) is a potent lipid inflammatory mediator acting on cells through its specific receptor. Plasma PAF-acetylhydrolase (PAF-AH) is the main enzyme that inactivates PAF in blood, participating in its homeostasis. The objective of this study was to investigate the involvement of PAF in the liver fibrotic process using an experimental animal model. Liver fibrosis was induced in adult male Wistar rats by administration of thioacetamide (TAA) in drinking water (300 mg/l) for three months. The animals were sacrificed at time 0 (control group) and after 1, 2, and 3 months. PAF levels in liver and blood and PAF-AH activity in plasma were determined. Liver histopathological examination was also performed. TAA administration resulted in progressively increased liver fibrosis, leading finally to the formation of cirrhotic nodules in the liver. Throughout the experiment PAF levels in liver tissue remained stable. "Total" ("free" plus "bound") PAF levels in blood decreased, reaching statistically significant differences in the first and third months compared with the control group (P < 0.05). "Free" PAF levels in blood were higher at one month (P < 0.05) and decreased gradually thereafter. In all treated groups, "bound" PAF levels in blood decreased whereas plasma PAF-AH activity increased (P < 0.05) compared with the control group. Our data indicated alterations of PAF levels in blood and PAF-AH activity during fibrosis induction, implicating participation of PAF in the liver fibrotic process.
Collapse
Affiliation(s)
- Haralabos C Karantonis
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527 Goudi, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bassi AM, Casu A, Canepa C, Maloberti G, Nanni G. Chronic High Doses of Thioacetamide Followed by Vitamin A Modify Dolichol, Dolichol Isoprenoids, and Retinol Content in Rat Liver Cells. Drug Chem Toxicol 2008; 28:91-104. [PMID: 15720038 DOI: 10.1081/dct-39721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Our line of researches follows the hypothesis that dolichol and retinol metabolism might be interrelated and involved in liver fibrosis. To this end, in this study rats were subjected to chronic treatment with thioacetamide (TAA) (300 mg/L liquid diet) for 1 and 2 months and, after liver damage had occurred, supplemented with vitamin A before sacrifice. Dolichol, dolichol isoprene units, and retinol content were determined in isolated parenchymal and sinusoidal liver cells (hepatic stellate cells; Kupffer cells; sinusoidal endothelial cells). Dolichol increased in hepatocytes after TAA treatment, with or without vitamin A. Dolichol decreased in the other cells. Retinol in general decreased. In hepatocytes, retinol decreased only on normal nutrition, while the vitamin A load was taken up normally. The percentages of dolichol isoprene units (Dol-16 to Dol-20, in rats) confirm that Dol-18, which was not modified in percentage by TAA on normal nutrition, did not increase after vitamin A, as it did in control cells (7-12%). The behavior of Dol-18 was similar in all the cells studied. Vitamin A might reveal a latent damage produced by TAA on dolichol homologues. These data support previous hypotheses that the action of TAA depends on the administration modality, the dosage, and the diet, and that Dol-18 might have different functions and compartmentalization in the cells. Furthermore, the results support the hypothesis that dolichol chain length might be interrelated with retinol metabolism, perhaps through their metabolites.
Collapse
Affiliation(s)
- Anna Maria Bassi
- Section of General Pathology, Department of Experimental Medicine, University of Genoa, Genoa, Italy.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Liver damage leads to an inflammatory response and to the activation and proliferation of mesenchymal cell populations within the liver which remodel the extracellular matrix as part of an orchestrated wound-healing response. Chronic damage results in a progressive accumulation of scarring proteins (fibrosis) that, with increasing severity, alters tissue structure and function, leading to cirrhosis and liver failure. Efforts to modulate the fibrogenesis process have focused on understanding the biology of the heterogeneous liver fibroblast populations. The fibroblasts are derived from sources within and out with the liver. Fibroblasts expressing alpha-smooth muscle actin (myofibroblasts) may be derived from the transdifferentiation of quiescent hepatic stellate cells. Other fibroblasts emerge from the portal tracts within the liver. At least a proportion of these cells in diseased liver originate from the bone marrow. In addition, fibrogenic fibroblasts may also be generated through liver epithelial (hepatocyte and biliary epithelial cell)-mesenchymal transition. Whatever their origin, it is clear that fibrogenic fibroblast activity is sensitive to (and may be active in) the cytokine and chemokine profiles of liver-resident leucocytes such as macrophages. They may also be a component driving the regeneration of tissue. Understanding the complex intercellular interactions regulating liver fibrogenesis is of increasing importance in view of predicted increases in chronic liver disease and the current paucity of effective therapies.
Collapse
|
25
|
Hyoudou K, Nishikawa M, Kobayashi Y, Kuramoto Y, Yamashita F, Hashida M. Analysis of In Vivo Nuclear Factor-κB Activation during Liver Inflammation in Mice: Prevention by Catalase Delivery. Mol Pharmacol 2006; 71:446-53. [PMID: 17105872 DOI: 10.1124/mol.106.027169] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nuclear factor-kappaB (NF-kappaB) is a transcription factor that plays crucial roles in inflammation, immunity, cell proliferation, and apoptosis. Until now, there have been few studies of NF-kappaB activation in whole animals because of experimental difficulties. Here, we show that mice receiving a simple injection of plasmid vectors can be used to examine NF-kappaB activation in the liver. Two plasmid vectors, pNF-kappaB-Luc (firefly luciferase gene) and pRL-SV40 (Renilla reniformis luciferase gene), were injected into the tail vein of mice by the hydrodynamics-based procedure, an established method of gene transfer to mouse liver. Then, the ratio of the firefly and R. reniformis luciferase activities (F/R) was used as an indicator of the NF-kappaB activity in the liver. Injection of thioacetamide or lipopolysaccharide plus d-galactosamine increased the F/R ratio in the liver, and this was significantly (P<0.001) inhibited by an intravenous injection of catalase derivatives targeting liver nonparenchymal cells. Imaging the firefly luciferase expression in live mice clearly demonstrated that the catalase derivatives efficiently prevented the NF-kappaB-mediated expression of the firefly luciferase gene. Plasma transaminases and the survival rate of mice supported the findings obtained by the luminescence-based analyses. Thus, this method, which requires no genetic recombination techniques, is highly sensitive to the activation of NF-kappaB and allows us to continuously examine the activation in live animals. In conclusion, this novel, simple, and sensitive method can be used not only for analyzing the NF-kappaB activation in the organ under different inflammatory conditions but also for screening drug candidates for the prevention of liver inflammation.
Collapse
Affiliation(s)
- Kenji Hyoudou
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Amali AA, Rekha RD, Lin CJF, Wang WL, Gong HY, Her GM, Wu JL. Thioacetamide induced liver damage in zebrafish embryo as a disease model for steatohepatitis. J Biomed Sci 2006; 13:225-32. [PMID: 16456712 DOI: 10.1007/s11373-005-9055-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Steatohepatitis has recently been increasing as a cofactor influencing the progression of fibrosis, cirrhosis, adenoma and carcinoma in liver; however, the mechanisms by which it contributes to liver injury remain uncertain. We induced steatohepatitis in zebrafish embryos using thioacetamide (TAA). TUNEL assay revealed significant increasing of apoptosis in liver after 5 days post fertilization and the increasing of apoptosis was observed to be associated with the up-regulation of apoptotic genes such as, bad, bax, P-38a, caspase-3 and 8, and JNK-1. Histological sections by oil red O stain showed the accumulation of fatty droplets which causes the pushing of the nucleus towards one side. Up-regulation of steatosis markers such as, ACC, adiponectin, PTL, CEBP- alpha and beta, SREBP-1 was also observed. Furthermore, the elevation of glutathione peroxidase in TAA treated embryos indicated that TAA induces lipid peroxidation which leads to causes liver damage. Zebrafish has already been considered as a good human disease model and in this context; TAA-treated zebrafish may serve as a good animal model to study the molecular pathogenesis of steatohepatitis. Moreover, non-availability of specific drugs to prevent steatohepatitis, this animal model may serve as a powerful preclinical platform to study the therapeutic strategies and for evaluating chemoprevention strategies for this disease.
Collapse
Affiliation(s)
- Aseervatham Anusha Amali
- Laboratory of Marine Molecular Biology and Biotechnology 301, Institute Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, NanKang, Taipei, 11529, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
Pallottini V, Martini C, Bassi AM, Romano P, Nanni G, Trentalance A. Rat HMGCoA reductase activation in thioacetamide-induced liver injury is related to an increased reactive oxygen species content. J Hepatol 2006; 44:368-74. [PMID: 16140414 DOI: 10.1016/j.jhep.2005.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 05/11/2005] [Accepted: 06/13/2005] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS In thioacetamide-induced liver injury a modification of isoprenoid content and an increase of reactive oxygen species has been described. We have examined how reactive oxygen species influence the 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate limiting enzyme of the isoprenoid biosynthetic pathway, to verify if changes of that enzyme activity are involved in the changed lipid composition of the liver. METHODS In chronic and acute thioacetamide-treated rat liver we measured the reactive oxygen species content, the activation state and K(M), the level and degradation rate of the hepatic reductase, its short term regulatory enzymes and the liver lipid profile. RESULTS In thioacetamide-treated rat liver, the reactive oxygen species content is high and the reductase is fully activated with no modifications in its K(M) and its short term regulatory enzymes. The reductase level is reduced in chronic thioacetamide treated rats and its degradation rate is altered. CONCLUSIONS The data show a relationship between reactive oxygen species production and altered 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. It is suggested that reducing the levels of reactive oxygen species may improve the altered lipid profile found in liver injury.
Collapse
Affiliation(s)
- Valentina Pallottini
- Department of Biology, University of Rome Roma Tre, Viale Marconi 446, 00146-Rome, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Krueger SK, Williams DE. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther 2005; 106:357-87. [PMID: 15922018 PMCID: PMC1828602 DOI: 10.1016/j.pharmthera.2005.01.001] [Citation(s) in RCA: 401] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2005] [Indexed: 10/25/2022]
Abstract
Flavin-containing monooxygenase (FMO) oxygenates drugs and xenobiotics containing a "soft-nucleophile", usually nitrogen or sulfur. FMO, like cytochrome P450 (CYP), is a monooxygenase, utilizing the reducing equivalents of NADPH to reduce 1 atom of molecular oxygen to water, while the other atom is used to oxidize the substrate. FMO and CYP also exhibit similar tissue and cellular location, molecular weight, substrate specificity, and exist as multiple enzymes under developmental control. The human FMO functional gene family is much smaller (5 families each with a single member) than CYP. FMO does not require a reductase to transfer electrons from NADPH and the catalytic cycle of the 2 monooxygenases is strikingly different. Another distinction is the lack of induction of FMOs by xenobiotics. In general, CYP is the major contributor to oxidative xenobiotic metabolism. However, FMO activity may be of significance in a number of cases and should not be overlooked. FMO and CYP have overlapping substrate specificities, but often yield distinct metabolites with potentially significant toxicological/pharmacological consequences. The physiological function(s) of FMO are poorly understood. Three of the 5 expressed human FMO genes, FMO1, FMO2 and FMO3, exhibit genetic polymorphisms. The most studied of these is FMO3 (adult human liver) in which mutant alleles contribute to the disease known as trimethylaminuria. The consequences of these FMO genetic polymorphisms in drug metabolism and human health are areas of research requiring further exploration.
Collapse
Key Words
- flavin monooxygenase
- drug metabolism
- fmo
- bvmos, baeyer–villiger monooxygenases
- cyp, cytochrome p450
- dbm, dinucleotide-binding motif
- fadpnr, fad-dependent pyridine nucleotide reductase prints signature
- fmo, flavin-containing monooxygenase
- fmoxygenase, fmo prints signature
- gr, glutathione reductase
- pamo, phenylacetone monooxygenase
- pndrdtasei, pyridine nucleotide disulfide reductase class-i prints signature
- ros, reactive oxygen species
- snp, single-nucleotide polymorphism
- tmau, trimethylaminuria
Collapse
Affiliation(s)
- Sharon K. Krueger
- Department of Environmental and Molecular Toxicology and The Linus Pauling Institute, Oregon State University, United States
| | - David E. Williams
- Department of Environmental and Molecular Toxicology and The Linus Pauling Institute, Oregon State University, United States
| |
Collapse
|
29
|
Low TY, Leow CK, Salto-Tellez M, Chung MCM. A proteomic analysis of thioacetamide-induced hepatotoxicity and cirrhosis in rat livers. Proteomics 2005; 4:3960-74. [PMID: 15526343 DOI: 10.1002/pmic.200400852] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thioacetamide (TAA) administration is an established technique for generating rat models of liver fibrosis and cirrhosis. Oxidative stress is believed to be involved as TAA-induced liver fibrosis is initiated by thioacetamide S-oxide, which is derived from the biotransformation of TAA by the microsomal flavine-adenine dinucleotide (FAD)-containing monooxygense (FMO) and cytochrome P450 systems. A two-dimensional gel electrophoresis-mass spectrometry approach was applied to analyze the protein profiles of livers of rats administered with sublethal doses of TAA for 3, 6 and 10 weeks respectively. With this approach, 59 protein spots whose expression levels changed significantly upon TAA administration were identified, including three novel proteins. These proteins were then sorted according to their common biochemical properties and functions, so that pathways involved in the pathogenesis of rat liver fibrosis due to TAA-induced toxicity could be elucidated. As a result, it was found that TAA-administration down-regulated the enzymes of the primary metabolic pathways such as fatty acid beta-oxidation, branched chain amino acids and methionine breakdown. This phenomenon is suggestive of the depletion of succinyl-CoA which affects heme and iron metabolism. Up-regulated proteins, on the other hand, are related to oxidative stress and lipid peroxidation. Finally, these proteomics data and the data obtained from the scientific literature were integrated into an "overview model" for TAA-induced liver cirrhosis. This model could now serve as a useful resource for researchers working in the same area.
Collapse
Affiliation(s)
- Teck Yew Low
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
30
|
Kim NH, Hyun SH, Jin CH, Lee SK, Lee DW, Jeon TW, Lee JS, Chun YJ, Lee ES, Jeong TC. Pretreatment with 1,8-cineole potentiates thioacetamide-induced hepatotoxicity and immunosuppression. Arch Pharm Res 2005; 27:781-9. [PMID: 15357008 DOI: 10.1007/bf02980149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The effect of 1,8-cineole on cytochrome P450 (CYP) expression was investigated in male Sprague Dawley rats and female BALB/c mice. When rats were treated orally with 200, 400 and 800 mg/kg of 1,8-cineole for 3 consecutive days, the liver microsomal activities of benzyloxyresorufin- and pentoxyresorufin-omicron-dealkylases and erythromycin N-demethylase were dose-dependently induced. The Western immunoblotting analyses clearly indicated the induction of CYP 2B1/2 and CYP 3A1/2 proteins by 1,8-cineole. At the doses employed, 1,8-cineole did not cause toxicity, including hepatotoxicity. Subsequently, 1,8-cineole was applied to study the role of metabolic activation in thioacetamide-induced hepatotoxicity and/or immunotoxicity in animal models. To investigate a possible role of metabolic activation by CYP enzymes in thioacetamide-induced hepatotoxicity, rats were pre-treated with 800 mg/kg of 1 ,8-cineole for 3 days, followed by a single intraperitoneal treatment with 50 and 100 mg/kg of thioacetamide in saline. 24 h later, thioacetamide-induced hepatotoxicity was significantly potentiated by the pretreatment with 1,8-cineole. When female BALB/c mice were pretreated with 800 mg/kg of 1,8-cineole for 3 days, followed by a single intraperitoneal treatment with 100 mg/kg of thioacetamide, the antibody response to sheep red blood cells was significantly potentiated. In addition, the liver microsomal activities of CYP 2B enzymes were significantly induced by 1,8-cineole as in rats. Taken together, our results indicated that 1,8-cineole might be a useful CYP modulator in investigating the possible role of metabolic activation in chemical-induced hepatotoxicity and immunotoxicity.
Collapse
Affiliation(s)
- Nam Hee Kim
- College of Pharmacy, Yeungnam University, Kyungsan 712-749, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bassi AM, Canepa C, Maloberti G, Casu A, Nanni G. Effect of a load of Vitamin A after acute thioacetamide intoxication on dolichol, dolichol isoprenoids and retinol content in isolated rat liver cells. Toxicology 2004; 199:97-107. [PMID: 15147784 DOI: 10.1016/j.tox.2004.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 11/06/2003] [Accepted: 02/02/2004] [Indexed: 12/18/2022]
Abstract
This study examines how treatment with a single dose of thioacetamide, a known experimental hepatotoxin, alters the content of dolichol, dolichol isoprene units and retinol in isolated rat parenchymal and non-parenchymal liver cells at different times and when the animals are supplemented with Vitamin A. Thioacetamide (300 mg/kg i.p.) was administered in a single injection to rats, sacrificed at intervals of 0.5, 1, 2, 3, 4, 15 and 30 days. Rats supplemented, following thioacetamide, with Vitamin A, 3 days before sacrifice showed increased mortality and cellular necrosis on the third and fourth days. Parameters indicating tissue necrosis returned to normal values in surviving animals. Dolichol and retinol content showed a variable, reversible decrease, with normal levels being restored in 15-30 days. After Vitamin A, dolichol content only in hepatic stellate cells (HSC) was lower then the controls 3 and 4 days after thioacetamide treatment, in parallel with the decrease of retinol storage. The percentage of dolichol-18 is not modified by thioacetamide alone. When supplemented with Vitamin A the percentage of dolichol-18 always decreased after thioacetamide, showing that damage was still present. Mechanisms that might be operative in liver cells are briefly discussed. This approach would provide an indication to investigate how the length of the dolichol chain is determined.
Collapse
Affiliation(s)
- Anna M Bassi
- Department of Experimental Medicine, Section of General Pathology, University of Genoa, Via L.B. Alberti 2, 16132 Genoa, Italy.
| | | | | | | | | |
Collapse
|