1
|
Wahlström A, Brumbaugh A, Sjöland W, Olsson L, Wu H, Henricsson M, Lundqvist A, Makki K, Hazen SL, Bergström G, Marschall HU, Fischbach MA, Bäckhed F. Production of deoxycholic acid by low-abundant microbial species is associated with impaired glucose metabolism. Nat Commun 2024; 15:4276. [PMID: 38769296 PMCID: PMC11106306 DOI: 10.1038/s41467-024-48543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Alterations in gut microbiota composition are suggested to contribute to cardiometabolic diseases, in part by producing bioactive molecules. Some of the metabolites are produced by very low abundant bacterial taxa, which largely have been neglected due to limits of detection. However, the concentration of microbially produced metabolites from these taxa can still reach high levels and have substantial impact on host physiology. To explore this concept, we focused on the generation of secondary bile acids by 7α-dehydroxylating bacteria and demonstrated that addition of a very low abundant bacteria to a community can change the metabolic output dramatically. We show that Clostridium scindens converts cholic acid into the secondary bile acid deoxycholic acid (DCA) very efficiently even though the abundance of C. scindens is low, but still detectable by digital droplet PCR. We also show that colonization of germ-free female mice with a community containing C. scindens induces DCA production and affects host metabolism. Finally, we show that DCA correlates with impaired glucose metabolism and a worsened lipid profile in individuals with type 2 diabetes, which implies that this metabolic pathway may contribute to the development of cardiometabolic disease.
Collapse
Affiliation(s)
- Annika Wahlström
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ariel Brumbaugh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Wilhelm Sjöland
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lisa Olsson
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hao Wu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan Microbiome Center, and Department of Bariatric and Metabolic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Marcus Henricsson
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Annika Lundqvist
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kassem Makki
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, OH, USA
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Göran Bergström
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael A Fischbach
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- ChEM-H Institute, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Bogevik AS, Puvanendran V, Vorkamp K, Burgerhout E, Hansen Ø, Fernández-Míguez M, Krasnov A, Afanasyev S, Høst V, Ytteborg E. Long-Term Influence of PCB- and PBDE-Spiked Microplastic Spheres Fed through Rotifers to Atlantic Cod ( Gadus morhua) Larvae. Int J Mol Sci 2023; 24:10326. [PMID: 37373473 DOI: 10.3390/ijms241210326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Omnipresent microplastics (MPs) in marine ecosystems are ingested at all trophic levels and may be a vector for the transfer of persistent organic pollutants (POPs) through the food web. We fed rotifers polyethylene MPs (1-4 µm) spiked with seven congeners of polychlorinated biphenyls (PCBs) and two congeners of polybrominated diphenyl ethers (PBDEs). In turn, these rotifers were fed to cod larvae from 2-30 days post-hatching (dph), while the control groups were fed rotifers without MPs. After 30 dph, all the groups were fed the same feed without MPs. Whole-body larvae were sampled at 30 and 60 dph, and four months later the skin of 10 g juveniles was sampled. The PCBs and PBDEs concentrations were significantly higher in MP larvae compared to the control larvae at 30 dph, but the significance dissipated at 60 dph. Expression of stress-related genes in cod larvae at 30 and 60 dph showed inconclusive minor random effects. The skin of MP juveniles showed disrupted epithelial integrity, fewer club cells and downregulation of a suite of genes involved in immunity, metabolism and the development of skin. Our study showed that POPs were transferred through the food web and accumulated in the larvae, but that the level of pollutants decreased once the exposure was ceased, possibly related to growth dilution. Considering the transcriptomic and histological findings, POPs spiked to MPs and/or MPs themselves may have long-term effects in the skin barrier defense system, immune response and epithelium integrity, which may potentially reduce the robustness and overall fitness of the fish.
Collapse
Affiliation(s)
| | | | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | | | - Øyvind Hansen
- Nofima, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway
| | | | | | - Sergey Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Torez 44, 194223 Saint-Petersburg, Russia
| | - Vibeke Høst
- Nofima, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway
| | | |
Collapse
|
3
|
Anand SK, Caputo M, Xia Y, Andersson E, Cansby E, Kumari S, Henricsson M, Porosk R, Keuenhof KS, Höög JL, Nair S, Marschall HU, Blüher M, Mahlapuu M. Inhibition of MAP4K4 Signaling Initiaties Metabolic Reprogramming to Protect Hepatocytes from Lipotoxic Damage. J Lipid Res 2022; 63:100238. [PMID: 35679904 PMCID: PMC9293639 DOI: 10.1016/j.jlr.2022.100238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022] Open
Abstract
The primary hepatic consequence of obesity is non-alcoholic fatty liver disease (NAFLD), affecting about 25% of the global adult population. Non-alcoholic steatohepatitis (NASH) is a severe form of NAFLD characterized by liver lipid accumulation, inflammation, and hepatocyte ballooning, with a different degree of hepatic fibrosis. In the light of rapidly increasing prevalence of NAFLD and NASH, there is an urgent need for improved understanding of the molecular pathogenesis of these diseases. The aim of this study was to decipher the possible role of STE20-type kinase MAP4K4 in the regulation of hepatocellular lipotoxicity and susceptibility to NAFLD. We found that MAP4K4 mRNA expression in human liver biopsies was positively correlated with key hallmarks of NAFLD (i.e., liver steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis). We also found that the silencing of MAP4K4 suppressed lipid deposition in human hepatocytes by stimulating β-oxidation and triacylglycerol secretion, while attenuating fatty acid influx and lipid synthesis. Furthermore, downregulation of MAP4K4 markedly reduced the glycolysis rate and lowered incidences of oxidative/endoplasmic reticulum stress. In parallel, we observed suppressed JNK and ERK and increased AKT phosphorylation in MAP4K4-deficient hepatocytes. Together, these results provide the first experimental evidence supporting the potential involvement of STE20-type kinase MAP4K4 as a component of the hepatocellular lipotoxic milieu promoting NAFLD susceptibility.
Collapse
Affiliation(s)
- Sumit Kumar Anand
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sima Kumari
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Henricsson
- Biomarker Discovery and Development, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Katharina Susanne Keuenhof
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johanna Louise Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Syam Nair
- Institute of Neuroscience and Physiology, and Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
4
|
Bogevik AS, Seppänen‐Laakso T, Samuelsen TA, Thoresen L. Fractionation of Oil from Black Soldier Fly Larvae (
Hermetia illucens
). EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- André S. Bogevik
- Nofima AS – Norwegian Institute of Food Fisheries Aquaculture Research Kjerreidviken Fyllingsdalen 16, 5141 Norway
| | | | - Tor Andreas Samuelsen
- Nofima AS – Norwegian Institute of Food Fisheries Aquaculture Research Kjerreidviken Fyllingsdalen 16, 5141 Norway
| | - Lars Thoresen
- Nofima AS – Norwegian Institute of Food Fisheries Aquaculture Research Kjerreidviken Fyllingsdalen 16, 5141 Norway
| |
Collapse
|
5
|
Xia Y, Caputo M, Cansby E, Anand SK, Sütt S, Henricsson M, Porosk R, Marschall HU, Blüher M, Mahlapuu M. STE20-type kinase TAOK3 regulates hepatic lipid partitioning. Mol Metab 2021; 54:101353. [PMID: 34634521 PMCID: PMC8567304 DOI: 10.1016/j.molmet.2021.101353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD), defined by excessive lipid storage in hepatocytes, has recently emerged as a leading global cause of chronic liver disease. The aim of this study was to examine the role of STE20-type protein kinase TAOK3, which has previously been shown to associate with hepatic lipid droplets, in the initiation and aggravation of human NAFLD. METHODS The correlation between TAOK3 mRNA expression and the severity of NAFLD was investigated in liver biopsies from 62 individuals. In immortalized human hepatocytes, intracellular fat deposition, lipid metabolism, and oxidative and endoplasmic reticulum stress were analyzed when TAOK3 was overexpressed or knocked down by small interfering RNA. Subcellular localization of TAOK3 was characterized in human and mouse hepatocytes by immunofluorescence microscopy. RESULTS We found that the TAOK3 transcript levels in human liver biopsies were positively correlated with the key lesions of NAFLD (i.e., hepatic steatosis, inflammation, and ballooning). Overexpression of TAOK3 in cultured human hepatocytes exacerbated lipid storage by inhibiting β-oxidation and triacylglycerol secretion while enhancing lipid synthesis. Conversely, silencing of TAOK3 attenuated lipid deposition in human hepatocytes by stimulating mitochondrial fatty acid oxidation and triacylglycerol efflux while suppressing lipogenesis. We also found aggravated or decreased oxidative/endoplasmic reticulum stress in human hepatocytes with increased or reduced TAOK3 levels, respectively. The subcellular localization of TAOK3 in human and mouse hepatocytes was confined to intracellular lipid droplets. CONCLUSIONS This study provides the first evidence that hepatic lipid droplet-coating kinase TAOK3 is a critical regulatory node controlling liver lipotoxicity and susceptibility to NAFLD.
Collapse
Affiliation(s)
- Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sumit Kumar Anand
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Silva Sütt
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Henricsson
- Biomarker Discovery and Development, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
6
|
Srivastava RAK, Hurley TR, Oniciu D, Adeli K, Newton RS. Discovery of analogues of non-β oxidizable long-chain dicarboxylic fatty acids as dual inhibitors of fatty acids and cholesterol synthesis: Efficacy of lead compound in hyperlipidemic hamsters reveals novel mechanism. Nutr Metab Cardiovasc Dis 2021; 31:2490-2506. [PMID: 34172319 DOI: 10.1016/j.numecd.2021.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Cholesterol and triglycerides are risk factors for developing cardiovascular disease. Therefore, appropriate cells and assays are required to discover and develop dual cholesterol and fatty acid inhibitors. A predictive hyperlipidemic animal model is needed to evaluate mechanism of action of lead molecule for therapeutic indications. METHODS AND RESULTS Primary hepatocytes from rat, hamster, rabbit, and humans were compared for suitability to screen compounds by de novo lipogenesis (DNL) using14C-acetate. Hyperlipidemic hamsters were used to evaluate efficacy and mode of action. In rat hepatocytes DNL assay, both the central moiety and carbon chain length influenced the potency of lipogenesis inhibition. In hyperlipidemic hamsters, ETC-1002 decreased plasma cholesterol and triglycerides by 41% and 49% at the 30 mg/kg dose. Concomitant decreases in non-esterified fatty acids (-34%) and increases in ketone bodies (20%) were associated with induction of hepatic CPT1-α. Reductions in proatherogenic VLDL-C and LDL-C (-71% and -64%) occurred partly through down-regulation of DGAT2 and up-regulation of LPL and PDK4. Activation of PLIN1 and PDK4 dampened adipogenesis and showed inverse correlation with adipose mass. Hepatic concentrations of cholesteryl ester and TG decreased by 67% and 64%, respectively. Body weight decreased with concomitant decreases in epididymal fat. Plasma and liver concentrations of ETC-1002 agreed with the observed dose-response efficacy. CONCLUSIONS Taken together, ETC-1002 reduced proatherogenic lipoproteins, hepatic lipids and adipose tissues in hyperlipidemic hamsters via induction of LPL, CPT1-α, PDK4, and PLIN1, and downregulation of DGAT2. These characteristics may be useful in the treatment of fatty livers that causes non-alcoholic steatohepatitis.
Collapse
|
7
|
Phytosterols and Novel Triterpenes Recovered from Industrial Fermentation Coproducts Exert In Vitro Anti-Inflammatory Activity in Macrophages. Pharmaceuticals (Basel) 2021; 14:ph14060583. [PMID: 34207156 PMCID: PMC8235040 DOI: 10.3390/ph14060583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
The unstoppable growth of human population that occurs in parallel with all manufacturing activities leads to a relentless increase in the demand for resources, cultivation land, and energy. In response, currently, there is significant interest in developing strategies to optimize any available resources and their biowaste. While solutions initially focused on recovering biomolecules with applications in food, energy, or materials, the feasibility of synthetic biology in this field has been demonstrated in recent years. For instance, it is possible to genetically modify Saccharomyces cerevisiae to produce terpenes for commercial applications (i.e., against malaria or as biodiesel). But the production process, similar to any industrial activity, generates biowastes containing promising biomolecules (from fermentation) that if recovered may have applications in different areas. To test this hypothesis, in the present study, the lipid composition of by-products from the industrial production of β-farnesene by genetically modified Saccharomyces cerevisiae are studied to identify potentially bioactive compounds, their recovery, and finally, their stability and in vitro bioactivity. The assayed biowaste showed the presence of triterpenes, phytosterols, and 1-octacosanol which were recovered through molecular distillation into a single fraction. During the assayed stability test, compositional modifications were observed, mainly for the phytosterols and 1-octacosanol, probably due to oxidative reactions. However, such changes did not affect the in vitro bioactivity in macrophages, where it was found that the obtained fraction decreased the production of TNF-α and IL-6 in lipopolysaccharide (LPS)-induced inflammation.
Collapse
|
8
|
Singh R, Arora A, Singh V. Biodiesel from oil produced in vegetative tissues of biomass - A review. BIORESOURCE TECHNOLOGY 2021; 326:124772. [PMID: 33551280 DOI: 10.1016/j.biortech.2021.124772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Biodiesel is a green, renewable alternative to petroleum-derived diesel. However, using vegetable oil for biodiesel production significantly challenges the food security. Progress in metabolic engineering, understanding of lipid biosynthesis and storage have enabled engineering of vegetative tissues of plants such as sugarcane, sorghum, and tobacco for lipid production. Such sources could be cultivated on land resources, which are currently not suitable for row crops. Besides achieving significant lipid accumulation, it is imperative to maintain the fatty acid and lipid profile ideal for biodiesel production and engine performance. In this study, genetic modifications used to induce lipid accumulation in transgenic crops and the proposed strategies for efficient recovery of oil from these crops have been presented. This paper highlights that lipids sourced from vegetative biomass in their native form would pose significant challenges in biodiesel production. Therefore, different strategies have been presented for improving feedstock quality to achieve high-quality biodiesel production.
Collapse
Affiliation(s)
- Ramkrishna Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amit Arora
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Solstad RG, Descomps A, Siikavuopio SI, Karstad R, Vang B, Dragøy Whitaker R. First observation of seasonal variations in the meat and co-products of the snow crab (Chionoecetes opilio) in the Barents Sea. Sci Rep 2021; 11:6758. [PMID: 33762582 PMCID: PMC7991642 DOI: 10.1038/s41598-021-85101-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/24/2021] [Indexed: 11/26/2022] Open
Abstract
The snow crab (Chionoecetes opilio), SC, is a newly established species in the Barents Sea. The snow crab fishery has established itself as a new and profitable industry in Norway in the last decade. The fishery started as a year-round fishery, without any information of possible seasonal variations in the quality of the product. In 2017 a total allowable catch was established by the Norwegian government, and the fisheries were subsequently closed during the summer months. In order to optimize fishing times, and to evaluate this growing industry in the Barents Sea, seasonal variations of the meat content of the clusters, as well as variations in content and quality of co-products were investigated, aiming to identify the seasons where the exploitation of different products from SC can be most profitable. The results show seasonal variations in meat content and in composition of co-products. The highest co-product quantities and meat content are from February to April, followed by a period from June to September with decreasing meat and co-products. Our recommendation is to capture the SC in the winter-spring period in the Barents Sea, supporting the current situation and creating most value for the fisheries.
Collapse
Affiliation(s)
- Runar Gjerp Solstad
- NOFIMA-The Norwegian Institute of Food, Fisheries and Aquaculture Research, Muninbakken 9, 9019, Tromsø, Norway
| | - Alexandre Descomps
- NOFIMA-The Norwegian Institute of Food, Fisheries and Aquaculture Research, Muninbakken 9, 9019, Tromsø, Norway.
| | - Sten Ivar Siikavuopio
- NOFIMA-The Norwegian Institute of Food, Fisheries and Aquaculture Research, Muninbakken 9, 9019, Tromsø, Norway
| | - Rasmus Karstad
- NOFIMA-The Norwegian Institute of Food, Fisheries and Aquaculture Research, Muninbakken 9, 9019, Tromsø, Norway
- UiT-The Arctic University of Norway, Hansine Hansens vegen 18, 9019, Tromsø, Norway
| | - Birthe Vang
- NOFIMA-The Norwegian Institute of Food, Fisheries and Aquaculture Research, Muninbakken 9, 9019, Tromsø, Norway
| | - Ragnhild Dragøy Whitaker
- NOFIMA-The Norwegian Institute of Food, Fisheries and Aquaculture Research, Muninbakken 9, 9019, Tromsø, Norway
| |
Collapse
|
10
|
Ruiz M, Palmgren H, Henricsson M, Devkota R, Jaiswal H, Maresca M, Bohlooly-Y M, Peng XR, Borén J, Pilon M. Extensive transcription mis-regulation and membrane defects in AdipoR2-deficient cells challenged with saturated fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158884. [PMID: 33444759 DOI: 10.1016/j.bbalip.2021.158884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/24/2022]
Abstract
How cells maintain vital membrane lipid homeostasis while obtaining most of their constituent fatty acids from a varied diet remains largely unknown. Here, we used transcriptomics, lipidomics, growth and respiration assays, and membrane property analyses in human HEK293 cells or human umbilical vein endothelial cells (HUVEC) to show that the function of AdipoR2 is to respond to membrane rigidification by regulating many lipid metabolism genes. We also show that AdipoR2-dependent membrane homeostasis is critical for growth and respiration in cells challenged with saturated fatty acids. Additionally, we found that AdipoR2 deficiency causes transcriptome and cell physiological defects similar to those observed in SREBP-deficient cells upon SFA challenge. Finally, we compared several genes considered important for lipid homeostasis, namely AdipoR2, SCD, FADS2, PEMT and ACSL4, and found that AdipoR2 and SCD are the most important among these to prevent membrane rigidification and excess saturation when human cells are challenged with exogenous SFAs. We conclude that AdipoR2-dependent membrane homeostasis is one of the primary mechanisms that protects against exogenous SFAs.
Collapse
Affiliation(s)
- Mario Ruiz
- Dept. Chemistry and Molecular Biology, Univ. Gothenburg, 405 30 Gothenburg, Sweden
| | - Henrik Palmgren
- Metabolism Bioscience, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marcus Henricsson
- Dept. Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Univ. of Gothenburg, 405 30 Gothenburg, Sweden
| | - Ranjan Devkota
- Dept. Chemistry and Molecular Biology, Univ. Gothenburg, 405 30 Gothenburg, Sweden
| | - Himjyot Jaiswal
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden; CellinkAB, Arvid Wallgrens Backe 20, 413 46 Gothenburg, Sweden
| | - Marcello Maresca
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Xiao-Rong Peng
- Metabolism Bioscience, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jan Borén
- Dept. Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Univ. of Gothenburg, 405 30 Gothenburg, Sweden
| | - Marc Pilon
- Dept. Chemistry and Molecular Biology, Univ. Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
11
|
Björnson E, Östlund Y, Ståhlman M, Adiels M, Omerovic E, Jeppsson A, Borén J, Levin MC. Lipid profiling of human diabetic myocardium reveals differences in triglyceride fatty acyl chain length and degree of saturation. Int J Cardiol 2020; 320:106-111. [PMID: 32738258 DOI: 10.1016/j.ijcard.2020.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/23/2020] [Accepted: 07/13/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Type 2 diabetes is a major health problem in the world, and is strongly associated with impaired cardiac function and increased mortality. The causal relationship between type 2 diabetes and impaired cardiac function is still incompletely understood but changes in the cardiac lipid metabolism are believed to be a contributing factor. The objective of this study was to determine the lipid profile in human myocardial biopsies collected in vivo from patients with type 2 diabetes and compare to non-diabetic controls. METHOD We conducted full lipidomics analyses, using mass spectrometry, of 85 right atrial biopsies obtained from diabetic and non-diabetic patients undergoing elective cardiac surgery. The patients were characterized clinically and serum was analyzed for lipids and biochemical markers. RESULTS The groups did not differ in BMI and in circulating triglycerides. We demonstrate that type 2 diabetes is associated with alterations in the cardiac lipidome. Interestingly, the absolute amount of lipids is not altered in the diabetic myocardium. However, triglycerides with longer fatty acyl chains are more abundant and there is a higher degree of unsaturated fatty acid chains in triglycerides in diabetic myocardium. CONCLUSIONS Our study reveals that type 2 diabetes is a relatively strong determinant of the human cardiac lipidome (compared to other clinical variables). Although the total lipid content in the diabetic myocardium is not increased, the lipid composition is markedly affected.
Collapse
Affiliation(s)
- Elias Björnson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Sweden
| | - Ylva Östlund
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Sweden; Department of Nephrology, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Sweden
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Sweden; Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Sweden
| | - Malin C Levin
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Sweden.
| |
Collapse
|
12
|
Rimkute I, Thorsteinsson K, Henricsson M, Tenge VR, Yu X, Lin SC, Haga K, Atmar RL, Lycke N, Nilsson J, Estes MK, Bally M, Larson G. Histo-blood group antigens of glycosphingolipids predict susceptibility of human intestinal enteroids to norovirus infection. J Biol Chem 2020; 295:15974-15987. [PMID: 32913124 DOI: 10.1074/jbc.ra120.014855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/07/2020] [Indexed: 01/23/2023] Open
Abstract
The molecular mechanisms behind infection and propagation of human restricted pathogens such as human norovirus (HuNoV) have defied interrogation because they were previously unculturable. However, human intestinal enteroids (HIEs) have emerged to offer unique ex vivo models for targeted studies of intestinal biology, including inflammatory and infectious diseases. Carbohydrate-dependent histo-blood group antigens (HBGAs) are known to be critical for clinical infection. To explore whether HBGAs of glycosphingolipids contribute to HuNoV infection, we obtained HIE cultures established from stem cells isolated from jejunal biopsies of six individuals with different ABO, Lewis, and secretor genotypes. We analyzed their glycerolipid and sphingolipid compositions and quantified interaction kinetics and the affinity of HuNoV virus-like particles (VLPs) to lipid vesicles produced from the individual HIE-lipid extracts. All HIEs had a similar lipid and glycerolipid composition. Sphingolipids included HBGA-related type 1 chain glycosphingolipids (GSLs), with HBGA epitopes corresponding to the geno- and phenotypes of the different HIEs. As revealed by single-particle interaction studies of Sydney GII.4 VLPs with glycosphingolipid-containing HIE membranes, both binding kinetics and affinities explain the patterns of susceptibility toward GII.4 infection for individual HIEs. This is the first time norovirus VLPs have been shown to interact specifically with secretor gene-dependent GSLs embedded in lipid membranes of HIEs that propagate GII.4 HuNoV ex vivo, highlighting the potential of HIEs for advanced future studies of intestinal glycobiology and host-pathogen interactions.
Collapse
Affiliation(s)
- Inga Rimkute
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Konrad Thorsteinsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Marcus Henricsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Victoria R Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoming Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shih-Ching Lin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kei Haga
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA; Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA; Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.
| | - Marta Bally
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
13
|
Spagnuolo MS, Pallottini V, Mazzoli A, Iannotta L, Tonini C, Morone B, Ståhlman M, Crescenzo R, Strazzullo M, Iossa S, Cigliano L. A Short‐Term Western Diet Impairs Cholesterol Homeostasis and Key Players of Beta Amyloid Metabolism in Brain of Middle Aged Rats. Mol Nutr Food Res 2020; 64:e2000541. [DOI: 10.1002/mnfr.202000541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 12/28/2022]
Affiliation(s)
| | - Valentina Pallottini
- Department of ScienceBiomedical and Technology Science SectionUniversity Roma Tre Rome 00146 Italy
| | - Arianna Mazzoli
- Department of BiologyUniversity of Naples Federico II Naples 80126 Italy
| | - Lucia Iannotta
- Department of BiologyUniversity of Naples Federico II Naples 80126 Italy
| | - Claudia Tonini
- Department of ScienceBiomedical and Technology Science SectionUniversity Roma Tre Rome 00146 Italy
| | - Barbara Morone
- Institute of Genetics and Biophysics “A. Buzzati‐Traverso”National Research Council Naples 80131 Italy
| | - Marcus Ståhlman
- Wallenberg LaboratoryDepartment of Molecular and Clinical MedicineSahlgrenska AcademyUniversity of Gothenburg Gothenburg 413 45 Sweden
| | | | - Maria Strazzullo
- Institute of Genetics and Biophysics “A. Buzzati‐Traverso”National Research Council Naples 80131 Italy
| | - Susanna Iossa
- Department of BiologyUniversity of Naples Federico II Naples 80126 Italy
| | - Luisa Cigliano
- Department of BiologyUniversity of Naples Federico II Naples 80126 Italy
| |
Collapse
|
14
|
Srivastava RAK, Cefalu AB, Srivastava NS, Averna M. NPC1L1 and ABCG5/8 induction explain synergistic fecal cholesterol excretion in ob/ob mice co-treated with PPAR-α and LXR agonists. Mol Cell Biochem 2020; 473:247-262. [DOI: 10.1007/s11010-020-03826-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022]
|
15
|
Kotapati HK, Bates PD. Normal phase HPLC method for combined separation of both polar and neutral lipid classes with application to lipid metabolic flux. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1145:122099. [DOI: 10.1016/j.jchromb.2020.122099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/08/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
|
16
|
Seppänen-Laakso T, Nygren H, Rischer H. UPLC-ELSD Analysis of Algal Lipid Classes and Derivatization of Bound and Free Fatty Acids and Sterols for GC-MS Methods. Methods Mol Biol 2020; 1980:223-232. [PMID: 29159730 DOI: 10.1007/7651_2017_109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Constituents of microalgae and sample preparation for UPLC-ELSD and GC-MS analyses are described. Bound fatty acids from acylglycerols, alkylacylglycerols, galactosyldiacylglycerols, glycerophospholipids, and sterol esters are derivatized by using transesterification with sodium methoxide to form fatty acid methyl esters. Compounds containing free hydroxyl groups, either present originally or formed during previous step, like free fatty acids, sterols, α-tocopherol, phytol, and nonesterified alkoxyglycerols, are trimethylsilylated. The compounds in algal lipid extract are subsequently derivatized by these two steps.
Collapse
Affiliation(s)
| | - Heli Nygren
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Heiko Rischer
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland.
| |
Collapse
|
17
|
Assi A, Bakar J, Libong D, Sarkees E, Solgadi A, Baillet-Guffroy A, Michael-Jubeli R, Tfayli A. Comprehensive characterization and simultaneous analysis of overall lipids in reconstructed human epidermis using NPLC/HR-MSn: 1-O-E (EO) Cer, a new ceramide subclass. Anal Bioanal Chem 2019; 412:777-793. [DOI: 10.1007/s00216-019-02301-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
|
18
|
Rosqvist F, Kullberg J, Ståhlman M, Cedernaes J, Heurling K, Johansson HE, Iggman D, Wilking H, Larsson A, Eriksson O, Johansson L, Straniero S, Rudling M, Antoni G, Lubberink M, Orho-Melander M, Borén J, Ahlström H, Risérus U. Overeating Saturated Fat Promotes Fatty Liver and Ceramides Compared With Polyunsaturated Fat: A Randomized Trial. J Clin Endocrinol Metab 2019; 104:6207-6219. [PMID: 31369090 PMCID: PMC6839433 DOI: 10.1210/jc.2019-00160] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022]
Abstract
CONTEXT Saturated fatty acid (SFA) vs polyunsaturated fatty acid (PUFA) may promote nonalcoholic fatty liver disease by yet unclear mechanisms. OBJECTIVE To investigate if overeating SFA- and PUFA-enriched diets lead to differential liver fat accumulation in overweight and obese humans. DESIGN Double-blind randomized trial (LIPOGAIN-2). Overfeeding SFA vs PUFA for 8 weeks, followed by 4 weeks of caloric restriction. SETTING General community. PARTICIPANTS Men and women who are overweight or have obesity (n = 61). INTERVENTION Muffins, high in either palm (SFA) or sunflower oil (PUFA), were added to the habitual diet. MAIN OUTCOME MEASURES Lean tissue mass (not reported here). Secondary and exploratory outcomes included liver and ectopic fat depots. RESULTS By design, body weight gain was similar in SFA (2.31 ± 1.38 kg) and PUFA (2.01 ± 1.90 kg) groups, P = 0.50. SFA markedly induced liver fat content (50% relative increase) along with liver enzymes and atherogenic serum lipids. In contrast, despite similar weight gain, PUFA did not increase liver fat or liver enzymes or cause any adverse effects on blood lipids. SFA had no differential effect on the accumulation of visceral fat, pancreas fat, or total body fat compared with PUFA. SFA consistently increased, whereas PUFA reduced circulating ceramides, changes that were moderately associated with liver fat changes and proposed markers of hepatic lipogenesis. The adverse metabolic effects of SFA were reversed by calorie restriction. CONCLUSIONS SFA markedly induces liver fat and serum ceramides, whereas dietary PUFA prevents liver fat accumulation and reduces ceramides and hyperlipidemia during excess energy intake and weight gain in overweight individuals.
Collapse
Affiliation(s)
- Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Joel Kullberg
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jonathan Cedernaes
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Chicago, Illinois
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Kerstin Heurling
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine and Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Hans-Erik Johansson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - David Iggman
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
- Center for Clinical Research Dalarna, Falun, Sweden
| | - Helena Wilking
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Lars Johansson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Sara Straniero
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated CardioMetabolic Center, Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Mats Rudling
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated CardioMetabolic Center, Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Gunnar Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Ruiz M, Bodhicharla R, Ståhlman M, Svensk E, Busayavalasa K, Palmgren H, Ruhanen H, Boren J, Pilon M. Evolutionarily conserved long-chain Acyl-CoA synthetases regulate membrane composition and fluidity. eLife 2019; 8:47733. [PMID: 31769755 PMCID: PMC6901333 DOI: 10.7554/elife.47733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/23/2019] [Indexed: 12/19/2022] Open
Abstract
The human AdipoR1 and AdipoR2 proteins, as well as their C. elegans homolog PAQR-2, protect against cell membrane rigidification by exogenous saturated fatty acids by regulating phospholipid composition. Here, we show that mutations in the C. elegans gene acs-13 help to suppress the phenotypes of paqr-2 mutant worms, including their characteristic membrane fluidity defects. acs-13 encodes a homolog of the human acyl-CoA synthetase ACSL1, and localizes to the mitochondrial membrane where it likely activates long chains fatty acids for import and degradation. Using siRNA combined with lipidomics and membrane fluidity assays (FRAP and Laurdan dye staining) we further show that the human ACSL1 potentiates lipotoxicity by the saturated fatty acid palmitate: silencing ACSL1 protects against the membrane rigidifying effects of palmitate and acts as a suppressor of AdipoR2 knockdown, thus echoing the C. elegans findings. We conclude that acs-13 mutations in C. elegans and ACSL1 knockdown in human cells prevent lipotoxicity by promoting increased levels of polyunsaturated fatty acid-containing phospholipids.
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Rakesh Bodhicharla
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Emma Svensk
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Kiran Busayavalasa
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Palmgren
- Metabolism BioScience, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hanna Ruhanen
- Helsinki University Lipidomics Unit, Helsinki Institute for Life Science, Helsinki, Finland.,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jan Boren
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Cansby E, Magnusson E, Nuñez-Durán E, Amrutkar M, Pedrelli M, Parini P, Hoffmann J, Ståhlman M, Howell BW, Marschall HU, Borén J, Mahlapuu M. STK25 Regulates Cardiovascular Disease Progression in a Mouse Model of Hypercholesterolemia. Arterioscler Thromb Vasc Biol 2019; 38:1723-1737. [PMID: 29930001 DOI: 10.1161/atvbaha.118.311241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective- Recent cohort studies have shown that nonalcoholic fatty liver disease (NAFLD), and especially nonalcoholic steatohepatitis (NASH), associate with atherosclerosis and cardiovascular disease, independently of conventional cardiometabolic risk factors. However, the mechanisms underlying the pathophysiological link between NAFLD/NASH and cardiovascular disease still remain unclear. Our previous studies have identified STK25 (serine/threonine protein kinase 25) as a critical determinant in ectopic lipid storage, meta-inflammation, and progression of NAFLD/NASH. The aim of this study was to assess whether STK25 is also one of the mediators in the complex molecular network controlling the cardiovascular disease risk. Approach and Results- Atherosclerosis was induced in Stk25 knockout and transgenic mice, and their wild-type littermates, by gene transfer of gain-of-function mutant of PCSK9 (proprotein convertase subtilisin/kexin type 9), which induces the downregulation of hepatic LDLR (low-density lipoprotein receptor), combined with an atherogenic western-type diet. We found that Stk25-/- mice displayed reduced atherosclerosis lesion area as well as decreased lipid accumulation, macrophage infiltration, collagen formation, and oxidative stress in aortic lesions compared with wild-type littermates, independently from alterations in dyslipidemia. Reciprocally, Stk25 transgenic mice presented aggravated plaque formation and maturation compared with wild-type littermates despite similar levels of fasting plasma cholesterol. We also found that STK25 protein was expressed in all layers of the aorta, suggesting a possible direct role in cardiovascular disease. Conclusions- This study provides the first evidence that STK25 plays a critical role in regulation of cardiovascular disease risk and suggests that pharmacological inhibition of STK25 function may provide new possibilities for prevention/treatment of atherosclerosis.
Collapse
Affiliation(s)
- Emmelie Cansby
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | - Elin Magnusson
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | - Esther Nuñez-Durán
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | - Manoj Amrutkar
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Sweden; Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Norway (M.A.)
| | | | - Paolo Parini
- Department of Laboratory Medicine (M.P., P.P.).,Department of Medicine, Metabolism Unit (P.P.)
| | - Jenny Hoffmann
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | | | - Brian W Howell
- Karolinska Institute, Stockholm, Sweden; and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse (B.W.H.)
| | | | - Jan Borén
- Wallenberg Laboratory (M.S., H.-U.M., J.B.)
| | - Margit Mahlapuu
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| |
Collapse
|
21
|
Molinaro A, Caesar R, L'homme L, Koh A, Ståhlman M, Staels B, Bäckhed F. Liver-specific RORα deletion does not affect the metabolic susceptibility to western style diet feeding. Mol Metab 2019; 23:82-87. [PMID: 30904385 PMCID: PMC6479759 DOI: 10.1016/j.molmet.2019.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
Objectives The nuclear receptor superfamily is a potential target for the development of new treatments for obesity and metabolic diseases. Increasing evidence has pointed towards the retinoic acid-related orphan receptor-alpha (RORα) as an important nuclear receptor involved in several biological processes. RORα full body knockout mice display improved metabolic phenotypes on both chow and high fat (60% fat, 20% carbohydrate) diets, but also have severe behavioral abnormalities. Here we investigated the effect of hepatic RORα by generating mice with liver-specific RORα deletion to elucidate the role of this nuclear receptor on host metabolism. Methods 8 week-old mice with liver-specific RORα deletion and littermate controls were fed either chow or western-style diets (40% fat, 40% carbohydrate) for 12 weeks. Metabolic phenotyping was performed at the end of the dietary intervention. Results Here, we show that hepatic RORα deletion does not affect the metabolic susceptibility to either chow or western-style diet in terms of glucose metabolism and adiposity. Conclusions Our data indicate that liver deletion of RORα does not have a pivotal role in the regulation of hepatic glucose and lipid metabolism on chow or western-style diet. Hepatic deletion of RORα does not affect host metabolism on chow diet. Hepatic deletion of RORα does not affect host metabolism on western-style diet. Similar phenotypes between male and female mice.
Collapse
Affiliation(s)
- Antonio Molinaro
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Robert Caesar
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Laurent L'homme
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Ara Koh
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Marcus Ståhlman
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research and Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
22
|
Ruiz M, Bodhicharla R, Svensk E, Devkota R, Busayavalasa K, Palmgren H, Ståhlman M, Boren J, Pilon M. Membrane fluidity is regulated by the C. elegans transmembrane protein FLD-1 and its human homologs TLCD1/2. eLife 2018; 7:e40686. [PMID: 30509349 PMCID: PMC6279351 DOI: 10.7554/elife.40686] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/04/2018] [Indexed: 12/15/2022] Open
Abstract
Dietary fatty acids are the main building blocks for cell membranes in animals, and mechanisms must therefore exist that compensate for dietary variations. We isolated C. elegans mutants that improved tolerance to dietary saturated fat in a sensitized genetic background, including eight alleles of the novel gene fld-1 that encodes a homolog of the human TLCD1 and TLCD2 transmembrane proteins. FLD-1 is localized on plasma membranes and acts by limiting the levels of highly membrane-fluidizing long-chain polyunsaturated fatty acid-containing phospholipids. Human TLCD1/2 also regulate membrane fluidity by limiting the levels of polyunsaturated fatty acid-containing membrane phospholipids. FLD-1 and TLCD1/2 do not regulate the synthesis of long-chain polyunsaturated fatty acids but rather limit their incorporation into phospholipids. We conclude that inhibition of FLD-1 or TLCD1/2 prevents lipotoxicity by allowing increased levels of membrane phospholipids that contain fluidizing long-chain polyunsaturated fatty acids. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Rakesh Bodhicharla
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Emma Svensk
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Kiran Busayavalasa
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Henrik Palmgren
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
- Diabetes Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech UnitAstraZenecaGothenburgSweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of MedicineUniversity of GothenburgGothenburgSweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of MedicineUniversity of GothenburgGothenburgSweden
| | - Marc Pilon
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
23
|
Srivastava N, Cefalu AB, Averna M, Srivastava RAK. Lack of Correlation of Plasma HDL With Fecal Cholesterol and Plasma Cholesterol Efflux Capacity Suggests Importance of HDL Functionality in Attenuation of Atherosclerosis. Front Physiol 2018; 9:1222. [PMID: 30271349 PMCID: PMC6142045 DOI: 10.3389/fphys.2018.01222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/14/2018] [Indexed: 11/13/2022] Open
Abstract
A number of clinical findings suggested HDL-raising as a plausible approach to treat residual risk of CVD. However, lack of CVD risk reduction by elevated HDL cholesterol (HDL-C) through cholesterol ester transfer protein (CETP) inhibition and enhanced risk reduction in apolipoprotein A-I Milano (apoAI-M) individuals with low HDL-C shifted the focus from HDL-C level to HDL function. In the present study, we investigated correlations between HDL-C, HDL function, fecal cholesterol excretion, and ex vivo plasma cholesterol efflux capacity (CEC) in animal models using two HDL modulators, LXR and PPAR-α agonists. In C57Bl mice, LXR agonist, T1317, raised HDL-C by 30%, while PPAR-α agonist, fenofibrate, reduced HDL-C by 30%, but fecal cholesterol showed twofold increase in both cases. CEC showed a 30–40% increase. Combination of LXR and PPAR-α agonists showed no changes in HDL-C, but, interestingly, fecal cholesterol increased by 4.5-fold, and CEC by 40%, suggesting existence of additional pathway for fecal cholesterol excretion. Regression analysis showed a lack of correlation between HDL-C and fecal cholesterol and CEC, while fecal cholesterol showed significant correlation with CEC, a measure of HDL function. ABCA1 and G1, the two important players in RCT showed greater induction with LXR agonist than PPAR-α agonist. HDL-C increased by 40 and 80% in LXR and PPAR-α treated apoA-I transgenic mice, respectively, with 80% increase in fecal cholesterol. A fivefold increase in fecal cholesterol with no correlation with either plasma HDL-C or CEC following co-treatment with LXR and PPAR-α agonists suggested existence of an HDL-independent pathway for body cholesterol elimination. In hyperlipidemic diabetic ob/ob mice also combination of LXR and PPAR-α agonists showed marked increases in fecal cholesterol content (10–20-fold), while HDL-C rise was only 40%, further suggesting HDL-independent elimination of body cholesterol in mice treated with combination of LXR and PPAR-α agonists. Atherosclerosis attenuation by LXR and PPAR-α agonists in LDLr-deficient mice was associated with increased fecal cholesterol, but not HDL-C. However, fecal cholesterol counts showed inverse correlation with aortic cholesteryl ester content. These data suggest: (a) lack of correlation between HDL-C and fecal or aortic cholesterol content; (b) HDL function (CEC) correlated with fecal cholesterol content; (c) association of reduced aortic lipids in LDLr−/− mice with increased fecal cholesterol, but not with HDL-C, and (d) existence of an HDL-independent pathway for fecal cholesterol excretion following co-treatment with LXR and PPAR-α agonists.
Collapse
Affiliation(s)
- Neelam Srivastava
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Angelo B Cefalu
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Maurizio Averna
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | | |
Collapse
|
24
|
Sütt S, Cansby E, Paul A, Amrutkar M, Nuñez-Durán E, Kulkarni NM, Ståhlman M, Borén J, Laurencikiene J, Howell BW, Enerbäck S, Mahlapuu M. STK25 regulates oxidative capacity and metabolic efficiency in adipose tissue. J Endocrinol 2018; 238:187-202. [PMID: 29794231 DOI: 10.1530/joe-18-0182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 12/26/2022]
Abstract
Whole-body energy homeostasis at over-nutrition critically depends on how well adipose tissue remodels in response to excess calories. We recently identified serine/threonine protein kinase (STK)25 as a critical regulator of ectopic lipid storage in non-adipose tissue and systemic insulin resistance in the context of nutritional stress. Here, we investigated the role of STK25 in regulation of adipose tissue dysfunction in mice challenged with a high-fat diet. We found that overexpression of STK25 in high-fat-fed mice resulted in impaired mitochondrial function and aggravated hypertrophy, inflammatory infiltration and fibrosis in adipose depots. Reciprocally, Stk25-knockout mice displayed improved mitochondrial function and were protected against diet-induced excessive fat storage, meta-inflammation and fibrosis in brown and white adipose tissues. Furthermore, in rodent HIB-1B cell line, STK25 depletion resulted in enhanced mitochondrial activity and consequently, reduced lipid droplet size, demonstrating an autonomous action for STK25 within adipocytes. In summary, we provide the first evidence for a key function of STK25 in controlling the metabolic balance of lipid utilization vs lipid storage in brown and white adipose depots, suggesting that repression of STK25 activity offers a potential strategy for establishing healthier adipose tissue in the context of chronic exposure to dietary lipids.
Collapse
Affiliation(s)
- Silva Sütt
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alexandra Paul
- Department of Biology and Biological EngineeringDivision of Chemical Biology, Chalmers University of Technology, Gothenburg, Sweden
| | - Manoj Amrutkar
- Department of Hepato-Pancreato-Biliary SurgeryInstitute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Esther Nuñez-Durán
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nagaraj M Kulkarni
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg LaboratoryInstitute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg LaboratoryInstitute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jurga Laurencikiene
- Lipid LaboratoryDepartment of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Brian W Howell
- Department of Neuroscience and PhysiologyState University of New York Upstate Medical University, Syracuse, New York, USA
| | - Sven Enerbäck
- Department of Medical and Clinical GeneticsInstitute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margit Mahlapuu
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
25
|
Novel analytical methods to assess the chemical and physical properties of liposomes. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1091:14-20. [DOI: 10.1016/j.jchromb.2018.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 11/21/2022]
|
26
|
Bogevik AS, Nygren H, Balle T, Haugsgjerd BO, Kousoulaki K. Enzymatic Interesterification of Heterotrophic Microalgal Oil with Rapeseed Oil to Decrease the Levels of Tripalmitin. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- André S. Bogevik
- Nofima AS - Norwegian Institute of Food, Fisheries Aquaculture Research; Kjerreidviken 16 5141 Fyllingsdalen Norway
| | - Heli Nygren
- VTT Technical Research Centre of Finland; LTD, P.O. Box 1000 FI-02044 VTT Finland
| | - Thomas Balle
- Novozymes A/S; Krogshoejvej 36 2880 Bagsvaerd Denmark
| | - Bjørn O. Haugsgjerd
- Nofima AS - Norwegian Institute of Food, Fisheries Aquaculture Research; Kjerreidviken 16 5141 Fyllingsdalen Norway
| | - Katerina Kousoulaki
- Nofima AS - Norwegian Institute of Food, Fisheries Aquaculture Research; Kjerreidviken 16 5141 Fyllingsdalen Norway
| |
Collapse
|
27
|
Ingólfsson HI, Carpenter TS, Bhatia H, Bremer PT, Marrink SJ, Lightstone FC. Computational Lipidomics of the Neuronal Plasma Membrane. Biophys J 2017; 113:2271-2280. [PMID: 29113676 PMCID: PMC5700369 DOI: 10.1016/j.bpj.2017.10.017] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 01/18/2023] Open
Abstract
Membrane lipid composition varies greatly within submembrane compartments, different organelle membranes, and also between cells of different cell stage, cell and tissue types, and organisms. Environmental factors (such as diet) also influence membrane composition. The membrane lipid composition is tightly regulated by the cell, maintaining a homeostasis that, if disrupted, can impair cell function and lead to disease. This is especially pronounced in the brain, where defects in lipid regulation are linked to various neurological diseases. The tightly regulated diversity raises questions on how complex changes in composition affect overall bilayer properties, dynamics, and lipid organization of cellular membranes. Here, we utilize recent advances in computational power and molecular dynamics force fields to develop and test a realistically complex human brain plasma membrane (PM) lipid model and extend previous work on an idealized, "average" mammalian PM. The PMs showed both striking similarities, despite significantly different lipid composition, and interesting differences. The main differences in composition (higher cholesterol concentration and increased tail unsaturation in brain PM) appear to have opposite, yet complementary, influences on many bilayer properties. Both mixtures exhibit a range of dynamic lipid lateral inhomogeneities ("domains"). The domains can be small and transient or larger and more persistent and can correlate between the leaflets depending on lipid mixture, Brain or Average, as well as on the extent of bilayer undulations.
Collapse
Affiliation(s)
- Helgi I Ingólfsson
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate
| | - Timothy S Carpenter
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate
| | - Harsh Bhatia
- Center for Applied Scientific Computing (CASC), Computational Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Peer-Timo Bremer
- Center for Applied Scientific Computing (CASC), Computational Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Siewert J Marrink
- Groningen Biomolecular Science and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate.
| |
Collapse
|
28
|
Nuñez-Durán E, Aghajan M, Amrutkar M, Sütt S, Cansby E, Booten SL, Watt A, Ståhlman M, Stefan N, Häring HU, Staiger H, Borén J, Marschall HU, Mahlapuu M. Serine/threonine protein kinase 25 antisense oligonucleotide treatment reverses glucose intolerance, insulin resistance, and nonalcoholic fatty liver disease in mice. Hepatol Commun 2017; 2:69-83. [PMID: 29404514 PMCID: PMC5776874 DOI: 10.1002/hep4.1128] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/16/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) contributes to the pathogenesis of type 2 diabetes and cardiovascular disease, and patients with nonalcoholic steatohepatitis (NASH) are also at risk of developing cirrhosis, liver failure, and hepatocellular carcinoma. To date, no specific therapy exists for NAFLD/NASH, which has been recognized as one of the major unmet medical needs of the twenty‐first century. We recently identified serine/threonine protein kinase (STK)25 as a critical regulator of energy homeostasis and NAFLD progression. Here, we investigated the effect of antisense oligonucleotides (ASOs) targeting Stk25 on the metabolic and molecular phenotype of mice after chronic exposure to dietary lipids. We found that Stk25 ASOs efficiently reversed high‐fat diet‐induced systemic hyperglycemia and hyperinsulinemia, improved whole‐body glucose tolerance and insulin sensitivity, and ameliorated liver steatosis, inflammatory infiltration, apoptosis, hepatic stellate cell activation, and nutritional fibrosis in obese mice. Moreover, Stk25 ASOs suppressed the abundance of liver acetyl‐coenzyme A carboxylase (ACC) protein, a key regulator of both lipid oxidation and synthesis, revealing the likely mechanism underlying repression of hepatic fat accumulation by ASO treatment. We also found that STK25 protein levels correlate significantly and positively with NASH development in human liver biopsies, and several common nonlinked single‐nucleotide polymorphisms in the human STK25 gene are associated with altered liver fat, supporting a critical role of STK25 in the pathogenesis of NAFLD in humans. Conclusion: Preclinical validation for the metabolic benefit of pharmacologically inhibiting STK25 in the context of obesity is provided. Therapeutic intervention aimed at reducing STK25 function may provide a new strategy for the treatment of patients with NAFLD, type 2 diabetes, and related complex metabolic diseases. (Hepatology Communications 2018;2:69–83)
Collapse
Affiliation(s)
- Esther Nuñez-Durán
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Institute of Medicine University of Gothenburg, Sahlgrenska University Hospital Gothenburg Sweden
| | | | - Manoj Amrutkar
- Department of Gastrointestinal and Children Surgery University of Oslo Norway
| | - Silva Sütt
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Institute of Medicine University of Gothenburg, Sahlgrenska University Hospital Gothenburg Sweden
| | - Emmelie Cansby
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Institute of Medicine University of Gothenburg, Sahlgrenska University Hospital Gothenburg Sweden
| | | | | | - Marcus Ståhlman
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine University of Gothenburg, Sahlgrenska University Hospital Gothenburg Sweden
| | - Norbert Stefan
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich University of Tübingen Tübingen Germany.,German Center for Diabetes Research Tübingen Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich University of Tübingen Tübingen Germany.,German Center for Diabetes Research Tübingen Germany
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich University of Tübingen Tübingen Germany.,German Center for Diabetes Research Tübingen Germany.,Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry Eberhard Karls University Tübingen Tübingen Germany
| | - Jan Borén
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine University of Gothenburg, Sahlgrenska University Hospital Gothenburg Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine University of Gothenburg, Sahlgrenska University Hospital Gothenburg Sweden
| | - Margit Mahlapuu
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Institute of Medicine University of Gothenburg, Sahlgrenska University Hospital Gothenburg Sweden
| |
Collapse
|
29
|
Abreu S, Solgadi A, Chaminade P. Optimization of normal phase chromatographic conditions for lipid analysis and comparison of associated detection techniques. J Chromatogr A 2017; 1514:54-71. [PMID: 28774713 DOI: 10.1016/j.chroma.2017.07.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 07/07/2017] [Accepted: 07/18/2017] [Indexed: 02/02/2023]
Abstract
One important challenge in lipid class analysis is to develop a method suitable or, at least adaptable, for a vast diversity of samples. In the current study, an improved normal-phase liquid chromatography (NPLC) method allowed analyzing the lipid classes present in mammalian, vegetable as well as microorganism (yeast and bacteria) lipid samples. The method effectively separated 30 lipid classes or subclasses with a special focus on medium polarity lipids. The separation was carried out with bare silica stationary phase and was coupled to evaporative light scattering detection (ELSD), charged aerosol detection (Corona-CAD®) and mass spectrometry. Solutions are provided to circumvent technical issues (such as pumping solvents of low viscosity, solvent purity, rinsing step). The influence of mobile phase composition and addition of ionic modifiers on the chromatographic behavior of particular lipid classes is documented. A comparison between ELSD and Corona-CAD® confirmed the interest of this later detector for samples with a wide range of concentration of different lipids. Three common atmospheric pressure ionization interfaces were used for coupling the NPLC separation to a LTQ Velos Pro® mass spectrometer. The comparison of the chromatographic profiles showed that atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) are both suitable to detect the different lipid classes whereas APPI allows a better sensitivity for lipids at low-concentration.
Collapse
Affiliation(s)
- Sonia Abreu
- Lip(Sys)2, Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry, France
| | - Audrey Solgadi
- SAMM, UMS IPSIT, Université Paris Sud, Université Paris-Saclay, Chatenay-Malabry, France
| | - Pierre Chaminade
- Lip(Sys)2, Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry, France.
| |
Collapse
|
30
|
Rezhdo O, Speciner L, Carrier R. Lipid-associated oral delivery: Mechanisms and analysis of oral absorption enhancement. J Control Release 2016; 240:544-560. [PMID: 27520734 PMCID: PMC5082615 DOI: 10.1016/j.jconrel.2016.07.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/29/2023]
Abstract
The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid in the understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented.
Collapse
Affiliation(s)
- Oljora Rezhdo
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Lauren Speciner
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Rebecca Carrier
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States.
| |
Collapse
|
31
|
Prache N, Abreu S, Sassiat P, Thiébaut D, Chaminade P. Alternative solvents for improving the greenness of normal phase liquid chromatography of lipid classes. J Chromatogr A 2016; 1464:55-63. [DOI: 10.1016/j.chroma.2016.07.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 12/11/2022]
|
32
|
Löfgren L, Forsberg GB, Ståhlman M. The BUME method: a new rapid and simple chloroform-free method for total lipid extraction of animal tissue. Sci Rep 2016; 6:27688. [PMID: 27282822 PMCID: PMC4901324 DOI: 10.1038/srep27688] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/19/2016] [Indexed: 11/16/2022] Open
Abstract
In this study we present a simple and rapid method for tissue lipid extraction. Snap-frozen tissue (15–150 mg) is collected in 2 ml homogenization tubes. 500 μl BUME mixture (butanol:methanol [3:1]) is added and automated homogenization of up to 24 frozen samples at a time in less than 60 seconds is performed, followed by a 5-minute single-phase extraction. After the addition of 500 μl heptane:ethyl acetate (3:1) and 500 μl 1% acetic acid a 5-minute two-phase extraction is performed. Lipids are recovered from the upper phase by automated liquid handling using a standard 96-tip robot. A second two-phase extraction is performed using 500 μl heptane:ethyl acetate (3:1). Validation of the method showed that the extraction recoveries for the investigated lipids, which included sterols, glycerolipids, glycerophospholipids and sphingolipids were similar or better than for the Folch method. We also applied the method for lipid extraction of liver and heart and compared the lipid species profiles with profiles generated after Folch and MTBE extraction. We conclude that the BUME method is superior to the Folch method in terms of simplicity, through-put, automation, solvent consumption, economy, health and environment yet delivering lipid recoveries fully comparable to or better than the Folch method.
Collapse
Affiliation(s)
- Lars Löfgren
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Gun-Britt Forsberg
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Marcus Ståhlman
- Wallenberg Laboratory, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
33
|
Donot F, Strub C, Fontana A, Jouy N, Delbes C, Gunata Z, Schorr-Galindo S. Rapid analysis and quantification of major neutral lipid species and free fatty acids by HPLC-ELSD from microalgae. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Florentin Donot
- UMR Qualisud; University of Montpellier; Montpellier France
- Total SA; Pôle Recherche et Développement Mont/Lacq; Lacq France
| | - Caroline Strub
- UMR Qualisud; University of Montpellier; Montpellier France
| | | | - Nicolas Jouy
- UMR Qualisud; University of Montpellier; Montpellier France
| | | | - Ziya Gunata
- UMR Qualisud; University of Montpellier; Montpellier France
| | | |
Collapse
|
34
|
Caesar R, Nygren H, Orešič M, Bäckhed F. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism. J Lipid Res 2016; 57:474-81. [PMID: 26783361 DOI: 10.1194/jlr.m065847] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene expression in the liver. Germ-free and conventionally raised mice were fed a lard or fish oil diet for 11 weeks. We performed lipidomics analysis of the liver and serum and microarray analysis of the liver. As expected, most of the variation in the lipidomics dataset was induced by the diet, and abundance of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota-induced regulation of hepatic cholesterol metabolism is dependent on dietary lipid composition.
Collapse
Affiliation(s)
- Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Heli Nygren
- VTT Technical Research Centre of Finland, FI-02044 VTT, Espoo, Finland
| | - Matej Orešič
- VTT Technical Research Centre of Finland, FI-02044 VTT, Espoo, Finland Steno Diabetes Center A/S, DK-2820 Gentofte, Denmark
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
35
|
Corsetto PA, Ferrara G, Buratta S, Urbanelli L, Montorfano G, Gambelunghe A, Chiaradia E, Magini A, Roderi P, Colombo I, Rizzo AM, Emiliani C. Changes in Lipid Composition During Manganese-Induced Apoptosis in PC12 Cells. Neurochem Res 2015; 41:258-69. [DOI: 10.1007/s11064-015-1785-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 02/01/2023]
|
36
|
Arslan FN, Kara H. Fully Automated Three-Dimensional Column-Switching SPE–FIA–HPLC System for the Characterization of Lipids by a Single Injection: Part I. Instrumental Design and Chemometric Approach to Assess the Effect of Experimental Settings on the Response of ELSD. J AM OIL CHEM SOC 2015. [DOI: 10.1007/s11746-015-2750-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Methylmercury Increases and Eicosapentaenoic Acid Decreases the Relative Amounts of Arachidonic Acid-Containing Phospholipids in Mouse Brain. Lipids 2015; 51:61-73. [DOI: 10.1007/s11745-015-4087-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 10/02/2015] [Indexed: 12/29/2022]
|
38
|
Atrial fibrillation in patients admitted to coronary care units in western Sweden – focus on obesity and lipotoxicity. J Electrocardiol 2015; 48:853-60. [DOI: 10.1016/j.jelectrocard.2014.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Indexed: 01/22/2023]
|
39
|
Bioactivity and chemical characterization of gonads of green sea urchin Strongylocentrotus droebachiensis from Barents Sea. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
p110α Hot Spot Mutations E545K and H1047R Exert Metabolic Reprogramming Independently of p110α Kinase Activity. Mol Cell Biol 2015; 35:3258-73. [PMID: 26169833 DOI: 10.1128/mcb.00471-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 12/23/2022] Open
Abstract
The phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit p110α is the most frequently mutated kinase in human cancer, and the hot spot mutations E542K, E545K, and H1047R are the most common mutations in p110α. Very little is known about the metabolic consequences of the hot spot mutations of p110α in vivo. In this study, we used adenoviral gene transfer in mice to investigate the effects of the E545K and H1047R mutations on hepatic and whole-body glucose metabolism. We show that hepatic expression of these hot spot mutations results in rapid hepatic steatosis, paradoxically accompanied by increased glucose tolerance, and marked glycogen accumulation. In contrast, wild-type p110α expression does not lead to hepatic accumulation of lipids or glycogen despite similar degrees of upregulated glycolysis and expression of lipogenic genes. The reprogrammed metabolism of the E545K and H1047R p110α mutants was surprisingly not dependent on altered p110α lipid kinase activity.
Collapse
|
41
|
Poulin P, Chen YH, Ding X, Gould SE, Hop CE, Messick K, Oeh J, Liederer BM. Prediction of Drug Distribution in Subcutaneous Xenografts of Human Tumor Cell Lines and Healthy Tissues in Mouse: Application of the Tissue Composition-Based Model to Antineoplastic Drugs. J Pharm Sci 2015; 104:1508-21. [DOI: 10.1002/jps.24336] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/05/2014] [Accepted: 12/12/2014] [Indexed: 12/20/2022]
|
42
|
Graf BL, Cheng DM, Esposito D, Shertel T, Poulev A, Plundrich N, Itenberg D, Dayan N, Lila MA, Raskin I. Compounds leached from quinoa seeds inhibit matrix metalloproteinase activity and intracellular reactive oxygen species. Int J Cosmet Sci 2015; 37:212-21. [PMID: 25496720 DOI: 10.1111/ics.12185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 11/15/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Quinoa (Chenopodium quinoa Willd.) is a seed crop rich in bioactive compounds including phytoecdysones (especially 20-hydroxyecdysone, 20HE), polyphenols, proteins and essential fatty acids. We previously reported a method to leach and concentrate quinoa bioactives into a complex phytochemical mixture termed quinoa leachate (QL). Here, we aimed to determine the effect of QL and its chemically distinct fractions on five biochemical endpoints relevant to skin care applications: (i) cell viability, (ii) matrix metalloproteinase (MMP) mRNA expression, (iii) MMP enzymatic activity, (iv) tyrosinase enzymatic activity and (v) intracellular reactive oxygen species (ROS) production. METHODS Quinoa leachate was fractionated and chemically characterized using column chromatography and liquid chromatography-mass spectrometry (LC-MS). Cell viability was determined using a MTT assay in four mammalian cell lines. MMP-1 mRNA expression was assessed in human dermal fibroblasts (HDF) via qRT-PCR. The enzymatic activity of MMP-9 and tyrosinase was measured using fluorometric and colorimetric in vitro assays, respectively. Lipopolysaccharide (LPS)-induced ROS production was determined in human dermal fibroblasts by fluorescence intensity of an oxidant-sensitive probe. RESULTS Quinoa leachate was separated into three fractions: (i) carbohydrate-rich fraction (QL-C; 71.3% w/w of QL); (ii) phytoecdysone, polyphenol and protein-rich fraction (QL-P, 13.3% w/w of QL); (iii) oil-rich fraction (QL-O, 10.8% w/w of QL). QL did not reduce cell viability in any of the four cell lines tested. QL, QL-P and QL-O each significantly inhibited MMP-1 mRNA expression in HDF at a concentration of 5 μg mL(-1) . QL and QL-P also significantly inhibited MMP-9 enzymatic activity, whereas QL-P demonstrated significant tyrosinase enzymatic inhibition. Furthermore, QL, QL-P, QL-O and 20HE significantly inhibited intracellular ROS production. CONCLUSION This study is the first to demonstrate the MMP, tyrosinase and ROS inhibiting properties of multiple different phytochemical components derived from quinoa seeds. Our work indicates that quinoa phytochemicals may play a role in the treatment and prevention of skin ageing through a multiplicity of effects.
Collapse
Affiliation(s)
- B L Graf
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cansby E, Nerstedt A, Amrutkar M, Durán EN, Smith U, Mahlapuu M. Partial hepatic resistance to IL-6-induced inflammation develops in type 2 diabetic mice, while the anti-inflammatory effect of AMPK is maintained. Mol Cell Endocrinol 2014; 393:143-51. [PMID: 24976178 DOI: 10.1016/j.mce.2014.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022]
Abstract
Interleukin-6 (IL-6) induces hepatic inflammation and insulin resistance, and therapeutic strategies to counteract the IL-6 action in liver are of high interest. In this study, we demonstrate that acute treatment with AMP-activated protein kinase (AMPK) agonists AICAR and metformin efficiently repressed IL-6-induced hepatic proinflammatory gene expression and activation of STAT3 in a mouse model of diet-induced type 2 diabetes, bringing it back to basal nonstimulated level. Surprisingly, the inflammatory response in liver induced by IL-6 administration in vivo was markedly blunted in the mice fed a high-fat diet, compared to lean chow-fed controls, while this difference was not replicated in vitro in primary hepatocytes derived from these two groups of mice. In summary, our work reveals that partial hepatic IL-6 resistance develops in the mouse model of type 2 diabetes, while the anti-inflammatory action of AMPK is maintained. Systemic factors, rather than differences in intracellular IL-6 receptor signaling, are likely mediating the relative impairment in IL-6 effect.
Collapse
Affiliation(s)
- Emmelie Cansby
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Annika Nerstedt
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Manoj Amrutkar
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Esther Nuñez Durán
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Ulf Smith
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Margit Mahlapuu
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden.
| |
Collapse
|
44
|
Denison H, Nilsson C, Löfgren L, Himmelmann A, Mårtensson G, Knutsson M, Al-Shurbaji A, Tornqvist H, Eriksson JW. Diacylglycerol acyltransferase 1 inhibition with AZD7687 alters lipid handling and hormone secretion in the gut with intolerable side effects: a randomized clinical trial. Diabetes Obes Metab 2014; 16:334-43. [PMID: 24118885 DOI: 10.1111/dom.12221] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/21/2013] [Accepted: 09/30/2013] [Indexed: 02/02/2023]
Abstract
AIM Inhibition of diacylglycerol acyltransferase 1 (DGAT1) is a potential treatment modality for patients with type 2 diabetes mellitus and obesity, based on preclinical data suggesting it is associated with insulin sensitization and weight loss. This randomized, placebo-controlled, phase 1 study in 62 overweight or obese men explored the effects and tolerability of AZD7687, a reversible and selective DGAT1 inhibitor. METHODS Multiple doses of AZD7687 (1, 2.5, 5, 10 and 20 mg/day, n = 6 or n = 12 for each) or placebo (n = 20) were administered for 1 week. Postprandial serum triacylglycerol (TAG) was measured for 8 h after a standardized 45% fat meal. Glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) were measured and a paracetamol challenge was performed to assess gastric emptying. RESULTS Dose-dependent reductions in postprandial serum TAG were demonstrated with AZD7687 doses ≥5 mg compared with placebo (p < 0.01). Significant (p < 0.001) increases in plasma GLP-1 and PYY levels were seen at these doses, but no clear effect on gastric emptying was demonstrated at the end of treatment. With AZD7687 doses >5 mg/day, gastrointestinal (GI) side effects increased; 11/18 of these participants discontinued treatment owing to diarrhoea. CONCLUSIONS Altered lipid handling and hormone secretion in the gut were demonstrated during 1-week treatment with the DGAT1 inhibitor AZD7687. However, the apparent lack of therapeutic window owing to GI side effects of AZD7687, particularly diarrhoea, makes the utility of DGAT1 inhibition as a novel treatment for diabetes and obesity questionable.
Collapse
|
45
|
Extruded linseed and rapeseed both influenced fatty acid composition of total lipids and their polar and neutral fractions in longissimus thoracis and semitendinosus muscles of finishing Normand cows. Meat Sci 2014; 96:99-107. [DOI: 10.1016/j.meatsci.2013.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 11/23/2022]
|
46
|
Lindgren A, Levin M, Rodrigo Blomqvist S, Wikström J, Ahnmark A, Mogensen C, Böttcher G, Bohlooly-Y M, Borén J, Gan LM, Lindén D. Adiponectin receptor 2 deficiency results in reduced atherosclerosis in the brachiocephalic artery in apolipoprotein E deficient mice. PLoS One 2013; 8:e80330. [PMID: 24324556 PMCID: PMC3855811 DOI: 10.1371/journal.pone.0080330] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/26/2013] [Indexed: 01/01/2023] Open
Abstract
Adiponectin has been shown to have beneficial cardiovascular effects and to signal through the adiponectin receptors, AdipoR1 and AdipoR2. The original aim of this study was to investigate the effect of combined AdipoR1 and AdipoR2 deficiency (AdipoR1-/-AdipoR2-/-) on atherosclerosis. However, we made the interesting observation that AdipoR1-/-AdipoR2-/- leads to embryonic lethality demonstrating the critical importance of the adiponectin signalling system during development. We then investigated the effect of AdipoR2-ablation on the progression of atherosclerosis in apolipoprotein E deficient (ApoE-/-) mice. AdipoR2-/-ApoE-/- mice fed an atherogenic diet had decreased plaque area in the brachiocephalic artery compared with AdipoR2+/+ApoE-/- littermate controls as visualized in vivo using an ultrasound biomicroscope and confirmed by histological analyses. The decreased plaque area in the brachiocephalic artery could not be explained by plasma cholesterol levels or inflammatory status. However, accumulation of neutral lipids was decreased in peritoneal macrophages from AdipoR2-/-ApoE-/- mice after incubation with oxidized LDL. This effect was associated with lower CD36 and higher ABCA1 mRNA levels in peritoneal macrophages from AdipoR2-/-ApoE-/- mice compared with AdipoR2+/+ApoE-/- controls after incubation with oxidized LDL. In summary, we show that adiponectin receptors are crucial during embryonic development and that AdipoR2-deficiency slows down the progression of atherosclerosis in the brachiocephalic artery of ApoE-deficient mice.
Collapse
Affiliation(s)
- Anna Lindgren
- Cardiovascular & Metabolic Disease Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden
| | - Malin Levin
- Wallenberg Laboratory for Cardiovascular Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Johannes Wikström
- Cardiovascular & Metabolic Disease Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden
| | - Andrea Ahnmark
- Cardiovascular & Metabolic Disease Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden
| | - Christina Mogensen
- Cardiovascular & Metabolic Disease Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden
| | - Gerhard Böttcher
- Global Safety Assessment, Pathology Sciences, AstraZeneca R&D, Mölndal, Sweden
| | | | - Jan Borén
- Wallenberg Laboratory for Cardiovascular Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Li-Ming Gan
- Cardiovascular & Metabolic Disease Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden
| | - Daniel Lindén
- Cardiovascular & Metabolic Disease Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden
- * E-mail:
| |
Collapse
|
47
|
Giuffrida F, Cruz-Hernandez C, Flück B, Tavazzi I, Thakkar SK, Destaillats F, Braun M. Quantification of phospholipids classes in human milk. Lipids 2013; 48:1051-8. [PMID: 23982210 PMCID: PMC3779592 DOI: 10.1007/s11745-013-3825-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/29/2013] [Indexed: 11/28/2022]
Abstract
Phospholipids are integral constituents of the milk fat globule membranes and they play a central role in infants’ immune and inflammatory responses. A methodology employing liquid chromatography coupled with evaporative light scattering detector has been optimized and validated to quantify the major phospholipids classes in human milk. Phospholipids were extracted using chloroform and methanol and separated on C18 column. Repeatability, intermediate reproducibility, and recovery values were calculated and a large sample set of human milk analyzed. In human milk, phospholipid classes were quantified at concentrations of 0.6 mg/100 g for phosphatidylinositol; 4.2 mg/100 g for phosphatidylethanolamine, 0.4 mg/100 g for phosphatidylserine, 2.8 mg/100 g for phosphatidylcholine, and 4.6 mg/100 g for sphingomyelin. Their relative standard deviation of repeatability and intermediate reproducibility values ranging between 0.8 and 13.4 % and between 2.4 and 25.7 %, respectively. The recovery values ranged between 67 and 112 %. Finally, the validated method was used to quantify phospholipid classes in human milk collected from 50 volunteers 4 weeks postpartum providing absolute content of these lipids in a relatively large cohort. The average content of total phospholipids was 23.8 mg/100 g that corresponds to an estimated mean intake of 140 mg phospholipids/day in a 4-week old infant when exclusively breast-fed.
Collapse
|
48
|
Dixon JL, Kim YK, Brinker A, Quadro L. Loss of β-carotene 15,15'-oxygenase in developing mouse tissues alters esterification of retinol, cholesterol and diacylglycerols. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:34-43. [PMID: 23988655 DOI: 10.1016/j.bbalip.2013.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 11/20/2022]
Abstract
We provide novel insights into the function(s) of β-carotene-15,15'-oxygenase (CMOI) during embryogenesis. By performing in vivo and in vitro experiments, we showed that CMOI influences not only lecithin:retinol acyltransferase but also acyl CoA:retinol acyltransferase reaction in the developing tissues at mid-gestation. In addition, LC/MS lipidomics analysis of the CMOI-/- embryos showed reduced levels of four phosphatidylcholine and three phosphatidylethanolamine acyl chain species, and of eight triacylglycerol species with four or more unsaturations and fifty-two or more carbons in the acyl chains. Cholesteryl esters of arachidonate, palmitate, linoleate, and DHA were also reduced to less than 30% of control. Analysis of the fatty acyl CoA species ruled out a loss in fatty acyl CoA synthetase capability. Comparison of acyl species suggested significantly decreased 18:2, 18:3, 20:1, 20:4, or 22:6 acyl chains within the above lipids in CMOI-null embryos. Furthermore, LCAT, ACAT1 and DGAT2 mRNA levels were also downregulated in CMOI-/- embryos. These data strongly support the notion that, in addition to cleaving β-carotene to generate retinoids, CMOI serves an additional function(s) in retinoid and lipid metabolism and point to its role in the formation of specific lipids, possibly for use in nervous system tissue.
Collapse
Affiliation(s)
- Joseph L Dixon
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
49
|
Cífková E, Holčapek M, Lísa M. Nontargeted Lipidomic Characterization of Porcine Organs Using Hydrophilic Interaction Liquid Chromatography and Off-Line Two-Dimensional Liquid Chromatography–Electrospray Ionization Mass Spectrometry. Lipids 2013; 48:915-28. [DOI: 10.1007/s11745-013-3820-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
|
50
|
Selkälä EM, Kuusisto SM, Salonurmi T, Savolainen MJ, Jauhiainen M, Pirilä PL, Kvist AP, Conzelmann E, Schmitz W, Alexson SE, Kotti TJ, Hiltunen JK, Autio KJ. Metabolic adaptation allows Amacr-deficient mice to remain symptom-free despite low levels of mature bile acids. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1335-43. [DOI: 10.1016/j.bbalip.2013.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
|