1
|
Reuss S, Linsmayer D, Balmaceda-Braun J, von Rittberg J, Mitz S, Disque-Kaiser U, Usdin T, Leube RE. Synaptoporin and parathyroid hormone 2 as markers of multimodal inputs to the auditory brainstem. J Chem Neuroanat 2023; 130:102259. [PMID: 36958466 PMCID: PMC10164705 DOI: 10.1016/j.jchemneu.2023.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
The distribution of the synaptic vesicle protein synaptoporin was investigated by immunofluorescence in the central auditory system of the mouse brainstem. Synaptoporin immunostaining displayed region-specific differences. High and moderate accumulations of were seen in the superficial layer of the dorsal cochlear nucleus, dorsal and external regions of the inferior colliculus, the medial and dorsal divisions of the medial geniculate body and in periolivary regions of the superior olivary complex (SOC). Low or absent labeling was observed in the more central parts of these structures such as the principal nuclei of the SOC. It was conspicuous that dense synaptoporin immunoreactivity was detected predominantly in areas, which are known to be synaptic fields of multimodal, extra-auditory inputs. Target neurons of synaptoporin-positive synapses in the SOC were then identified by double-labelling immunofluorescence microscopy. We thereby detected synaptoporin puncta perisomatically at nitrergic, glutamatergic and serotonergic neurons but none next to neurons immunoreactive for choline-acetyltransferase and calcitonin-gene related peptide. These results leave open whether functionally distinct neuronal groups are accessed in the SOC by synaptoporin-containing neurons. The last part of our study sought to find out whether synaptoporin-positive neurons originate in the medial paralemniscal nucleus (MPL), which is characterized by expression of the peptide parathyroid hormone 2 (PTH2). Anterograde neuronal tracing upon injection into the MPL in combination with synaptoporin- and PTH2-immunodetection showed that (1) the MPL projects to the periolivary SOC using PTH2 as transmitter, (2) synaptoporin-positive neurons do not originate in the MPL, and (3) the close juxtaposition of synaptoporin-staining with either the anterograde tracer or PTH2 reflect concerted action of the different inputs to the SOC.
Collapse
Affiliation(s)
- Stefan Reuss
- Department of Nuclear Medicine, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.
| | - Denise Linsmayer
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Julia Balmaceda-Braun
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Julia von Rittberg
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Stephanie Mitz
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Ursula Disque-Kaiser
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Ted Usdin
- Systems Neuroscience Imaging Resource, National Institute of Mental Health, Bethesda, MD, USA
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Neuronal Cytoglobin in the Auditory Brainstem of Rat and Mouse: Distribution, Cochlear Projection, and Nitric Oxide Production. Brain Sci 2023; 13:brainsci13010107. [PMID: 36672088 PMCID: PMC9856379 DOI: 10.3390/brainsci13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 01/08/2023] Open
Abstract
Cytoglobin (Cygb), a hemoprotein of the globin family, is expressed in the supportive tissue cells of the fibroblast lineage and in distinct neuronal cell populations. The expression pattern and regulatory parameters of fibroblasts and related cells were studied in organs such as the kidney and liver in a variety of animal models. In contrast, knowledge about cytoglobin-expressing neurons is sparse. Only a few papers described the distribution in the brain as ubiquitous with a restricted number of neurons in focal regions. Although there is evidence for cytoglobin involvement in neuronal hypoxia tolerance, its presence in the auditory system was not studied despite high metabolism rates and oxygen demands of the cochlea and related brainstem centers. In a continuation of a previous study demonstrating Cygb-neurons in, inter alia, auditory regions of the mouse brain, we concentrated on the superior olivary complex (SOC) in the present study. We sought to investigate the distribution, projection pattern and neurochemistry of Cygb-neurons in the SOC. We conducted immunohistochemistry using a Cygb antibody and found that this brainstem region, functionally competent for bilateral hearing and providing cochlear hair cell innervation, contains a considerable number of Cygb-expressing neurons (averaging 2067 ± 211 making up 10 ±1% percent of total neuron number) in rats, and 514 ± 138 (6 ± 1%) in mice. They were observed in all regions of the SOC. Retrograde neuronal tract tracing with Fluorogold injected into the cochlea demonstrated that 1243 ± 100 (6 ± 1% of total neuron number in rat SOC)) were olivocochlear neurons. Approximately 56% of total Cygb neurons were retrogradely labelled, while the majority of olivocochlear neurons of both lateral and medial systems were Cygb-immunoreactive. We also conducted double immunofluorescence staining for Cygb and neuronal nitric oxide synthase (nNOS), the enzyme responsible for nitric oxide production, and observed that cytoglobin in the SOC frequently co-localized with nNOS. Our findings suggest that cytoglobin plays an important physiologic role in the oxygen homeostasis of the peripheral and central auditory nervous system. Further studies, also including transgenic animal models, are required to shed more light on the function(s) of Cygb in neurons, in particular of the auditory system.
Collapse
|
3
|
Hockley A, Berger JI, Palmer AR, Wallace MN. Nitric oxide increases gain in the ventral cochlear nucleus of guinea pigs with tinnitus. Eur J Neurosci 2020; 52:4057-4080. [PMID: 32686192 DOI: 10.1111/ejn.14913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/21/2022]
Abstract
Previous work has led to the hypothesis that, during the production of noise-induced tinnitus, higher levels of nitric oxide (NO), in the ventral cochlear nucleus (VCN), increase the gain applied to a reduced input from the cochlea. To test this hypothesis, we noise-exposed 26 guinea pigs, identified evidence of tinnitus in 12 of them and then compared the effects of an iontophoretically applied NO donor or production inhibitor on VCN single unit activity. We confirmed that the mean driven firing rate for the tinnitus and control groups was the same while it had fallen in the non-tinnitus group. By contrast, the mean spontaneous rate had increased for the tinnitus group relative to the control group, while it remained the same for the non-tinnitus group. A greater proportion of units responded to exogenously applied NO in the tinnitus (56%) and non-tinnitus groups (71%) than a control population (24%). In the tinnitus group, endogenous NO facilitated the driven firing rate in 37% (7/19) of neurons and appeared to bring the mean driven rate back up to control levels by a mechanism involving N-methyl-D-aspartic acid (NMDA) receptors. By contrast, in the non-tinnitus group, endogenous NO only facilitated the driven firing rate in 5% (1/22) of neurons and there was no facilitation of driven rate in the control group. The effects of endogenous NO on spontaneous activity were unclear. These results suggest that NO is involved in increasing the gain applied to driven activity, but other factors are also involved in the increase in spontaneous activity.
Collapse
Affiliation(s)
- Adam Hockley
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK.,School of Life Sciences, University of Nottingham, Nottingham, UK.,Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Joel I Berger
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Alan R Palmer
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK.,Hearing Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mark N Wallace
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK.,Hearing Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Vyas P, Wu JS, Jimenez A, Glowatzki E, Fuchs PA. Characterization of transgenic mouse lines for labeling type I and type II afferent neurons in the cochlea. Sci Rep 2019; 9:5549. [PMID: 30944354 PMCID: PMC6447598 DOI: 10.1038/s41598-019-41770-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/14/2019] [Indexed: 11/09/2022] Open
Abstract
The cochlea is innervated by type I and type II afferent neurons. Type I afferents are myelinated, larger diameter neurons that send a single dendrite to contact a single inner hair cell, whereas unmyelinated type II afferents are fewer in number and receive input from many outer hair cells. This strikingly differentiated innervation pattern strongly suggests specialized functions. Those functions could be investigated with specific genetic markers that enable labeling and manipulating each afferent class without significantly affecting the other. Here three mouse models were characterized and tested for specific labeling of either type I or type II cochlear afferents. Nos1CreER mice showed selective labeling of type I afferent fibers, Slc6a4-GFP mice labeled type II fibers with a slight preference for the apical cochlea, and Drd2-Cre mice selectively labeled type II afferent neurons nearer the cochlear base. In conjunction with the Th2A-CreER and CGRPα-EGFP lines described previously for labeling type II fibers, the mouse lines reported here comprise a promising toolkit for genetic manipulations of type I and type II cochlear afferent fibers.
Collapse
Affiliation(s)
- Pankhuri Vyas
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jingjing Sherry Wu
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Adrian Jimenez
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Elisabeth Glowatzki
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Paul Albert Fuchs
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Wang L, Feng Y, Yan D, Qin L, Grati M, Mittal R, Li T, Sundhari AK, Liu Y, Chapagain P, Blanton SH, Liao S, Liu X. A dominant variant in the PDE1C gene is associated with nonsyndromic hearing loss. Hum Genet 2018; 137:437-446. [PMID: 29860631 PMCID: PMC6560636 DOI: 10.1007/s00439-018-1895-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/26/2018] [Indexed: 01/02/2023]
Abstract
Identification of genes with variants causing non-syndromic hearing loss (NSHL) is challenging due to genetic heterogeneity. The difficulty is compounded by technical limitations that in the past prevented comprehensive gene identification. Recent advances in technology, using targeted capture and next-generation sequencing (NGS), is changing the face of gene identification and making it possible to rapidly and cost-effectively sequence the whole human exome. Here, we characterize a five-generation Chinese family with progressive, postlingual autosomal dominant nonsyndromic hearing loss (ADNSHL). By combining population-specific mutation arrays, targeted deafness genes panel, whole exome sequencing (WES), we identified PDE1C (Phosphodiesterase 1C) c.958G>T (p.A320S) as the disease-associated variant. Structural modeling insights into p.A320S strongly suggest that the sequence alteration will likely affect the substrate-binding pocket of PDE1C. By whole-mount immunofluorescence on postnatal day 3 mouse cochlea, we show its expression in outer (OHC) and inner (IHC) hair cells cytosol co-localizing with Lamp-1 in lysosomes. Furthermore, we provide evidence that the variant alters the PDE1C hydrolytic activity for both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Collectively, our findings indicate that the c.958G>T variant in PDE1C may disrupt the cross talk between cGMP-signaling and cAMP pathways in Ca2+ homeostasis.
Collapse
Affiliation(s)
- Li Wang
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- Department of Otolaryngology (D-48), Miller School of Medicine, University of Miami, 1666 NW 12th Avenue, Miami, FL, 33136, USA
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China
| | - Denise Yan
- Department of Otolaryngology (D-48), Miller School of Medicine, University of Miami, 1666 NW 12th Avenue, Miami, FL, 33136, USA
| | - Litao Qin
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - M'hamed Grati
- Department of Otolaryngology (D-48), Miller School of Medicine, University of Miami, 1666 NW 12th Avenue, Miami, FL, 33136, USA
- Laboratory of Cell Structure and Dynamics, NIDCD, NIH, Bethesda, MD, 20892, USA
| | - Rahul Mittal
- Department of Otolaryngology (D-48), Miller School of Medicine, University of Miami, 1666 NW 12th Avenue, Miami, FL, 33136, USA
| | - Tao Li
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Abhiraami Kannan Sundhari
- Department of Otolaryngology (D-48), Miller School of Medicine, University of Miami, 1666 NW 12th Avenue, Miami, FL, 33136, USA
| | - Yalan Liu
- Department of Otolaryngology (D-48), Miller School of Medicine, University of Miami, 1666 NW 12th Avenue, Miami, FL, 33136, USA
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Susan H Blanton
- Department of Otolaryngology (D-48), Miller School of Medicine, University of Miami, 1666 NW 12th Avenue, Miami, FL, 33136, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Shixiu Liao
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuezhong Liu
- Department of Otolaryngology (D-48), Miller School of Medicine, University of Miami, 1666 NW 12th Avenue, Miami, FL, 33136, USA.
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China.
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Fitzakerley JL, Trachte GJ. Genetics of guanylyl cyclase pathways in the cochlea and their influence on hearing. Physiol Genomics 2018; 50:780-806. [PMID: 29958079 DOI: 10.1152/physiolgenomics.00056.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although hearing loss is the most common sensory deficit in Western societies, there are no successful pharmacological treatments for this disorder. Recent experiments have demonstrated that manipulation of intracellular cyclic guanosine monophosphate (cGMP) concentrations can have both beneficial and harmful effects on hearing. In this review, we will examine the role of cGMP as a key second messenger involved in many aspects of cochlear function and discuss the known functions of downstream effectors of cGMP in sound processing. The nitric oxide-stimulated soluble guanylyl cyclase system (sGC) and the two natriuretic peptide-stimulated particulate GCs (pGCs) will be more extensively covered because they have been studied most thoroughly. The cochlear GC systems are attractive targets for medical interventions that improve hearing while simultaneously representing an under investigated source of sensorineural hearing loss.
Collapse
Affiliation(s)
- Janet L Fitzakerley
- Department of Biomedical Sciences, University of Minnesota Medical School , Duluth, Minnesota
| | - George J Trachte
- Department of Biomedical Sciences, University of Minnesota Medical School , Duluth, Minnesota
| |
Collapse
|
7
|
Nowotny M, Kiefer L, Andre D, Fabrizius A, Hankeln T, Reuss S. Hearing Without Neuroglobin. Neuroscience 2017; 366:138-148. [DOI: 10.1016/j.neuroscience.2017.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/11/2022]
|
8
|
Reuss S, Closhen-Gabrisch S, Closhen C. The brainstem efferent acoustic chiasm in pigmented and albino rats. Hear Res 2015; 332:1-6. [PMID: 26657095 DOI: 10.1016/j.heares.2015.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
The present study examined whether structural peculiarities in the brain-efferent pathway to the organ of Corti may underlie functional differences in hearing between pigmented and albino individuals of the same mammalian species. Pigmented Brown-Norway rats and albino Wistar rats received unilateral injections of an aqueous solution of the retrograde neuronal tracer Fluorogold (FG) into the scala tympani of the cochlea to identify olivocochlear neurons (OCN) in the brainstem superior olivary complex. After five days, brains were perfusion-fixed and brainstem sections were cut and analyzed with respect to retrogradely labeled neurons. Intrinsic neurons of the lateral system were located exclusively in the ipsilateral lateral superior olive (LSO) in both groups. Shell neurons surrounding the LSO and in periolivary regions, which made up only 5-8% of all OCN, were more often contralaterally located in albino than in pigmented animals. A striking difference was observed in the laterality of neurons of the medial olivocochlear (MOC) system, which provided more than one third of all OCN. These neurons, located in the rostral periolivary region and in the ventral nucleus of the trapezoid body, were observed contralateral to 45% in pigmented and to 68% in albino animals. Our study, the first to compare the origin of the olivocochlear bundle in pigmented and albino rats, provides evidence for differences in the crossing pattern of the olivocochlear pathway. These were found predominantly in the MOC system providing the direct efferent innervation of cochlear outer hair cells. Our findings may account for the alterations in auditory perception observed in albino mammals including man.
Collapse
Affiliation(s)
- Stefan Reuss
- Department of Nuclear Medicine, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.
| | - Stefanie Closhen-Gabrisch
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Christina Closhen
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
9
|
Reuss S, Closhen C, Riemann R, Jaumann M, Knipper M, Rüttiger L, Wolpert S. Absence of Early Neuronal Death in the Olivocochlear System Following Acoustic Overstimulation. Anat Rec (Hoboken) 2015; 299:103-10. [DOI: 10.1002/ar.23277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/10/2015] [Accepted: 08/23/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Stefan Reuss
- Department of Nuclear Medicine; University Medical Center, Johannes Gutenberg-University; Mainz Germany
| | - Christina Closhen
- Department of Anatomy and Cell Biology; University Medical Center, Johannes Gutenberg-University; Mainz Germany
| | - Randolf Riemann
- Department of Otorhinolaryngology; Elbe-Kliniken; Stade Germany
| | - Mirko Jaumann
- Molecular Physiology of Hearing, Hearing Research Center; University of Tübingen; Tübingen Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Hearing Research Center; University of Tübingen; Tübingen Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Hearing Research Center; University of Tübingen; Tübingen Germany
| | - Stephan Wolpert
- Molecular Physiology of Hearing, Hearing Research Center; University of Tübingen; Tübingen Germany
| |
Collapse
|
10
|
Kimitsuki T. Nitric oxide influences potassium currents in inner hair cells isolated from guinea-pig cochlea. Auris Nasus Larynx 2015; 42:360-4. [DOI: 10.1016/j.anl.2015.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/06/2015] [Accepted: 02/07/2015] [Indexed: 10/23/2022]
|
11
|
Neuroglobin Expression in the Mammalian Auditory System. Mol Neurobiol 2015; 53:1461-1477. [PMID: 25636685 DOI: 10.1007/s12035-014-9082-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/29/2014] [Indexed: 01/07/2023]
Abstract
The energy-yielding pathways that provide the large amounts of metabolic energy required by inner ear sensorineural cells are poorly understood. Neuroglobin (Ngb) is a neuron-specific hemoprotein of the globin family, which is suggested to be involved in oxidative energy metabolism. Here, we present quantitative real-time reverse transcription PCR, in situ hybridization, immunohistochemical, and Western blot evidence that neuroglobin is highly expressed in the mouse and rat cochlea. For primary cochlea neurons, Ngb expression is limited to the subpopulation of type I spiral ganglion cells, those which innervate inner hair cells, while the subpopulation of type II spiral ganglion cells which innervate the outer hair cells do not express Ngb. We further investigated Ngb distribution in rat, mouse, and human auditory brainstem centers, and found that the cochlear nuclei and superior olivary complex (SOC) also express considerable amounts of Ngb. Notably, the majority of olivocochlear neurons, those which provide efferent innervation of outer hair cells as identified by neuronal tract tracing, were Ngb-immunoreactive. We also observed that neuroglobin in the SOC frequently co-localized with neuronal nitric oxide synthase, the enzyme responsible for nitric oxide production. Our findings suggest that neuroglobin is well positioned to play an important physiologic role in the oxygen homeostasis of the peripheral and central auditory nervous system, and provides the first evidence that Ngb signal differentiates the central projections of the inner and outer hair cells.
Collapse
|
12
|
Katz E, Elgoyhen AB. Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses. Front Syst Neurosci 2014; 8:224. [PMID: 25520631 PMCID: PMC4251319 DOI: 10.3389/fnsys.2014.00224] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/06/2014] [Indexed: 12/23/2022] Open
Abstract
The organ of Corti, the mammalian sensory epithelium of the inner ear, has two types of mechanoreceptor cells, inner hair cells (IHCs) and outer hair cells (OHCs). In this sensory epithelium, vibrations produced by sound waves are transformed into electrical signals. When depolarized by incoming sounds, IHCs release glutamate and activate auditory nerve fibers innervating them and OHCs, by virtue of their electromotile property, increase the amplification and fine tuning of sound signals. The medial olivocochlear (MOC) system, an efferent feedback system, inhibits OHC activity and thereby reduces the sensitivity and sharp tuning of cochlear afferent fibers. During neonatal development, IHCs fire Ca2+ action potentials which evoke glutamate release promoting activity in the immature auditory system in the absence of sensory stimuli. During this period, MOC fibers also innervate IHCs and are thought to modulate their firing rate. Both the MOC-OHC and the MOC-IHC synapses are cholinergic, fast and inhibitory and mediated by the α9α10 nicotinic cholinergic receptor (nAChR) coupled to the activation of calcium-activated potassium channels that hyperpolarize the hair cells. In this review we discuss the biophysical, functional and molecular data which demonstrate that at the synapses between MOC efferent fibers and cochlear hair cells, modulation of transmitter release as well as short term synaptic plasticity mechanisms, operating both at the presynaptic terminal and at the postsynaptic hair-cell, determine the efficacy of these synapses and shape the hair cell response pattern.
Collapse
Affiliation(s)
- Eleonora Katz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina ; Departamento de Fisiología, Biología Molecular y Celular "Prof. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina ; Tercera Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires Buenos Aires, Argentina
| |
Collapse
|
13
|
Fuchs PA. A 'calcium capacitor' shapes cholinergic inhibition of cochlear hair cells. J Physiol 2014; 592:3393-401. [PMID: 24566542 PMCID: PMC4229337 DOI: 10.1113/jphysiol.2013.267914] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/18/2014] [Indexed: 01/07/2023] Open
Abstract
Efferent cholinergic neurons project from the brainstem to inhibit sensory hair cells of the vertebrate inner ear. This inhibitory synapse combines the activity of an unusual class of ionotropic cholinergic receptor with that of nearby calcium-dependent potassium channels to shunt and hyperpolarize the hair cell. Postsynaptic calcium signalling is constrained by a thin near-membrane cistern that is co-extensive with the efferent terminal contacts. The postsynaptic cistern may play an essential role in calcium homeostasis, serving as sink or source, depending on ongoing activity and the degree of buffer saturation. Release of calcium from postsynaptic stores leads to a process of retrograde facilitation via the synthesis of nitric oxide in the hair cell. Activity-dependent synaptic modification may contribute to changes in hair cell innervation that occur during development, and in the aged or damaged cochlea.
Collapse
Affiliation(s)
- Paul Albert Fuchs
- Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, and Center for Sensory Biology, Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Kong JH, Zachary S, Rohmann KN, Fuchs PA. Retrograde facilitation of efferent synapses on cochlear hair cells. J Assoc Res Otolaryngol 2012. [PMID: 23183877 DOI: 10.1007/s10162-012-0361-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cochlear inner hair cells (IHCs) are temporarily innervated by efferent cholinergic fibers prior to the onset of hearing. During low-frequency firing, these efferent synapses have a relatively low probability of transmitter release but facilitate strongly with repetitive stimulation. A retrograde signal from the hair cell to the efferent terminal contributes to this facilitation. When IHCs were treated with the ryanodine receptor agonist, cyclic adenosine phosphoribose (cADPR), release probability of the efferent terminal rose. This effect was quantified by computing the quantum content from a train of 100 suprathreshold stimuli to the efferent fibers. Quantum content was sevenfold higher when IHCs were treated with 100 μM cADPR (applied in the recording pipette). Since cADPR is membrane impermeant, this result implies that an extracellular messenger travels from the hair cell to the efferent terminal. cADPR is presumed to generate this messenger by increasing cytoplasmic calcium. Consistent with this presumption, voltage-gated calcium flux into the IHC also caused retrograde facilitation of efferent transmission. Retrograde facilitation was observed in IHCs of a vesicular glutamate transporter (VGlut3) null mouse and for wild-type rat hair cells subject to wide-spectrum glutamate receptor blockade, demonstrating that glutamate was unlikely to be the extracellular messenger. Rather, bath application of nitric oxide (NO) donors caused an increase in potassium-evoked efferent transmitter release while the NO scavenger carboxy-PTIO was able to prevent retrograde facilitation produced by cADPR or IHC depolarization. Thus, hair cell activity can drive retrograde facilitation of efferent input via calcium-dependent production of NO.
Collapse
MESH Headings
- Acoustic Stimulation
- Amino Acid Transport Systems, Acidic/deficiency
- Amino Acid Transport Systems, Acidic/genetics
- Amino Acid Transport Systems, Acidic/metabolism
- Animals
- Calcium/metabolism
- Calcium Channel Agonists/pharmacology
- Dose-Response Relationship, Drug
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/physiology
- Mice
- Mice, Knockout
- Models, Animal
- Neurons, Efferent/drug effects
- Neurons, Efferent/physiology
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Rats
- Rats, Inbred Strains
- Synapses/drug effects
- Synapses/physiology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Jee-Hyun Kong
- Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
15
|
Specific Targeting of Retrocochlear Auditory Pathway for Optimal Pharmacotherapy Delivery Using a Mouse Model. Otol Neurotol 2012; 33:1085-91. [DOI: 10.1097/mao.0b013e31825e7e12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Harada N. Role of nitric oxide on purinergic signalling in the cochlea. Purinergic Signal 2010; 6:211-20. [PMID: 20806013 DOI: 10.1007/s11302-010-9186-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 05/17/2010] [Indexed: 11/30/2022] Open
Abstract
In the inner ear, there is considerable evidence that extracellular adenosine 5'-triphosphate (ATP) plays an important role in auditory neurotransmission as a neurotransmitter or a neuromodulator, although the potential role of adenosine signalling in the modulation of auditory neurotransmission has also been reported. The activation of ligand-gated ionotropic P2X receptors and G protein-coupled metabotropic P2Y receptors has been reported to induce an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) in inner hair cells (IHCs), outer hair cells (OHCs), spiral ganglion neurons (SGNs), and supporting cells in the cochlea. ATP may participate in auditory neurotransmission by modulating [Ca(2+)](i) in the cochlear cells. Recent studies showed that extracellular ATP induced nitric oxide (NO) production in IHCs, OHCs, and SGNs, which affects the ATP-induced Ca(2+) response via the NO-cGMP-PKG pathway in those cells by a feedback mechanism. A cross-talk between NO and ATP may therefore exist in the auditory signal transduction. In the present article, I review the role of NO on the ATP-induced Ca(2+) signalling in IHCs and OHCs. I also consider the possible role of NO in the ATP-induced Ca(2+) signalling in SGNs and supporting cells.
Collapse
Affiliation(s)
- Narinobu Harada
- Harada Ear Institute, Tomoi 2-34-27, Higashiosaka, Osaka, 577-0816 Japan
| |
Collapse
|
17
|
Lv P, Rodriguez-Contreras A, Kim HJ, Zhu J, Wei D, Choong-Ryoul S, Eastwood E, Mu K, Levic S, Song H, Yevgeniy PY, Smith PJS, Yamoah EN. Release and elementary mechanisms of nitric oxide in hair cells. J Neurophysiol 2010; 103:2494-505. [PMID: 20220083 DOI: 10.1152/jn.00017.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The enzyme nitric oxide (NO) synthase, that produces the signaling molecule NO, has been identified in several cell types in the inner ear. However, it is unclear whether a measurable quantity of NO is released in the inner ear to confer specific functions. Indeed, the functional significance of NO and the elementary cellular mechanism thereof are most uncertain. Here, we demonstrate that the sensory epithelia of the frog saccule release NO and explore its release mechanisms by using self-referencing NO-selective electrodes. Additionally, we investigated the functional effects of NO on electrical properties of hair cells and determined their underlying cellular mechanism. We show detectable amounts of NO are released by hair cells (>50 nM). Furthermore, a hair-cell efferent modulator acetylcholine produces at least a threefold increase in NO release. NO not only attenuated the baseline membrane oscillations but it also increased the magnitude of current required to generate the characteristic membrane potential oscillations. This resulted in a rightward shift in the frequency-current relationship and altered the excitability of hair cells. Our data suggest that these effects ensue because NO reduces whole cell Ca(2+) current and drastically decreases the open probability of single-channel events of the L-type and non L-type Ca(2+) channels in hair cells, an effect that is mediated through direct nitrosylation of the channel and activation of protein kinase G. Finally, NO increases the magnitude of Ca(2+)-activated K(+) currents via direct NO nitrosylation. We conclude that NO-mediated inhibition serves as a component of efferent nerve modulation of hair cells.
Collapse
Affiliation(s)
- Ping Lv
- Center for Neuroscience, Department of Anesthesiology and Pain Medicine, Program in Communication Sciences, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Reuss S, Kühn I, Windoffer R, Riemann R. Neurochemistry of identified motoneurons of the tensor tympani muscle in rat middle ear. Hear Res 2008; 248:69-79. [PMID: 19126425 DOI: 10.1016/j.heares.2008.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 11/26/2008] [Accepted: 12/06/2008] [Indexed: 11/30/2022]
Abstract
The objective of the present study was to identify efferent and afferent transmitters of motoneurons of the tensor tympani muscle (MoTTM) to gain more insight into the neuronal regulation of the muscle. To identify MoTTM, we injected the fluorescent neuronal tracer Fluoro-Gold (FG) into the muscle after preparation of the middle ear in adult rats. Upon terminal uptake and retrograde neuronal transport, we observed FG in neurons located lateral and ventrolateral to the motor trigeminal nucleus ipsilateral to the injection site. Immunohistochemical studies of these motoneurons showed that apparently all contained choline acetyltransferase, demonstrating their motoneuronal character. Different portions of these cell bodies were immunoreactive to bombesin (33%), cholecystokinin (37%), endorphin (100%), leu-enkephalin (25%) or neuronal nitric oxide synthase (32%). MoTTM containing calcitonin gene-related peptide, tyrosine hydroxylase, substance P, neuropeptide Y or serotonin were not found. While calcitonin gene-related peptide was not detected in the region under study, nerve fibers immunoreactive to tyrosine hydroxylase, substance P, neuropeptide Y or serotonin were observed in close spatial relationship to MoTTM, suggesting that these neurons are under aminergic and neuropeptidergic influence. Our results demonstrating the neurochemistry of motoneuron input and output of the rat tensor tympany muscle may prove useful also for the general understanding of motoneuron function and regulation.
Collapse
Affiliation(s)
- Stefan Reuss
- Department of Anatomy and Cell Biology, Johannes Gutenberg-University, Mainz, Germany.
| | | | | | | |
Collapse
|
20
|
Lee JJ, Cho YW, Huh Y, Cha CI, Yeo SG. Effect of nitric oxide on auditory cortical neurons of aged rats. Neurosci Lett 2008; 447:37-41. [PMID: 18840505 DOI: 10.1016/j.neulet.2008.09.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/03/2008] [Accepted: 09/17/2008] [Indexed: 11/25/2022]
Abstract
Age-related changes in the effects of nitric oxide (NO) on neurons of the auditory cortex have not been determined. We therefore evaluated the anatomical changes and neurophysiological characteristics of these neurons in rats as a function of age. The numbers of cresyl violet stained cells, the numbers and areas of NADPH-d-positive neuronal cell bodies, and their optical density, were measured in Sprague-Dawley rats aged 24 months (aged group) and 4 months (control group). The modulatory effects of NO on K(+) currents of acutely isolated rat auditory cortical neurons were also assessed. There were no between-group differences in the distribution patterns of glial cells and neurons, or in the numbers and areas of NADPH-d-positive neuronal cell bodies. However, the optical density of NADPH-d-positive neuronal cell bodies was significantly greater in the aged group than in the control group. In addition, voltage-gated K(+) currents of rat auditory cortical neurons were activated by increased levels of NO. As activation of the K(+) current likely suppresses neuronal excitability, age-associated increases in NO production can hinder the function of the acoustic center by inhibiting neuron excitability.
Collapse
Affiliation(s)
- Jong-Ju Lee
- Department of Physiology, Biomedical Science Institute, Medical Research Center, Kyung Hee University School of Medicine, Seoul, South Korea
| | | | | | | | | |
Collapse
|
21
|
Huh Y, Choon Park D, Huh Y, Choon Park D, Geun Yeo S, Cha Il C. Evidence for increased NADPH-diaphorase-positive neurons in the central auditory system of the aged rat. Acta Otolaryngol 2008; 128:648-53. [PMID: 18568499 DOI: 10.1080/00016480701636868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONCLUSIONS The age-related increase in the production of nitric oxide (NO) suggests that this increase was related to neuron aging. Additional studies may provide information regarding aging-related changes in the central auditory system. OBJECTIVES Although NO has been associated with aging, it is unclear whether specific areas of the central auditory system are involved. We therefore assayed aging-related changes in NADPH-diaphorase (NADPH-d), a selective histochemical marker for NO, in the neurons of the central auditory system and other brain regions. MATERIALS AND METHODS The numbers of NADPH-d-stained neurons and the area and staining density of cell bodies were examined in aged (24 months old) and younger (4 months old) Wistar rats. RESULTS The number of NADPH-d-positive neurons in the inferior colliculus was significantly increased in aged rats (p<0.05), whereas the area of NADPH-d-positive neurons in all areas did not differ significantly between aged and younger rats (p>0.05). The staining densities of NADPH-d-positive neurons in the inferior colliculus, the auditory cortex, and the visual cortex were significantly greater in aged compared with younger rats (p<0.05).
Collapse
|
22
|
Li–dong Z, Jun L, Yin–yan H, Jian–he S, Shi–ming Y. Supporting Cells–a New Area in Cochlear Physiology Study. J Otol 2008. [DOI: 10.1016/s1672-2930(08)50002-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
23
|
Reuss S, Al-Butmeh S, Riemann R. Motoneurons of the stapedius muscle in the guinea pig middle ear: afferent and efferent transmitters. Brain Res 2008; 1221:59-66. [PMID: 18554578 DOI: 10.1016/j.brainres.2008.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 04/23/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
Abstract
The objective of the present study was to identify efferent and afferent transmitters of motoneurons of the stapedius muscle of the middle ear in order to gain more insight into the neuronal regulation of the muscle. To identify motoneurons, we injected the fluorescent neuronal tracer Fluorogold (FG) into the muscle after preparation of the middle ear in adult guinea pigs. Upon terminal uptake and retrograde neuronal transport, we observed FG in neurons located medial and ventral to the nucleus of the facial nerve ipsilateral to the injection site. Immunohistochemical studies of these motoneurons showed that the majority contains calcitonin gene-related peptide. Our data further demonstrate close spatial relationships of motoneurons to structures immunoreactive to either serotonin, substance P or neuronal nitric oxide and reveal that these neurons are under neuropeptidergic and nitrergic influence.
Collapse
Affiliation(s)
- Stefan Reuss
- Department of Anatomy and Cell Biology, Johannes Gutenberg-University, Saarstr. 19-21, D-55099 Mainz, Germany.
| | | | | |
Collapse
|
24
|
Rodríguez-Contreras A, de Lange RPJ, Lucassen PJ, Borst JGG. Branching of calyceal afferents during postnatal development in the rat auditory brainstem. J Comp Neurol 2006; 496:214-28. [PMID: 16538676 DOI: 10.1002/cne.20918] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cells in the anteroventral cochlear nucleus (aVCN) send out calyceal axons that form large excitatory somatic terminals, the calyces of Held, onto principal cells of the contralateral medial nucleus of the trapezoid body (MNTB). It is unclear which fraction of these axons might form more than one calyx and whether this fraction changes during development. We combined in vitro anterograde tracing, stereological cell counts, analysis of apoptosis, and immunohistochemistry to study the development of calyceal afferents in rats of different postnatal ages. We found that some principal cells were contacted by multiple large axosomatic inputs, but these invariably originated from the same axon. Conversely, at least 18% of traced afferents branched to form multiple calyces, independently of age. Calyces from the same axon generally innervated nearby principal cells, and most of these branch points were <50 microm away from the synaptic terminals. Our results show that the projection from the aVCN to the MNTB is divergent, both when calyces have just been formed and in the adult. Cell counts did not provide evidence for principal cell loss during development, although analysis of apoptosis showed a large increase in nonneuronal cell death around the onset of hearing. Our data suggest that, once a calyceal synapse forms in the MNTB, it stays.
Collapse
Affiliation(s)
- Adrián Rodríguez-Contreras
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, 3000 DR Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
25
|
Shen J, Harada N, Nakazawa H, Yamashita T. Involvement of the nitric oxide-cyclic GMP pathway and neuronal nitric oxide synthase in ATP-induced Ca2+ signalling in cochlear inner hair cells. Eur J Neurosci 2005; 21:2912-22. [PMID: 15978003 DOI: 10.1111/j.1460-9568.2005.04135.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We recently demonstrated that extracellular adenosine 5'-triphosphate (ATP) induced nitric oxide (NO) production in the inner hair cells (IHCs) of the guinea pig cochlea, which inhibited the ATP-induced increase in the intracellular Ca(2+) concentrations ([Ca(2+)](i)) by a feedback mechanism [Shen, J., Harada, N. & Yamashita, T. (2003) Neurosci. Lett., 337, 135-138]. We herein investigated the role of the NO-cGMP pathway and neuronal NO synthase (nNOS) in the ATP-induced Ca(2+) signalling in IHCs using the Ca(2+)-sensitive dye fura-2 and the NO-sensitive dye DAF-2. Fura-2 fluorescence-quenching experiments with Mn(2+) showed that ATP triggered a Mn(2+) influx. L-N(G)-nitroarginine methyl ester (L-NAME), a nonspecific NOS inhibitor, accelerated the ATP-induced Mn(2+) influx while S-nitroso-N-acetylpenicillamine (SNAP), a NO donor, suppressed it. 1H-[1,2,4]oxadiazole[4,3-a] quinoxalin-1-one, an inhibitor of guanylate cyclase, and KT5823, an inhibitor of cGMP-dependent protein kinase, enhanced the ATP-induced [Ca(2+)](i) increase. 8-Bromoguanosine-cGMP, a membrane-permeant analogue of cGMP mimicked the effects of SNAP. Moreover, the effects of 7-nitroindazole, a selective nNOS inhibitor, mimicked the effects of L-NAME regarding both the enhancement of the ATP-induced Ca(2+) response and the attenuation of NO production. Immunofluorescent staining of nNOS using a single IHC revealed that nNOS was distributed throughout the IHCs, but enriched in the apical region of the IHCs as shown by intense staining. In conclusion, the ATP-induced Ca(2+) influx may be the principal source for nNOS activity, which may interact with P2X receptors in the apical region of IHCs. Thereafter, NO can be produced and conversely inhibits the Ca(2+) influx via the NO-cGMP-PKG pathway by a feedback mechanism.
Collapse
Affiliation(s)
- Jing Shen
- Hearing Research Laboratory, Department of Otolaryngology, Kansai Medical University, Fumizonocho 10-15, Moriguchi, Osaka 570-8507, Japan
| | | | | | | |
Collapse
|
26
|
Yukawa H, Shen J, Harada N, Cho-Tamaoka H, Yamashita T. Acute effects of glucocorticoids on ATP-induced Ca2+ mobilization and nitric oxide production in cochlear spiral ganglion neurons. Neuroscience 2005; 130:485-96. [PMID: 15664705 DOI: 10.1016/j.neuroscience.2004.09.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2004] [Indexed: 11/15/2022]
Abstract
Rapid, non-genomic effects of glucocorticoids on extracellular adenosine 5'-triphosphate (ATP)-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) changes and nitric oxide (NO) production were investigated in type I spiral ganglion neurons (SGNs) of the guinea-pig cochlea using the Ca(2+)-sensitive dye fura-2 and the NO-sensitive dye 4,5-diaminofluorescein (DAF-2). Pretreatment of SGNs with 1 microM dexamethasone for 10 min, a synthetic glucocorticoid hormone, enhanced the ATP-induced [Ca(2+)](i) increase in SGNs. RU 38486, a competitive glucocorticoid receptor antagonist eliminated the effects of dexamethasone on the ATP-induced [Ca(2+)](i) increase in SGNs. These acute effects of dexamethasone were dependent on the presence of extracellular Ca(2+), thereby suggesting that dexamethasone may rapidly enhance the Ca(2+) influx through the activation of ionotropic P2X receptors which may interact with glucocorticoid-mediated membrane receptors. Extracellular ATP increased the intensity of DAF-2 fluorescence, indicating NO production in SGNs. The ATP-induced NO production was mainly due to the Ca(2+) influx through the activation of P2 receptors. S-nitroso-N-acetylpenicillamine, a NO donor, enhanced the ATP-induced [Ca(2+)](i) increase in SGNs while L-N(G)-nitroarginine methyl ester (L-NAME), a NO synthesis inhibitor, inhibited it. Dexamethasone enhanced the ATP-induced NO production in SGNs. The augmentation of dexamethasone on ATP-induced NO production was abolished in the presence of l-NAME. It is concluded that the ATP-induced [Ca(2+)](i) increase induces NO production which enhances a [Ca(2+)](i) increase in SGNs by a positive-feedback mechanism. Dexamethasone enhances the ATP-induced [Ca(2+)](i) increase in SGNs which results in the augmentation of NO production. The present study suggests that NO may play an important role in auditory signal transduction. Our results also indicate that glucocorticoids may rapidly affect auditory neurotransmission due to a novel non-genomic mechanism.
Collapse
Affiliation(s)
- H Yukawa
- Hearing Research Laboratory, Department of Otolaryngology, Kansai Medical University, Fumizono-cho 10-15, Moriguchi, Osaka 570-8507, Japan
| | | | | | | | | |
Collapse
|
27
|
Schaeffer DF, Reuss MH, Riemann R, Reuss S. A nitrergic projection from the superior olivary complex to the inferior colliculus of the rat. Hear Res 2003; 183:67-72. [PMID: 13679139 DOI: 10.1016/s0378-5955(03)00219-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study was conducted to test whether the ascending auditory projection from the superior olivary complex (SOC) of the brainstem to the inferior colliculus (IC) may use nitric oxide (NO) as a neuroactive compound. We identified olivo-collicular projection neurons in subnuclei of the SOC by retrograde neuronal tracing with Fluoro-Gold (FG) injected into the central nucleus of the IC. Sections containing retrograde labelled neurons were subjected to immunohistochemical incubation in an antiserum directed against the enzyme responsible for NO production in nerve cells, neuronal NO synthase (nNOS). The analysis showed that FG-containing neurons as well as nNOS-immunoreactive neurons were present in the lateral superior olive (LSO), superior paraolivary nucleus (SPO), ventral nucleus of the trapezoid body (VNTB), medial superior olive (MSO) and in dorsal and ventral periolivary regions to different amounts. However, only in the LSO, SPO and VNTB double-labelled neurons were found. They made up to less than 10% of all nNOS neurons in the SOC. Considering that only about 5% of the nNOS cells in the SOC are olivocochlear neurons [Riemann and Reuss, 1999], it is still open whether the majority of nitrergic neurons of the SOC project to other sites or whether they rather have intrinsic actions in providing NO to the SOC.
Collapse
Affiliation(s)
- David F Schaeffer
- Department of Anatomy, School of Medicine, Johannes Gutenberg-University, Saarstr 19-21, D-55099, Mainz, Germany
| | | | | | | |
Collapse
|
28
|
Shen J, Harada N, Yamashita T. Nitric oxide inhibits adenosine 5'-triphosphate-induced Ca2+ response in inner hair cells of the guinea pig cochlea. Neurosci Lett 2003; 337:135-8. [PMID: 12536042 DOI: 10.1016/s0304-3940(02)01320-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the interaction between Ca(2+) and nitric oxide (NO) in inner hair cells of the guinea pig cochlea (IHCs), the extracellular adenosine 5'-triphosphate (ATP)-induced NO production and the effects of NO on ATP-induced increase of intracellular Ca(2+) concentrations ([Ca(2+)](i)) were investigated in IHCs using the NO-sensitive dye DAF-2 and the Ca(2+)-sensitive dye Fura-2. Extracellular ATP induced an increase in DAF-2 fluorescence, which thus indicates NO production in IHCs. The ATP-induced NO production was mainly due to Ca(2+) influx through the activation of P2 receptor. L-N(G)-nitroarginine methyl ester, a NO synthesis inhibitor, enhanced the ATP-induced [Ca(2+)](i) increase in IHCs while S-nitroso-N-acetylpenicillamine, a NO donor, inhibited it. We conclude that NO inhibits the ATP-induced [Ca(2+)](i) increase in IHCs by a negative-feedback mechanism.
Collapse
Affiliation(s)
- Jing Shen
- Hearing Research Laboratory, Department of Otolaryngology, Kansai Medical University, Fumizonocho 10-15, Moriguchi, 570-8507, Osaka, Japan
| | | | | |
Collapse
|
29
|
Shi X, Nuttall AL. The demonstration of nitric oxide in cochlear blood vessels in vivo and in vitro: the role of endothelial nitric oxide in venular permeability. Hear Res 2002; 172:73-80. [PMID: 12361868 DOI: 10.1016/s0378-5955(02)00513-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objectives of the current study were to investigate the distribution and production of NO in cochlear blood vessels, and to assess whether the inhibition of basal NO production leads to vascular protein leakage of the cochlear microvasculature. Using the fluorescent dye 4,5-diaminofluorescein diacetate, NO was detected, both in vitro and in vivo, in the endothelial cells of various cochlear blood vessels, including the spiral modiolar artery, the vessel of the basilar membrane and the vessels of the spiral osseous lamina. Vessel leakage was assessed using intravital fluorescence microscopy following systemic infusion of fluorescein isothiocyanate-labeled bovine albumin. Local perfusion of the cochlear basal turn with either Ringer's solution or Ringer's containing an inactive nitric oxide synthase inhibitor (100 microM) produced minimal protein leakage. Perfusion with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (100 microM) produced significantly enhanced vascular protein leakage. The findings demonstrate the presence of endothelial NO in the cochlear blood vessels and suggest that NO protects cochlear venules against excessive vascular leakage.
Collapse
Affiliation(s)
- Xiaorui Shi
- Oregon Hearing Research Center (NRC04), Department of Otolaryngology and Head and Neck Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA
| | | |
Collapse
|
30
|
Kulesza RJ, Viñuela A, Saldaña E, Berrebi AS. Unbiased stereological estimates of neuron number in subcortical auditory nuclei of the rat. Hear Res 2002; 168:12-24. [PMID: 12117505 DOI: 10.1016/s0378-5955(02)00374-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mammalian auditory system consists of a large number of cell groups, each containing its own complement of neuronal cell types. In recent years, much effort has been devoted to the quantitation of auditory neurons with common morphological, connectional, pharmacological or functional features. However, it is difficult to place these data into the proper quantitative perspective due to our lack of knowledge of the number of neurons contained within each auditory nucleus. To this end, we have employed unbiased stereological methods to estimate neuron number in the cochlear nuclei, superior olivary complex, lateral lemniscus, inferior colliculus and medial geniculate body. Additionally, we generated a three-dimensional model of the superior olivary complex. The utility of unbiased stereological estimates of auditory nuclei is discussed in the context of various experimental paradigms.
Collapse
Affiliation(s)
- Randy J Kulesza
- Departments of Otolaryngology, Neurobiology and Anatomy and Sensory Neuroscience Research Center, West Virginia University School of Medicine, P.O. Box 9200 Health Sciences Center, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
31
|
Ruan RS. Possible roles of nitric oxide in the physiology and pathophysiology of the mammalian cochlea. Ann N Y Acad Sci 2002; 962:260-74. [PMID: 12076980 DOI: 10.1111/j.1749-6632.2002.tb04073.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) has been implicated as a mediator of vasodilation and neurotransmission in the mammalian cochlea. This is demonstrated by the presence of nitric oxide synthase (NOS) and nitric oxide (NO) in the blood vessels and the organ of Corti in the cochlea. It is not certain if the neurons in the spiral ganglion produce NO since no fluorescent signal could be detected by 4,5-diaminofluorescein diacetate (DAF-2DA), a fluorescent indicator of NO. To determine if NO/peroxynitrite plays any role in neurodestruction observed in ischemic cochlea of the guinea pig, the effects of NO donors, such as S-nitrosocysteine (S-NC) and nitroglycerine (NTG); peroxynitrite generators, such as 3-morpholinosydnonimine (SIN-1); peroxynitrite inhibitors, such as superoxide dismutase plus catalase (SOD/Cat); and NOS inhibitors, such as N(G)-nitro-L-arginine methyl ether (L-NAME) were tested on normal and ischemic cochleae. The level of NO in the cochlea after 20 to 120 minutes of ischemia was indicated by measurement of nitrites/nitrates in the perilymph. The evidence gathered from these experiments indicates that NO or peroxynitrite is not necessarily destructive to auditory hair cells, and in fact, exogenous NO may protect neural structures in the cochlea from damage under ischemic conditions.
Collapse
Affiliation(s)
- Run-Sheng Ruan
- Department of Otolaryngology, National University of Singapore, Singapore.
| |
Collapse
|
32
|
Davies C, Tingley D, Kachar B, Wenthold RJ, Petralia RS. Distribution of members of the PSD-95 family of MAGUK proteins at the synaptic region of inner and outer hair cells of the guinea pig cochlea. Synapse 2001; 40:258-68. [PMID: 11309841 DOI: 10.1002/syn.1048] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PDZ-domain containing proteins of the MAGUK (membrane-associated guanylate kinase) family target, anchor, and cluster receptors and channels to subcellular sites. Among the MAGUK proteins, the members of the PSD-95 family (MAGUKs: PSD-95, PSD-93, SAP-97, and SAP-102) target and anchor glutamate receptors to the synaptic terminals. Associations of glutamate receptors with MAGUKs have been described in the brain but not in the cochlea. In this study, RT-PCR, immunofluorescence microscopy, and immunoelectron microscopy were used to investigate the presence and distribution of MAGUK proteins in the organ of Corti. The presence of the mRNA for PSD-95, PSD-93, SAP-97, and SAP-102 in the organ of Corti was confirmed by RT-PCR. Immunocytochemistry using a "pan-MAGUK" antibody, which recognizes all four MAGUK proteins, and selective antibodies against these proteins revealed that all four MAGUKs are present within the base of inner hair cells while all except SAP-97 are found within the base of the outer hair cells. In addition, PSD-93 and PSD-95 are found in postsynaptic afferent terminals on inner hair cells, while postsynaptic afferent terminals on outer hair cells have PSD-93.
Collapse
MESH Headings
- Animals
- Guanylate Kinases
- Guinea Pigs
- Hair Cells, Auditory, Inner/chemistry
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/chemistry
- Hair Cells, Auditory, Outer/ultrastructure
- Immunohistochemistry
- Microscopy, Immunoelectron
- Nerve Tissue Proteins/analysis
- Neuropeptides/analysis
- Nucleoside-Phosphate Kinase/analysis
- Potassium Channels/metabolism
- Receptors, Glutamate/metabolism
- Spiral Ganglion/chemistry
- Spiral Ganglion/ultrastructure
- Synaptic Membranes/chemistry
- Synaptic Membranes/ultrastructure
Collapse
Affiliation(s)
- C Davies
- Section on Structural Cell Biology, NIDCD, NIH, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Production sites and distribution of nitric oxide (NO) were detected in cochlear lateral wall tissue, the organ of Corti and in isolated outer hair cells (OHCs) from the guinea pig using the fluorescent dye, 4,5-diaminofluorescein diacetate. Fluorescent signal, indicating the presence of NO, was found in the afferent nerves and their putative endings near inner hair cells (IHCs) and putative efferent nerve endings near OHCs, the IHCs and OHCs, the endothelial cells of blood vessels of the spiral ligament, the stria vascularis, and the spiral blood vessels of the basilar membrane. An increased NO signal was observed following exposure to the substrate for NO, L-arginine, while exposure to NO synthase inhibitors resulted in a decrease in NO signal. Observation of OHCs at the subcellular level revealed differentially strong fluorescent signals at the locations of cuticular plate, the subcuticular plate region, the infranuclear region, and the region adjacent to the lateral wall. The findings indicate the presence of NO in the cochlea and suggest that NO may play an important role in both regulating vascular tone and mediating neurotransmission in guinea pig cochlea.
Collapse
Affiliation(s)
- X Shi
- Department of Otolaryngology, General Hospital of the Chinese People's Armed Police Army, Beijing, PR China
| | | | | |
Collapse
|
34
|
Reuss MH, Reuss S. Nitric oxide synthase neurons in the rodent spinal cord: distribution, relation to Substance P fibers, and effects of dorsal rhizotomy. J Chem Neuroanat 2001; 21:181-96. [PMID: 11312059 DOI: 10.1016/s0891-0618(01)00091-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The indirect immunofluorescent method was employed to investigate the distribution of neuronal nitric oxide synthase-like immunoreactivity(nNOS-LI) in the spinal cord of the golden hamster and to compare it to data obtained from rats. Immunoreactive neurons were found throughout the cervico-sacral extent in the dorsal horn (mainly in laminae I-III) and in the preganglionic autonomic regions, i.e., the sympathetic intermediolateral nucleus (IML), lateral funicle (LF), intercalated region (IC), the area surrounding the central canal (CA), and the sacral preganglionic parasympathetic cell group. While the distribution of immunoreactive cells was generally similar in both species, some differences were observed. For example in the hamster LF, a higher percentage of stained neurons was seen than in the IML, while the situation was rather inverse in the rat. In order to study the coincidence of nNOS-LI in the population of preganglionic sympathetic neurons (PSN) that innervate the superior cervical ganglion (SCG), these were identified by retrograde axonal transport of fluoro-gold (FG) following unilateral injection into the SCG. PSN were localized ipsilateral to the injection site mainly in the IML and LF of spinal segments C7-Th4. The portion of double-labeled neurons of the IML were lower in hamster (17% in C7, 34% in C8) of FG-labeled cells) than in rat (47% in C8, 77% in Th2), while in the LF of segments C8-Th2 in both species the majority of FG-neurons contained nNOS. While only very few double-labeled neurons were detected in the IC in hamster and rat, a striking difference was observed in the CA, where no double-labeled neurons were found in hamster, but up to 50% in rat. Double immunofluorescence detection of nNOS and substance P (SP) showed that in both the autonomic regions and the dorsal horn, SP-LI fibers and puncta were present in close spatial relationship to nNOS-LI cell bodies. These results were basically identical in the hamster and rat. Unilateral transection of the dorsal roots of segments C6-Th2 in rats resulted in a clear reduction of SP-LI structures in the dorsal horn 5 days after rhizotomy, but not in the autonomic regions. Compared to the unlesioned side, the numbers of nNOS-LI neurons in the superficial laminae of the dorsal horn were reduced to 32-46% in the lesioned segments, and to 53% and 87%, respectively, in the two segments cranial to the rhizotomized segments but remained unchanged caudally to the lesion. Numbers of nNOS-LI cell bodies in the autonomic regions were not altered following dorsal root transection. The present study provides data on the widespread distribution of nNOS in the spinal cord of golden hamster and describes the partial coincidence of the enzyme in PSN. The effects of dorsal rhizotomy on nNOS-LI neurons in the dorsal horn reveal that primary-afferent fibers provide a stimulatory influence on neurons of the dorsal horn to generate the gaseous neuroactive substance, nitric oxide.
Collapse
Affiliation(s)
- M H Reuss
- Department of Anatomy, School of Medicine, Johannes Gutenberg University, Saarstr. 19-21, D-55099, Mainz, Germany
| | | |
Collapse
|
35
|
Burette A, Petrusz P, Schmidt HH, Weinberg RJ. Immunohistochemical localization of nitric oxide synthase and soluble guanylyl cyclase in the ventral cochlear nucleus of the rat. J Comp Neurol 2001; 431:1-10. [PMID: 11169986 DOI: 10.1002/1096-9861(20010226)431:1<1::aid-cne1051>3.0.co;2-e] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The diffusible messenger nitric oxide (NO) is implicated in auditory processing. It acts in the brain largely through activation of soluble guanylyl cyclase (sGC), a heterodimer comprised of alpha and beta subunits. The authors used immunohistochemistry to study the NO/guanosine 3',5'-cyclic monophosphate (cGMP) pathway in the cochlear nucleus of Sprague-Dawley rats. Central fibers of the cochlear nerve were stained for neuronal nitric oxide synthase (NOS-I) but not for sGCbeta. Within the ventral cochlear nucleus, a large fraction of principal cells were immunopositive for both NOS-I and sGCbeta; these cells could be seen at times receiving contacts from NOS-I-positive fibers. sGC staining of somatic cytoplasm extended into the distal dendritic tree. At variance with this pattern, NOS-I was concentrated mainly in somata. Double-labeling experiments showed that most of the principal neurons expressed both antigens. By contrast, in the granule cell domain, small cells that were immunopositive for NOS-I rarely corresponded to those that were immunopositive for sGC. To assess whether NOS-I and sGC immunoreactivities colocalize with their respective catalytic activities, the authors performed multiple labeling with L-citrulline (a by-product of the formation of NO from L-arginine) and cGMP, respectively. L-citrulline was restricted to NOS-I-positive elements, and the large majority of NOS-expressing neurons were positive for citrulline. Multiple labeling revealed that almost all sGC-positive neurons also accumulated cGMP both in the ventral cochlear nucleus and in the granule cell domain. These data suggest that NO is a signaling molecule in the cochlear nucleus, perhaps functioning in both a paracrine manner and an autocrine manner.
Collapse
Affiliation(s)
- A Burette
- Department of Cell Biology and Anatomy, University of North Carolina, CB 7090, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
36
|
Lysakowski A, Singer M. Nitric oxide synthase localized in a subpopulation of vestibular efferents with NADPH diaphorase histochemistry and nitric oxide synthase immunohistochemistry. J Comp Neurol 2000; 427:508-21. [PMID: 11056461 DOI: 10.1002/1096-9861(20001127)427:4<508::aid-cne2>3.0.co;2-l] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Efferent innervation of the vestibular labyrinth is known to be cholinergic. More recent studies have also demonstrated the presence of the neuropeptide calcitonin gene-related peptide in this system. Nitric oxide is one of a new class of neurotransmitters, the gaseous transmitters. It acts as a second messenger and neurotransmitter in diverse physiological systems. We decided to investigate the anatomical distribution of the synthetic enzyme for nitric oxide, nitric oxide synthase (NOS), to clarify the role of nitric oxide in the vestibular periphery. NADPH diaphorase histochemical and NOS I immunohistochemical studies were done in the adult chinchilla and rat vestibular brainstem; diaphorase histochemistry was done in the chinchilla periphery. Retrograde tracing studies to verify the presence of NOS in brainstem efferent neurons were performed in young chinchillas. Our light microscopic results show that NOS I, as defined mainly by the presence of NADPH diaphorase, is present in a subpopulation of both brainstem efferent neurons and peripheral vestibular efferent boutons. Our ultrastructural results confirm these findings in the periphery. NADPH diaphorase is also present in a subpopulation of type I hair cells, suggesting that nitric oxide might be produced in and act locally upon these cells and other elements in the sensory epithelium. A hypothesis about how nitric oxide is produced in the vestibular periphery and how it may interact with other elements in the vestibular sensory apparatus is presented in the discussion.
Collapse
Affiliation(s)
- A Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
37
|
Abstract
The superior olivary complex (SOC), a group of interrelated brainstem nuclei, sends efferents to a variety of neuronal structures including the cochlea and the inferior colliculus. The present review describes data obtained from rodents providing evidence that the gaseous, short-living neuroactive substance nitric oxide (NO) is produced in the SOC. The NO-synthesizing enzyme neuronal NO-synthase (nNOS) has been localized by means of several methods including histochemistry and immunohistochemistry. Perikarya containing nNOS were found in several nuclei of the SOC. Their largest numbers and percentages of total cells were observed in the medial nucleus of the trapezoid body. Stained terminals were observed mainly in the lateral superior olivary nucleus and in the superior paraolivary nucleus. While retrograde neuronal tracing identified a considerable number of nNOS-immunoreactive neurons as to be part of the olivo-cochlear pathway, the projection patterns of other nNOS-immunoreactive SOC cell groups remain to be investigated. We also review other putative sources of cochlear NO, and discuss the possible role of NO in the lower auditory brainstem and organ of Corti with regard to physiological and pathophysiological mechanisms.
Collapse
Affiliation(s)
- S Reuss
- Department of Anatomy, Johannes Gutenberg-University, D-55099 Mainz, Germany.
| | | |
Collapse
|
38
|
Affiliation(s)
- S Reuss
- Department of Anatomy, School of Medicine, Johannes Gutenberg-University, D-55099 Mainz, Germany
| |
Collapse
|
39
|
Chen JW, Eatock RA. Major potassium conductance in type I hair cells from rat semicircular canals: characterization and modulation by nitric oxide. J Neurophysiol 2000; 84:139-51. [PMID: 10899192 DOI: 10.1152/jn.2000.84.1.139] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mammalian vestibular organs have two types of hair cell, type I and type II, which differ morphologically and electrophysiologically. Type I hair cells alone express an outwardly rectifying current, I(K, L), which activates at relatively negative voltages. We used whole cell and patch configurations to study I(K,L) in hair cells isolated from the sensory epithelia of rat semicircular canals. I(K,L) was potassium selective, blocked by 4-aminopyridine, and permeable to internal cesium. It activated with sigmoidal kinetics and was half-maximally activated at -74.5 +/- 1.6 mV (n = 35; range -91 to -50 mV). It was a very large conductance (91 +/- 8 nS at -37 mV; 35 nS/pF for a cell of average size). Patch recordings from type I cells revealed a candidate ion channel with a conductance of 20-30 pS. Because I(K,L) was activated at the resting potential, the cells had low input resistances (R(m)): median 25 MOmega at -67 mV versus 1.3 GOmega for type II cells. Consequently, injected currents comparable to large transduction currents (300 pA) evoked small (</=10 mV) voltage responses. The cells' small voltage responses and negative resting potentials (V(R) = -81.3 +/- 0.2 mV, n = 144) pose a problem for afferent neurotransmission: how does the receptor potential depolarize the cell into the activation range of Ca(2+) channels (positive to -60 mV) that mediate transmitter release? One possibility, suggested by spontaneous positive shifts in the activation range of I(K,L) during whole cell recording, is that the activation range might be modulated in vivo. Any factor that reduces the number of I(K,L) channels open at V(R) will increase R(m) and depolarize V(R). Nitric oxide (NO) is an ion channel modulator that is present in vestibular epithelia. Four different NO donors, applied externally, inhibited the I(K,L) conductance at -67 mV, with mean effects ranging from 33 to 76%. The NO donor sodium nitroprusside inhibited channel activity in patches when they were cell-attached but not excised, suggesting an intracellular cascade. Consistent with an NO-cGMP cascade, 8-bromo-cGMP also inhibited whole cell I(K,L). Ca(2+)-dependent NO synthase is reported to be in hair cells and nerve terminals in the vestibular epithelium. Excitatory input to vestibular organs may lead, through Ca(2+) influx, to NO production and inhibition of I(K,L). The resulting increase in R(m) would augment the receptor potential, a form of positive feedback.
Collapse
Affiliation(s)
- J W Chen
- Neuroscience Program, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
40
|
Reuss S, Schaeffer DF, Laages MH, Riemann R. Evidence for increased nitric oxide production in the auditory brain stem of the aged dwarf hamster (Phodopus sungorus): an NADPH-diaphorase histochemical study. Mech Ageing Dev 2000; 112:125-34. [PMID: 10690925 DOI: 10.1016/s0047-6374(99)00082-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Age-related changes of the auditory system such as presbyacusis are believed to be due, at least in part, to alterations of central structures. The superior olivary complex (SOC), a group of interrelated brain stem nuclei, projects to a variety of neuronal structures including the cochlea and the inferior colliculus (IC). The soluble gas nitric oxide (NO), believed to function as a neuroactive substance within the SOC and cochlea, is thought to be involved in ageing processes. Since it is unknown whether NO-production is altered in the ageing auditory system, the present study was conducted to investigate whether the number of NO-producing cells in the SOC is changed with increasing age. The histochemical detection of NADPH-diaphorase activity (NADPH-d), a marker for neurons containing NOS, was utilized to investigate the numbers of NO-producing cells in the SOC of adult and senile Djungarian dwarf hamsters (Phodopus sungorus). Our results demonstrate that the number of stained neurons was almost doubled in the SOC of senile hamsters. The most distinct changes were observed in the medial nucleus of the trapezoid body. In contrast, NO-producing preganglionic sympathetic neurons of the spinal intermediolateral nucleus, which was studied for comparison, did not exhibit significant differences between adult and senile animals. It is concluded that the increase of NO-production in the ageing auditory brain stem, as revealed by our data, may be related to hearing impairments with increasing age.
Collapse
Affiliation(s)
- S Reuss
- Department of Anatomy, School of Medicine, Johannes Gutenberg-University, Mainz, Germany.
| | | | | | | |
Collapse
|