1
|
Sajjad W, Muhammad M, Bukhari SMAUS, Abbasi SW, Mohamad OAA, Liu YH, Li WJ. Application of bacterioruberin from Arthrobacter sp. isolated from Xinjiang desert to extend the shelf-life of fruits during postharvest storage. FOOD CHEMISTRY. MOLECULAR SCIENCES 2025; 10:100239. [PMID: 39877001 PMCID: PMC11773480 DOI: 10.1016/j.fochms.2024.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 01/31/2025]
Abstract
Post-harvest losses and rapid fruit ripening at room temperature are major challenges in preserving fruit quality. This study aimed to reduce such losses by applying a red carotenoid pigment, bacterioruberin extracted from an Arthrobacter sp. The carotenoid was characterized as bacterioruberin and its derivative tetra anhydrous bacterioruberin (λmax 490 nm), and an m/z value of 675 and 742 (M+ 1H)+1. The annotated LIPID MAP demonstrated the presence of over 360 isoprenoids annotated transcripts. The compound exhibited significant antioxidant activity, with an IC50 of 22 μg/mL, iron chelation and antibacterial activities indicating its potential as a natural preservative. When applied to grapes, peaches, and apricots, bacterioruberin (2 %) effectively prevented spoilage for six days at room temperature. Statistical analysis using one-way ANOVA revealed a significant correlation (p = 0.05) between treated and control groups in subjective quality attributes. Computational investigation with phospholipase D and VQ22 motif protein further supported the preservative potential of bacterioruberin.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Murad Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | | | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish 45511, Egypt
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Upadhyay NK, Keshri GK, Gupta A. Hippophae rhamnoides L. leaf extract augments dermal wound healing in streptozocin-induced diabetic rats. J Wound Care 2025; 34:146-153. [PMID: 39928468 DOI: 10.12968/jowc.2021.0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
OBJECTIVE The present investigation was undertaken to determine the healing efficacy of Hippophae rhamnoides L. (sea buckthorn (SBT)) leaf aqueous lyophilised extract (SBTL-ALE) on a diabetic wound model in rats. The effect of SBTL-ALE was also evaluated on human epithelial cell lines (A431) by using in vitro wound closure and transwell migration assays. METHOD A total of four full-thickness excision-type wounds were created on the dorsal surface of streptozocin-induced diabetic rats. The animals were divided into two groups: control rats treated with soft white petroleum jelly and experimental rats treated with SBTL-ALE (5.0%, weight/weight) ointment applied topically, twice daily for seven days. RESULTS SBTL-ALE significantly (p<0.05) accelerated the migration of epithelial cells in in vitro wound closure and transwell migration assays. Further, SBTL-ALE augmented the healing process by significantly (p<0.05) enhanced wound area contraction, faster complete epithelial closure, increased hydroxyproline (collagen) and hexosamine levels in diabetic rats. Histopathological findings confirmed the healing potential of SBTL-ALE. Immunohistochemical analyses showed increased expression of transforming growth factor (TGF)-β and α-smooth muscle actin in SBTL-ALE-treated wounds of diabetic rats. Superoxide dismutase, catalase and reduced glutathione levels increased, whereas reactive oxygen levels were decreased significantly (p<0.05) in SBTL-ALE-treated wounds compared to diabetic controls, which conferred redox homeostasis. CONCLUSION Our results suggest that SBTL-ALE accelerated transdermal wound healing in diabetic rats by increasing the rate of wound contraction, enhancing levels of collagen, hexosamine and endogenous antioxidants, and reducing oxidative stress.
Collapse
Affiliation(s)
- Nitin K Upadhyay
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Gaurav K Keshri
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Asheesh Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| |
Collapse
|
3
|
Regolo L, Giampieri F, Battino M, Armas Diaz Y, Mezzetti B, Elexpuru-Zabaleta M, Mazas C, Tutusaus K, Mazzoni L. From by-products to new application opportunities: the enhancement of the leaves deriving from the fruit plants for new potential healthy products. Front Nutr 2024; 11:1083759. [PMID: 38895662 PMCID: PMC11184148 DOI: 10.3389/fnut.2024.1083759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
In the last decades, the world population and demand for any kind of product have grown exponentially. The rhythm of production to satisfy the request of the population has become unsustainable and the concept of the linear economy, introduced after the Industrial Revolution, has been replaced by a new economic approach, the circular economy. In this new economic model, the concept of "the end of life" is substituted by the concept of restoration, providing a new life to many industrial wastes. Leaves are a by-product of several agricultural cultivations. In recent years, the scientific interest regarding leaf biochemical composition grew, recording that plant leaves may be considered an alternative source of bioactive substances. Plant leaves' main bioactive compounds are similar to those in fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. Bioactive compounds can positively influence human health; in fact, it is no coincidence that the leaves were used by our ancestors as a natural remedy for various pathological conditions. Therefore, leaves can be exploited to manufacture many products in food (e.g., being incorporated in food formulations as natural antioxidants, or used to create edible coatings or films for food packaging), cosmetic and pharmaceutical industries (e.g., promising ingredients in anti-aging cosmetics such as oils, serums, dermatological creams, bath gels, and other products). This review focuses on the leaves' main bioactive compounds and their beneficial health effects, indicating their applications until today to enhance them as a harvesting by-product and highlight their possible reuse for new potential healthy products.
Collapse
Affiliation(s)
- Lucia Regolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Product Processing, Jiangsu University, Zhenjiang, China
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Maria Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Cristina Mazas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Universidad Internacional Iberoamericana, Campeche, Mexico
| | - Kilian Tutusaus
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Research Center for Foods, Nutritional Biochemistry and Health, Universidade Internacional do Cuanza, Cuito, Angola
| | - Luca Mazzoni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
4
|
Gore DD, Sharma N, Mishra N, Parmar PK, Ranjana S, Kumar D, Jachak SM, Jena G, Tikoo K, Bansal AK, Singh IP. Wound-healing effect of topical nanoemulsion-loaded cream and gel formulations of Hippophae rhamnoides L. (sea buckthorn) fruit oil and their acute dermal toxicity study on female SD rats. Indian J Pharmacol 2024; 56:120-128. [PMID: 38687316 PMCID: PMC11160998 DOI: 10.4103/ijp.ijp_370_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/15/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the efficacy and safety of topical nanoemulsion (NE)-loaded cream and gel formulations of Hippophae rhamnoides L. (sea buckthorn [SBT]) fruit oil for wound healing. MATERIALS AND METHODS The NE-loaded cream and gel formulations of H. rhamnoides L. (SBT) fruit oil (IPHRFH) were prepared and evaluated for their wound-healing activity on female Sprague-Dawley (SD) rats. They were further divided into groups (seven) and the wound-healing activity was determined by measuring the area of the wound on the wounding day and on the 0th, 4th, 8th, and 10th days. The acute dermal toxicity of the formulations was assessed by observing the erythema, edema, and body weight (BW) of the rats. RESULTS The topical NE cream and gel formulations of H. rhamnoides L. (SBT) fruit oil showed significant wound-healing activity in female SD rats. The cream formulation of IPHRFH showed 78.96%, the gel showed 72.59% wound contraction on the 8th day, whereas the positive control soframycin (1% w/w framycetin) had 62.29% wound contraction on the 8th day. The formulations also showed a good acute dermal toxicity profile with no changes significantly affecting BW and dermal alterations. CONCLUSIONS The results of this study indicate that topical NE-loaded cream and gel formulation of H. rhamnoides L. (SBT) fruit oil are safe and effective for wound healing. The formulations showed no signs of acute dermal toxicity in female SD rats.
Collapse
Affiliation(s)
- Dattatraya Dinkar Gore
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Nisha Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Nidhi Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Prashantkumar K. Parmar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Soni Ranjana
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Dinesh Kumar
- Division of Chemical Technology, CSIR-Institute of Himalayan Bioresource and Technology, Palampur, Himachal Pradesh, India
| | - Sanjay M. Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Gopabandhu Jena
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Kulbhushan Tikoo
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Arvind K. Bansal
- Division of Chemical Technology, CSIR-Institute of Himalayan Bioresource and Technology, Palampur, Himachal Pradesh, India
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| |
Collapse
|
5
|
Qiu S, Zorig A, Sato N, Yanagihara A, Kanazawa T, Takasugi M, Arai H. Effect of Polyphenols in Sea Buckthorn Berry on Chemical Mediator Release from Mast Cells. Prev Nutr Food Sci 2023; 28:335-346. [PMID: 37842252 PMCID: PMC10567591 DOI: 10.3746/pnf.2023.28.3.335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 10/17/2023] Open
Abstract
Sea buckthorn (Hippophae rhamnoides L.) is a deciduous shrub of the Elaeagnaceae family and is widely distributed in northern Eurasia. Sea buckthorn berry (SBB) has attracted attention for its use in many health foods, although its physiological function remains unknown. In this study, we investigated the inhibitory effect of SBB extract and its fractions on Type-I allergy using mast cell lines. Among these fractions, SBB fraction with the highest amount of antioxidant polyphenols significantly inhibited the release of chemical mediators such as histamine and leukotriene B4 (LTB4) from the stimulated mast cells. This fraction also inhibited the influx of calcium ions (Ca2+) and the phosphorylation of tyrosine residues in proteins, including spleen tyrosine kinase, which is associated with signal transduction during the release of chemical mediators. The active SBB fraction contained isorhamnetin as its major flavonol aglycon. Isorhamnetin inhibited histamine and LTB4 release from the stimulated cells and suppressed intracellular Ca2+ influx. These results indicate that isorhamnetin is the primary substance responsible for the antiallergic activity in SBB. In conclusion, SBB may alleviate Type-I allergy by inhibiting the release of chemical mediators from mast cells, and polyphenols may contribute to this effect.
Collapse
Affiliation(s)
- Shiman Qiu
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Anuu Zorig
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Naoko Sato
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Ai Yanagihara
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Tsutomu Kanazawa
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Mikako Takasugi
- Department of Life Science, Kyushu Sangyo University, Fukuoka 813-8503, Japan
| | - Hirofumi Arai
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| |
Collapse
|
6
|
Martins de Deus B, Fernandes C, Molina AK, Xavier V, Pires TCSP, Mandim F, Heleno SA, Finimundy TC, Barros L. Chemical Characterization, Bioactivity and Toxicity of European Flora Plant Extracts in Search for Potential Natural Origin Preservatives. PLANTS (BASEL, SWITZERLAND) 2023; 12:2784. [PMID: 37570937 PMCID: PMC10420968 DOI: 10.3390/plants12152784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Consumer demand for natural and healthier products has led to an increasing interest in the bioactive and therapeutic properties of plant extracts. In this study, we evaluated the phenolic compounds profile, bioactivities, and toxicities of plant extracts from eight European flora species, including Calendula officinalis L., Calluna vulgaris (L.) Hull, Hippophae rhamnoides L., Juglans regia L., Mentha cervina L., Rubus idaeus L., Sambucus nigra L., and Vitis vinifera L. The aim was to identify potential preservatives of natural origin. Phenolic compounds were identified by HPLC-DAD-ESI-MS. Caffeic acid derivatives, ellagitannins, flavonols, and flavones were the major phenolic compounds identified. The total phenolic content varied from 16.0 ± 0.2 (V. vinifera) to 123 ± 2 mg/g (H. rhamnoides) of dry extract. All extracts showed antioxidant potential and exhibited activity against some of the microorganisms tested. S. nigra showed the highest activity in the inhibition of oxidative hemolysis (OxHLIA) assay and H. rhamnoides, notably, had the lowest IC50 values in TBARS and DPPH assays, as well as the lowest minimum inhibitory concentration (MIC) values. Regarding in vitro cytotoxicity, in tumor and non-tumor cell lines, although some extracts revealed toxicity against normal cells, it was found that the samples C. vulgaris, V. vinifera and R. idaeus might be used against tumor cells since the active concentration is much lower than the one causing toxicity. In vivo acute toxicity tests using Artemia franciscana suggest low toxicity for most extracts, with LC50 > 400 mg/L. These results showed the potential of the studied extracts as natural preservatives, given their richness in compounds with bioactive properties, highlight their potential value to the production chain.
Collapse
Affiliation(s)
- Breno Martins de Deus
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.M.d.D.); (C.F.); (A.K.M.); (V.X.); (T.C.S.P.P.); (F.M.); (S.A.H.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Conceição Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.M.d.D.); (C.F.); (A.K.M.); (V.X.); (T.C.S.P.P.); (F.M.); (S.A.H.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Adriana K. Molina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.M.d.D.); (C.F.); (A.K.M.); (V.X.); (T.C.S.P.P.); (F.M.); (S.A.H.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Virginie Xavier
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.M.d.D.); (C.F.); (A.K.M.); (V.X.); (T.C.S.P.P.); (F.M.); (S.A.H.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tânia C. S. P. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.M.d.D.); (C.F.); (A.K.M.); (V.X.); (T.C.S.P.P.); (F.M.); (S.A.H.); (L.B.)
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidad de Vigo, E32004 Ourense, Spain
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.M.d.D.); (C.F.); (A.K.M.); (V.X.); (T.C.S.P.P.); (F.M.); (S.A.H.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.M.d.D.); (C.F.); (A.K.M.); (V.X.); (T.C.S.P.P.); (F.M.); (S.A.H.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tiane C. Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.M.d.D.); (C.F.); (A.K.M.); (V.X.); (T.C.S.P.P.); (F.M.); (S.A.H.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.M.d.D.); (C.F.); (A.K.M.); (V.X.); (T.C.S.P.P.); (F.M.); (S.A.H.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
7
|
Ren H, Zhu X, Zhai S, Feng X, Yan Z, Sun J, Liu Y, Gao Z, Long F. Seabuckthorn juice alleviates allergic symptoms in shrimp-induced food allergy mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Parvez MK, Al-Dosari MS, Basudan OA, Herqash RN. The anti‑hepatitis B virus activity of sea buckthorn is attributed to quercetin, kaempferol and isorhamnetin. Biomed Rep 2022; 17:89. [PMID: 36185785 PMCID: PMC9500493 DOI: 10.3892/br.2022.1573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022] Open
Abstract
The present study assessed the in vitro anti-hepatitis B virus (HBV) effects of cold-adapted sea buckthorn (Hippophae rhamnoides). Sea buckthorn leaf ethanol extracts subjected to chloroform (SB-Chl), ethyl acetate (SB-Eac), n-butanol (SB-But) and aqueous (SB-Aqu) fractionation were first examined (MTT assay) for their toxic effects on HepG2 cells. While SB-Chl (IC50, 32.58 µg/ml) exhibited high cytotoxicity, SB-Eac, SB-But SB-Aqu were non-toxic at up to 150 µg/ml. High performance liquid chromatography analysis led to the identification of the anti-HBV active flavonols, quercetin (93.09 µg/g), kaempferol (44.19 µg/g) and isorhamnetin (138.75 µg/g) in the extract. The analysis of the anti-HBV effects of SB-Eac, SB-But and SB-Aqu (50 µg/ml, each) on HepG2.2.15 cells revealed the marked inhibition of HBsAg and HBeAg expression levels. At the concentration of 10 µg/ml, quercetin and kaempferol exerted potent inhibitory effects on HBsAg (60.5 and 62.3%, respectively) and HBeAg synthesis (64.4 and 60.2%, respectively), as compared to isorhamnetin (30.5 and 28.4%, respectively). The HBV-polymerase inhibitor drug, lamivudine (2 µM), inhibited HBsAg and HBeAg expression by 87.4 and 83.5%, respectively. The data were in good agreement with a previous in vitro and in silico molecular docking analysis performed by the authors where quercetin, kaempferol and lamivudine had formed stable complexes with HBV-polymerase binding-pocket amino acids. On the whole, to the best of our knowledge, the present study provides the first report of the anti-HBV therapeutic potential of sea buckthorn, attributed to quercetin, kaempferol and isorhamnetin.
Collapse
Affiliation(s)
- Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omar A. Basudan
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashed N. Herqash
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Nie M, Hu C, Shi G, Cai M, Wang X, Zhao X. Selenium restores mitochondrial dysfunction to reduce Cr-induced cell apoptosis in Chinese cabbage (Brassica campestris L. ssp. Pekinensis) root tips. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112564. [PMID: 34340154 DOI: 10.1016/j.ecoenv.2021.112564] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/18/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Chromium (Cr) disrupts the growth and physiology of plants. Selenium (Se) is considered as a promising option to help plants ameliorate Cr toxicity. To investigate the effects of exogenous Se on reactive oxygen species (ROS) burst and programmed cell death (PCD) in root tip cells under Cr stress, hydroponic experiments were carried out with Chinese cabbage seedlings grown in Hoagland solution containing 1 mg L-1 Cr and 0.1 mg L-1 Se. Results showed that Se scavenged the overproduction of H2O2 and O2-·, and alleviated the level of lipid peroxidation in root tips stressed by Cr. Moreover, Se effectively prevented DNA degradation and reduced the number of apoptotic cells in root tips. Compared with Cr treatment, Se supplementation reduced the content of ROS and malondialdehyde in mitochondria by 38.23% and 17.52%, respectively. Se application decreased the opening degree of mitochondrial permeability transition pores by 32.30%, increased mitochondrial membrane potential by 40.91%, alleviated the release of cyt c from mitochondria into cytosol by 18.42% and caused 57.40% decrease of caspase 3-like protease activity, and thus restored mitochondrial dysfunction caused by Cr stress. In addition, the alteration of Se on mitochondrial physiological properties maintained calcium homeostasis between mitochondria and cytosol, which further contributed to reducing the appearance of Cr-induced PCD. Findings suggested that Se restored mitochondrial dysfunction, which further rescued root tip cells from PCD, consequently activating defense strategies to protect plants from Cr toxicity and maintaining plant growth.
Collapse
Affiliation(s)
- Min Nie
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Guangyu Shi
- College of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaomiao Cai
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China.
| |
Collapse
|
10
|
Gâtlan AM, Gutt G. Sea Buckthorn in Plant Based Diets. An Analytical Approach of Sea Buckthorn Fruits Composition: Nutritional Value, Applications, and Health Benefits. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18178986. [PMID: 34501575 PMCID: PMC8431556 DOI: 10.3390/ijerph18178986] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 01/17/2023]
Abstract
Current nutritional trends include plant-based diets as nutritional behavior of consumers who are increasingly concerned about a healthy lifestyle. Sea buckthorn (Hippophaë rhamnoides L.) is a plant with great virtues, containing more than 100 types of compounds. It is a plant with versatile properties, multiple economic advantages and a rich history, which still continues in natural medicine, and it is hence included in the daily diet by more and more people for the prevention and treatment of diet-related diseases. Its uniqueness is due to its chemical composition and the health beneficial properties that rise from its composition. This review is a detailed analytical picture of the current state of knowledge currently available regarding the Hippophaë plant, providing an overview of the qualities of sea buckthorn. This article summarizes data on sea buckthorn’s nutritional value, health beneficial properties, and its applications.
Collapse
|
11
|
Wide Spectrum of Active Compounds in Sea Buckthorn ( Hippophae rhamnoides) for Disease Prevention and Food Production. Antioxidants (Basel) 2021; 10:antiox10081279. [PMID: 34439527 PMCID: PMC8389226 DOI: 10.3390/antiox10081279] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
Growing demand for value-added products and functional foods is encouraging manufacturers to consider new additives that can enrich their products and help combat lifestyle diseases. The healthy properties of sea buckthorn have been recognized for centuries. This plant has a high content of bioactive compounds, including antioxidants, phytosterols, essential fatty acids, and amino acids, as well as vitamins C, K, and E. It also has a low content of sugar and a wide spectrum of volatiles, which contribute to its unique aroma. Sea buckthorn shows antimicrobial and antiviral properties, and is a potential nutraceutical or cosmeceutical. It was proven to help treat cardiovascular disease, tumors, and diabetes, as well as gastrointestinal and skin problems. The numerous health benefits of sea buckthorn make it a good candidate for incorporation into novel food products.
Collapse
|
12
|
Li X, Chen W, Simal-Gandara J, Georgiev MI, Li H, Hu H, Wu X, Efferth T, Wang S. West meets east: open up a dialogue on phytomedicine. Chin Med 2021; 16:57. [PMID: 34281584 PMCID: PMC8287783 DOI: 10.1186/s13020-021-00467-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
The desire to extend the wisdom of traditional health systems has motivated the trade of many phytomedicine on a global scale for centuries, especially some dietary herbs, making a great overlap exits between western and eastern phytomedicine. Despite the communication since ancient times, a key disconnect still exists in the dialog among western and eastern herbal researchers. There is very little systematic effort to tap into the friction and fusion of eastern and western wisdom in utilizing phytomedicine. In this review, we analyzed the similarities and differences of three representative phytomedicine, namely Rhodiola, seabuckthorn, and fenugreek, aiming to open up new horizons in developing novel health products by integrating the wisdom of the east and the west.
Collapse
Affiliation(s)
- Xiuzhu Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR Taipa, China
| | - Weijie Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR Taipa, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, 32004 Ourense, Spain
| | - Milen I. Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | - Hongyi Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR Taipa, China
| | - Hao Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR Taipa, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan China
| | - Thomas Efferth
- Institute of Pharmaceutical and Biomedical Sciences, Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, Germany
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR Taipa, China
| |
Collapse
|
13
|
Dong K, Binosha Fernando WM, Durham R, Stockmann R, Jayasena V. Nutritional Value, Health-promoting Benefits and Food Application of Sea Buckthorn. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1943429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ke Dong
- School of Science, Western Sydney University, Penrith, New South Wales Australia
| | - Warnakulasuriya M.A.D. Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia Australia
| | - Rosalie Durham
- School of Science, Western Sydney University, Penrith, New South Wales Australia
| | | | - Vijay Jayasena
- School of Science, Western Sydney University, Penrith, New South Wales Australia
| |
Collapse
|
14
|
Ladol S, Sharma D. The effects of Hippophae rhamnoides in neuroprotection and behavioral alterations against iron-induced epilepsy. Epilepsy Res 2021; 175:106695. [PMID: 34186382 DOI: 10.1016/j.eplepsyres.2021.106695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Epilepsy is a neurological disorder in which malfunctioning of the electrical activity of the brain causes recurrent, unprovoked seizures. Epilepsy causes wide symptoms that include cognitive dysfunction, anxiety, behavioral alterations, and histological impairments. In this study, the effect of Hippophae rhamnoides (Sea buckthorn/Sbt) on electrophysiology, behavior, and histology in iron-induced epilepsy was analyzed. Rats were randomly divided into four groups (n = 8); Control group, Epileptic group, Sbt treated epileptic group, and Sbt treated group. To induce epilepsy, the intracortical iron injection was administered at a dose of 5 μl of 100 mM FeCl3. A significant increase in epileptiform activity, behavioral abnormalities, and histological impairments was observed in the iron-induced epileptic rats. Hippophae rhamnoides berry extract was administered orally at a dose of 1 ml/kg body wt. for one month. Sbt administration significantly reduced the epileptiform activity, improved behavioral abnormalities, and improved histological impairments in epileptic rats. In conclusion, this study demonstrates the antiepileptic effect of Sbt that probably has exerted by its neuroprotective and behavioral alteration potential against iron-induced epilepsy.
Collapse
Affiliation(s)
- Stanzin Ladol
- Department of Zoology, Central University of Jammu, Bagla (Rahya Suchani) Distt. Samba, Jammu and Kashmir, 181143, India.
| | - Deepak Sharma
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
15
|
Zhao S, Sun H, Liu Q, Shen Y, Jiang Y, Li Y, Liu T, Liu T, Xu H, Shao M. Protective effect of seabuckthorn berry juice against acrylamide-induced oxidative damage in rats. J Food Sci 2020; 85:2245-2254. [PMID: 32579735 DOI: 10.1111/1750-3841.15313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 04/20/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
Acrylamide (AA), classified as a probable carcinogen, can be neurotoxic, genotoxic, and can damage DNA. This study explored the ability of seabuckthorn berries juice (SBJ) to alleviate AA-induced toxic injury in rats. Twenty-four adult male Sprague-Dawley (SD) rats were randomly divided into four groups: control group, AA group (40 mg/kg), AA + SBJ (40 mg/kg AA and 5 mL/kg SBJ), and AA + vitamin C (VC) group (positive control group, 40 mg/kg AA and 100 mg/kg VC). At the end of the experiment, rats in AA group showed a marked decrease in the rate of weight gain, hind extremity abduction, and ataxia. Obvious anomalies were seen in plasma biochemical parameters (P < 0.05), and different degrees of injury were observed upon histological examination of five tissues (hippocampus, cerebellum, liver, small intestine, and kidney). Compared to the control group, levels of superoxide dismutase, catalase, and glutathione were significantly decreased, while malondialdehyde was elevated (P < 0.05). SBJ treatment reduced the abnormal of behavior, hematological index, antioxidant enzyme, and tissue damage caused by AA in rats. PRACTICAL APPLICATION: Seabuckthorn berries are wild berries rich in vitamin C and polyphenols, which have good antioxidant properties. In this experiment, SBJ has a significant alleviating effect on AA-induced oxidative damage in rats. Therefore, we speculate that SBJ may relieve the oxidative damage caused by diet or other forms of AA exposure in the general population. At the same time, this experiment also provides new ideas for alleviating AA-induced in vivo toxicity.
Collapse
Affiliation(s)
- Sijia Zhao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hongyang Sun
- Author, Sun, is, with, China Institute to Veterinary Drug Control, Beijing, 100081, China
| | - Qingbo Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Shen
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yujun Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Tianxu Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Honghua Xu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Meili Shao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
16
|
Addis R, Cruciani S, Santaniello S, Bellu E, Sarais G, Ventura C, Maioli M, Pintore G. Fibroblast Proliferation and Migration in Wound Healing by Phytochemicals: Evidence for a Novel Synergic Outcome. Int J Med Sci 2020; 17:1030-1042. [PMID: 32410832 PMCID: PMC7211158 DOI: 10.7150/ijms.43986] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
Wound-healing is a dynamic skin reparative process that results in a sequence of events, including inflammation, proliferation, and migration of different cell types as fibroblasts. Fibroblasts play a crucial role in repairing processes, from the late inflammatory phase until the fully final epithelization of the injured tissue. Within this context, identifying tools able to implement cell proliferation and migration could improve tissue regeneration. Recently, plants species from all over the world are coming out as novel tools for therapeutic applications thanks to their phytochemicals, which have antioxidant properties and can promote wound healing. In this paper, we aimed at investigating antioxidant activity of waste extracts from different medicinal plants, endemic of the Mediterranean area, on fibroblast proliferation and wound healing. We determined the amount of total phenols and anti-oxidant activity by ABTS assay. We then evaluated the cytotoxicity of the compounds and the proliferative capabilities of fibroblasts by scratch assay. Our results showed that waste extracts retain antioxidant and regenerative properties, inducing tissue re-establishment after environmental stress exposure. Taken together, our findings suggest that waste material could be used in the future also in combinations to stimulate wound healing processes and antioxidant responses in damaged skin.
Collapse
Affiliation(s)
- Roberta Addis
- Department of Chemistry and Pharmacy, University of Sassari, Via F. Muroni 23/b, 07100, Sassari, Italy
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Sara Santaniello
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Emanuela Bellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Giorgia Sarais
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna, Italy
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, 09042 Cagliari, Italy
| | - Giorgio Pintore
- Department of Chemistry and Pharmacy, University of Sassari, Via F. Muroni 23/b, 07100, Sassari, Italy
| |
Collapse
|
17
|
Criste A, Urcan AC, Bunea A, Pripon Furtuna FR, Olah NK, Madden RH, Corcionivoschi N. Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn ( Hippophae Rhamnoides L.) Varieties. Molecules 2020; 25:E1170. [PMID: 32150954 PMCID: PMC7179145 DOI: 10.3390/molecules25051170] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 01/04/2023] Open
Abstract
Hippophae rhamnoides L. is an important source of natural antioxidant and antimicrobial agents. Phytochemical compounds, antioxidant and antibacterial properties of berries, and leaf extracts from four Romanian sea buckthorn cultivars were investigated. Large differences in the content of total polyphenols and flavonoids between the varieties were observed. HPLC analysis of the polyphenolic compounds showed greater differences in content in leaves than in berries. This study confirmed that sea buckthorn leaves and berries are a rich source of phenolic compounds, especially quercetin derivatives and hydrocinnamic acid derivatives. Five carotenoid compounds were identified in the berries: lutein, zeaxanthin, β-cryptoxanthin, cis-β-carotene, and β-carotene. From the results obtained in this study, it can be stated that the varieties whose berries yielded the highest quantities of polyphenols, flavonoids, and antioxidant activity, can be ranked as follows: SF6 > Golden Abundant > Carmen > Colosal, and for leaf extracts the ranked order is SF6 > Golden Abundant > Colosal > Carmen. A strong correlation between the total flavonoid yield and antioxidant activity (r = 0.96), was observed. All extracts showed antibacterial activity against S. aureus, B. cereus, and P. aeruginosa, however extracts from berries were less potent than extracts from leaves.
Collapse
Affiliation(s)
- Adriana Criste
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania
| | - Adriana Cristina Urcan
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania
| | - Andrea Bunea
- Department of Chemistry and Biochemistry, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania;
| | | | - Neli Kinga Olah
- SC PlantExtrakt SRL, Rădaia, jud. Cluj 407059, Romania; (F.R.P.F.); (N.K.O.)
| | - Robert H. Madden
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (R.H.M.); (N.C.)
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (R.H.M.); (N.C.)
| |
Collapse
|
18
|
Ren R, Li N, Su C, Wang Y, Zhao X, Yang L, Li Y, Zhang B, Chen J, Ma X. The bioactive components as well as the nutritional and health effects of sea buckthorn. RSC Adv 2020; 10:44654-44671. [PMID: 35516250 PMCID: PMC9058667 DOI: 10.1039/d0ra06488b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Sea buckthorn (SB), also named sea berry, Hippophae rhamnoides L. or Elaeagnus rhamnoides L., has been used in daily life for centuries with kinds of purposes ranging from a beverage with a pleasant taste and flavor, to an agent for treatment of many disorders and diseases. SB is well known more than just a fruit. So far, a unique mixture of bioactive components was elucidated in SB including flavonoids, phenolic acids, proanthocyanidins, carotenoids, fatty acids, triterpenoids, vitamins and phytosterols, which implied the great medicinal worth of this seaberry. Both in vitro and in vivo experiments, ranged from cell lines to animals as well as a few in patients and healthy volunteers, indicated that SB possessed various biological activities including anti-inflammatory and immunomodulatory effects, antioxidant properties, anti-cancer activities, hepato-protection, cardiovascular-protection, neuroprotection, radioprotection, skin protection effect as well as the protective effect against some eye and gastrointestinal sickness. Furthermore, the toxicological results revealed neither the fruits, nor the seeds of SB were toxic. The present review summarizes the unique profile of the chemical compounds, the nutritional and health effects as well as the toxicological properties of SB, which lay the foundation for practical applications of SB in treatment of human diseases. Sea buckthorn (SB), also named sea berry, has been used in daily life for centuries with kinds of purposes ranging from a beverage with a pleasant taste and flavor, to an agent for treatment of many disorders and diseases.![]()
Collapse
|
19
|
Mohammadi Pour P, Fakhri S, Asgary S, Farzaei MH, Echeverría J. The Signaling Pathways, and Therapeutic Targets of Antiviral Agents: Focusing on the Antiviral Approaches and Clinical Perspectives of Anthocyanins in the Management of Viral Diseases. Front Pharmacol 2019; 10:1207. [PMID: 31787892 PMCID: PMC6856223 DOI: 10.3389/fphar.2019.01207] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
As the leading cause of death worldwide, viruses significantly affect global health. Despite the rapid progress in human healthcare, there are few viricidal and antiviral therapies that are efficient enough. The rapid emergence of resistance, and high costs, as well as the related side effects of synthetic antiviral drugs, raise the need to identify novel, effective, and safe alternatives against viral diseases. Nature has been of the most exceptional help and source of inspiration for developing novel multi-target antiviral compounds, affecting several steps of the viral life cycle and host proteins. For that matter and due to safety and efficacy limitations, as well as high resistance rate of conventional therapies, hundreds of natural molecules are preferred over the synthetic drugs. Besides, natural antiviral agents have shown acceptable antiviral value in both preclinical and clinical trials.This is the first review regarding molecular and cellular pathways of the virus life cycle, treatment strategies, and therapeutic targets of several viral diseases with a particular focus on anthocyanins as promising natural compounds for significant antiviral enhancements. Clinical applications and the need to develop nano-formulation of anthocyanins in drug delivery systems are also considered.
Collapse
Affiliation(s)
- Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
20
|
Zhuo X, Tian Y, Wei Y, Deng Y, Wu Y, Chen T. Flavone of Hippophae (H-flavone) lowers atherosclerotic risk factors via upregulation of the adipokine C1q/tumor necrosis factor-related protein 6 (CTRP6) in macrophages. Biosci Biotechnol Biochem 2019; 83:2000-2007. [PMID: 31250712 DOI: 10.1080/09168451.2019.1634997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT
In this study, we examined the mechanism of Flavone of Hippophae (H-flavone) in regulating macrophage foaming and atherosclerosis (AS) plaque formation. H-flavone treatment increased the secretion of C1q/tumor necrosis factor-related proteins 6 (CTRP6) in Ox-LDL-treated mouse peripheral blood macrophage cells (PBMC) and significantly reduced the percentage of cholesteryl ester (CE) in PBMC. Additionally, H-flavone suppressed Ox-LDL-induced cell foaming and the production of inflammatory cytokines through upregulating CTPR6 expression. Next, we further validated the inhibitory effect of H-flavone on plaque formation and inflammation in a mouse AS model. A substantial reduction in the secretion of inflammatory cytokines was observed in apoE-/- mice by H-flavone. Immunohistochemistry and Oil Red O staining results showed that H-flavone suppressed macrophage infiltration and the development of AS plaque. These effects were more pronounced in early administration. Our results suggest that H-flavone effectively inhibits macrophage foaming, inflammation and vascular plaque formation by upregulating CTRP6 and may be used to reduce AS risk.
Collapse
Affiliation(s)
- Xiaozhen Zhuo
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Molecular Cardiology, Shaanxi Province, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, China
| | - Yuling Tian
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Molecular Cardiology, Shaanxi Province, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, China
| | - Yadong Wei
- Department of Respiratory Medicine, Shaanxi Provincial Hospital of Traditional Chinese Medicine, China
| | - Yangyang Deng
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Molecular Cardiology, Shaanxi Province, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, China
| | - Yan Wu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Molecular Cardiology, Shaanxi Province, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, China
| | - Tao Chen
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Molecular Cardiology, Shaanxi Province, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, China
| |
Collapse
|
21
|
Meng C, Jin S, Wang L, Guo F, Zou Q. AOPs-SVM: A Sequence-Based Classifier of Antioxidant Proteins Using a Support Vector Machine. Front Bioeng Biotechnol 2019; 7:224. [PMID: 31620433 PMCID: PMC6759716 DOI: 10.3389/fbioe.2019.00224] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/03/2019] [Indexed: 01/03/2023] Open
Abstract
Antioxidant proteins play important roles in countering oxidative damage in organisms. Because it is time-consuming and has a high cost, the accurate identification of antioxidant proteins using biological experiments is a challenging task. For these reasons, we proposed a model using machine-learning algorithms that we named AOPs-SVM, which was developed based on sequence features and a support vector machine. Using a testing dataset, we conducted a jackknife cross-validation test with the proposed AOPs-SVM classifier and obtained 0.68 in sensitivity, 0.985 in specificity, 0.942 in average accuracy, 0.741 in MCC, and 0.832 in AUC. This outperformed existing classifiers. The experiment results demonstrate that the AOPs-SVM is an effective classifier and contributes to the research related to antioxidant proteins. A web server was built at http://server.malab.cn/AOPs-SVM/index.jsp to provide open access.
Collapse
Affiliation(s)
- Chaolu Meng
- College of Intelligence and Computing, Tianjin University, Tianjin, China.,College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Shunshan Jin
- Department of Neurology, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Lei Wang
- College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, China
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Quan Zou
- College of Intelligence and Computing, Tianjin University, Tianjin, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
22
|
Varghese R, Almalki MA, Ilavenil S, Rebecca J, Choi KC. Silver nanopaticles synthesized using the seed extract of Trigonella foenum-graecum L. and their antimicrobial mechanism and anticancer properties. Saudi J Biol Sci 2019; 26:148-154. [PMID: 30622419 PMCID: PMC6319018 DOI: 10.1016/j.sjbs.2017.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/15/2017] [Accepted: 07/03/2017] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND Synthesis of silver nanoparticles (AgNPs) through biological route plays an important role in their applications in the medical field, especially in the prevention of disease causing microbial pathogens and arresting the propagation of cancer cells. The stable, green synthesis of AgNPs is very much welcomed in the medical field because of their low toxicity. Therefore, the demands of AgNPs synthesised biologically is on the rise. The present study aimed to investigate the antimicrobial mechanisms and anticancer properties of the AgNPs synthesized using the seed extract of Trigonella foenum-graecum L. The AgNPs were characterized by UV-vis, SEM, XRD, FTIR and EDAX analysis. The minimum inhibitory concentrations (MIC) of the AgNPs were determined by the broth micro dilution method. RESULTS The formation of brownish red color indicated the formation NPs with the absorption maximum at 420 nm. The average size was found to be 33.93 nm and sphere shaped. The FTIR spectrum revealed the absorption bands at 3340 cm-1 and 1635 cm-1 indicated the presence of -OH or -COOH and amide group stretching in the AgNPs. The X-ray diffraction report confirmed the presence of strong peak values of 2θ within the angle of 37.1°. The lowest MIC of the AgNPs against Staphylococcus aureus was 62.5 μg mL-1. MIC values against Escherichia coli and Klebsiella pneumonia, were 125 and 250 μg mL-1 respectively. The MIC of the AgNPs against Aspergillus flavus, Trichophyton rubrum and Trichoderma viridiae were each 250 μg mL-1, respectively. The extracellular protein concentration, levels of lactate dehydrogenase and alkaline phosphtase enzyme in the AgNPs treated bacterial pathogens demonstrated greater antimicrobial mechanism. Additionally, the AgNPs exhibited significant anticancer activity against the MCF7 and Vero cell lines. CONCLUSION The synthesized AgNPs could be further evaluated in large scale as a botanical antimicrobial agent.
Collapse
Affiliation(s)
- Rakesh Varghese
- Department of Industrial Biotechnology, Bharath University, Selaiyur, Chennai 31000, India
| | - Mohammed A. Almalki
- Biological Sciences Department, College of Science, King Faisal University, Saudi Arabia
| | - Soundharrajan Ilavenil
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam, Republic of Korea
| | - Jeyanthi Rebecca
- Department of Industrial Biotechnology, Bharath University, Selaiyur, Chennai 31000, India
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam, Republic of Korea
| |
Collapse
|
23
|
Hao W, He Z, Zhu H, Liu J, Kwek E, Zhao Y, Ma KY, He WS, Chen ZY. Sea buckthorn seed oil reduces blood cholesterol and modulates gut microbiota. Food Funct 2019; 10:5669-5681. [DOI: 10.1039/c9fo01232j] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sea buckthorn seed oil favorably decreases plasma cholesterol.
Collapse
Affiliation(s)
- Wangjun Hao
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
| | - Zouyan He
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
| | - Hanyue Zhu
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
| | - Jianhui Liu
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
| | - Erika Kwek
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
| | - Yimin Zhao
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
| | - Ka Ying Ma
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
| | - Wen-Sen He
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
- School of Food and Biological Engineering
| | - Zhen-Yu Chen
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
| |
Collapse
|
24
|
Li C, Zhang J, Zhao C, Yang L, Zhao W, Jiang H, Ren X, Su W, Li Y, Guan J. Separation of the main flavonoids and essential oil from seabuckthorn leaves by ultrasonic/microwave-assisted simultaneous distillation extraction. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180133. [PMID: 30109070 PMCID: PMC6083726 DOI: 10.1098/rsos.180133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/13/2018] [Indexed: 05/10/2023]
Abstract
Volatile essential oils (EOs), non-volatile rutin (RU), quercetin (QU), kaempferol (KA) and isorhamnetin (IS) were effectively extracted and isolated from seabuckthorn (Hippophae rhamnoides L.) leaves by ionic liquid-based ultrasound/microwave-assisted simultaneous distillation extraction (ILUMASDE). After optimization by response surface methodology, EOs, RU, QU, KA and IS were separated under the following optimum conditions: an ionic liquid of 1.0 M 1-butyl-3-methyl imidazole bromine salt ([C4mim]), liquid/solid ratio of 12 ml g-1, extraction time of 34 min, microwave power of 540 W and a fixed ultrasonic power of 50 W. Under the optimized conditions of ILUMASDE, the extraction yields of RU, QU, KA, IS and EOs were 9.18 ± 0.35, 5.52 ± 0.23, 3.03 ± 0.11, 5.64 ± 0.24 mg g-1 and 0.095 ± 0.004%, respectively. The yield of EOs obtained using ILUMASDE was 1.07-fold higher than that obtained by conventional hydrodistillation extraction (HDE). In addition, the components of the EOs obtained using ILUMASDE and HDE were similar. The extraction yields of RU, QU, KA, IS obtained by ILUMASDE were 1.03-1.35-fold higher than that obtained by the ethanol ultrasonic-assisted extraction (EUAE), ionic liquid-based ultrasonic-assisted extraction (ILUAE) and ionic liquid-based microwave-assisted extraction (ILMAE). And the extraction time used by ILUMASDE was 34 min, which is 14.17%, 56.67%, 56.67% and 85.00% less than those used by HDE, EUAE, ILUAE and ILMAE, respectively. Therefore, ILUMASDE can be considered a rapid and efficient method for extracting flavonoids and EO from seabuckthorn (Hippophae rhamnoids L.) leaves.
Collapse
Affiliation(s)
- Chunying Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- State Engineering Laboratory of Bio-Resource Eco-Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Jingjing Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- State Engineering Laboratory of Bio-Resource Eco-Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Author for correspondence: Chunjian Zhao e-mail:
| | - Lei Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Wenyan Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Hongwei Jiang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Xueting Ren
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Weiran Su
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Yuzheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Jiajing Guan
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
| |
Collapse
|
25
|
Influence of polyphenol rich seabuckthorn berries juice on release of polyphenols and colonic microbiota on exposure to simulated human digestion model. Food Res Int 2018; 111:314-323. [PMID: 30007692 DOI: 10.1016/j.foodres.2018.05.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022]
Abstract
The present study investigated the effect of polyphenol rich Sea buckthorn berries juice (SBJ) on colonic microbial composition and diversity using in vitro simulated gut model. The release of polyphenols, their antioxidant activity and impact on microbial diversity was evaluated under long term fermentation for 21 days. The treatment of colonic reactors with basal feed supplemented with SBJ resulted in an increase in population and diversity of beneficial bacteria as revealed by viable cell count and PCR-DGGE. A higher release of phenolics was observed, which resulted in higher antioxidant activity in the colonic reactors throughout the treatment period (p < 0.05). Higher content of resveratrol, rutin and chlorogenic acid were observed in ascendens colon whereas quercetin, ferulic and caeffic acid level were higher in descendens colon due to biotransformation of polyphenols in the later part of colon. The Principal Component Analysis also indicated the stimulatory effect of SBJ on the beneficial microbial population of Lactobacilli, Bacteroides/Prevotella and Bifidobacteria in all the three reactors. It also confirmed higher release of polyphenolic compounds and associated antioxidant activities in descendens colon.
Collapse
|
26
|
Kalia S, Bharti VK, Giri A, Kumar B, Arora A, Balaje SS. Hippophae rhamnoides as novel phytogenic feed additive for broiler chickens at high altitude cold desert. Sci Rep 2018; 8:5954. [PMID: 29654246 PMCID: PMC5899143 DOI: 10.1038/s41598-018-24409-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Abstract
Extremes of climate and hypobaric hypoxia cause poor growth performance in broiler chickens at high altitude. The present study examined the potential of Hippophae rhamnoides extract as phytogenic feed additive for broilers reared at 3500 m above mean sea level (MSL). Higher content of phytomolecules were recorded during characterization of the extract. Immunomodulatory activity of extract was observed in chicken lymphocytes through in-vitro studies. Thereafter, for in vivo study, 105 day old Rhode Island Red (RIR) Cross-bred chicks were randomly distributed in to control and treatments T1, T2, T3, T4, T5, and T6 which were supplemented with H. rhamnoides aqueous extract along with basal diet, at level of 100, 150, 200, 300, 400, and 800 mg/kg body weight of chicken, respectively. Among the experimental groups, birds in the T3 group represent the highest body weight. Furthermore, treatment group birds had shown better physio-biochemical indices as compared to control group birds. Interestingly, lower mortality rate due to ascites and coccidiosis was recorded in treatment groups and therefore, higher net return was observed. Hence, present investigation demonstrated the beneficial effect of H. rhamnoides extract (@200 mg/kg) at high altitude and therefore, may be used in formulation of feed additive for poultry ration.
Collapse
Affiliation(s)
- Sahil Kalia
- Defence Institute of High Altitude Research (DIHAR), DRDO, C/o- 56 APO, Leh-Ladakh, (J and K), India
| | - Vijay K Bharti
- Defence Institute of High Altitude Research (DIHAR), DRDO, C/o- 56 APO, Leh-Ladakh, (J and K), India.
| | - Arup Giri
- Defence Institute of High Altitude Research (DIHAR), DRDO, C/o- 56 APO, Leh-Ladakh, (J and K), India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), New Delhi, India
| | - Achin Arora
- Defence Institute of High Altitude Research (DIHAR), DRDO, C/o- 56 APO, Leh-Ladakh, (J and K), India
| | - S S Balaje
- Defence Institute of High Altitude Research (DIHAR), DRDO, C/o- 56 APO, Leh-Ladakh, (J and K), India
| |
Collapse
|
27
|
Bjørklund G, Dadar M, Martins N, Chirumbolo S, Goh BH, Smetanina K, Lysiuk R. Brief Challenges on Medicinal Plants: An Eye-Opening Look at Ageing-Related Disorders. Basic Clin Pharmacol Toxicol 2018; 122:539-558. [DOI: 10.1111/bcpt.12972] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine; Mo i Rana Norway
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute; Agricultural Research, Education and Extension Organization (AREEO); Karaj Iran
| | - Natália Martins
- Mountain Research Centre (CIMO), ESA; Polytechnic Institute of Bragança, Campus de Santa Apolónia; Bragança Portugal
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences; University of Verona; Verona Italy
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX); School of Pharmacy; Monash University Malaysia; Bandar Sunway Malaysia
- Novel Bacteria and Drug Discovery Research Group (NBDD); School of Pharmacy; Monash University Malaysia; Bandar Sunway Malaysia
- Center of Health Outcomes Research and Therapeutic Safety; School of Pharmaceutical Sciences; University of Phayao; Phayao Thailand
- Asian Centre for Evidence Synthesis in Population; Implementation and Clinical Outcomes; Health and Well-Being Cluster; Global Asia in the 21st Century Platform; Monash University Malaysia; Bandar Sunway Malaysia
| | - Kateryna Smetanina
- Department of Management and Economy of Pharmacy; Postgraduate Faculty; Drug Technology and Pharmacoeconomics; Danylo Halytsky Lviv National Medical University; Lviv Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany; Danylo Halytsky Lviv National Medical University; Lviv Ukraine
| |
Collapse
|
28
|
Dobre T, Pârvulescu OC, Popescu M, Stoica-Guzun A, Cozea A. Processing of sea buckthorn fruits by electro-osmosis under pressure. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Zhang W, Zhang X, Zou K, Xie J, Zhao S, Liu J, Liu H, Wang J, Wang Y. Seabuckthorn berry polysaccharide protects against carbon tetrachloride-induced hepatotoxicity in mice via anti-oxidative and anti-inflammatory activities. Food Funct 2018; 8:3130-3138. [PMID: 28766672 DOI: 10.1039/c7fo00399d] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The berries of Seabuckthorn (Hippophae rhamnoides L.) are traditional medicinal foods that have been used by Tibetans and Mongolians for thousands of years. The polysaccharides are the main components of Seabuckthorn berries, possessing immune stimulating, anti-cancer and anti-fatigue activities. The present study focused on evaluating the protective effects and mechanisms of Seabuckthorn berry polysaccharide (SP) against carbon tetrachloride (CCl4)-induced hepatotoxicity. Mice were orally administrated with 50, 100 and 200 mg kg-1 of SP once daily for 14 consecutive days prior to CCl4 challenge. Pretreatment with SP significantly decreased alanine transaminase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) levels, while increasing the levels of prealbumin (PALB) in the CCl4-challenged mice, which were accompanied by diminished liver injuries, increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, increased GSH levels, and reduced malondialdehyde (MDA) content. The pretreatment with SP also markedly reduced the CCl4-induced expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), inducible nitric oxide synthase (iNOS) and nitric oxide (NO). Furthermore, the pretreatment with SP decreased hepatic Toll-like receptor 4 (TLR4) expression and inhibited the phosphorylation of p38 MAPK, extracellular signal-regulated kinase (p-ERK), c-Jun N-terminal kinase (p-JNK) and nuclear factor-kappa B (NF-κB) in the CCl4-challenged mice. These results suggest that the pretreatment with SP protected against CCl4-induced liver damage via its anti-oxidative and anti-inflammatory activities. SP might be suitable for functional foods and natural drugs in preventing CCl4-induced hepatotoxicity.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nishad DK, Ali R, Jaimini A, Khanna K, Sharma BG, Mittal G, Kansujiya RK, Chaurasia OP, Bhatnagar A. Evaluation of Hipphophae rhamnoide herbal oil for its safety and efficacy in animal models for protection against ultraviolet radiation. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/10496475.2017.1410872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dhruv Kumar Nishad
- DRDO Institute of Nuclear Medicine and Allied Sciences, Nuclear Medicine, Delhi, India
| | - Rashid Ali
- Department of Toxicology, Jamia Hamdard, New Delhi, India
| | - Abhinav Jaimini
- DRDO Institute of Nuclear Medicine and Allied Sciences, Nuclear Medicine, Delhi, India
| | - Kushagra Khanna
- DRDO Institute of Nuclear Medicine and Allied Sciences, Nuclear Medicine, Delhi, India
| | - Braj Gaurav Sharma
- DRDO Institute of Nuclear Medicine and Allied Sciences, Nuclear Medicine, Delhi, India
| | - Gaurav Mittal
- DRDO Institute of Nuclear Medicine and Allied Sciences, Nuclear Medicine, Delhi, India
| | - Raj Kumar Kansujiya
- Department of Medicinal & Aromatic Plant, Defence Institute of High Altitude Research, Leh-Ladakh, India
| | - Om Prakash Chaurasia
- Department of Medicinal & Aromatic Plant, Defence Institute of High Altitude Research, Leh-Ladakh, India
| | - Aseem Bhatnagar
- DRDO Institute of Nuclear Medicine and Allied Sciences, Nuclear Medicine, Delhi, India
| |
Collapse
|
31
|
Yang X, Wang Q, Pang ZR, Pan MR, Zhang W. Flavonoid-enriched extract from Hippophae rhamnoides seed reduces high fat diet induced obesity, hypertriglyceridemia, and hepatic triglyceride accumulation in C57BL/6 mice. PHARMACEUTICAL BIOLOGY 2017; 55:1207-1214. [PMID: 28248545 PMCID: PMC6130443 DOI: 10.1080/13880209.2016.1278454] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 09/27/2016] [Accepted: 12/30/2016] [Indexed: 05/14/2023]
Abstract
CONTEXT Flavonoid-enriched extract from Hippophae rhamnoides L. (Elaeagnaceae) seed (FSH) has shown beneficial effects in anti-hypertension and lowering cholesterol level. However, evidence for its efficacy in treating obesity is limited. OBJECTIVE We sought to determine if FSH can reduce body weight and regulate lipid metabolism disorder in high fat diet (HFD)-induced obese mouse model, and to investigate potential molecular targets involved. MATERIALS AND METHODS C57BL/6 mice were fed with HFD for 8 weeks to induce obesity. The modeled mice were divided into four groups and treated with vehicle, rosiglitazone (2 mg/kg), low (100 mg/kg) and high (300 mg/kg) dose of FSH, respectively. Normal control was also used. The treatments were administered orally for 9 weeks. We measured the effect of FSH on regulating body weight, various liver and serum parameters, and molecular targets that are key to lipid metabolism. RESULTS FSH administration at 100 and 300 mg/kg significantly reduced body weight gain by 33.06 and 43.51%, respectively. Additionally, triglyceride concentration in serum and liver were decreased by 15.67 and 49.56%, individually, after FSH (300 mg/kg) treatment. Upon FSH (100 and 300 mg/kg) treatment, PPARα mRNA expression was upregulated in liver (1.24- and 1.42-fold) and in adipose tissue (1.66- and 1.72-fold). Furthermore, FSH downregulated PPARγ protein level both in liver and adipose tissue. Moreover, FSH inhibited macrophage infiltration into adipose tissues, and downregulated TNFα mRNA expression in adipose tissue (38.01-47.70%). CONCLUSION This effect was mediated via regulation of PPARγ and PPARα gene expression, and suppression of adipose tissue inflammation.
Collapse
Affiliation(s)
- Xin Yang
- School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Qian Wang
- Institute of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zeng-run Pang
- School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Meng-ran Pan
- School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Wen Zhang
- School of Life Sciences, East China Normal University, Shanghai, P.R. China
| |
Collapse
|
32
|
Yang S, Wang L, Wang Y, Ou X, Shi Z, Lu C, Wang W, Liu G. Purification and Identification of a Natural Antioxidant Protein from Fertilized Eggs. Korean J Food Sci Anim Resour 2017; 37:764-772. [PMID: 29147100 PMCID: PMC5686335 DOI: 10.5851/kosfa.2017.37.5.764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/06/2022] Open
Abstract
Fertilized hen eggs are rich in a variety of bioactive ingredients. In this study, we aimed to obtain an antioxidant protein from fertilized eggs and the radical scavenging abilities on 1, 1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical (•OH), superoxide anion (O2−•) were used to evaluate the antioxidant activity of the purified protein. During 20 d of incubation, the radical scavenging ability of protein extracted from fertilized eggs exhibited significantly differences and the protein on day 16 showed higher antioxidant capacity. Based on this, the antioxidant protein of the samples on day 16 were isolated for the follow-up study. With a molecular weight 43.22 kDa, the antioxidant protein was purified by Diethylaminoethyl cellulose −52 (DEAE-52) column and Sephadex G-100. The LC-MS analysis showed that the purified protein molecular weight was 43.22 kDa, named D2-S. The sequence of amino acids was highly similar to ovalbumin and the coverage reached to 84%. The purified protein showed a radical scavenging rate of 52.34±3.27% on DPPH and 63.49±0.25% on •OH, respectively. Furthermore, the C-terminal amino acid sequence was NAVLFFGRCVSP, which was consistent with the sequence of ovabumin. These results here indicated that purified protein may be a potential resource as a natural antioxidant.
Collapse
Affiliation(s)
- Shaohua Yang
- College of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Lulu Wang
- College of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Ying Wang
- College of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Xiaoqian Ou
- College of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Zhaoyuan Shi
- College of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Chongchong Lu
- College of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Wei Wang
- Agricultural Products Quality and Safety Supervision and Management Bureau, Xuancheng, Anhui 242000, P. R. China
| | - Guoqing Liu
- College of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China.,Wanjiang Institute of Poultry Technology, Hefei University of Technology, Xuancheng Campus, Xuancheng, Anhui 242000, P. R. China
| |
Collapse
|
33
|
|
34
|
Hou D, Wang D, Ma X, Chen W, Guo S, Guan H. Effects of total flavonoids of sea buckthorn ( Hippophae rhamnoides L.) on cytotoxicity of NK92-MI cells. Int J Immunopathol Pharmacol 2017; 30:353-361. [PMID: 28994628 PMCID: PMC5806804 DOI: 10.1177/0394632017736673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sea buckthorn (Hippophae rhamnoides L.) has multifarious medicinal properties including immunoregulatory effect. The total flavonoids of Hippophae rhamnoides L. (TFH) are the main active components isolated from berries of sea buckthorn. The aim of this study was to evaluate the effects of TFH on the cytotoxicity of NK92-MI cells and its possible mechanisms. NK92-MI cells were treated with TFH (2.5 or 5.0 mg/L) or phosphate-buffered saline (PBS) for 24 h, the cytotoxicity against K562 was detected by measuring the release of lactate dehydrogenase (LDH), expression levels of NCRs (NKp30, NKp44, NKp46) and NKG2D were detected by flow cytometry, and expression levels of perforin and granzyme B were detected by western blot. Cytokine Antibody Arrays with 80 cytokine proteins were used to profile the effect of TFH on cytokines. Western blot was adopted to detect the effects of TFH on STAT1, STAT4, and STAT5 signal pathway. Compared with the normal control group, TFH could significantly enhance NK92-MI cell cytotoxicity against K562 cells, upregulate expressions of NKp44, NKp46, perforin, and granzyme B. TFH could upregulate expressions of IL-1α, IL-2, IL-7, IL-15, CSF-2, CSF-3, MCP-1, MIG, IFN-γ, TNF-α, and TNF-β and downregulate expressions of IL-16, MIP-1β, CX3CL-1, and MIF. TFH could increase expressions of phospho-STAT1 and phospho-STAT5. The results suggest that TFH stimulated NK92-MI cells to activate and enhance cytotoxicity of NK92-MI cells.
Collapse
Affiliation(s)
- Diandong Hou
- 1 Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, P.R. China
| | - Decheng Wang
- 2 The Second Clinical Medical Institute, Liaoning University of Traditional Chinese Medicine, Shenyang, P.R. China
| | - Xiande Ma
- 3 Experiment and Technology Center, Liaoning University of Traditional Chinese Medicine, Shenyang, P.R. China
| | - Wenna Chen
- 3 Experiment and Technology Center, Liaoning University of Traditional Chinese Medicine, Shenyang, P.R. China
| | - Shengnan Guo
- 3 Experiment and Technology Center, Liaoning University of Traditional Chinese Medicine, Shenyang, P.R. China
| | - Hongquan Guan
- 4 Basic Medical Science College, Liaoning University of Traditional Chinese Medicine, Shenyang, P.R. China
| |
Collapse
|
35
|
Kalia S, Bharti VK, Giri A, Kumar B. Effect of Prunus armeniaca seed extract on health, survivability, antioxidant, blood biochemical and immune status of broiler chickens at high altitude cold desert. J Adv Res 2017; 8:677-686. [PMID: 28948048 PMCID: PMC5602479 DOI: 10.1016/j.jare.2017.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 11/18/2022] Open
Abstract
Extreme climatic conditions and hypobaric hypoxia at high altitude hinders the growth and productivity of chickens. The present study was carried out to examine the effect of aqueous extract of Prunus armeniaca seeds on health, survivability, antioxidants, plasma biochemical parameters, and immune status of broiler chickens at high altitude. Phytochemical analysis of extract revealed the presence of high phenolics, flavonoids, and carotenoids contents. Before the in vivo study, in vitro efficacy evaluation indicated a significant protective effect of the extract in chicken peripheral blood lymphocytes. For in vivo study, experimental groups include control (fed the basal diet), and treatment T1, T2, T3, T4, T5, and T6 which received an aqueous extract of P. armeniaca in drinking water at concentrations of 100, 150, 200, 300, 400, and 800 mg/kg body weight of chicken respectively, along with basal diet for 42 days. Body weight was significantly increased in all treatment groups as compared to control group and the highest body weight was recorded in T3 group. Higher profit was gained in treatment groups due to lesser mortality in chickens. Moreover, chicken in the treatment groups had significantly higher total antioxidant capacity, free radical scavenging activity, interleukin-2, total protein, albumin, globulin level and lower malondialdehyde, interleukin-6, glucose, cholesterol, triglyceride, ALT and AST level as compared to control group. Results suggest that, P. armeniaca extract at 200 mg/kg body weight of chicken, exhibited the beneficial effect on growth performance and survivability rate of broilers and therefore, could be useful as phytogenic feed additive for broiler chickens at high altitude cold desert.
Collapse
Affiliation(s)
- Sahil Kalia
- Defence Institute of High Altitude Research (DIHAR), DRDO, C/o- 56 APO, Leh-Ladakh (J and K), India
| | - Vijay K. Bharti
- Defence Institute of High Altitude Research (DIHAR), DRDO, C/o- 56 APO, Leh-Ladakh (J and K), India
- Corresponding author.
| | - Arup Giri
- Defence Institute of High Altitude Research (DIHAR), DRDO, C/o- 56 APO, Leh-Ladakh (J and K), India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), New Delhi, India
| |
Collapse
|
36
|
Kwon EY, Lee J, Kim YJ, Do A, Choi JY, Cho SJ, Jung UJ, Lee MK, Park YB, Choi MS. Seabuckthorn Leaves Extract and Flavonoid Glycosides Extract from Seabuckthorn Leaves Ameliorates Adiposity, Hepatic Steatosis, Insulin Resistance, and Inflammation in Diet-Induced Obesity. Nutrients 2017; 9:569. [PMID: 28574484 PMCID: PMC5490548 DOI: 10.3390/nu9060569] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
The aim of the current study was to elucidate the effect of seabuckthorn leaves (SL) extract and flavonoid glycosides extract from seabuckthorn leaves (SLG) on diet-induced obesity and related metabolic disturbances, and additionally, to identify whether flavonoid glycosides and other components in SL can exert a possible interaction for the prevention of metabolic diseases by comparing the effect of SL and SLG. C57BL/6J mice were fed a normal diet (ND, AIN-93G purified diet), high-fat diet (HFD, 60 kcal% fat), HFD + 1.8% (w/w) SL (SL), and HFD + 0.04% (w/w) SLG (SLG) for 12 weeks. In high fat-fed mice, SL and SLG decreased the adiposity by suppressing lipogenesis in adipose tissue, while increasing the energy expenditure. SL and SLG also improved hepatic steatosis by suppressing hepatic lipogenesis and lipid absorption, whilst also enhancing hepatic fatty acid oxidation, which may be linked to the improvement in dyslipidemia. Moreover, SL and SLG improved insulin sensitivity by suppressing the levels of plasma GIP that were modulated by secreted resistin and pro-inflammatory cytokine, and hepatic glucogenic enzyme activities. SL, especially its flavonoid glycosides (SLG), can protect against the deleterious effects of diet-induced obesity (DIO) and its metabolic complications such as adiposity, dyslipidemia, inflammation, hepatic steatosis, and insulin resistance.
Collapse
Affiliation(s)
- Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| | - Jeonghyeon Lee
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| | - Ye Jin Kim
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| | - Ara Do
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| | - Ji-Young Choi
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| | - Su-Jung Cho
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, Korea.
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon 540-950, Korea.
| | - Yong Bok Park
- School of Life Sciences and Biotechnology, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| |
Collapse
|
37
|
Mishra J, Hande P, Sharma P, Bhardwaj A, Rajput R, Misra K. Characterization of nucleobases in sea buckthorn leaves: An HPTLC approach. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1283517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jigni Mishra
- Department of Biochemical Sciences, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| | - Prashant Hande
- Anchrom Test Lab Pvt Ltd, Mulund East, Mumbai, Maharashtra
| | - Priyanka Sharma
- Department of Biochemical Sciences, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| | - Anuja Bhardwaj
- Department of Biochemical Sciences, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| | - Rakhee Rajput
- Department of Biochemical Sciences, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| | - Kshipra Misra
- Department of Biochemical Sciences, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi
| |
Collapse
|
38
|
Cui Q, Liu JZ, Huang YY, Wang W, Luo M, Wink M, Fu YJ, Zu YG. Enhanced extraction efficiency of bioactive compounds and antioxidant activity from Hippophae rhamnoides L. by-products using a fast and efficient extraction method. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1281954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Qi Cui
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
| | - Ju-Zhao Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
| | - Yu-Yan Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
| | - Wei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
| | - Meng Luo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
| | - Michael Wink
- Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, Heidelberg, Germany
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Collaborative Innovation Center for Development and Utilization of Forest Resources, Northeast Forestry University, Harbin, P. R. China
| | - Yuan-Gang Zu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
| |
Collapse
|
39
|
Indigenous Uses and Pharmacological Activity of Traditional Medicinal Plants in Mount Taibai, China. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8329817. [PMID: 28303162 PMCID: PMC5338068 DOI: 10.1155/2017/8329817] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/13/2017] [Accepted: 01/22/2017] [Indexed: 11/17/2022]
Abstract
This study was carried out to investigate the indigenous use and pharmacological activity of traditional medicinal plants of Mount Taibai, China. Pharmacological data were collected by conducting informal interviews with local experienced doctors practicing traditional Chinese medicine and via open-ended questionnaires on villagers. We conclude that the residents of Mt. Taibai possess rich pharmacological knowledge. This study may help identify high-value traditional medicinal plant species, promote economic development associated with local medicinal plants, and increase awareness from government departments.
Collapse
|
40
|
Kim SJ, Hwang E, Yi SS, Song KD, Lee HK, Heo TH, Park SK, Jung YJ, Jun HS. Sea Buckthorn Leaf Extract Inhibits Glioma Cell Growth by Reducing Reactive Oxygen Species and Promoting Apoptosis. Appl Biochem Biotechnol 2017; 182:1663-1674. [PMID: 28181191 DOI: 10.1007/s12010-017-2425-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
Hippophae rhamnoides L., also known as sea buckthorn (SBT), possesses a wide range of biological and pharmacological activities. However, the underlying mechanism is largely unknown. The present study examined whether SBT leaf extract could inhibit proliferation and promote apoptosis of rat glioma C6 cells. The results revealed that the treatment with SBT leaf extract inhibited proliferation of rat C6 glioma cells in a dose-dependent manner. SBT-induced reduction of C6 glioma cell proliferation and viability was accompanied by a decrease in production of reactive oxygen species (ROS), which are critical for the proliferation of tumor cells. SBT treatment not only significantly upregulated the expression of the pro-apoptotic protein Bcl-2-associated X (Bax) but also promoted its localization in the nucleus. Although increased expression and nuclear translocation of Bax were observed in SBT-treated C6 glioma cells, the induced nuclear morphological change was distinct from that of typical apoptotic cells in that most of SBT-treated cells were characterized by convoluted nuclei with cavitations and clumps of chromatin. All of these results suggest that SBT leaf extract could inhibit the rapid proliferation of rat C6 glioma cells, possibly by inducing the early events of apoptosis. Thus, SBT may serve as a potential therapeutic candidate for the treatment of glioma.
Collapse
Affiliation(s)
- Sung-Jo Kim
- Department of Biotechnology, Hoseo University, 165, Baebang, Asan, Chungnam, 31499, Republic of Korea
| | - Eunmi Hwang
- Department of Biotechnology, Hoseo University, 165, Baebang, Asan, Chungnam, 31499, Republic of Korea
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Biomedical Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Ki Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of Immunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Sang-Kyu Park
- Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Yun Joo Jung
- Corea Cosmedical Center, 3-103, 38, Wolgok-gil, Gangnae-myeon, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28171, Republic of Korea.
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
41
|
Jayashankar B, Singh D, Tanwar H, Mishra KP, Murthy S, Chanda S, Mishra J, Tulswani R, Misra K, Singh SB, Ganju L. Augmentation of humoral and cellular immunity in response to Tetanus and Diphtheria toxoids by supercritical carbon dioxide extracts of Hippophae rhamnoides L. leaves. Int Immunopharmacol 2017; 44:123-136. [PMID: 28092864 DOI: 10.1016/j.intimp.2017.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
Hippophae rhamnoides L. commonly known as Seabuckthorn (SBT), a wild shrub of family Elaegnacea, has extensively used for treating various ailments like skin diseases, jaundice, asthma, lung troubles. SBT leaves have been reported to possess several pharmacological properties including immunomodulatory, antioxidant, anti-inflammatory, antimicrobial and tissue regeneration etc. The present study was undertaken to evaluate the adjuvant property of supercritical carbon dioxide extracts (SCEs 300ET and 350ET) of SBT leaves in balb/c mice immunized with Tetanus and Diphtheria toxoids. The dynamic changes in the immune response were measured in terms of humoral and cell-mediated immune responses. We have seen the effect of SCEs on immunoglobulin subtypes and secondary immune response generation. In addition, the effect of SCEs on antigen specific cellular immunity was evaluated. Our results show that SCEs 300ET and 350ET significantly enhanced antibody titers in response to both TT and DT antigens. The secondary immune response generated was significantly increased in case of TT immunized animals. SCEs also enhanced cytokine levels (IFN-γ, IL-4, TNF-α and IL-1β) and increased lymphoproliferation. Besides, both SCEs did not show any toxic effects. Therefore, the study suggests that SCEs are safe and have potent immunostimulatory activity and hence, seems to be a promising balanced Th1 and Th2 directing immunological adjuvant for various veterinary as well as human vaccines.
Collapse
Affiliation(s)
- Bindhya Jayashankar
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi, India
| | - Divya Singh
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi, India
| | - Himanshi Tanwar
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi, India
| | - K P Mishra
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi, India
| | - Swetha Murthy
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi, India
| | - Sudipta Chanda
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi, India
| | - Jigni Mishra
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi, India
| | - R Tulswani
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi, India
| | - K Misra
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi, India
| | - S B Singh
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi, India
| | - Lilly Ganju
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi, India.
| |
Collapse
|
42
|
Hurkova K, Rubert J, Stranska-Zachariasova M, Hajslova J. Strategies to Document Adulteration of Food Supplement Based on Sea Buckthorn Oil: a Case Study. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0674-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Zargar R, Raghuwanshi P, Rastogi A, Koul AL, Khajuria P, Ganai AW, Kour S. Protective and ameliorative effect of sea buckthorn leaf extract supplementation on lead induced hemato-biochemical alterations in Wistar rats. Vet World 2016; 9:929-934. [PMID: 27733791 PMCID: PMC5057029 DOI: 10.14202/vetworld.2016.929-934] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/27/2016] [Indexed: 01/01/2023] Open
Abstract
Aim: To evaluate the protective and ameliorative effect of aqueous sea buckthorn leaf extract (SLE) on hemato-biochemical profile in lead intoxicated Wistar rats. Materials and Methods: An experiment was conducted for 60 days. 36 adult male Wistar rats with a mean body weight of 177.8±12.6 g were divided into five groups and were subjected to various daily oral treatment regimens. Group I served as a negative control receiving only feed and water, Group II (positive control for lead) received lead acetate at 250 ppm in drinking water, and Group III (positive control for SLE) received SLE at 100 mg/kg b.wt. Animals in Group IV received a combination of lead acetate at 250 ppm in drinking water for the first 45 days and SLE at 100 mg/kg b.wt. throughout the experimental period of 60-day, and in Group V for the last 15 days of the trial after the administration of lead acetate until the first 45 days of the trial to study the protective and ameliorating effects of SLE, respectively. Blood samples were collected from retro-orbital fossa of each rat on 0th, 45th, and 60th day of the experiment for hemato-biochemical analysis including hemoglobin (Hb), packed cell volume (PCV), serum total protein, albumin, globulin, albumin:globulin ratio, cholesterol, urea, and creatinine. Results: Significantly (p<0.01) lower levels of serum total proteins and albumin, and a significantly (p<0.01) higher serum cholesterol, urea and creatinine levels were observed in Group II (lead intoxicated group) in comparison to Group I (negative control). Administration of SLE at 100 mg/kg body wt. to lead intoxicated Wistar rats resulted in normalization of almost all the biochemical parameters studied in both the treatment Groups, i.e., IV and V (protective and ameliorative). However, the effects were more pronounced in the protective group. No effects of SLE supplementation were observed on Hb levels. PCV levels improved in protective groups, but no effect was observed in ameliorative group in comparison to lead intoxicated groups. Conclusion: SLE administration at 100 mg/kg b.wt. to lead intoxicated Wistar rats may be used to protect/ameliorate lead induced biochemical alterations in Wistar rats.
Collapse
Affiliation(s)
- Rizwana Zargar
- Division of Veterinary Physiology and Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, RS Pura - 181 102, Jammu and Kashmir, India
| | - Pratiksha Raghuwanshi
- Division of Veterinary Physiology and Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, RS Pura - 181 102, Jammu and Kashmir, India
| | - Ankur Rastogi
- Division of Animal Nutrition, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, RS Pura - 181 102, Jammu and Kashmir, India
| | - Aditi Lal Koul
- Division of Veterinary Physiology and Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, RS Pura - 181 102, Jammu and Kashmir, India
| | - Pallavi Khajuria
- Division of Veterinary Physiology and Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, RS Pura - 181 102, Jammu and Kashmir, India
| | - Aafreen Wahid Ganai
- Division of Veterinary Public Health and Epidemiology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, RS Pura - 181 102, Jammu and Kashmir, India
| | - Sumeet Kour
- Division of Veterinary Physiology and Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, RS Pura - 181 102, Jammu and Kashmir, India
| |
Collapse
|
44
|
Liu H, Zhang W, Dong S, Song L, Zhao S, Wu C, Wang X, Liu F, Xie J, Wang J, Wang Y. Protective effects of sea buckthorn polysaccharide extracts against LPS/d-GalN-induced acute liver failure in mice via suppressing TLR4-NF-κB signaling. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:69-78. [PMID: 26494508 DOI: 10.1016/j.jep.2015.10.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/18/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sea buckthorn (Hippophae rhamnoides L.) berries have been traditionally used to treat gastric disorders, cardiovascular problems, and liver injuries in oriental medicinal system. This study aimed to explore the protective effects and mechanisms of the polysaccharide extracts of Sea buckthorn (HRP) berries against lipopolysaccharide (LPS) and d-galactosamine hydrochloride (d-GalN)-induced acute liver failure in mice. MATERIALS AND METHODS HRP was isolated by hot-water extraction and characterized by HPLC and infrared spectrum analysis. The total carbohydrate, uronic acid and protein contents of HRP were measured by a spectrophotometric method. Mice were orally administrated with HRP (50, 100, 200mg/kg) once daily for 14 consecutive days prior to the challenge with LPS (50 μg/kg) and d-GalN (300 mg/kg). Animals of positive control group were intraperitoneally injected with dexamethasone (10mg/kg). Mice were sacrificed at 8h after LPS/d-GalN injection. RESULTS Pretreatment with HRP significantly inhibited LPS/d-GalN-induced increases in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, which were accompanied by alleviated liver injuries and reduced production of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). HRP was also found to reduce malondialdehyde (MDA) content and to restore superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities. Furthermore, HRP supplementation dose-dependently inhibited the expression of Toll-like receptor 4 (TLR4), phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated c-Jun N-terminal kinase (p-JNK), and phosphorylated mitogen activated protein kinase 38 (p-p38 MAPK) in the liver of LPS/d-GalN challenged mice. Pretreatment with HRP also inhibited LPS/d-GalN-induced activation and translocation of nuclear factor-κB (NF-κB). CONCLUSIONS This study indicates that pretreatment with HRP protects against LPS/d-GalN-induced liver injury in mice via suppressing the TLR4-NF-κB signaling pathway. Sea buckthorn may be a hopeful drug for prevention of acute live injury.
Collapse
Affiliation(s)
- Huan Liu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Wei Zhang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Shichao Dong
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Liang Song
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Shimin Zhao
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Chunyan Wu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Xue Wang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Fang Liu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Jiming Xie
- Clinical Laboratory, Hospital of Inner Mongolia, Hohhot 010010, PR China
| | - Jinling Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Yuzhen Wang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China.
| |
Collapse
|
45
|
Diandong H, Feng G, Zaifu L, Helland T, Weixin F, Liping C. Sea buckthorn (Hippophae rhamnoides L.) oil protects against chronic stress-induced inhibitory function of natural killer cells in rats. Int J Immunopathol Pharmacol 2015; 29:76-83. [PMID: 26684638 DOI: 10.1177/0394632015619939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/03/2015] [Indexed: 01/14/2023] Open
Abstract
Chronic stress can suppress natural killer (NK) cell activity; this may also be related to the effect of stress on the neuroendocrine-immune network. Sea buckthorn (SBT) (Hippophae rhamnoides L.) is a thorny nitrogen fixing deciduous shrub, native to both Europe and Asia. It has been used as a medicinal plant in Tibetan and Mongolian traditional medicines. SBT has multifarious medical properties, including anti-fatigue as well as immunoregulatory effects. This study reports the effects of SBT oil with regard to the cytotoxicity and quantity of NK cells in the blood of a chronic-stress rat model, in addition to its mechanisms on the neuroendocrine-immune network. These results show that SBT oil, given by gavage to rats with chronic stress, could increase the following: body weight, NK cell quantities, and cytotoxicity, as well as the expression of perforin and granzyme B. The results also show that SBT oil in rats with chronic stress could suppress cortisol, ACTH, IL-1β and TNF-α levels, in addition to increasing 5-HT and IFN-γ serum levels. This leads to suggest that SBT oil, in rats with chronic stress, can increase NK cell cytotoxicity by upregulating the expression of perforin and granzyme B, thus causing associated effects of SBT oil on the neuroendocrine-immune network.
Collapse
Affiliation(s)
- Hou Diandong
- Basic Medical Science College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, PR China
| | - Gu Feng
- Basic Medical Science College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| | - Liang Zaifu
- Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, PR China
| | - Timothy Helland
- The First Clinical Medical Institute, Liaoning University of Traditional Chinese Medicine, Shenyang, PR China
| | - Fu Weixin
- Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, PR China
| | - Cai Liping
- Basic Medical Science College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, PR China
| |
Collapse
|
46
|
Affiliation(s)
- F. M. Andrews
- Equine Health Studies Program; Department of Veterinary Clinical Sciences; School of Veterinary Medicine; Louisiana State University; Baton Rouge USA
| | - C. Larson
- Zinpro Corporation; Eden Prairie Minnesota USA
| | - P. Harris
- WALTHAM Centre for Pet Nutrition; Waltham-on-the-Wolds; Leicestershire UK
| |
Collapse
|
47
|
Shivapriya S, Ilango K, Dubey G. Evaluation of antioxidant and neuroprotective effect of Hippophae rhamnoides (L.) on oxidative stress induced cytotoxicity in human neural cell line IMR32. Saudi J Biol Sci 2015; 22:645-50. [PMID: 26288571 PMCID: PMC4537860 DOI: 10.1016/j.sjbs.2015.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/10/2015] [Accepted: 04/12/2015] [Indexed: 01/03/2023] Open
Abstract
AIM AND OBJECTIVE Hippophae rhamnoides is an edible, nutrient rich plant found in the northern regions of India. It belongs to the family Elaeagnaceae and is well known for its traditional pharmacological activities. The present study was aimed to investigate the antioxidant and neuroprotective activities of H. rhamnoides. METHODOLOGY The hydroalcoholic extract of H. rhamnoides was evaluated for free radical scavenging activity using DPPH, hydroxyl radical scavenging and ferric thiocyanate assays. In vitro neuroprotective activity was assessed on human neuroblastoma cell line-IMR32 against hydrogen peroxide (H2O2) induced cytotoxicity. The neuroprotective effect was determined by measuring the cell viability through tetrazolium dye MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reducing assay and propidium iodide (PI) staining. Also the intracellular reactive oxygen species (ROS) activity was assessed using dichloro-dihydro-fluorescein diacetate (DCFDA) assay by flowcytometer. RESULTS The results of the study demonstrated that H. rhamnoides extract possesses potential free radical scavenging activity. The IC50 value for DPPH and OH radical scavenging assay was 70.92 μg/ml and 0.463 mg/ml, also the extract was also found to have considerable level of lipid peroxidation activity. The neuroprotective effect of H. rhamnoides was confirmed by its cell viability enhancing capacity against hydrogen peroxide induced cell cytotoxicity. The extract acted on IMR32 cells in a dose dependent manner as observed through PI and MTT assays. The percentage intracellular ROS activity was reduced by 60-70% in treated cells compared to H2O2 control. CONCLUSION Thus the outcome of the study suggests that H. rhamnoides acts as a neuroprotectant against oxidative stress induced neurodegeneration.
Collapse
Affiliation(s)
- S. Shivapriya
- Interdisciplinary School of Indian System of Medicine, SRM University, Kattankulathur, Chennai 603203, India
| | - K. Ilango
- Interdisciplinary School of Indian System of Medicine, SRM University, Kattankulathur, Chennai 603203, India
| | - G.P. Dubey
- Interdisciplinary School of Indian System of Medicine, SRM University, Kattankulathur, Chennai 603203, India
- Department of Kriya Sharir, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P 221005, India
| |
Collapse
|
48
|
Sadhu A, Upadhyay P, Agrawal A, Ilango K, Karmakar D, Singh GPI, Dubey GP. Management of cognitive determinants in senile dementia of Alzheimer's type: therapeutic potential of a novel polyherbal drug product. Clin Drug Investig 2015; 34:857-69. [PMID: 25316430 DOI: 10.1007/s40261-014-0235-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND OBJECTIVE The enigmatic etiology of neurodegenerative diseases poses a challenge for the development of novel and efficient drugs. The objective of the present study was to evaluate the efficacy of a polyherbal (test) formulation on cognitive functions, inflammatory markers and oxidative stress in healthy elderly as well as senile dementia of Alzheimer's type (SDAT) patients. METHOD A randomized double-blind placebo- and active-controlled clinical trial was performed in healthy elderly subjects and SDAT patients with an age range of 60-75 years. The polyherbal test formulation along with a placebo was given to healthy elderly subjects while the SDAT patients received either the test formulation containing extracts of Bacopa monnieri (whole plant), Hippophae rhamnoides (leaves and fruits) and Dioscorea bulbifera (bulbils) at a dose of 500 mg or donepezil drug (Aricept) at a dose of 10 mg, twice daily, for a period of 12 months. After every three months, cognitive functions were assessed by determining the mini mental state examination (MMSE) score, digital symbol substitution (DSS; subtest of the Wechsler Adult Intelligence Scale-Revised), immediate and delayed word recall (digital memory apparatus-Medicaid systems, Chandigarh, India), attention span (Attention Span Apparatus-Medicaid systems, Chandigarh, India), functional activity questionnaire (FAQ) and depression (geriatric depression scale) scores. Further inflammatory markers and level of oxidative stress were analyzed using standard biochemical tests. RESULTS The trial was performed in 109 healthy subjects and 123 SDAT patients of whom 97 healthy subjects and 104 SDAT patients completed the study. Administration of the test formulation for a period of 12 months was effective in improving cognitive functions in the SDAT patients, when compared to the donepezil-treated group, as determined by the DSS (38.984 ± 3.016 vs 35.852 ± 4.906, P = 0.0001), word recall immediate (3.594 ± 1.003 vs 2.794 ± 0.593, P < 0.0001) and attention span (4.918 ± 1.239 vs 4.396 ± 0.913, P = 0.0208) scores. A significant improvement in the FAQ (11.873 ± 2.751 vs 9.801 ± 1.458, P < 0.0001) and depression (16.387 ± 2.116 vs 21.006 ± 2.778, P < 0.0001) scores was also observed, whereas no significant differences were observed in the MMSE and word recall delayed scores. The level of inflammation and oxidative stress was markedly reduced in the SDAT patients treated with the test formulation when compared to the donepezil-treated group indicating a likely mechanism of action of the test formulation (homocysteine 30.22 ± 3.87 vs 44.73 ± 7.11 nmol/L, P < 0.0001; C-reactive protein [CRP] 4.751 ± 1.149 vs 5.887 ± 1.049 mg/L, P < 0.0001; tumour necrosis factor alpha [TNF-α] 1139.45 ± 198.87 vs 1598.77 ± 298.52 pg/ml, P < 0.0001; superoxide dismutase [SOD] 1145.92 ± 228.75 vs 1296 ± 225.72 U/g Hb, P = 0.0013; glutathione peroxidase [GPx] 20.78 ± 3.14 vs 25.99 ± 4.11 U/g Hb, P < 0.0001; glutathione [GSH] 9.358 ± 2.139 vs 6.831 ± 1.139 U/g Hb, P < 0.0001; thiobarbituric acid reactive substances [TBARS] 131.62 ± 29.68 vs 176.40 ± 68.11 nmol/g Hb, P < 0.0001). Similarly, when healthy elderly subjects treated with the test formulation for 12 months were compared to the placebo group, a significant (P < 0.001) improvement in cognitive measures (MMSE, DSS, word recall delayed but not immediate, attention span, FAQ and depression scores) and a reduction in inflammation (reduction in homocysteine, CRP, IL-6 and TNF-α levels) and oxidative stress levels (reduction in SOD, GPx and TBARS and increase in GSH) was observed. This indicated a protective effect of the test formulation in managing cognitive decline associated with the ageing process. CONCLUSION The results of this study demonstrate the therapeutic potential of this novel polyherbal formulation for the management and treatment of SDAT.
Collapse
Affiliation(s)
- Ananya Sadhu
- Collabrative programme, Institute of Medical Science, Banaras Hindu University, Varanasi, India,
| | | | | | | | | | | | | |
Collapse
|
49
|
Wang H, Cui Y, Fu Q, Deng B, Li G, Yang J, Wu T, Xie Y. A phospholipid complex to improve the oral bioavailability of flavonoids. Drug Dev Ind Pharm 2014; 41:1693-703. [DOI: 10.3109/03639045.2014.991402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Hu N, Suo Y, Zhang Q, You J, Ji Z, Wang A, Han L, Lv H, Ye Y. Rapid, Selective, and Sensitive Analysis of Triterpenic Acids in Hippophae rhamnoides L. Using HPLC with Pre-Column Fluorescent Derivatization and Identification with Post-Column APCI-MS. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2014.913523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Na Hu
- a Key Laboratory of Tibetan Medicine Research , Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining , China
- b Academy of Agriculture and Forestry , Qinghai University , Xining , China
- c University of the Chinese Academy of Sciences , Beijing , China
| | - Yourui Suo
- a Key Laboratory of Tibetan Medicine Research , Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining , China
- b Academy of Agriculture and Forestry , Qinghai University , Xining , China
| | - Qiulong Zhang
- a Key Laboratory of Tibetan Medicine Research , Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining , China
- c University of the Chinese Academy of Sciences , Beijing , China
| | - Jinmao You
- a Key Laboratory of Tibetan Medicine Research , Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining , China
| | - Zhongyin Ji
- a Key Laboratory of Tibetan Medicine Research , Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining , China
- c University of the Chinese Academy of Sciences , Beijing , China
| | - Aihong Wang
- a Key Laboratory of Tibetan Medicine Research , Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining , China
- c University of the Chinese Academy of Sciences , Beijing , China
| | - Lijuan Han
- a Key Laboratory of Tibetan Medicine Research , Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining , China
- c University of the Chinese Academy of Sciences , Beijing , China
| | - Huanhuan Lv
- a Key Laboratory of Tibetan Medicine Research , Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining , China
- c University of the Chinese Academy of Sciences , Beijing , China
| | - Ying Ye
- a Key Laboratory of Tibetan Medicine Research , Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining , China
- c University of the Chinese Academy of Sciences , Beijing , China
| |
Collapse
|