1
|
Thakur MS, Deshmukh KN, Dey A, Ranjan D, Goyal A, Jachak SM. An alkaloid enriched fraction from Murraya koenigii (L.) Spreng. Leaves ameliorate HFD-induced obesity and metabolic complexities in C57BL/6J mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118423. [PMID: 38878841 DOI: 10.1016/j.jep.2024.118423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Murraya koenigii commonly known as curry leaf, is traditionally used in India to manage various ailments including diabetes mellitus. Curry leaves are well documented in Indian Ayurvedic system of medicine for beneficial effects in skin eruptions, dysentery, emesis, poisonous bites and bruises. The anti-hyperglycemic and anti-hyperlipidemic effects of curry leaf extracts have been demonstrated through several in vitro and in vivo experiments previously. AIM OF THE STUDY To prepare an alkaloid enriched fraction (AEF) from M. koenigii and its evaluation on i) in vitro adipogenesis process and ii) in vivo high fat diet-induced obesity in C57BL/6J mice. MATERIALS AND METHODS MKME and AEF were prepared from M. koenigii leaves. The four carbazole alkaloids (bioactive markers) isolated from AEF were quantitatively determined in the leaves by RP-HPLC method. MKME and AEF were studied for anti-obesogenic activity in adipocytes in vitro and in HFD-induced C57BL/6J obese mice in vivo. At the termination of the in vivo study, lipid profile, hepatic and renal injury and glucose levels were analyzed in the blood samples. Animal tissues were examined histopathologically to determine any signs of damage. Repeated dose oral toxicity study for 28 days on Sprague-Dawley rats was also performed to determine the safety profile of AEF. RESULTS Both MKME and AEF displayed anti-obesogenic activity at 25 μg/ml concentration in vitro and showed 54.06 ± 3.86% and 37.46 ± 3.17% lipid accumulation, respectively compared to control. Further, supplementation of AEF and MKME in HFD-fed C57BL/6J mice helped in controlling weight gain, improved dyslipidemia and glucose intolerance significantly. AEF showed better anti-obesity activity than MKME both in vitro and in vivo study. Repeated administration of AEF up to 1 g/kg dose for 28 days showed no pathological tissue damage. Both MKME and AEF were standardized using a simple and validated RP-HPLC method. CONCLUSION Present study was aimed at preparation of a novel alkaloid-enriched fraction from methanolic extract of M. koenigii leaf and its evaluation for anti-diabesity effect. Our results demonstrated AEF to be a promising plant-based therapy for ameliorating obesity and related metabolic complications in HFD-fed C57BL/6J mice.
Collapse
Affiliation(s)
- Mridula Singh Thakur
- National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Mohali, 160062, India.
| | - Kirti Nandkumar Deshmukh
- National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Mohali, 160062, India.
| | - Akash Dey
- National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Mohali, 160062, India.
| | - Dhiraj Ranjan
- National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Mohali, 160062, India.
| | - Alok Goyal
- National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Mohali, 160062, India.
| | - Sanjay Madhukar Jachak
- National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Mohali, 160062, India.
| |
Collapse
|
2
|
Raweh SM, El-Shaibany A, Al-Mahbashi H, Abdelkhalek AS, Elkomy NMIM, Elnagar GM, Elsayed MG, Elaasser MM, Raslan AE. Chemical Characterization, Evaluation of Acute Oral Toxicity, and Anti-Diabetic Activity of Aloe sabaea Flowers Extract on Alloxan-Induced Diabetic Rats. Chem Biodivers 2024; 21:e202400707. [PMID: 39283738 DOI: 10.1002/cbdv.202400707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/15/2024] [Indexed: 10/16/2024]
Abstract
The study aimed to conduct chemical profiling, acute in-vivo toxicity evaluation, and the potential anti-diabetic effect of standardized Aloe sabaea flowers ethanolic extracts (ASFEE) on alloxan-induced diabetic rats. The chemical composition was analyzed using GC-MS and TLC techniques. The oral acute toxicity study was performed according to the WHO 2000 and the OECD 420 guidelines. Furthermore, anti-diabetic activity was investigated using two doses of ASFEE (0.2 and 0.5 g/kg/day BW, p.o.) compared with glibenclamide (5 mg/kg/day, p.o.). A molecular docking investigation of the identified components with the PTPN9 enzyme was performed to figure out the proposed anti-diabetic mechanism. GC-MS analysis displayed the existence of 18 compounds; most of the compounds were fatty acids and their esters, and phytosterols. Total phenolic and flavonoid contents were 42.00±1.26 mg GAE/g DW and 22.21±1.55 mg QE/g DW, respectively. The results of the in-vivo toxicity study revealed the absence of noticeable signs of toxicity or mortality at various doses establishing the safety of the tested extract. The estimated LD50 value was higher than 10 g/kg. Antidiabetic action exhibited a noticeable decline in fasting blood glucose (FBG) levels comparable to glibenclamide with no inducing intense hypoglycemia and considerable excess weight.
Collapse
Affiliation(s)
- Salwa M Raweh
- Pharmacognosy Department, University of Sana'a, Pharmacy College, Sanaa, Yemen
| | - Amina El-Shaibany
- Pharmacognosy Department, University of Sana'a, Pharmacy College, Sanaa, Yemen
| | - Hassan Al-Mahbashi
- Department of Forensic Medicine and Clinical Toxicology, College of Medicine, Sana'a University, Sanaa, Yemen
| | - Ahmed S Abdelkhalek
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Nesreen M I M Elkomy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Gehad M Elnagar
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Biochemistry Department, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, 44813, Egypt
| | | | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, 11787, Nasr City, Cairo, Egypt
| | - Ali E Raslan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
3
|
Rahman M, Khatun A, Liu L, Barkla BJ. Brassicaceae Mustards: Phytochemical Constituents, Pharmacological Effects, and Mechanisms of Action against Human Disease. Int J Mol Sci 2024; 25:9039. [PMID: 39201724 PMCID: PMC11354652 DOI: 10.3390/ijms25169039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The Brassicaceae genus consists of many economically important mustards of value for food and medicinal purposes, namely Asian mustard (Brassica juncea), ball mustard (Neslia paniculata), black mustard (B. nigra), garlic mustard (Alliaria petiolata), hedge mustard (Sisymbrium officinale), Asian hedge mustard (S. orientale), oilseed rape (B. napus), rapeseed (B. rapa), treacle mustard (Erysimum repandum), smooth mustard (S. erysimoides), white ball mustard (Calepina irregularis), white mustard (Sinapis alba), and Canola. Some of these are commercially cultivated as oilseeds to meet the global demand for a healthy plant-derived oil, high in polyunsaturated fats, i.e., B. napus and B. juncea. Other species are foraged from the wild where they grow on roadsides and as a weed of arable land, i.e., E. repandum and S. erysimoides, and harvested for medicinal uses. These plants contain a diverse range of bioactive natural products including sulfur-containing glucosinolates and other potentially valuable compounds, namely omega-3-fatty acids, terpenoids, phenylpropanoids, flavonoids, tannins, S-methyl cysteine sulfoxide, and trace-elements. Various parts of these plants and many of the molecules that are produced throughout the plant have been used in traditional medicines and more recently in the mainstream pharmaceutical and food industries. This study relates the uses of mustards in traditional medicines with their bioactive molecules and possible mechanisms of action and provides an overview of the current knowledge of Brassicaceae oilseeds and mustards, their phytochemicals, and their biological activities.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Southern Cross Analytical Services, Southern Cross University, Lismore, NSW 2480, Australia; (M.R.); (A.K.)
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Amina Khatun
- Southern Cross Analytical Services, Southern Cross University, Lismore, NSW 2480, Australia; (M.R.); (A.K.)
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Bronwyn J. Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| |
Collapse
|
4
|
Huang CH, Chen JY, Chiang MT. Effects of Mung Bean Water Supplementation on Modulating Lipid and Glucose Metabolism in a Diabetic Rat Model. Nutrients 2024; 16:2684. [PMID: 39203819 PMCID: PMC11357625 DOI: 10.3390/nu16162684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is often associated with chronic inflammation exacerbated by hyperglycemia and dyslipidemia. Mung beans have a longstanding reputation in traditional medicine for their purported ability to lower blood glucose levels, prompting interest in their pharmacological properties. This study aimed to explore the impact of mung bean water (MBW) on carbohydrate and lipid metabolism in a T2DM rat model induced by nicotinamide/streptozotocin. Normal and DM rats were supplemented with a stock solution of MBW as drinking water ad libitum daily for 8 weeks. MBW supplementation led to significant reductions in plasma total cholesterol, HDL-C, and VLDL-C + LDL-C levels, and decreased malondialdehyde levels in plasma and liver samples, indicating reduced oxidative stress. MBW supplementation lowered plasma glucose levels and upregulated hepatic hexokinase activity, suggesting enhanced glucose utilization. Additionally, MBW decreased hepatic glucose-6-phosphate dehydrogenase and glutathione peroxidase activities, while hepatic levels of glutathione and glutathione disulfide remained unchanged. These findings underscore the potential of MBW to improve plasma glucose and lipid metabolism in DM rats, likely mediated by antioxidant effects and the modulation of hepatic enzyme activities. Further exploration of bioactive components of MBW and its mechanisms could unveil new therapeutic avenues for managing diabetes and its metabolic complications.
Collapse
Affiliation(s)
| | | | - Meng-Tsan Chiang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (J.-Y.C.)
| |
Collapse
|
5
|
Das B, Bhardwaj PK, Chaudhary SK, Pathaw N, Singh HK, Tampha S, Singh KK, Sharma N, Mukherjee PK. Bioeconomy and ethnopharmacology - Translational perspective and sustainability of the bioresources of northeast region of India. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118203. [PMID: 38641075 DOI: 10.1016/j.jep.2024.118203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The ecological environment of Northeast region of India (NER), with its high humidity, has resulted in greater speciation and genetic diversity of plant, animal, and microbial species. This region is not only rich in ethnic and cultural diversity, but it is also a major biodiversity hotspot. The sustainable use of these bioresources can contribute to the region's bioeconomic development. AIM OF THE STUDY The review aimed to deliver various perspectives on the development of bioeconomy from NER bioresources under the tenets of sustainable utilization and socioeconomic expansion. MATERIALS AND METHODS Relevant information related to prospects of the approaches and techniques pertaining to the sustainable use of ethnomedicine resources for the growth of the bioeconomy were retrieved from PubMed, ScienceDirect, Google Scholar, Scopus, and Springer from 1984 to 2023. All the appropriate abstracts, full-text articles and various book chapters on bioeconomy and ethnopharmacology were conferred. RESULT As the population grows, so does the demand for basic necessities such as food, health, and energy resources, where insufficient resource utilization and unsustainable pattern of material consumption cause impediments to economic development. On the other hand, the bioeconomy concept leads to "the production of renewable biological resources and the conversion of these resources and waste streams into value-added products. CONCLUSIONS In this context, major emphasis should be placed on strengthening the economy's backbone in order to ensure sustainable use of these resources and livelihood security; in other words, it can boost the bio-economy by empowering the local people in general.
Collapse
Affiliation(s)
- Bhaskar Das
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Pardeep Kumar Bhardwaj
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Sushil K Chaudhary
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Neeta Pathaw
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Huidrom Khelemba Singh
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Soibam Tampha
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Khaidem Kennedy Singh
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Pulok Kumar Mukherjee
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India; Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Meghalaya Center, Shillong, Meghalaya 793009, India.
| |
Collapse
|
6
|
Widodo A, Sulastri E, Ihwan I, Cahyadi MH, Maulana S, Zubair MS. Antidiabetic Activity, Phytochemical Analysis, and Acute Oral Toxicity Test of Combined Ethanolic Extract of Syzygium polyanthum and Muntingia calabura Leaves. ScientificWorldJournal 2024; 2024:3607396. [PMID: 39050386 PMCID: PMC11268965 DOI: 10.1155/2024/3607396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Syzygium polyanthum is known for its capacity to regulate blood glucose levels in individuals with diabetes, while Muntingia calabura leaves have a traditional history as an alternative therapy due to their antidiabetic compounds. The combination of these two plants is expected to yield more optimized antidiabetic agents. This study aims to assess the antidiabetic activity of the combined ethanolic extract of S. polyanthum and M. calabura leaves by measuring the in vitro inhibition of the α-glucosidase enzyme and the blood glucose level in streptozotocin-induced rats and to determine the phytochemical contents of total phenolics, total flavonoids, and quercetine as marker compounds. Acute oral toxicity test was also evaluated. Both plants were extracted by maceration using 96% ethanol. Various combinations of S. polyanthum and M. calabura leaves extracts (1 : 1, 2 : 1, 3 : 1, 1 : 3, and 1 : 2) were prepared. The in vitro test, along with the total phenolic and total flavonoid content, were measured by using UV-Vis spectrophotometry, while quercetine levels were quantified through high-performance liquid chromatography (HPLC). The in vivo and acute toxicity tests were performed on rats as an animal model. The findings demonstrated that the 1 : 1 combination of S. polyanthum and M. calabura leaves ethanolic extract displayed the highest enzyme inhibitory activity with IC50 value of 36.43 µg/mL. Moreover, the combination index (CI) was found <1 that indicates the synergism effect. This combination also decreases the blood glucose level in rats after 28 days of treatments without significant difference with positive control glibenclamide (p > 0.005), and it had medium lethal doses (LD50) higher than 2000 mg/kg BW. Phytochemical analysis showed that the levels of total phenolics, total flavonoids, and quercetine were 30.81% w/w, 1.37% w/w, and 3.25 mg/g, respectively. These findings suggest the potential of combined ethanolic extracts of S. polyanthum and M. calabura leaves (1 : 1) as raw materials for herbal antidiabetic medication.
Collapse
|
7
|
Chen S, Wu S, Lin B. The potential therapeutic value of the natural plant compounds matrine and oxymatrine in cardiovascular diseases. Front Cardiovasc Med 2024; 11:1417672. [PMID: 39041001 PMCID: PMC11260750 DOI: 10.3389/fcvm.2024.1417672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Matrine (MT) and Oxymatrine (OMT) are two natural alkaloids derived from plants. These bioactive compounds are notable for their diverse pharmacological effects and have been extensively studied and recognized in the treatment of cardiovascular diseases in recent years. The cardioprotective effects of MT and OMT involve multiple aspects, primarily including antioxidative stress, anti-inflammatory actions, anti-atherosclerosis, restoration of vascular function, and inhibition of cardiac remodeling and failure. Clinical pharmacology research has identified numerous novel molecular mechanisms of OMT and MT, such as JAK/STAT, Nrf2/HO-1, PI3 K/AKT, TGF-β1/Smad, and Notch pathways, providing new evidence supporting their promising therapeutic potential against cardiovascular diseases. Thus, this review aims to investigate the potential applications of MT and OMT in treating cardiovascular diseases, encompassing their mechanisms, efficacy, and safety, confirming their promise as lead compounds in anti-cardiovascular disease drug development.
Collapse
Affiliation(s)
| | | | - Bin Lin
- Department of Cardiovascular Medicine, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
8
|
Abiola JO, Oluyemi AA, Idowu OT, Oyinloye OM, Ubah CS, Owolabi OV, Somade OT, Onikanni SA, Ajiboye BO, Osunsanmi FO, Nash O, Omotuyi OI, Oyinloye BE. Potential Role of Phytochemicals as Glucagon-like Peptide 1 Receptor (GLP-1R) Agonists in the Treatment of Diabetes Mellitus. Pharmaceuticals (Basel) 2024; 17:736. [PMID: 38931402 PMCID: PMC11206448 DOI: 10.3390/ph17060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, there is no known cure for diabetes. Different pharmaceutical therapies have been approved for the management of type 2 diabetes mellitus (T2DM), some are in clinical trials and they have been classified according to their route or mechanism of action. Insulin types, sulfonylureas, biguanides, alpha-glucosidase inhibitors, thiazolidinediones, meglitinides, sodium-glucose cotransporter type 2 inhibitors, and incretin-dependent therapies (glucagon-like peptide-1 receptor agonists: GLP-1R, and dipeptidyl peptidase 4 inhibitors: DPP-4). Although some of the currently available drugs are effective in the management of T2DM, the side effects resulting from prolonged use of these drugs remain a serious challenge. GLP-1R agonists are currently the preferred medications to include when oral metformin alone is insufficient to manage T2DM. Medicinal plants now play prominent roles in the management of various diseases globally because they are readily available and affordable as well as having limited and transient side effects. Recently, studies have reported the ability of phytochemicals to activate glucagon-like peptide-1 receptor (GLP-1R), acting as an agonist just like the GLP-1R agonist with beneficial effects in the management of T2DM. Consequently, we propose that careful exploration of phytochemicals for the development of novel therapeutic candidates as GLP-1R agonists will be a welcome breakthrough in the management of T2DM and the co-morbidities associated with T2DM.
Collapse
Affiliation(s)
- Julianah Ore Abiola
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja 09004, Nigeria
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Ayoola Abidemi Oluyemi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Olajumoke Tolulope Idowu
- Industrial Chemistry Unit, Department of Chemical Sciences, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Oluwatoyin Mary Oyinloye
- Department of Mathematics, Science and Technology Education, Faculty of Education, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Chukwudi Sunday Ubah
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA 19121, USA
| | - Olutunmise Victoria Owolabi
- Medical Biochemistry Unit, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Oluwatobi T. Somade
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta 111101, Nigeria
| | - Sunday Amos Onikanni
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti 371104, Nigeria
| | - Foluso Oluwagbemiga Osunsanmi
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Oyekanmi Nash
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja 09004, Nigeria
| | - Olaposi Idowu Omotuyi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
| |
Collapse
|
9
|
Thondre PS, Butler I, Tammam J, Achebe I, Young E, Lane M, Gallagher A. Understanding the Impact of Different Doses of Reducose ® Mulberry Leaf Extract on Blood Glucose and Insulin Responses after Eating a Complex Meal: Results from a Double-Blind, Randomised, Crossover Trial. Nutrients 2024; 16:1670. [PMID: 38892603 PMCID: PMC11174565 DOI: 10.3390/nu16111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Non-communicable diseases (NCDs) are becoming an increasingly important health concern due to a rapidly ageing global population. The fastest growing NCD, type 2 diabetes mellitus (T2DM), is responsible for over 2 million deaths annually. Lifestyle changes, including dietary changes to low glycemic response (GR) foods, have been shown to reduce the risk of developing T2DM. The aim of this study was to investigate whether three different doses of Reducose®, a mulberry leaf extract, could lower the GR and insulinemic responses (IR) to a full meal challenge in healthy individuals. A double-blind, randomised, placebo-controlled, repeat-measure, crossover design trial was conducted by the Oxford Brookes Centre for Nutrition and Health; 37 healthy individuals completed the study. Participants consumed capsules containing either 200 mg, 225 mg, 250 mg Reducose® or placebo before a test meal consisting of 150 g white bread and egg mayo filler. Capillary blood samples were collected at 15-min intervals in the first hour and at 30-min intervals over the second and third hours to determine glucose and plasma insulin levels. The consumption of all three doses of Reducose® resulted in significantly lower blood glucose and plasma insulin levels compared to placebo. All three doses of Reducose® (200 mg, 225 mg, 250 mg) significantly lowered glucose iAUC 120 by 30% (p = 0.003), 33% (p = 0.001) and 32% (p = 0.002), respectively, compared with placebo. All three doses of Reducose® (200 mg, 225 mg, 250 mg) significantly lowered the plasma insulin iAUC 120 by 31% (p = 0.024), 34% (p = 0.004) and 38% (p < 0.001), respectively. The study demonstrates that the recommended dose (250 mg) and two lower doses (200 mg, 225 mg) of Reducose® can be used to help lower the GR and IR of a full meal containing carbohydrates, fats and proteins.
Collapse
Affiliation(s)
| | - Isabel Butler
- Oxford Brookes Centre for Nutrition and Health, Oxford OX3 0BP, UK; (P.S.T.); (I.B.); (J.T.); (I.A.); (E.Y.)
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Jonathan Tammam
- Oxford Brookes Centre for Nutrition and Health, Oxford OX3 0BP, UK; (P.S.T.); (I.B.); (J.T.); (I.A.); (E.Y.)
| | - Ifunanya Achebe
- Oxford Brookes Centre for Nutrition and Health, Oxford OX3 0BP, UK; (P.S.T.); (I.B.); (J.T.); (I.A.); (E.Y.)
| | - Elysia Young
- Oxford Brookes Centre for Nutrition and Health, Oxford OX3 0BP, UK; (P.S.T.); (I.B.); (J.T.); (I.A.); (E.Y.)
| | | | | |
Collapse
|
10
|
Gostiljac DM, Popovic SS, Dimitrijevic-Sreckovic V, Ilic SM, Jevtovic JA, Nikolic DM, Soldatovic IA. Effect of special types of bread with select herbal components on postprandial glucose levels in diabetic patients. World J Diabetes 2024; 15:664-674. [PMID: 38680690 PMCID: PMC11045426 DOI: 10.4239/wjd.v15.i4.664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Nutrition recommendations in patients with type 2 diabetes mellitus (T2DM) are to consume rye or integral bread instead of white bread. A positive effect on glucoregulation has been achieved by enriching food with various biologically active substances of herbal origin, so we formulated an herbal mixture that can be used as a supplement for a special type of bread (STB) to achieve better effects on postprandial glucose and insulin levels in patients with T2DM. AIM To compare organoleptic characteristics and effects of two types of bread on postprandial glucose and insulin levels in T2DM patients. METHODS This trial included 97 patients with T2DM. A parallel group of 16 healthy subjects was also investigated. All participants were given 50 g of rye bread and the same amount of a STB with an herbal mixture on 2 consecutive days. Postprandial blood glucose and insulin levels were compared at the 30th, 60th, 90th and 120th min. A questionnaire was used for subjective estimation of the organoleptic and satiety features of the two types of bread. RESULTS Compared to patients who consumed rye bread, significantly lower postprandial blood glucose and insulin concentrations were found in T2DM patients who consumed STB. No relevant differences were found among the healthy subjects. Subjectively estimated organoleptic and satiety characteristics are better for STB than for rye bread. CONCLUSION STB have better effects than rye bread on postprandial glucoregulation in T2DM patients. Subjectively estimated organoleptic and satiety characteristics are better for STB than for rye bread. Therefore, STB can be recommended for nutrition in T2DM patients.
Collapse
Affiliation(s)
- Drasko M Gostiljac
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade 11000, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Srdjan S Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade 11000, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vesna Dimitrijevic-Sreckovic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade 11000, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Sasa M Ilic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade 11000, Serbia
| | - Jelena A Jevtovic
- Clinic for Gastroenterology and Hepatology, University Clinical Centre of Serbia, Belgrade 11000, Serbia
| | - Dragan M Nikolic
- Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases-Laboratory for Human Pancreatic Islets Culture, University Clinical Centre of Serbia, Belgrade 11000, Serbia
| | | |
Collapse
|
11
|
Shalapy NM, Liu M, Kang W. Protective effects of hepatic diseases by bioactive phytochemicals in Fusarium oxysporum - A review. Heliyon 2024; 10:e26562. [PMID: 38455549 PMCID: PMC10918022 DOI: 10.1016/j.heliyon.2024.e26562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Abstract
Lately, liver diseases were categorized as one of the most prevalent health problems globally as it causes a severe threat to mankind all over the world due to the wide range of occurrence. There are multiple factors causing hepatic disorders, such as alcohol, virus, poisons, adverse effects of drugs, poor diet, inherited conditions and obesity. Liver diseases have various types including alcoholic liver disease, non-alcoholic fatty liver disease, autoimmune hepatitis, liver cancer, hepatocellular carcinoma, liver fibrosis and hepatic inflammation. Therefore, it is imperative to find effective and efficacious agents in managing liver diseases. Fusarium oxysporum, an endophytic fungus and containing many bioactive compounds, could be served as a forked medication for enormous number and types of maladies. It was characterized by producing biochemical compounds which had rare pharmacological properties as it may be found in a limit number of other medicinal plants. The majority of the past researches related to Fusarium oxysporum recited the fungal negative field either on the pathogenic effects of the fungus on economical crops or on the fungal chemical components to know how to resist it. The present review will highlight on the bright side of Fusarium oxysporum and introduce the functional activities of its chemical compounds for treating its target diseases. The key point of illustrated studies in this article is displaying wide range of detected bioactive compounds isolated from Fusarium oxysporum and in other illustrated studies it was elucidated the therapeutical and pharmacological potency of these biologically active compounds (isolated from medicinal plants sources) against different types of liver diseases including non-alcoholic fatty liver disease, alcoholic liver disease, cirrhosis and others. It was demonstrated that F. oxysporum contains unique types of isoflavones, flavonoids, phenols and another active chemical compounds, and these compounds showed recently a fabulous clinical contribution in the therapy of liver injury diseases, which opens new and unprecedented way for evaluating the maintaining efficacy of Fusarium oxysporum bioactive compounds in dealing with hepatic complications and its remedy impacting on liver diseases and injured hepatocytes through recommending implement a practical study.
Collapse
Affiliation(s)
- Nashwa M. Shalapy
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Center, Cairo, Egypt
| | - Ming Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, 475004, China
| |
Collapse
|
12
|
Alahmer S, El-Noss M, Farid A. Preparation of chitosan nanoparticles loaded with Balanites aegyptiaca extract for treatment of streptozotocin-induced diabetes in rats. Int J Biol Macromol 2024; 262:130061. [PMID: 38336324 DOI: 10.1016/j.ijbiomac.2024.130061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Diabetes mellitus is characterized by elevated blood sugar level due to a deficiency in insulin production and/or action. Balanites aegyptiaca (BA) has been employed as a hypoglycemic medication. Nanoparticles (NPs) have many advantages like minimized drug dose, sustainable drug release, maximized bioavailability and delivery of drugs. The study aimed to synthesize novel chitosan (CS) NPs loaded with BA extract (BA Ex). The prepared NPs were examined in treatment of streptozotocin-induced diabetes in rats. The anti-diabetic efficiency was evaluated through measuring of levels of blood glucose, insulin, lipid profile, oxidative stress markers, pro-inflammatory cytokines. GC-MS, HPLC and ICP techniques showed the presence of numerous bioactive components that have an anti-diabetic effectiveness. BA Ex-CS NPs succeeded in treatment of diabetes; where, it increased insulin secretion, lowered both FBG and FTA levels and helped in neogenesis of pancreatic islets beta cells. The regenerative activity of BA Ex-CS NPs is attributed to its high antioxidant and anti-inflammatory properties. This antioxidant activity scavenged the generated free radicles that resulted from STZ administration. CS NPs raised the plant extract efficacy, prevented its degradation, and regulated the release of its components. The delivery of BA Ex bioactive components has been revolutionized by CS NPs.
Collapse
Affiliation(s)
- Shimaa Alahmer
- Zoology Dep., Faculty of Science, Cairo University, Giza, Egypt
| | - Mostafa El-Noss
- Egyptian Desalithenation Research Center (EDRC), Desert Research Center (DRC), El-Mataryia, Cairo, Egypt
| | - Alyaa Farid
- Zoology Dep., Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
13
|
Mahdizadehdehosta R, Shahbazmohammadi H, Moein S, Soltani N, Malekzadeh K, Moein M. Effects of Salvia mirzayanii extract administration on hyperglycemia improvement in diabetic rats: The role of GLUT4, PEPCK and G6Pase genes. Heliyon 2024; 10:e25256. [PMID: 38333789 PMCID: PMC10850551 DOI: 10.1016/j.heliyon.2024.e25256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Diabetes is a dangerous metabolic disorder by increasing incidence in human societies worldwide. Recently, much attention has been focused on the development of hypoglycemic agents, particularly the derivatives of herbal drugs, in the treatment of diabetes. This research aimed to study the anti-diabetic effect of Salvia mirzayanii in the diabetic rat models. First, the plant material was extracted from the leaves, and orally administered to the rats. After treating the animals with the aqueous extract of S. mirzayanii at a dose of 600 mg/kg, animal body weight for 12 weeks, fasting blood glucose, oral glucose tolerance test (OGTT), and body weight changes were examined. To analyze the anti-diabetic function of S. mirzayanii, we measured the expression of glucose transporter-4 (GLUT4), phosphoenolpyruvate carboxykinase (PEPCK), and glucose 6-phosphatase (G6Pase) genes in healthy and streptozotocin (STZ)-diabetic rats. The expression levels of the genes of interest in muscle and liver tissues were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). There were no significant differences in fasting blood glucose and OGTT between normal control (NC) group and the diabetic control (DC) group treated with S. mirzayanii. In contrast, there was a significant difference with the untreated DC (P < 0.05). The treatment of diabetic rats with S. mirzayanii significantly increased the expression of GLUT4 in the muscle and decreased the expression levels of PEPCK and G6Pase in the liver compared to the DC group (P < 0.05). These findings clearly show that S. mirzayanii can improve hyperglycemia by increasing the GLUT4 expression, and inhibiting the gluconeogenesis pathway in the liver. In general, the obtained results provided a new insight into the efficacy of S. mirzayanii aqueous extract as an anti-diabetic herbal medicine.
Collapse
Affiliation(s)
- Rahman Mahdizadehdehosta
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Hamid Shahbazmohammadi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Soheila Moein
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Neptun Soltani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kinoosh Malekzadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Science, Bandar Abbas, Hormozgan, Iran
| | - Mahmoodreza Moein
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
14
|
Singla RK, Singh D, Verma R, Kaushik D, Echeverría J, Garg V, Gupta P, Rahman MA, Sharma A, Mittal V, Shen B. Fermented formulation of Silybum marianum seeds: Optimization, heavy metal analysis, and hepatoprotective assessment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155286. [PMID: 38241906 DOI: 10.1016/j.phymed.2023.155286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Fermented formulations are extensively used in Ayurveda due to several benefits like improved palatability, bioavailability, pharmacological potential, and shelf life. These formulations can also quench the heavy metals from the plant material and thus reduce the toxicity. Seeds of Silybum marianum (L.) Gaertn. are widely used for the management of many liver diseases. STUDY DESIGN AND METHODS In the present study, we developed a novel fermented formulation of S. marianum seeds and evaluated parameters like safety (heavy metal analysis) and effectiveness (hepatoprotective). As the developed formulation's validation is crucial, the critical process variables (time, pH, and sugar concentration) are optimized for alcohol and silybin content using the Box-Behnken design (BBD). RESULTS The response surface methodology coupled with BBD predicted the optimized conditions (fermentation time (28 days), pH 5.6, and sugar concentration (22.04%)) for the development of a fermented formulation of the selected herb. Moreover, the alcohol content (6.5 ± 0.9%) and silybin concentration (26.1 ± 2.1%) were confirmed in optimized formulation by GC-MS and HPTLC analysis. The optimized formulation was also analyzed for heavy metals (Pb, As, Hg, and Cd); their concentration is significantly less than the decoction of herbs. Further, the comparative evaluation of the developed formulation with the marketed formulation also confirmed that the fermented formulation's silybin concentration and percentage release were significantly enhanced. In addition, the developed fermented formulation's percentage recovery of HepG2 cell lines after treatment with CCl4 was significantly improved compared with the marketed formulation. CONCLUSION It can be summarized that the developed fermented formulation improves safety and effectiveness compared to other market formulations. Finally, it can be concluded that the developed fermented formulation could be further explored as a better alternative for developing Silybum marianum preparation.
Collapse
Affiliation(s)
- Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610212, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Digvijay Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Javier Echeverría
- Departamento de Ciencias Del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Pankaj Gupta
- School of Medical and Allied Sciences, K.R. Manglam University, Gurugram
| | | | - Ajay Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India.
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610212, China.
| |
Collapse
|
15
|
Jha D, Prajapati SK, Deb PK, Jaiswal M, Mazumder PM. Madhuca longifolia-hydro-ethanolic-fraction reverses mitochondrial dysfunction and modulates selective GLUT expression in diabetic mice fed with high fat diet. Mol Biol Rep 2024; 51:209. [PMID: 38270737 DOI: 10.1007/s11033-023-08962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/30/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Metabolic disorder is characterized as chronic low-grade inflammation which elevates the systemic inflammatory markers. The proposed hypothesis behind this includes occurrence of hypoxia due to intake of high fat diet leading to oxidative stress and mitochondrial dysfunction. AIM In the present work our aim was to elucidate the possible mechanism of action of hydroethanolic fraction of M. longifolia leaves against the metabolic disorder. METHOD AND RESULTS In the present investigation, effect of Madhuca longifolia hydroethanolic fraction (MLHEF) on HFD induced obesity and diabetes through mitochondrial action and selective GLUT expression has been studied. In present work, it was observed that HFD (50% of diet) on chronic administration aggravates the metabolic problems by causing reduced imbalanced oxidative stress, ATP production, and altered selective GLUT protein expression. Long term HFD administration reduced (p < 0.001) the SOD, CAT level significantly along with elevated liver function marker AST and ALT. MLHEF administration diminishes this oxidative stress. HFD administration also causes decreased ATP/ADP ratio owing to suppressed mitochondrial function and elevating LDH level. This oxidative imbalance further leads to dysregulated GLUT expression in hepatocytes, skeletal muscles and white adipose tissue. HFD leads to significant (p < 0.001) upregulation in GLUT 1 and 3 expression while significant (p < 0.001) downregulation in GLUT 2 and 4 expressions in WAT, liver and skeletal muscles. Administration of MLHEF significantly (p < 0.001) reduced the LDH level and also reduces the mitochondrial dysfunction. CONCLUSION Imbalances in GLUT levels were significantly reversed in order to maintain GLUT expression in tissues on the administration of MLHEF.
Collapse
Affiliation(s)
- Dhruv Jha
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| | - Santosh Kumar Prajapati
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, 33613, USA
| | - Prashanta Kumar Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Mohit Jaiswal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| |
Collapse
|
16
|
Saifi A, Sharma A, Chaudhary A, Siddiqui N, Ashwlayan VD, Singh B. Unveiling the Latest Breakthroughs: A Comprehensive Review of the Therapeutic Activity and Safety Profile of Aloe vera. Curr Drug Saf 2024; 19:407-416. [PMID: 38204271 DOI: 10.2174/0115748863274759231221093309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 01/12/2024]
Abstract
The use of herbal drugs as alternative and complementary medicine has increased in popularity, raising concerns about their safety profile. Aloe vera, a plant with diverse therapeutic properties, has been extensively used for centuries. This review aims to assess the therapeutic activity and safety profile of Aloe vera. A comprehensive literature search was conducted to gather relevant information from various biomedical databases. The chemical composition, mechanism of action, and therapeutic activities of Aloe vera were analyzed. Aloe vera contains numerous active components such as vitamins, enzymes, minerals, sugars, lignin, saponins, and anthraquinones. Its mechanisms of action involve collagen synthesis, anti-inflammatory effects, immune modulation, laxative properties, and antiviral activity. Aloe vera has demonstrated potential therapeutic benefits in wound healing, diabetes management, liver and kidney protection, and glycemic control. However, it is essential to consider potential side effects, such as skin irritation and allergic reactions. This review provides evidence-based information to improve patient safety and promote informed decisions regarding the use of Aloe vera as a therapeutic agent.
Collapse
Affiliation(s)
- Alimuddin Saifi
- Department of Pharmaseutical, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Alok Sharma
- Department of Pharmaseutical, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Anurag Chaudhary
- Department of Pharmaseutical, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Nazia Siddiqui
- Department of Pharmaseutical, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Vrish Dhwaj Ashwlayan
- Department of Pharmaseutical, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Bhuwanendra Singh
- Department of Pharmacognosy, SD College of Pharmacy & Vocational Studies, Muzaffarnagar UP, India
| |
Collapse
|
17
|
Hussain S, Gul Jan F, Jan G, Irfan M, Musa M, Rahman S, Ali N, Hamayun M, Alrefai AF, Almutairi MH, Azmat R, Ali S. Evaluation of the Hypoglycemic and Hypolipidemic Potential of Extract Fraction of Quercus baloot Griff Seeds in Alloxan-induced Diabetic Mice. Curr Pharm Des 2024; 30:2978-2991. [PMID: 39219120 DOI: 10.2174/0113816128319184240827070016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION The discovery and development of new phytomedicines can be greatly aided by plants because of their tremendous therapeutic benefits, efficiency, cost-effectiveness, lack of side effects, and cheaper therapies. In this regard, Quercus baloot, generally known as oak, is used in folkloric medicine for treating and preventing various human disorders, including diabetes. AIM For this purpose, the present study aimed to evaluate crude methanolic extract and various fractions of Quercus baloot for antihyperlipidemic and antihyperglycemic potential followed by the analysis of active compounds. METHODS The hypoglycemic and hypolipidemic activity was evaluated in Swiss male Albino mice by administering an oral dose of 150-300 mg/kg of Q. baloot extracts in alloxan induced diabetic mice for 14 days. RESULTS The results revealed that crude methanolic extract at a dose of 300 mg/kg exhibited a significant reduction in the blood glucose level (198.50 ± 1.99 mg/dl) at day 14 and the same treatment significantly increased the body weight (31.26 ± 0.27 g) at day 14 in comparison to the control group. Moreover, the biochemical parameters were investigated which presented an increase in high-density lipids (HDL) (30.33 ± 0.33 mg/dl), whereas low-density lipids (LDL) showed a significant decrease (105.66 ± 0.26 mg/dl). Additionally, triglyceride levels 104.83 ± 0.70 mg/dl, and total cholesterol 185.50 ± 0.76 mg/dl are significantly decreased. In serum biochemical analysis creatinine and hepatic enzyme markers, like serum glutamate pyruvate transaminase (32.00 ± 0.36 U/mg), serum glutamate oxaloacetate transaminase (34.33 ± 0.61 U/mg), and alkaline phosphatase (157.00 ± 0.73 U/mg), were significantly reduced by the crude methanolic extract at a dose of 300 mg/kg as compared to the control group. The antioxidant enzymes like Superoxide dismutase (4.57 ± 0.011), peroxidases dismutase (6.53 ± 0.014, and catalase (8.38 ± 0.014) at a dosage of 300 mg/kg of methanolic extract exhibited a significant increase. The histopathological study of the diabetic heart, liver, and pancreas showed substantial restoration of damaged tissues in the methanolic extract 150 and 300 mg/kg treated group, which supports the effectiveness of Q. baloot seeds. The gas chromatography-mass spectrometry analysis of methanolic extract identified 10 antidiabetic active compounds in the Q. baloot seeds, validating the antihyperglycemic activity. Thus, methanolic crude extract at the doses 150 and 300 mg/kg of Q. baloot showed significant antihyperlipidemic and antihyperglycemic activities, which validate the folkloric utilization of Q. baloot as a remedy in diabetes. CONCLUSION In conclusion, the 300 mg/kg methanolic extract of Q. baloot has notable hypoglycemic and hypolipidemic potential, supporting the plant's traditional medicinal usage in the treatment of diabetes and its complications. Further studies are needed for the purification, characterization, and structural clarification of bioactive compounds.
Collapse
Affiliation(s)
| | - Farzana Gul Jan
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Gul Jan
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Irfan
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
- Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, Missouri 63110, USA
| | - Muhammad Musa
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Shahid Rahman
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Niaz Ali
- Department of Botany, University of Hazara, Mansehra, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rafia Azmat
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
18
|
Haddou S, Elrherabi A, Loukili EH, Abdnim R, Hbika A, Bouhrim M, Al Kamaly O, Saleh A, Shahat AA, Bnouham M, Hammouti B, Chahine A. Chemical Analysis of the Antihyperglycemic, and Pancreatic α-Amylase, Lipase, and Intestinal α-Glucosidase Inhibitory Activities of Cannabis sativa L. Seed Extracts. Molecules 2023; 29:93. [PMID: 38202676 PMCID: PMC10779963 DOI: 10.3390/molecules29010093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Cannabis is considered (Cannabis sativa L.) a sacred herb in many countries and is vastly employed in traditional medicine to remedy numerous diseases, such as diabetes. This research investigates the chemical composition of the aqueous extracts from Cannabis sativa L. seeds. Furthermore, the impact of these extracts on pancreatic α-amylase and lipase, and intestinal α-glucosidase enzymes is evaluated, as well as their antihyperglycemic effect. Analysis of the chemical composition of the aqueous extract was conducted using high-performance liquid chromatography with a photodiode array detector (HPLC-DAD). In contrast, the ethanol, hexanic, dichloromethane, and aqueous extract compositions have been established. Additionally, the inhibitory effects of ethanolic, dichloromethane, and aqueous extracts on pancreatic α-amylase and lipase, and intestinal α-glucosidase activities were evaluated in vitro and in vivo. The results of HPLC analysis indicate that the most abundant phenolic compound in the aqueous cannabis seed extract is 3-hydroxycinnamic acid, followed by 4-hydroxybenzoic acid and rutin acid. Moreover, administration of ethanolic and aqueous extracts at a dose of 150 mg/Kg significantly suppressed postprandial hyperglycemia compared to the control group; the ethanolic, dichloromethane, and aqueous extracts significantly inhibit pancreatic α-amylase and lipase, and intestinal α-glucosidase in vitro. The pancreatic α-amylase test exhibited an inhibition with IC50 values of 16.36 ± 1.24 µg/mL, 19.33 ± 1.40 µg/mL, 23.53 ± 1.70 µg/mL, and 17.06 ± 9.91 µg/mL for EAq, EDm, EET, and EHx, respectively. EET has the highest inhibitory capacity for intestinal α-glucosidase activity, with an IC50 of 32.23 ± 3.26 µg/mL. The extracts inhibit porcine pancreatic lipase activity, demonstrating their potential as lipase inhibitors. Specifically, at a concentration of 1 mg/mL, the highest inhibition rate (77%) was observed for EDm. To confirm these results, the inhibitory effect of these extracts on enzymes was tested in vivo. The oral intake of aqueous extract markedly reduced starch- and sucrose-induced hyperglycemia in healthy rats. Administration of the ethanolic extract at a specific dose of 150 mg/kg significantly reduced postprandial glycemia compared with the control group. It is, therefore, undeniable that cannabis extracts represent a promising option as a potentially effective treatment for type 2 diabetes.
Collapse
Affiliation(s)
- Salima Haddou
- Laboratory of Advanced Materials and Process Engineering, Faculty of Science, University Ibn Tofail, University Street, B.P. 242, Kenitra 14000, Morocco; (S.H.); (A.C.)
| | - Amal Elrherabi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed 1st, Bd. Med VI B.P. 717, Oujda 60000, Morocco; (A.E.); (R.A.); (M.B.)
| | - El Hassania Loukili
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, University Mohammed 1st, Bd. Med VI B.P. 717, Oujda 60000, Morocco; (E.H.L.)
- Euro-Mediterranean University of Fes (UEMF), B.P. 15, Fes 30070, Morocco;
| | - Rhizlan Abdnim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed 1st, Bd. Med VI B.P. 717, Oujda 60000, Morocco; (A.E.); (R.A.); (M.B.)
| | - Asmae Hbika
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, University Mohammed 1st, Bd. Med VI B.P. 717, Oujda 60000, Morocco; (E.H.L.)
| | - Mohamed Bouhrim
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, 59000 Lille, France
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology, Faculty of Sciences and Technology, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.K.); (A.S.)
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.K.); (A.S.)
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy King Saud University, Riyadh 11362, Saudi Arabia
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed 1st, Bd. Med VI B.P. 717, Oujda 60000, Morocco; (A.E.); (R.A.); (M.B.)
| | - Belkheir Hammouti
- Euro-Mediterranean University of Fes (UEMF), B.P. 15, Fes 30070, Morocco;
| | - Abdelkrim Chahine
- Laboratory of Advanced Materials and Process Engineering, Faculty of Science, University Ibn Tofail, University Street, B.P. 242, Kenitra 14000, Morocco; (S.H.); (A.C.)
| |
Collapse
|
19
|
Pourmousavi L, Hashemkandi Asadi R, Zehsaz F, Jadidi RP. Effect of crocin and treadmill exercise on oxidative stress and heart damage in diabetic rats. PLoS One 2023; 18:e0281692. [PMID: 38113243 PMCID: PMC10729987 DOI: 10.1371/journal.pone.0281692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/28/2023] [Indexed: 12/21/2023] Open
Abstract
Diabetes increases the production of free radicals and inflammatory agents in the heart tissue and alters the expression of genes associated with the induction of apoptosis. Considering the importance of common cardiovascular disorders in diabetes, this study investigated the effect of eight weeks of aerobic exercise and crocin use, as well as tissue damage and oxidative stress caused by diabetes in the hearts of adult rats. Streptozotocin 50 mg/kg was injected as a single dose intraperitoneally to cause the diabetes. After 72 hours, a glucometer monitored blood glucose levels, and blood glucose above 250 mg/dl was considered diabetes. Continuous treadmill exercise was performed for eight weeks by placing the animal on the treadmill. Next, the animals were anesthetized, and samples were taken from the hearts and frozen in liquid nitrogen. Then, superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA) were measured in the cardiac tissue. Finally, the hearts of half of the animals were immediately immersed in a formalin solution for histological changes. According to our findings, diabetes increased lipid peroxidation, characterized by increased MDA levels in the control diabetes group and decreased SOD and GPx levels (P <0.05). It also changes the balance of expression of genes associated with apoptosis control, increased Bcl-2-associated X (Bax) expression, and decreased Bcl-2 expression (P <0.05). Also, we observed the induction of apoptosis in cardiac tissue. Using eight weeks of continuous exercise and administration of crocin significantly reduced blood sugar levels and lipid peroxidation and increased the activity of antioxidant enzymes and Bcl-2 gene expression compared to the diabetes control group. In addition, continuous exercise and crocin improved the oxidative stress parameters in the control group. This study showed that diabetes could cause oxidative stress and heart dysfunction. Moreover, simultaneously and separately, aerobic exercise with a treadmill and crocin administration can reduce these disorders and prevent apoptosis in the heart tissue.
Collapse
Affiliation(s)
- Laleh Pourmousavi
- Department of Physical Education and Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Rasoul Hashemkandi Asadi
- Department of Physical Education and Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Farzad Zehsaz
- Department of Physical Education and Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Roghayeh Pouzesh Jadidi
- Department of Physical Education and Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
20
|
Bakaç MS, Dogan A, Yılmaz MA, Altındag F, Donmez F, Battal A. Ameliorative effects of Scutellaria Pinnatifida subsp. pichleri (Stapf) Rech.f. Extract in streptozotocin-induced diabetic rats: chemical composition, biochemical and histopathological evaluation. BMC Complement Med Ther 2023; 23:410. [PMID: 37964249 PMCID: PMC10644624 DOI: 10.1186/s12906-023-04252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUNDS Scutellaria Pinnatifida subsp. pichleri (Stapf) Rech.f. (SP) is used in folk medicine for the treatment of diabetes. The aim of the study was to determine the phenolic profile of SP extract (SPE) by LC-MS/MS and to investigate the antidiabetic, hepatoprotective and nephroprotective effects of SPE in streptozotosin (STZ)-induced diabetic rat model. METHODS Forty-two rats were randomly divided into six groups (n = 7): Control (nondiabetic), diabetes mellitus (DM), DM + SP-100 (diabetic rats treated with SPE, 100 mg/kg/day), DM + SP-200 (diabetic rats treated with SPE, 200 mg/kg/day), DM + SP-400 (diabetic rats treated with SPE, 400 mg/kg/day) and DM + Gly-3 (diabetic rats treated with glibenclamide, 3 mg/kg/day). Live body weight, fasting blood glucose (FBG) level, antidiabetic, serum biochemical and lipid profile parameters, antioxidant defense system, malondyaldehyde (MDA) and histopathological examinations in liver, kidney and pancreas were evaluated. RESULTS Apigenin, luteolin, quinic acid, cosmosiin and epigallocatechin were determined to be the major phenolic compounds in the SPE. Administration of the highest dose of SP extract (400 mg/kg) resulted in a significant reduction in FBG levels and glycosylated hemoglobin levels in STZ-induced diabetic rats, indicating an antihyperglycemic effect. SPE (200 and 400 mg/kg) and glibenclamide significantly improved MDA in liver and kidney tissues. In addition, SPE contributed to the struggle against STZ-induced oxidative stress by stimulating antioxidant defense systems. STZ induction negatively affected liver, kidney and pancreas tissues according to histopathological findings. Treatment with 400 mg/kg and glibenclamide attenuated these negative effects. CONCLUSIONS In conclusion, the extract of the aerial part of Scutellaria pinnatifida subsp. pichleri has hepatoprotective, nephroprotective and insulin secretion stimulating effects against STZ-induced diabetes and its complications due to its antidiabetic and antioxidant phytochemicals such as apigenin, luteolin, quinic acid, cosmosiin and epigallocatechin.
Collapse
Affiliation(s)
- Mehmet Salih Bakaç
- Department of Basic Sciences Pharmacy, Institute of Health Sciences, Van Yuzuncu Yil University, Van, Turkey
| | - Abdulahad Dogan
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, 650080, Turkey.
| | - Mustafa Abdullah Yılmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
| | - Fikret Altındag
- Department of Medical Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Fatih Donmez
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, 650080, Turkey
| | - Abdulhamit Battal
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
21
|
Munshi R, Karande-Patil S, Kumbhar D, Deshmukh A, Hingorani L. A randomized, controlled, comparative, proof-of-concept study to evaluate the efficacy and safety of Nisha-Amalaki capsules in prediabetic patients for preventing progression to diabetes. J Ayurveda Integr Med 2023; 14:100806. [PMID: 37857033 PMCID: PMC10587713 DOI: 10.1016/j.jaim.2023.100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Prediabetes is an intermediate state of hyperglycemia, which acts as a precursor to Diabetes mellitus if left untreated. Nisha (Curcuma longa) and Amalaki (Emblica officinalis) combination has been advocated as drugs of choice to treat the early manifestations of Diabetes mellitus. OBJECTIVE This prospective, randomized, single-blind, placebo-controlled, comparative study was planned to assess the efficacy and safety of Nisha-Amalaki capsules in preventing progression to Diabetes mellitus in prediabetic patients when administered for 6 months. METHODS The study was conducted on prediabetic participants randomized to receive either Nisha-Amalaki (500 mg) or placebo one capsule twice a day for six months. The effect of study medications on IDRS (Indian Diabetes Risk Score), BMI (Body Mass Index), blood sugar, serum insulin, HOMA-IR (Homeostasis Model Assessment-Estimated Insulin Resistance), HbA1c (glycated hemoglobin), oxidative markers, Ayurvedic symptoms and Quality of Life (QoL) scores was assessed at regular intervals. RESULTS 58 of the 62 participants enrolled completed the study. Significant fall in IDRS score [p < 0.001], BMI [p < 0.001], fasting, and 2 h post-OGTT sugar, insulin, HbA1c, HOMA-IR, and oxidative stress markers [p < 0.001] was observed in patients receiving Nisha-Amalaki at 6 months. Ayurvedic symptoms and QoL scores also improved at 6 months in the treatment group. CONCLUSION Treatment with Nisha-Amalaki capsules improved all study parameters including insulin sensitivity at 6 months as compared to placebo in prediabetic patients. Thus Nisha-Amalaki should be considered as prophylactic therapy in prediabetics to delay progression to diabetes.
Collapse
Affiliation(s)
- Renuka Munshi
- Department of Clinical Pharmacology, TN Medical College & BYL Nair Charitable Hospital, Mumbai Central, Mumbai 400 008, India.
| | - Shilpa Karande-Patil
- Department of Medicine, TN Medical College & BYL Nair Charitable Hospital, Mumbai Central, Mumbai 400 008, India
| | - Dipti Kumbhar
- Department of Clinical Pharmacology, TN Medical College & BYL Nair Charitable Hospital, Mumbai Central, Mumbai 400 008, India
| | | | | |
Collapse
|
22
|
Stevenson Naïtchédé LH, Nyende AB, Runo S, Borlay AJ. Plant regeneration from embryogenic callus-derived from immature leaves of Momordica charantia L. Heliyon 2023; 9:e22122. [PMID: 38045192 PMCID: PMC10692768 DOI: 10.1016/j.heliyon.2023.e22122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Bitter melon (Momordica charantia L.), a widely cultivated food and medicinal plant native to the world's subtropics and tropics, is a Cucurbitaceae rich in carotenoids. However, the low seed germination frequency and progeny variability associated with the production of this plant have a substantial impact on its growth and yield. These constraints affect the availability and exploitation of this crop, especially the fruits, which are rich in secondary metabolites such as β-carotene and α-carotene. In vitro regeneration would help overcome the obstacle linked to the germination of this plant and increase its yield and utilization. A reproducible in vitro organogenesis protocol was established using bitter melon embryogenic callus derived from immature leaf explants of in vivo grown seedlings and in vitro plantlets. Regeneration via callus was conducted on MSB5 media augmented with different plant growth regulator concentrations. The maximum frequency of callus formation (95.09 %) was produced in MSB5 media incorporated with 1.2 mg L-1 NAA augmented with 0.5 mg L-1 TDZ. MSB5 medium with no growth regulators was observed to be the most suitable for the shoot and root formation from the callus, producing a significantly high shoot percentage of 90.91 % and 21.53 shoots per explants, and the highest rooting frequency and root number of 88.92 % and 6.23 roots per explant, respectively, from leaf-derived callus of in vitro plantlets. The elongated plantlets had grown to a significantly higher average height of 12.20 cm on media added with 0.75 mg L-1 GA3. This reproducible method for regenerating bitter melon plantlets could facilitate mass multiplication, conservation, and commercial field production.
Collapse
Affiliation(s)
- Labodé Hospice Stevenson Naïtchédé
- Department of Molecular Biology & Biotechnology, Pan African University, Institute for Basic Sciences, Technology and Innovation, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Aggrey Bernard Nyende
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Steven Runo
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University (K.U.), P.O. Box 43844-00100, Nairobi, Kenya
| | - Allen Johnny Borlay
- Department of Biological Sciences, University of Liberia, P. O. Box 10-9020, Monrovia, Liberia
| |
Collapse
|
23
|
Elrherabi A, Bouhrim M, Abdnim R, Berraaouan A, Ziyyat A, Mekhfi H, Legssyer A, Bnouham M. Antihyperglycemic potential of the Lavandula stoechas aqueous extract via inhibition of digestive enzymes and reduction of intestinal glucose absorption. J Ayurveda Integr Med 2023; 14:100795. [PMID: 37683576 PMCID: PMC10492212 DOI: 10.1016/j.jaim.2023.100795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/12/2023] [Accepted: 08/02/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Diabetes mellitus is a widespread metabolic disorder affecting global populations. Lavandula stoechas from Moroccan traditional medicine is used for its potential anti-diabetic effects. OBJECTIVE This study aims to evaluate the antihyperglycemic impact of the aqueous extract of L. stoechas (AqLs) and explore its mechanisms. METHODS The study employed a glucose tolerance test (OGTT) on normal and diabetic Wistar rats, administering AqLs at 150 mg/kg. In vitro, AqLs was tested against α-glucosidase and α-amylase activities, confirmed in vivo using normal and Allx-diabetic rats. The extract's impact on intestinal d-glucose absorption was assessed using the jejunum segment perfusion technique at 250 mg/kg in situ. Albino mice were used to assess toxicity. RESULTS AqLs significantly reduced postprandial hyperglycemia (P < 0.001) due to glucose overload. It inhibited pancreatic α-amylase (IC50: 0.485 mg/mL) and intestinal α-glucosidase (IC50: 168 µg/mL) in vitro. Oral AqLs at 150 mg/kg reduced hyperglycemia induced by sucrose and starch in normal and diabetic rats. It also lowered (P < 0.001) intestinal glucose absorption in situ at 250 mg/kg. Oral acute toxicity tests on Albino mice indicated no adverse effects at different doses. CONCLUSION to summarize, L. stoechas has evident antihyperglycemic effects attributed to inhibiting intestinal glucose absorption and key monosaccharide digestion enzymes like α-amylase and α-glucosidase.
Collapse
Affiliation(s)
- Amal Elrherabi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda B.P. 717, Morocco
| | - Mohamed Bouhrim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda B.P. 717, Morocco
| | - Rhizlan Abdnim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda B.P. 717, Morocco
| | - Ali Berraaouan
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda B.P. 717, Morocco
| | - Abderrahim Ziyyat
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda B.P. 717, Morocco
| | - Hassane Mekhfi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda B.P. 717, Morocco
| | - Abdelkhaleq Legssyer
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda B.P. 717, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda B.P. 717, Morocco.
| |
Collapse
|
24
|
Huang Z, Chen J, Wang C, Xiao M, Zhu Y, Li N, Huang Z, Liu B, Huang Y. Antidiabetic potential of Chlorella pyrenoidosa functional formulations in streptozocin-induced type 2 diabetic mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
25
|
Rao L, Su Y, He Q, Ye J, Liu Y, Fan Y, Hu F, Zhou Z, Gan L, Zhang Y, Zhang C. Geranylated or prenylated flavonoids from Cajanus volubilis. Chin J Nat Med 2023; 21:292-297. [PMID: 37120247 DOI: 10.1016/s1875-5364(23)60437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 05/01/2023]
Abstract
Five new flavonoid derivatives, cajavolubones A-E (1-5), along with six known analogues (6-11) were isolated from Cajanus volubilis, and their structures were elucidated by spectroscopic analysis and quantum chemical calculations. Cajavolubones A and B (1 and 2) were identified as two geranylated chalcones. Cajavolubone C (3) was a prenylated flavone, while cajavolubones D and E (4 and 5) were two prenylated isoflavanones. Compounds 3, 8, 9 and 11 displayed cytotoxicity against HCT-116 cancer cell line.
Collapse
Affiliation(s)
- Li Rao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yu Su
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qian He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jia Ye
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yu Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yue Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhen Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Lishe Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Yonghui Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China.
| | - Chuanrui Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
26
|
Das G, Nath R, Das Talukdar A, Ağagündüz D, Yilmaz B, Capasso R, Shin HS, Patra JK. Major Bioactive Compounds from Java Plum Seeds: An Investigation of Its Extraction Procedures and Clinical Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:1214. [PMID: 36986906 PMCID: PMC10057433 DOI: 10.3390/plants12061214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Java plum is widely recognized as a plant with valuable medicinal properties, originating from Indonesia and India and distributed globally in the tropic and sub-tropic regions of the world. The plant is rich in alkaloids, flavonoids, phenyl propanoids, terpenes, tannins, and lipids. The phytoconstituents of the plant seeds possess various vital pharmacological activities and clinical effects including their antidiabetic potential. The bioactive phytoconstituents of Java plum seeds include jambosine, gallic acid, quercetin, β-sitosterol, ferulic acid, guaiacol, resorcinol, p-coumaric acid, corilagin, ellagic acid, catechin, epicatechin, tannic acid, 4,6 hexahydroxydiphenoyl glucose, 3,6-hexahydroxy diphenoylglucose, 1-galloylglucose, and 3-galloylglucose. Considering all the potential beneficial effects of the major bioactive compounds present in the Jamun seeds, in the current investigation, the specific clinical effects and the mechanism of action for the major bioactive compounds along with the extraction procedures are discussed.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey
| | - Birsen Yilmaz
- Department of Biological Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, Telangana, India
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80138 Naples, Italy
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| |
Collapse
|
27
|
Relevance of Indian traditional tisanes in the management of type 2 diabetes mellitus: a review. Saudi Pharm J 2023; 31:626-638. [PMID: 37181144 PMCID: PMC10172608 DOI: 10.1016/j.jsps.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Background Tisanes are a potential source of phytochemicals to reduce disease risk conditions and are used to protect from non-communicable diseases, globally. A few tisanes have gained more popularity than others depending on their chemical composition based on the geographical origin of the used herb. Several Indian tisanes have been claimed to have traits beneficial to people with or at a high risk of type 2 diabetes mellitus. Under the concept, the literature was reviewed and compiled into a document to highlight the chemical uniqueness of popular Indian traditional tisanes to be more informative and potent as per modern medicine to overcome type 2 diabetes mellitus. Methods An extensive literature survey was conducted using computerized database search engines, such as Google Scholar, PubMed, ScienceDirect, and EMBASE (Excerpta Medica database) for herbs that have been described for hyperglycemia, and involved reaction mechanism, in-vivo studies as well as clinical efficacies published since 2001 onwards using certain keywords. Compiled survey data used to make this review and all findings on Indian traditional antidiabetic tisanes are tabulated here. Results Tisanes render oxidative stress, counter the damage by overexposure of free radicals to the body, affect enzymatic activities, enhance insulin secretion, etc. The active molecules of tisanes also act as anti-allergic, antibacterial, anti-inflammatory, antioxidant, antithrombotic, antiviral, antimutagenicity, anti-carcinogenicity, antiaging effects, etc. WHO also has a strategy to capitalize on the use of herbals to keep populations healthy through effective and affordable alternative means with robust quality assurance and strict adherence to the product specification.
Collapse
|
28
|
Richter E, Geetha T, Burnett D, Broderick TL, Babu JR. The Effects of Momordica charantia on Type 2 Diabetes Mellitus and Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054643. [PMID: 36902074 PMCID: PMC10002567 DOI: 10.3390/ijms24054643] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
T2DM is a complex metabolic disorder characterized by hyperglycemia and glucose intolerance. It is recognized as one of the most common metabolic disorders and its prevalence continues to raise major concerns in healthcare globally. Alzheimer's disease (AD) is a gradual neurodegenerative brain disorder characterized by the chronic loss of cognitive and behavioral function. Recent research suggests a link between the two diseases. Considering the shared characteristics of both diseases, common therapeutic and preventive agents are effective. Certain bioactive compounds such as polyphenols, vitamins, and minerals found in vegetables and fruits can have antioxidant and anti-inflammatory effects that allow for preventative or potential treatment options for T2DM and AD. Recently, it has been estimated that up to one-third of patients with diabetes use some form of complementary and alternative medicine. Increasing evidence from cell or animal models suggests that bioactive compounds may have a direct effect on reducing hyperglycemia, amplifying insulin secretion, and blocking the formation of amyloid plaques. One plant that has received substantial recognition for its numerous bioactive properties is Momordica charantia (M. charantia), otherwise known as bitter melon, bitter gourd, karela, and balsam pear. M. charantia is utilized for its glucose-lowering effects and is often used as a treatment for diabetes and related metabolic conditions amongst the indigenous populations of Asia, South America, India, and East Africa. Several pre-clinical studies have documented the beneficial effects of M. charantia through various postulated mechanisms. Throughout this review, the underlying molecular mechanisms of the bioactive components of M. charantia will be highlighted. More studies will be necessary to establish the clinical efficacy of the bioactive compounds within M. charantia to effectively determine its pertinence in the treatment of metabolic disorders and neurodegenerative diseases, such as T2DM and AD.
Collapse
Affiliation(s)
- Erika Richter
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Donna Burnett
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Tom L. Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Correspondence: ; Tel.: +1-223-844-3840
| |
Collapse
|
29
|
Hyder A. Naturally-occurring carboxylic acids from traditional antidiabetic plants as potential pancreatic islet FABP3 inhibitors. A molecular docking-aided study. Chem Biol Interact 2023; 372:110368. [PMID: 36709838 DOI: 10.1016/j.cbi.2023.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
The antidiabetic action of traditional plants is mostly attributed to their antioxidant and anti-inflammatory properties. These plants are still having some secrets, making them an attractive source that allows for investigating new drugs or uncovering precise pharmacologic antidiabetic functions of their constituents. In diabetes, which is a lipid disease, long-term exposure of pancreatic islet beta cells to fatty acids (FAs) increases basal insulin release, reduces glucose-stimulated insulin secretion, causes islet beta cell inflammation, failure and apoptosis. Pancreatic islet beta cells express fatty acid binding protein 3 (FABP3) that receives long-chain FAs and traffics them throughout different cellular compartments to be metabolized and render their effects. Inhibition of this FABP3 may retard FA metabolism and protect islet beta cells. Since FAs interact with FABPs by their carboxylic group, some traditionally-known antidiabetic plants were reviewed in the present study, searching for their components that have common features of FABP ligands, namely carboxylic group and hydrophobic tail. Many of these carboxylic acids were computationally introduced into the ligand-binding pocket of FABP3 and some of them exhibited FABP3 ligand possibilities. Among others, the naturally occurring ferulic, cleomaldeic, caffeic, sinapic, hydroxycinnamic, 4-p-coumaroylquinic, quinoline-2-carboxylic, chlorogenic, 6-hydroxykynurenic, and rosmarinic acids in many plants are promising candidates for being FABP3-specific inhibitors. The study shed light on repurposing these phyto-carboxylic acids to function as FABP inhibitors. However, more in-depth biological and pharmacological studies to broaden the understanding of this function are needed.
Collapse
Affiliation(s)
- Ayman Hyder
- Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| |
Collapse
|
30
|
Jalil B, Schultz F, Heinrich M. Where to begin? The best publications for newcomers to ethnopharmacology. Front Pharmacol 2023; 14:1141502. [PMID: 36843950 PMCID: PMC9950406 DOI: 10.3389/fphar.2023.1141502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Have you ever tried to enter a new field of research or to get a basic overview? Of course, we all have. However, where does one begin when entering a new field of research? This mini-review offers a concise (and certainly not comprehensive) overview on the fast-evolving field of ethnopharmacology. Based on a survey in which researchers provided feedback on the publications they find most relevant in the field and an assessment of what publications have been particularly relevant in the field, this paper offers a review of the 30 best papers and books for newcomers in the field. They cover the relevant areas within ethnopharmacology and give examples from all the core regions where ethnopharmacological research is being conducted. Different and sometimes contrasting approaches and theoretical frameworks are included, as well as publications reviewing important methods. With this, basic knowledge on related fields such as ethnobotany, anthropology, fieldwork methods and pharmacognosy is also incorporated. This paper is an invitation to explore fundamental aspects of the field and to understand the particular challenges faced by researchers newly entering this multi- and transdisciplinary field, and to provide them with examples of particularly stimulating research.
Collapse
Affiliation(s)
- Banaz Jalil
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom,*Correspondence: Banaz Jalil, ; Michael Heinrich,
| | - Fabien Schultz
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom,Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
| | - Michael Heinrich
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom,Department of Pharmaceutical Sciences and Chinese Medicine Resources, Chinese Medicine Research Center, College of Chinese Medicine, China Medical University, Taichung, Taiwan,*Correspondence: Banaz Jalil, ; Michael Heinrich,
| |
Collapse
|
31
|
Omoboyowa DA, Agoi MD, Shodehinde SA, Saibu OA, Saliu JA. Antidiabetes study of Spondias mombin (Linn) stem bark fractions in high-sucrose diet-induced diabetes in Drosophila melanogaster. J Taibah Univ Med Sci 2023; 18:663-675. [PMID: 36845998 PMCID: PMC9947098 DOI: 10.1016/j.jtumed.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/29/2022] [Accepted: 01/18/2023] [Indexed: 01/30/2023] Open
Abstract
Objective The onset of insulin resistant diabetes has been associated with a high-sucrose diet in vertebrates and invertebrates. However, various parts of Spondias mombin reportedly possess antidiabetic potential. However, the antidiabetic efficacy of S. mombin stem bark in high-sucrose diet-induced Drosophila melanogaster model has not been explored. In this study, the antidiabetic and antioxidant effects of the solvent fractions of S. mombin stem bark were evaluated using in vitro, in vivo, and in silico methods. Methods Successive fractionation of S. mombin stem bark ethanol extract was performed; the resulting fractions were subjected to in vitro antioxidant and antidiabetic assays using standard protocols. The active compounds identified from the high-performance liquid chromatography (HPLC) study of the n-butanol fraction were docked against the active site of Drosophila α-amylase using AutoDoc Vina. The n-butanol and ethyl acetate fractions of the plant were incorporated into the diet of diabetic and nondiabetic flies to study the in vivo antidiabetic and antioxidant properties. Results The results obtained revealed that n-butanol and ethyl acetate fractions had the highest in vitro anti-oxidant capacity by inhibiting 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power, and hydroxyl radical followed by significant inhibition of α-amylase. HPLC analysis revealed the identification of eight compounds with quercetin having the highest peak followed by rutin, rhamnetin, chlorogenic acid, zeinoxanthin, lutin, isoquercetin, and rutinose showing the lowest peak. The fractions restored the glucose and antioxidant imbalance in diabetic flies, which is comparable with the standard drug (metformin). The fractions were also able to upregulate the mRNA expression of insulin-like peptide 2, insulin receptor, and ecdysone-inducible gene 2 in diabetic flies. The in silico studies revealed the inhibitory potential of active compounds against α-amylase with isoquercetin, rhamnetin, rutin, quercetin, and chlorogenic acid having higher binding affinity than the standard drug (acarbose). Conclusion Overall, the butanol and ethyl acetate fractions of S. mombin stem bark ameliorate type 2 diabetes in Drosophila. However, further studies are needed in other animal models to confirm the antidiabetes effect of the plant.
Collapse
Affiliation(s)
- Damilola A. Omoboyowa
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria,Corresponding address. Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Mary D. Agoi
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Sidiqat A. Shodehinde
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Oluwatosin A. Saibu
- Department of Environmental Toxicology, Universitat Duisburg-Essen, NorthRhine-Westphalia, Germany
| | - Jamiyu A. Saliu
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| |
Collapse
|
32
|
Saleem F, Khan KM, Ullah N, Özil M, Baltaş N, Hameed S, Salar U, Wadood A, Rehman AU, Kumar M, Taha M, Haider SM. Bioevaluation of synthetic pyridones as dual inhibitors of α-amylase and α-glucosidase enzymes and potential antioxidants. Arch Pharm (Weinheim) 2023; 356:e2200400. [PMID: 36284484 DOI: 10.1002/ardp.202200400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Herein, a library of novel pyridone derivatives 1-34 was designed, synthesized, and evaluated for α-amylase and α-glucosidase inhibitory as well as antioxidant activities. Pyridone derivatives 1-34 were synthesized via a one-pot multi-component reaction of variously substituted aromatic aldehydes, acetophenone, ethyl cyanoacetate, and ammonium acetate in absolute ethanol. Synthetic compounds 1-34 were structurally characterized by different spectroscopic techniques. Most of the tested compounds showed more promising inhibition potential than the standard acarbose (IC50 = 14.87 ± 0.16 µM) but compounds 13 and 12 were found to be the most potent compounds with IC50 values of 9.20 ± 0.14 µM and 3.05 ± 0.18 µM against α-amylase and α-glucosidase enzymes, respectively. Compounds 1-34 also displayed moderate antioxidant potential in the range of IC50 = 96.50 ± 0.45 to 189.98 ± 1.00 µM in comparison to the control butylated hydroxytoluene (BHT) (IC50 = 66.50 ± 0.36 µM), in DPPH radical scavenging activities. Additionally, all synthetic derivatives were subjected to a molecular docking study to investigate the interaction details of compounds 1-34 (ligands) with the active site of enzymes (receptors). These results indicate that the newly synthesized pyridone class may serve as promising lead candidates for controlling diabetes mellitus and as antioxidants.
Collapse
Affiliation(s)
- Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.,Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Musa Özil
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Shehryar Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- School of Biological Sciences, University of California, Irvine, California, USA
| | - Mukesh Kumar
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Syed Moazzam Haider
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
33
|
Maradesha T, Martiz RM, Patil SM, Prasad A, Babakr AT, Silina E, Stupin V, Achar RR, Ramu R. Integrated network pharmacology and molecular modeling approach for the discovery of novel potential MAPK3 inhibitors from whole green jackfruit flour targeting obesity-linked diabetes mellitus. PLoS One 2023; 18:e0280847. [PMID: 36716329 PMCID: PMC9886246 DOI: 10.1371/journal.pone.0280847] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
The current study investigates the effectiveness of phytocompounds from the whole green jackfruit flour methanol extract (JME) against obesity-linked diabetes mellitus using integrated network pharmacology and molecular modeling approach. Through network pharmacology, druglikeness and pharmacokinetics, molecular docking simulations, GO analysis, molecular dynamics simulations, and binding free energy analyses, it aims to look into the mechanism of the JME phytocompounds in the amelioration of obesity-linked diabetes mellitus. There are 15 predicted genes corresponding to the 11 oral bioactive compounds of JME. The most important of these 15 genes was MAPK3. According to the network analysis, the insulin signaling pathway has been predicted to have the strongest affinity to MAPK3 protein, which was chosen as the target. With regard to the molecular docking simulation, the greatest notable binding affinity for MAPK3 was discovered to be caffeic acid (-8.0 kJ/mol), deoxysappanone B 7,3'-dimethyl ether acetate (DBDEA) (-8.2 kJ/mol), and syringic acid (-8.5 kJ/mol). All the compounds were found to be stable inside the inhibitor binding pocket of the enzyme during molecular dynamics simulation. During binding free energy calculation, all the compounds chiefly used Van der Waal's free energy to bind with the target protein (caffeic acid: 102.296 kJ/mol, DBDEA: -104.268 kJ/mol, syringic acid: -100.171 kJ/mol). Based on these findings, it may be inferred that the reported JME phytocompounds could be used for in vitro and in vivo research, with the goal of targeting MAPK3 inhibition for the treatment of obesity-linked diabetes mellitus.
Collapse
Affiliation(s)
- Tejaswini Maradesha
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Reshma Mary Martiz
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shashank M. Patil
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ashwini Prasad
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Abdullatif Taha Babakr
- Department of Medical Biochemistry, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ekaterina Silina
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery 1, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- * E-mail:
| |
Collapse
|
34
|
Gupta MK, Gouda G, Sultana S, Punekar SM, Vadde R, Ravikiran T. Structure-related relationship: Plant-derived antidiabetic compounds. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2023:241-295. [DOI: 10.1016/b978-0-323-91294-5.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
35
|
Alruhaili MH, Almuhayawi MS, Gattan HS, Alharbi MT, Nagshabandi MK, Jaouni SKA, Selim S, AbdElgawad H. Insight into the phytochemical profile and antimicrobial activities of Amomum subulatum and Amomum xanthioides: an in vitro and in silico study. FRONTIERS IN PLANT SCIENCE 2023; 14:1136961. [PMID: 37152127 PMCID: PMC10157186 DOI: 10.3389/fpls.2023.1136961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/23/2023] [Indexed: 05/09/2023]
Abstract
Introduction Medicinal plants have been considered as potential source of therapeutics or as starting materials in drugs formulation. Methods The current study aims to shed light on the therapeutic potential of the Amomum subulatom and Amomum xanthioides Fruits by analyzing the phytochemical composition of their seeds and fruits using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) techniques to determine the presence of bioactive components such as flavonoids, phenols, vitamins, steroids, and essential oils. Results and Discussion The protein content is usually higher than the total lipids in both species except the fruit of A. subulatum which contain more lipids than proteins. The total protein contents for A. subulatum were 235.03 ± 21.49 and 227.49 ± 25.82 mg/g dry weight while for A. xanthioides were 201.9 ± 37.79 and 294.99 ± 37.93 mg/g dry weight for seeds and fruit, respectively. The Carvacrol levels in A. subulatum is 20 times higher than that in A. xanthioides. Lower levels of α-Thujene, Phyllanderenes, Ascaridole, and Pinocarvone were also observed in both species. According to DPPH (2,2-diphenylpicrylhydrazyl) assay, seed the extract of A. subulatum exhibited the highest antioxidant activity (78.26±9.27 %) followed by the seed extract of A. xanthioides (68.21±2.56 %). Similarly, FRAP (Ferric Reducing Antioxidant Power) assay showed that the highest antioxidant activity was exhibited by the seed extract of the two species; 20.14±1.11 and 21.18±1.04 µmol trolox g-1 DW for A. subulatum and A. xanthioides, respectively. In terms of anti-lipid peroxidation, relatively higher values were obtained for the fruit extract of A. subulatum (6.08±0.35) and the seed extract of A. xanthioides (6.11±0.55). Ethanolic seed extracts of A. subulatum had the highest efficiency against four Gram-negative bacterial species which causes serious human diseases, namely Pseudomonas aeruginosa, Proteus vulgaris, Enterobacter aerogenes, and Salmonella typhimurium. In addition, P. aeruginosa was also inhibited by the fruit extract of both A. subulatum and A. xanthioides. For the seed extract of A. xanthioides, large inhibition zones were formed against P. vulgaris and the fungus Candida albicans. Finally, we have in silico explored the mode of action of these plants by performing detailed molecular modeling studies and showed that the antimicrobial activities of these plants could be attributed to the high binding affinity of their bioactive compounds to bind to the active sites of the sterol 14-alpha demethylase and the transcriptional regulator MvfR. Conclusion These findings demonstrate the two species extracts possess high biological activities and therapeutical values, which increases their potential value in a number of therapeutic applications.
Collapse
Affiliation(s)
- Mohammed H. Alruhaili
- Department of Clinical Microbiology and Immunology Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
- *Correspondence: Mohammed H. Alruhaili, ; Samy Selim, ; Hamada AbdElgawad,
| | - Mohammed S. Almuhayawi
- Department of Clinical Microbiology and Immunology Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Hattan S. Gattan
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohanned Talal Alharbi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammed K. Nagshabandi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- *Correspondence: Mohammed H. Alruhaili, ; Samy Selim, ; Hamada AbdElgawad,
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- *Correspondence: Mohammed H. Alruhaili, ; Samy Selim, ; Hamada AbdElgawad,
| |
Collapse
|
36
|
Patil SM, Martiz RM, Ramu R, Shirahatti PS, Prakash A, Kumar BRP, Kumar N. Evaluation of flavonoids from banana pseudostem and flower (quercetin and catechin) as potent inhibitors of α-glucosidase: An in silico perspective. J Biomol Struct Dyn 2022; 40:12491-12505. [PMID: 34488558 DOI: 10.1080/07391102.2021.1971561] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The amelioration of postprandial hyperglycemia in diabetic conditions could be accomplished by the inhibition of α-glucosidases, a set of intestinal carbohydrate digestive enzymes responsible for starch hydrolysis and its absorption. The ethnopharmacological profile of banana depicts the usage of different plant parts in conventional medicinal formulations. The antidiabetic studies of the plant have demonstrated their ability to inhibit α-glucosidase. Besides, our research group has reported the α-glucosidase inhibitory potential of the banana pseudostem and flower extracts in previous studies. In this study, we deliberate on the specific phytoconstituents of banana pseudostem and flower to evaluate their antidiabetic effects through an in silico perspective for the α-glucosidase inhibition. In this context, several phytoconstituents of banana pseudostem and flower identified through GC-MS analysis were retrieved from chemical databases. These phytochemicals were virtually screened through the molecular docking simulation process, from which only two flavonoids (catechin and quercetin) were selected based on their binding affinity and extent of interaction with the α-glucosidase target protein. The lower binding affinities of catechin and quercetin in comparison with that of acarbose as a control proved their binding efficiency with the target protein. In addition, acarbose showed subservient molecular interaction, forming an unfavourable acceptor-acceptor bond. The molecular dynamics simulations also depicted the effective binding and stability of the complexes formed with catechin and quercetin, in comparison with that of acarbose. Further, PASS analysis, druglikeliness, and pharmacokinetic assessments showed that both catechin and quercetin edge over acarbose in terms of drug-score and pharmacokinetic properties. With the positive results obtained from contemporary strategies, the two flavonoids from banana pseudostem and flower might be established as a considerable phototherapeutic approach to inhibit α-glucosidase. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shashank M Patil
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Reshma Mary Martiz
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | | | - Ashwini Prakash
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Naveen Kumar
- Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, Karnataka, India
| |
Collapse
|
37
|
Sharma P, Joshi T, Mathpal S, Chandra S, Tamta S. In silico identification of antidiabetic target for phytochemicals of A. marmelos and mechanistic insights by molecular dynamics simulations. J Biomol Struct Dyn 2022; 40:10543-10560. [PMID: 34225570 DOI: 10.1080/07391102.2021.1944910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The leaves and fruits of Aegle marmelos (L.) have antidiabetic activity. However, the mode of action and molecules having antidiabetic activity are not known. Hence, we conducted molecular docking of phytochemicals with various molecular antidiabetic targets to find the same. Docking prioritized Dipeptidyl peptidase-4 (DPP-4) as the main target for phytochemicals of Aegle marmelos. DPP-4 inactivates intestinal peptides, glucagon-like peptide-1 (GLP-1), and Gastric inhibitory polypeptide (GIP). GLP-1 and GIP stimulate a decline in blood glucose levels, but DPP-4 inhibits their functions resulting high level of glucose. Hence inhibiting the activity of DPP-4 is a well-known strategy to treat Type 2 diabetes. Therefore, to find a mechanism that may be involved to act as a natural inhibitor of DPP-4, we screened five phytochemicals out of seventy-three based on Virtual Screening, ADMET Drug-likeness analysis, and PAINS filtering. Further, all five phytochemicals, i.e. Aegeline, Citral, Marmesinin, Auraptene, β-Bisabolene, and reference compound subjected MDS for analyzing the stability of docked complexes to assess the fluctuation and conformational changes during protein-ligand interaction. The values of RMSD, RG, RMSF, SASA, and Gibbs energy revealed the good stability of these phytochemicals in the active site pocket of DPP-4 in comparison to reference. Additionally, we have done the pharmacophore analysis, which revealed many common pharmacophore features between screened phytochemicals of A. marmelos and reference molecule. Our results show that these phytochemicals are potential antidiabetic candidates and can be further modified and evaluated to develop more effective antidiabetic drugs against DPP-4 to treat Type 2 Diabetes. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Botany, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Tushar Joshi
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Shalini Mathpal
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Subhash Chandra
- Department of Botany, S.S.J Campus, Almora, Kumaun University, Nainital, Uttarakhand, India.,Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Sushma Tamta
- Department of Botany, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand, India
| |
Collapse
|
38
|
Jamaddar S, Raposo A, Sarkar C, Roy UK, Araújo IM, Coutinho HDM, Alkhoshaiban AS, Alturki HA, Saraiva A, Carrascosa C, Islam MT. Ethnomedicinal Uses, Phytochemistry, and Therapeutic Potentials of Litsea glutinosa (Lour.) C. B. Robinson: A Literature-Based Review. Pharmaceuticals (Basel) 2022; 16:ph16010003. [PMID: 36678501 PMCID: PMC9864784 DOI: 10.3390/ph16010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Litsea glutinosa (Lour.) C. B. Robinson, belonging to the family Lauraceae, is a multipurpose and fast-growing evergreen or deciduous tree that has been traditionally used for numerous purposes such as treatment for diarrhea, dysentery, abdominal pain, indigestion, gastroenteritis, edema, traumatic injuries, colds, arthritis, asthma, diabetes, pain relief, and poignant sexual power. This study aimed to summarize the chemical reports, folk values, and phytopharmacological activities of L. glutinosa, based on available information screened from diverse databases. An up-to-date electronic-based search was accomplished to obtain detailed information, with the help of several databases such as Google Scholar, Scopus, SpringerLink, Web of Science, ScienceDirect, ResearchGate, PubMed, ChemSpider, Elsevier, BioMed Central, and the USPTO, CIPO, INPI, Google Patents, and Espacenet, using relevant keywords. Outcomes advocate that, up to the present time, alkaloids, glycosides, and terpenoids are abundant in, and the most bioactive constituents of, this natural plant. Results demonstrated that L. glutinosa has various remarkable biological activities, including antioxidant, anti-inflammatory, anti-microbial, anticancer, antipyretic, anti-diabetic, analgesic, hepatoprotective, and wound-healing activity. One study revealed that L. glutinosa exhibited significant aphrodisiac and anti-infertility activity. Nevertheless, no clinical studies have been cited. Taken together, L. glutinosa may be one of the significant sources of bioactive constituents that could potentially lead to different effective pharmacological activities. On the other hand, future research should focus on clinical studies and several toxicity evaluations, such as sub-chronic toxicity, teratogenicity, and genotoxicity.
Collapse
Affiliation(s)
- Sarmin Jamaddar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
- Correspondence:
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Uttam Kumar Roy
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Isaac Moura Araújo
- Department of Biological Chemistry, Laboratory of Microbiology and Molecular Biology, Program of Post-Graduation in Molecular Bioprospection, Regional University of Cariri, Crato 63105-000, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Laboratory of Microbiology and Molecular Biology, Program of Post-Graduation in Molecular Bioprospection, Regional University of Cariri, Crato 63105-000, CE, Brazil
| | - Ali Saleh Alkhoshaiban
- Academic and Training Affairs, Qassim University Medical City, Qassim University, Buraydah 52571, Saudi Arabia
| | - Hmidan A. Alturki
- General Directorate for Funds & Grants. King Abdulaziz City for Science & Technology, Riyadh 11442, Saudi Arabia
| | - Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
39
|
Anshika, Pandey RK, Singh L, Kumar S, Singh P, Pathak M, Jain S. Plant bioactive compounds and their mechanistic approaches in the treatment of diabetes: a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Diabetes mellitus (DM) is a growing disease across the world; diabetes is a complex metabolic disorder in which blood glucose concentration level increases and continue for a prolonged period due to a decrease secretion of insulin or action, resulting in the disorder of carbohydrate, lipid, and protein metabolism. The plant-related bioactive compounds have proven their efficacy with least toxicities and can be utilized for the disease treatment. Our objective is to elucidate the mechanism of action of plant bioactive compounds which can give future direction in diabetes treatment.
Main body
In this review paper, we briefly study more than 200 research papers related to disease and bioactive compounds that have therapeutic applicability in treatment. The plant contains many bio-active compounds which possess in vitro and in vivo anti-diabetic effect which may be responsible for the hypoglycaemic property by inhibiting the digestive enzyme i.e. alpha-amylase and alpha-glucosidase, by producing mimetic action of insulin, by reducing the oxidative stress, by showing antihyperglycemic activity and hypolipidemic activity, by inhibition of aldose reductase, and by increasing or enhancing glucose uptake and insulin secretion.
Conclusion
Our study revealed that terpenes, tannin, flavonoids, saponin, and alkaloids are important bioactive constituents for anti-diabetic activity. The mechanistic approach on alpha-glucosidase and alpha-amylase, hypolipidemic activity, and AR inhibitory action clear-cut explain the therapeutic applicability of these bioactive compounds in disease. Plants that contain these bioactive compounds can be good drug candidates for future research on diabetes treatment.
Collapse
|
40
|
Qu B, Liu X, Liang Y, Zheng K, Zhang C, Lu L. Salidroside in the Treatment of NAFLD/NASH. Chem Biodivers 2022; 19:e202200401. [PMID: 36210339 DOI: 10.1002/cbdv.202200401] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/03/2022] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the commonest reason for chronic liver diseases in the world and is commonly related to the hepatic manifestation of the metabolic syndrome. Non-alcoholic steatohepatitis (NASH) is a deteriorating form of NAFLD, which can eventually develop into fibrosis, cirrhosis, and liver cancer. The reason for NAFLD/NASH development is complicated, such as liver lipid metabolism, oxidative stress, inflammatory response, apoptosis and autophagy, liver fibrosis and gut microbiota. Apart from bariatric surgery and lifestyle changes, officially approved drug therapy for NAFLD/NASH treatment is lacking. Salidroside (SDS) is a phenolic compound extensively distributed in the tubers of Rhodiola plants, which possesses many significant biological activities. This review summarized the related targets regulated by SDS in treating NAFLD/NASH. It is indicated that SDS could improve the status of NAFLD/NASH by ameliorating abnormal lipid metabolism, inhibiting oxidative stress, regulating apoptosis and autophagy, reducing inflammatory response, alleviating fibrosis and regulating gut microbiota. In conclusion, although the multiple bioactivities of SDS have been confirmed, the clinical data are inadequate and need to become the focus of attention in the later study.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Xuemao Liu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Yanjiao Liang
- Department of Oncology Center, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Keke Zheng
- Department of Oncology Center, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Chunling Zhang
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| |
Collapse
|
41
|
Jaipal N, Ram H, Charan J, Dixit A, Singh G, Singh BP, Kumar A, Panwar A. HMG‐CoA reductase inhibition medicated hypocholesterolemic and antiatherosclerotic potential of phytoconstituents of an aqueous pod extract of
Prosopis cineraria
(L.) Druce: In silico, in vitro, and in vivo studies. EFOOD 2022. [DOI: 10.1002/efd2.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Noopur Jaipal
- Department of Zoology Jai Narain Vyas University Jodhpur Rajasthan India
| | - Heera Ram
- Department of Zoology Jai Narain Vyas University Jodhpur Rajasthan India
| | - Jaykaran Charan
- Department of Pharmacology All India Institute of Medical Sciences Jodhpur Rajasthan India
| | | | - Garima Singh
- Department of Botany Pachhunga University College Aizawl Mizoram India
| | - Bhim P. Singh
- Department of Agriculture & Environmental Sciences (AES) National Institute of Food Technology Entrepreneurship & Management (NIFTEM) Sonepat Haryana India
| | - Ashok Kumar
- Centre for Systems Biology and Bioinformatics Panjab University Chandigarh Punjab India
| | - Anil Panwar
- Centre for Systems Biology and Bioinformatics Panjab University Chandigarh Punjab India
| |
Collapse
|
42
|
Wang X, Li J, Shang J, Bai J, Wu K, Liu J, Yang Z, Ou H, Shao L. Metabolites extracted from microorganisms as potential inhibitors of glycosidases (α-glucosidase and α-amylase): A review. Front Microbiol 2022; 13:1050869. [PMID: 36466660 PMCID: PMC9712454 DOI: 10.3389/fmicb.2022.1050869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 09/30/2023] Open
Abstract
α-Glucosidase and α-amylase are the two main glycosidases that participate in the metabolism of carbohydrates. Inhibitors of these two enzymes are considered an important medical treatment for carbohydrate uptake disorders, such as diabetes and obesity. Microbes are an important source of constituents that have the potential to inhibit glycosidases and can be used as sources of new drugs and dietary supplements. For example, the α-glucosidase inhibitor acarbose, isolated from Actinoplanes sp., has played an important role in adequately controlling type 2 diabetes, but this class of marketed drugs has many drawbacks, such as poor compliance with treatment and expense. This demonstrates the need for new microorganism-derived resources, as well as novel classes of drugs with better compliance, socioeconomic benefits, and safety. This review introduces the literature on microbial sources of α-glucosidase and α-amylase inhibitors, with a focus on endophytes and marine microorganisms, over the most recent 5 years. This paper also reviews the application of glycosidase inhibitors as drugs and dietary supplements. These studies will contribute to the future development of new microorganism-derived glycosidase inhibitors.
Collapse
Affiliation(s)
- Xiaojing Wang
- Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jiaying Li
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai University of Medicine and Health Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Shang
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jing Bai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Kai Wu
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jing Liu
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhijun Yang
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hao Ou
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Shao
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
43
|
Ansari P, Hannan JMA, Choudhury ST, Islam SS, Talukder A, Seidel V, Abdel-Wahab YHA. Antidiabetic Actions of Ethanol Extract of Camellia sinensis Leaf Ameliorates Insulin Secretion, Inhibits the DPP-IV Enzyme, Improves Glucose Tolerance, and Increases Active GLP-1 (7-36) Levels in High-Fat-Diet-Fed Rats. MEDICINES (BASEL, SWITZERLAND) 2022; 9:medicines9110056. [PMID: 36422117 PMCID: PMC9698069 DOI: 10.3390/medicines9110056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 05/14/2023]
Abstract
Camellia sinensis (green tea) is used in traditional medicine to treat a wide range of ailments. In the present study, the insulin-releasing and glucose-lowering effects of the ethanol extract of Camellia sinensis (EECS), along with molecular mechanism/s of action, were investigated in vitro and in vivo. The insulin secretion was measured using clonal pancreatic BRIN BD11 β cells, and mouse islets. In vitro models examined the additional glucose-lowering properties of EECS, and 3T3L1 adipocytes were used to assess glucose uptake and insulin action. Non-toxic doses of EECS increased insulin secretion in a concentration-dependent manner, and this regulatory effect was similar to that of glucagon-like peptide 1 (GLP-1). The insulin release was further enhanced when combined with isobutylmethylxanthine (IBMX), tolbutamide or 30 mM KCl, but was decreased in the presence of verapamil, diazoxide and Ca2+ chelation. EECS also depolarized the β-cell membrane and elevated intracellular Ca2+, suggesting the involvement of a KATP-dependent pathway. Furthermore, EECS increased glucose uptake and insulin action in 3T3-L1 cells and inhibited dipeptidyl peptidase IV (DPP-IV) enzyme activity, starch digestion and protein glycation in vitro. Oral administration of EECS improved glucose tolerance and plasma insulin as well as inhibited plasma DPP-IV and increased active GLP-1 (7-36) levels in high-fat-diet-fed rats. Flavonoids and other phytochemicals present in EECS could be responsible for these effects. Further research on the mechanism of action of EECS compounds could lead to the development of cost-effective treatments for type 2 diabetes.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
- Correspondence:
| | - J. M. A. Hannan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Samara T. Choudhury
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sara S. Islam
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Abdullah Talukder
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | | |
Collapse
|
44
|
Zhang J, Ding W, Tang Z, Kong Y, Liu J, Cao X. Identification of the effective α-amylase inhibitors from Dalbergia odorifera: Virtual screening, spectroscopy, molecular docking, and molecular dynamic simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121448. [PMID: 35717927 DOI: 10.1016/j.saa.2022.121448] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/30/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Inhibiting the activity of α-amylase has been considered as one efficient way to prevent and treat type 2 diabetes recently. Dalbergia odorifera, a kind of Leguminosae plant, has a positive therapeutic effect on type 2 diabetes, possibly contributing by some constituents that can inhibit the activity of α-amylase. In this study, we found that eriodictyol was one potential constituent through virtual screening. The interaction mode between eriodictyol and α-amylase was elucidated by molecular docking, multi-spectroscopic analysis, and molecular dynamic simulation. The results revealed that eriodictyol quenched the intrinsic fluorescence of α-amylase, and the quenching mode was static quenching. Eriodictyol could spontaneously interact with α-amylase, mostly stabilized and influenced by the hydrophobic interaction, while the binding sites (n) was 1.13 ± 0.07 and binding constant (Kb) was (1.43 ± 0.14) × 105 at 310 K, respectively. In addition, FT-IR and CD had been applied to identify that eriodictyol can trigger the conformational change of α-amylase. Taken together, the results provided some experimental data for developing new α-amylase inhibitors from Dalbergia odorifera, which may further prevent and treat diabetes and diabetes complications.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Weizhe Ding
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Zhipeng Tang
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Yuchi Kong
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Jianli Liu
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China.
| | - Xiangyu Cao
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China.
| |
Collapse
|
45
|
Thikekar AK, Thomas AB, Chitlange SS, Bhalchim V. Effect of herbal formulation on glimepiride pharmacokinetics and pharmacodynamics in nicotinamide-streptozotocin-induced diabetic rats. J Ayurveda Integr Med 2022; 13:100633. [PMID: 36174302 PMCID: PMC9519623 DOI: 10.1016/j.jaim.2022.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Traditional medicinal herbs are widely consumed in developing countries to treat diabetes as they are perceived to be safer, less expensive, and have fewer side effects as compared to the conventional medicines. Diabecon (DB), Himalaya Herbal Healthcare, India is herbal over-the-counter formulation which contains several herbs that are reported in the traditional texts for the treatment of diabetes. The majority of these herbs have been investigated and found to interfere with the cytochrome pathway. The most common oral antihyperglycemic drug used today in clinical practice is Glimepiride (GP).The CYP2C9 enzyme is mainly responsible for the metabolism of GP. Herein we hypothesize that the co-administration of GP with DB may result in possible Herb-Drug Interactions (HDIs) as DB has the potential to significantly inhibit the CYP2C9 enzyme. OBJECTIVE In the current study, the pharmacokinetic and pharmacodynamic interactions of GP (0.82 mg/kg) with DB (110.95 mg/kg) was investigated in diabetes induced (Nicotinamide-STZ) rats by co-administering both drugs orally for 21 days. MATERIALS AND METHODS For the study of the HDI, Bioanalytical RP-HPLC/PDA method for quantifying GP in plasma of rats was developed and validated as per US-FDA guidelines. In vivo pharmacokinetic and pharmacodynamic parameters were studied on day 1 and day 21 post administration. RESULTS The RP-HPLC/PDA method was successfully employed for quantification of GP in the PK studies. The co-administration of GP and DB in diabetic rats resulted in beneficial pharmacodynamic interactions, but there were no notable changes in the pharmacokinetic parameters of GP. CONCLUSION This current investigation in an animal model suggests that co-administration of GP and DB may have significant therapeutic benefits in the treatment of diabetes; however, additional research, randomized clinical trials or case studies in humans, is needed.
Collapse
Affiliation(s)
- Archana K Thikekar
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, India
| | - Asha B Thomas
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, India.
| | - Sohan S Chitlange
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, India
| | - Vrushali Bhalchim
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
46
|
Elabd H, Faggio C, Mahboub HH, Emam MA, Kamel S, El Kammar R, Abdelnaeim NS, Shaheen A, Tresnakova N, Matter A. Mucuna pruriens seeds extract boosts growth, immunity, testicular histology, and expression of immune-related genes of mono-sex Nile tilapia (Oreochromisniloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 127:672-680. [PMID: 35817363 DOI: 10.1016/j.fsi.2022.06.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Nutraceuticals have received increased attention in sustainable aquaculture. Consequently, the present study aimed to evaluate the dietary effects of Mucuna pruriens (MP) seed extract on growth performance, immune status, hepatic function, biochemical profiles, gonadal histology, and expression of immune-related genes in mono-sex Nile tilapia (Oreochromis niloticus). Fish were allocated into four groups and received MP at rates of 0 (control), 2, 4, and 6 g/kg diet, respectively, for 90 days. The results revealed that MP significantly (P<0.05) modulated growth performance (specific growth rate, final length, and length gain rate, body mass gain, and feed conversion ratio), lysozyme activity, and liver enzymes (AST, ALT). However, a non-significant effect on nitric oxide (NO) or immunoglobulin M (IgM) levels was detected, whereas the dietary inclusion of MP had a hypoglycemic effect. In terms of plasma globulin, albumin, globulin/albumin ratio, and cortisol, the MP receiving groups showed insignificant difference (P<0.05) when compared to controls, except for the 2 g MP-supplemented group. The lower inclusion concentration of MP (2 g/kg diet) demonstrated the best result (P < 0.05) for gonadosomatic index (GSI) and plasma testosterone level that was consistent with the histological findings reflecting an improvement in the testicular development compared with the control group. Expressions of complement component (C5) and interleukin 1-β (IL-1β) genes were significantly up-regulated in MP receiving groups. In conclusion, M. pruriens can be used as a safe natural economic feed additive and a low inclusion level of 2 g/kg diet is recommended to improve growth, enhance immunity, maintain liver functioning, improve testicular development, and to modulate immune-related genes in the mono-sex O. niloticus.
Collapse
Affiliation(s)
- Hiam Elabd
- Department of Aquatic Animals' Diseases and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 S, Agata-Messina, Italy.
| | - Heba H Mahboub
- Fish Diseases and Management Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Sharkia, Egypt.
| | | | - Samar Kamel
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, P.O. Box 41522, Ismailia, Egypt
| | - Reda El Kammar
- Histology Department, Faculty of Veterinary Medicine, Benha University, Benha, 13736, Egypt
| | - Noha S Abdelnaeim
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, P.O. Box 41522, Ismailia, Egypt
| | - Adel Shaheen
- Department of Aquatic Animals' Diseases and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt
| | - Nikola Tresnakova
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, The University of South Bohemia in Ceske Budejovice, Zatisi 728/II, Vodnany, 389 25, Czech Republic
| | - Aya Matter
- Department of Aquatic Animals' Diseases and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt
| |
Collapse
|
47
|
Paul S, Majumdar M. Multimode Assessment of Commercial Polyherbal Formulation: an In Vitro and In Silico Approach. Appl Biochem Biotechnol 2022; 195:2261-2281. [PMID: 35796947 DOI: 10.1007/s12010-022-04064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
Abstract
Antidiabetic polyherbal formulations (APH) are used in management of diabetes mellitus (DM). High glucose levels in DM are related to oxidative stress leading to its associated complications. Therefore, assessing antioxidant activity of various APH might unveil an antioxidant-rich formulation for management of DM and its associated complications. Subsequently selecting an antioxidant assessment method is a challenging aspect, considering various in vitro assays working with diverse mechanism of action. Therefore, present study aims to validate the sensitivity/capacity of different antioxidant assay, thereby assessing the antioxidant potential of 9-APH. Obtained results revealed the ABTS·+ values were higher compared to DPPH+ assay. I-9-HAE (DPPH+: IC50 53.31 µg/ml), NK-HAE (ABTS·+: IC50 2.71 µg/ml), and MN-HAE (FRAP and TAC) exhibited highest antioxidant capacity. A significant correlation was obtained between TPC-DPPH+ (r2: 0.8187****). Furthermore, three APH with better antiradical potential was chosen for various in vitro and in silico method, for validating scientific antidiabetic propensities. Among the tested extracts, I-9-HAE (α-amylase inhibition: IC50 831.84 µg/ml) and MN-HAE (α-glucosidase inhibition: IC50 558.64 µg/ml and antiglycation: IC50 883.74 µg/ml) have showed highest antihyperglycemic and antiglycation properties. Finally, the secondary-metabolites of selected APH were screened through literature search, Lipinski rule, ADMET, and ProTox-II. Subsequently, in molecular docking for the selected 9 secondary metabolites, highest binding affinity was observed in apigenin-7-glucuronide for DPPiv (- 9.6), GLP-1 (- 8.8), NADPH (- 8.7), and HSA (- 9.4). Thus, obtained result proposes synergistic interaction with high antioxidant potential of the selected 3-APH and can be considered an alternative for management of DM, where multiple secondary metabolites exert holistic biological effects. Furthermore, our study also provides data on sensitivity/capacity of different in vitro antioxidant assays.
Collapse
Affiliation(s)
- Saptadipa Paul
- Department of Biotechnology, School of Sciences, JAIN (Deemed to Be University), #34,1st Cross, J C Road, Bangalore, 560027, India
| | - Mala Majumdar
- Department of Biotechnology, School of Sciences, JAIN (Deemed to Be University), #34,1st Cross, J C Road, Bangalore, 560027, India.
| |
Collapse
|
48
|
Khan S, Ullah H, Rahim F, Nawaz M, Hussain R, Rasheed L. Synthesis, in vitro α-amylase, α-glucosidase activities and molecular docking study of new benzimidazole bearing thiazolidinone derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133812] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Tan LX, Xia TQ, He QF, Tang W, Huang XJ, Song QY, Li YL, Ye WC, Wang Y, Wu ZL. Stilbenes from the leaves of Cajanus cajan and their in vitro anti-inflammatory activities. Fitoterapia 2022; 160:105229. [PMID: 35662649 DOI: 10.1016/j.fitote.2022.105229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 11/18/2022]
Abstract
Eighteen stilbenes (1-18), including six previously undescribed ones (1-6), with diverse modification patterns were isolated from the leaves of edible and medicinal plant Cajanus cajan. Among the new isolates, compounds 1-3 were initially obtained as three racemic mixtures, which were further resolved into three pairs of optically pure enantiomers, respectively, by chiral HPLC. Besides, compounds 8, 10, 11, and 18 were obtained from C. cajan for the first time. The chemical structures and absolute configurations of the new stilbenes were elucidated unambiguously on the basis of extensive spectroscopic analyses, single crystal X-ray crystallographic study, and quantum chemical electronic circular dichroism (ECD) calculations. In addition, the in vitro anti-inflammatory activities of all isolated stilbenes were evaluated. Compounds 2, 9, 10, 11, and 14 exerted moderate suppression of nitric oxide (NO) secretion in lipopolysaccharide (LPS)-induced RAW264.7 cells without exhibiting substantial cytotoxicity.
Collapse
Affiliation(s)
- Ling-Xuan Tan
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Tian-Qi Xia
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Qi-Fang He
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wei Tang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiao-Jun Huang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Qiao-Yun Song
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yao-Lan Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Ying Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Zhen-Long Wu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
50
|
Zhang S, Wang L, Yang J, Wang J, Fu L, Fu Y. New insights in the chemical profiling of major metabolites in different pigeon pea cultivars using UPLC-QqQ-MS/MS. Food Res Int 2022; 156:111131. [DOI: 10.1016/j.foodres.2022.111131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/04/2022]
|