1
|
Arora I, Mal P, Arora P, Paul A, Kumar M. GABAergic implications in anxiety and related disorders. Biochem Biophys Res Commun 2024; 724:150218. [PMID: 38865810 DOI: 10.1016/j.bbrc.2024.150218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Evidence indicates that anxiety disorders arise from an imbalance in the functioning of brain circuits that govern the modulation of emotional responses to possibly threatening stimuli. The circuits under consideration in this context include the amygdala's bottom-up activity, which signifies the existence of stimuli that may be seen as dangerous. Moreover, these circuits encompass top-down regulatory processes that originate in the prefrontal cortex, facilitating the communication of the emotional significance associated with the inputs. Diverse databases (e.g., Pubmed, ScienceDirect, Web of Science, Google Scholar) were searched for literature using a combination of different terms e.g., "anxiety", "stress", "neuroanatomy", and "neural circuits", etc. A decrease in GABAergic activity is present in both anxiety disorders and severe depression. Research on cerebral functional imaging in depressive individuals has shown reduced levels of GABA within the cortical regions. Additionally, animal studies demonstrated that a reduction in the expression of GABAA/B receptors results in a behavioral pattern resembling anxiety. The amygdala consists of inhibitory networks composed of GABAergic interneurons, responsible for modulating anxiety responses in both normal and pathological conditions. The GABAA receptor has allosteric sites (e.g., α/γ, γ/β, and α/β) which enable regulation of neuronal inhibition in the amygdala. These sites serve as molecular targets for anxiolytic medications such as benzodiazepine and barbiturates. Alterations in the levels of naturally occurring regulators of these allosteric sites, along with alterations to the composition of the GABAA receptor subunits, could potentially act as mechanisms via which the extent of neuronal inhibition is diminished in pathological anxiety disorders.
Collapse
Affiliation(s)
- Indu Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Mal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anushka Paul
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
2
|
Arning E, Wasek B, Bottiglieri T. Quantitation of γ-Aminobutyric Acid in Cerebrospinal Fluid Using Liquid Chromatography-Electrospray-Tandem Mass Spectrometry. Methods Mol Biol 2022; 2546:165-174. [PMID: 36127587 DOI: 10.1007/978-1-0716-2565-1_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
We describe a simple stable isotope dilution method for accurate and precise measurement of γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter in human cerebrospinal fluid (CSF) as a clinical diagnostic test. Determination of CSF GABA has clinical utility in diagnosing inborn errors of GABA metabolism, specifically for deficiencies of GABA-transaminase and succinic semialdehyde dehydrogenase. Quantitation of CSF GABA is performed utilizing high-performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Analysis of free and total GABA requires two individual sample preparations and mass spectrometry analyses. Free GABA in CSF is determined by a 1:2 dilution with internal standard (GABA-D2) and injected directly onto the HPLC-ESI-MS/MS system. Quantitation of total GABA in CSF requires additional sample preparation in order to hydrolyze all the conjugated GABA in the sample to free GABA. Complete hydrolysis is performed incubating sample at >100 °C in acidic conditions (hydrochloric acid) for 4 h. The sample is then further diluted 1:10 with a 90% acetonitrile/0.1% formic acid solution and injected into the HPLC-ESI-MS/MS system. Each assay is quantified using a five-point standard curve and is linear from 6 to 1000 nM and 0.63 to 80 μM for free and total GABA, respectively.
Collapse
Affiliation(s)
- Erland Arning
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA.
| | - Brandi Wasek
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| |
Collapse
|
3
|
Gondim-Silva KR, da-Silva JM, de Souza LAV, Guedes RCA. Neonatal pyridoxine administration long lastingly accelerates cortical spreading depression in male rats, without affecting anxiety-like behavior. Nutr Neurosci 2021; 24:363-370. [PMID: 31221041 DOI: 10.1080/1028415x.2019.1632570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objectives: Pyridoxine plays a key role in the development of the human nervous system. Several reports suggest that administration of high doses of pyridoxine can be helpful in improving disturbances such as anxiety and pyridoxine-dependent epilepsy, although it has also been associated with a proconvulsive action. In this study, we investigated in developing rats the effects of repeated administration of various doses of pyridoxine on anxiety-like behavior and the brain excitability-related phenomenon known as cortical spreading depression (CSD).Methods: From postnatal day (P) 7 to P27, Wistar rat pups received per gavage pyridoxine hydrochloride (1 mg/kg/day, or 5 mg/kg/day, or 10 mg/kg/day). On P60-70, the animals were tested in the elevated plus maze (EPM) to evaluate anxiety-like behavior. On P71-80, we recorded the CSD (4-hour recording session).Results: Compared with naïve (gavage-free) and saline-treated controls, pyridoxine-treated groups displayed a significant (p < 0.001) increase in CSD propagation velocity and amplitude of the CSD negative direct-current (DC)-shift, and a decrease in the CSD DC-shift duration. These effects were long-lasting and dose-dependent. In the EPM, no significant pyridoxine-associated effect was observed.Discussion: Our data demonstrate a novel action of pyridoxine on an electrical activity-related phenomenon (CSD) in the developing brain, confirming the hypothesis that the chronic treatment with pyridoxine early in life modulates CSD. Data on CSD propagation suggest that pyridoxine at a high dose might act as a prooxidant agent in the developing brain, a hypothesis that deserves further testing.
Collapse
Affiliation(s)
| | - Joselma M da-Silva
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Laís A V de Souza
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Rubem C A Guedes
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
4
|
Coughlin CR, Tseng LA, Abdenur JE, Ashmore C, Boemer F, Bok LA, Boyer M, Buhas D, Clayton PT, Das A, Dekker H, Evangeliou A, Feillet F, Footitt EJ, Gospe SM, Hartmann H, Kara M, Kristensen E, Lee J, Lilje R, Longo N, Lunsing RJ, Mills P, Papadopoulou MT, Pearl PL, Piazzon F, Plecko B, Saini AG, Santra S, Sjarif DR, Stockler-Ipsiroglu S, Striano P, Van Hove JLK, Verhoeven-Duif NM, Wijburg FA, Zuberi SM, van Karnebeek CDM. Consensus guidelines for the diagnosis and management of pyridoxine-dependent epilepsy due to α-aminoadipic semialdehyde dehydrogenase deficiency. J Inherit Metab Dis 2021; 44:178-192. [PMID: 33200442 DOI: 10.1002/jimd.12332] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/21/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022]
Abstract
Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an autosomal recessive condition due to a deficiency of α-aminoadipic semialdehyde dehydrogenase, which is a key enzyme in lysine oxidation. PDE-ALDH7A1 is a developmental and epileptic encephalopathy that was historically and empirically treated with pharmacologic doses of pyridoxine. Despite adequate seizure control, most patients with PDE-ALDH7A1 were reported to have developmental delay and intellectual disability. To improve outcome, a lysine-restricted diet and competitive inhibition of lysine transport through the use of pharmacologic doses of arginine have been recommended as an adjunct therapy. These lysine-reduction therapies have resulted in improved biochemical parameters and cognitive development in many but not all patients. The goal of these consensus guidelines is to re-evaluate and update the two previously published recommendations for diagnosis, treatment, and follow-up of patients with PDE-ALDH7A1. Members of the International PDE Consortium initiated evidence and consensus-based process to review previous recommendations, new research findings, and relevant clinical aspects of PDE-ALDH7A1. The guideline development group included pediatric neurologists, biochemical geneticists, clinical geneticists, laboratory scientists, and metabolic dieticians representing 29 institutions from 16 countries. Consensus guidelines for the diagnosis and management of patients with PDE-ALDH7A1 are provided.
Collapse
Affiliation(s)
- Curtis R Coughlin
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura A Tseng
- Department of Pediatrics Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Jose E Abdenur
- Division of Metabolic Disorders, CHOC Children's Hospital, Orange, California, USA
| | - Catherine Ashmore
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - François Boemer
- Department of Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, Liège, Belgium
| | - Levinus A Bok
- Department of Pediatrics and Neonatology, Máxima Medical Center, Veldhoven, The Netherlands
| | - Monica Boyer
- Division of Metabolic Disorders, CHOC Children's Hospital, Orange, California, USA
| | - Daniela Buhas
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre, Québec, Canada
| | - Peter T Clayton
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Anibh Das
- Clinic for Paediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Hanka Dekker
- VKS: Dutch Patient Organization for Metabolic Diseases, Zwolle, The Netherlands
| | - Athanasios Evangeliou
- Division of Child Neurology and Inherited Metabolic Disorders, 4th Department of Pediatrics, Aristotle University of Thessaloniki, General Hospital Papageorgiou, Thessaloniki, Greece
| | - François Feillet
- Reference Center for Inborn Errors of Metabolism, Pediatric Unit, University Hospital of Nancy, Nancy, France
- INSERM UMR S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
| | - Emma J Footitt
- Department of Metabolic Paediatrics, Great Ormond Street Hospital, London, UK
| | - Sidney M Gospe
- Division of Pediatric Neurology, Departments of Neurology and Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Hans Hartmann
- Clinic for Paediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Majdi Kara
- Department of Pediatrics, University of Tripoli, Tripoli, Libya
| | - Erle Kristensen
- National Management of Newborn Screening and Advanced Laboratory Diagnostics in Inborn Errors of Metabolism, Department of Children and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Joy Lee
- Department of Metabolic Medicine, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Rina Lilje
- Department of Children and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Nicola Longo
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Roelineke J Lunsing
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Philippa Mills
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Maria T Papadopoulou
- Division of Child Neurology and Inherited Metabolic Disorders, 4th Department of Pediatrics, Aristotle University of Thessaloniki, General Hospital Papageorgiou, Thessaloniki, Greece
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Flavia Piazzon
- Neurometabolic Clinic, Children's Institute, University of Sao Paulo, Brazil
| | - Barbara Plecko
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Arushi G Saini
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Saikat Santra
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Damayanti R Sjarif
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Sylvia Stockler-Ipsiroglu
- Division of Biochemical Genetics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS "G. Gaslini" Institute, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Johan L K Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Frits A Wijburg
- Department of Pediatrics Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children & School of Medicine, University of Glasgow, Glasgow, UK
| | - Clara D M van Karnebeek
- Department of Pediatrics Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Vossler DG, Bainbridge JL, Boggs JG, Novotny EJ, Loddenkemper T, Faught E, Amengual-Gual M, Fischer SN, Gloss DS, Olson DM, Towne AR, Naritoku D, Welty TE. Treatment of Refractory Convulsive Status Epilepticus: A Comprehensive Review by the American Epilepsy Society Treatments Committee. Epilepsy Curr 2020; 20:245-264. [PMID: 32822230 PMCID: PMC7576920 DOI: 10.1177/1535759720928269] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose: Established tonic–clonic status epilepticus (SE) does not stop in one-third
of patients when treated with an intravenous (IV) benzodiazepine bolus
followed by a loading dose of a second antiseizure medication (ASM). These
patients have refractory status epilepticus (RSE) and a high risk of
morbidity and death. For patients with convulsive refractory status
epilepticus (CRSE), we sought to determine the strength of evidence for 8
parenteral ASMs used as third-line treatment in stopping clinical CRSE. Methods: A structured literature search (MEDLINE, Embase, CENTRAL, CINAHL) was
performed to identify original studies on the treatment of CRSE in children
and adults using IV brivaracetam, ketamine, lacosamide, levetiracetam (LEV),
midazolam (MDZ), pentobarbital (PTB; and thiopental), propofol (PRO), and
valproic acid (VPA). Adrenocorticotropic hormone (ACTH), corticosteroids,
intravenous immunoglobulin (IVIg), magnesium sulfate, and pyridoxine were
added to determine the effectiveness in treating hard-to-control seizures in
special circumstances. Studies were evaluated by predefined criteria and
were classified by strength of evidence in stopping clinical CRSE (either as
the last ASM added or compared to another ASM) according to the 2017
American Academy of Neurology process. Results: No studies exist on the use of ACTH, corticosteroids, or IVIg for the
treatment of CRSE. Small series and case reports exist on the use of these
agents in the treatment of RSE of suspected immune etiology, severe
epileptic encephalopathies, and rare epilepsy syndromes. For adults with
CRSE, insufficient evidence exists on the effectiveness of brivaracetam
(level U; 4 class IV studies). For children and adults with CRSE,
insufficient evidence exists on the effectiveness of ketamine (level U; 25
class IV studies). For children and adults with CRSE, it is possible that
lacosamide is effective at stopping RSE (level C; 2 class III, 14 class IV
studies). For children with CRSE, insufficient evidence exists that LEV and
VPA are equally effective (level U, 1 class III study). For adults with
CRSE, insufficient evidence exists to support the effectiveness of LEV
(level U; 2 class IV studies). Magnesium sulfate may be effective in the
treatment of eclampsia, but there are only case reports of its use for CRSE.
For children with CRSE, insufficient evidence exists to support either that
MDZ and diazepam infusions are equally effective (level U; 1 class III
study) or that MDZ infusion and PTB are equally effective (level U; 1 class
III study). For adults with CRSE, insufficient evidence exists to support
either that MDZ infusion and PRO are equally effective (level U; 1 class III
study) or that low-dose and high-dose MDZ infusions are equally effective
(level U; 1 class III study). For children and adults with CRSE,
insufficient evidence exists to support that MDZ is effective as the last
drug added (level U; 29 class IV studies). For adults with CRSE,
insufficient evidence exists to support that PTB and PRO are equally
effective (level U; 1 class III study). For adults and children with CRSE,
insufficient evidence exists to support that PTB is effective as the last
ASM added (level U; 42 class IV studies). For CRSE, insufficient evidence
exists to support that PRO is effective as the last ASM used (level U; 26
class IV studies). No pediatric-only studies exist on the use of PRO for
CRSE, and many guidelines do not recommend its use in children aged <16
years. Pyridoxine-dependent and pyridoxine-responsive epilepsies should be
considered in children presenting between birth and age 3 years with
refractory seizures and no imaging lesion or other acquired cause of
seizures. For children with CRSE, insufficient evidence exists that VPA and
diazepam infusion are equally effective (level U, 1 class III study). No
class I to III studies have been reported in adults treated with VPA for
CRSE. In comparison, for children and adults with established convulsive SE
(ie, not RSE), after an initial benzodiazepine, it is likely that loading
doses of LEV 60 mg/kg, VPA 40 mg/kg, and fosphenytoin 20 mg PE/kg are
equally effective at stopping SE (level B, 1 class I study). Conclusions: Mostly insufficient evidence exists on the efficacy of stopping clinical CRSE
using brivaracetam, lacosamide, LEV, valproate, ketamine, MDZ, PTB, and PRO
either as the last ASM or compared to others of these drugs.
Adrenocorticotropic hormone, IVIg, corticosteroids, magnesium sulfate, and
pyridoxine have been used in special situations but have not been studied
for CRSE. For the treatment of established convulsive SE (ie, not RSE), LEV,
VPA, and fosphenytoin are likely equally effective, but whether this is also
true for CRSE is unknown. Triple-masked, randomized controlled trials are
needed to compare the effectiveness of parenteral anesthetizing and
nonanesthetizing ASMs in the treatment of CRSE.
Collapse
Affiliation(s)
| | - Jacquelyn L Bainbridge
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | | | - Edward J Novotny
- 384632University of Washington, Seattle, WA, USA.,Seattle Children's Center for Integrative Brain Research, Seattle, WA, USA
| | | | | | | | - Sarah N Fischer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - David S Gloss
- Charleston Area Medical Center, Charleston, West Virginia, VA, USA
| | | | - Alan R Towne
- 6889Virginia Commonwealth University, Richmond, VA, USA
| | | | | |
Collapse
|
6
|
Nutritional Modulation of Immune and Central Nervous System Homeostasis: The Role of Diet in Development of Neuroinflammation and Neurological Disease. Nutrients 2019; 11:nu11051076. [PMID: 31096592 PMCID: PMC6566411 DOI: 10.3390/nu11051076] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
The gut-microbiome-brain axis is now recognized as an essential part in the regulation of systemic metabolism and homeostasis. Accumulating evidence has demonstrated that dietary patterns can influence the development of metabolic alterations and inflammation through the effects of nutrients on a multitude of variables, including microbiome composition, release of microbial products, gastrointestinal signaling molecules, and neurotransmitters. These signaling molecules are, in turn, implicated in the regulation of the immune system, either promoting or inhibiting the production of pro-inflammatory cytokines and the expansion of specific leukocyte subpopulations, such as Th17 and Treg cells, which are relevant in the development of neuroinflammatory and neurodegenerative conditions. Metabolic diseases, like obesity and type 2 diabetes mellitus, are related to inadequate dietary patterns and promote variations in the aforementioned signaling pathways in patients with these conditions, which have been linked to alterations in neurological functions and mental health. Thus, maintenance of adequate dietary patterns should be an essential component of any strategy aiming to prevent neurological pathologies derived from systemic metabolic alterations. The present review summarizes current knowledge on the role of nutrition in the modulation of the immune system and its impact in the development of neuroinflammation and neurological disease.
Collapse
|
7
|
Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxid Redox Signal 2019; 30:251-294. [PMID: 29634344 PMCID: PMC6277084 DOI: 10.1089/ars.2017.7269] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/20/2022]
Abstract
Significance: Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that serves as an essential cofactor and substrate for a number of critical cellular processes involved in oxidative phosphorylation and ATP production, DNA repair, epigenetically modulated gene expression, intracellular calcium signaling, and immunological functions. NAD+ depletion may occur in response to either excessive DNA damage due to free radical or ultraviolet attack, resulting in significant poly(ADP-ribose) polymerase (PARP) activation and a high turnover and subsequent depletion of NAD+, and/or chronic immune activation and inflammatory cytokine production resulting in accelerated CD38 activity and decline in NAD+ levels. Recent studies have shown that enhancing NAD+ levels can profoundly reduce oxidative cell damage in catabolic tissue, including the brain. Therefore, promotion of intracellular NAD+ anabolism represents a promising therapeutic strategy for age-associated degenerative diseases in general, and is essential to the effective realization of multiple benefits of healthy sirtuin activity. The kynurenine pathway represents the de novo NAD+ synthesis pathway in mammalian cells. NAD+ can also be produced by the NAD+ salvage pathway. Recent Advances: In this review, we describe and discuss recent insights regarding the efficacy and benefits of the NAD+ precursors, nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN), in attenuating NAD+ decline in degenerative disease states and physiological aging. Critical Issues: Results obtained in recent years have shown that NAD+ precursors can play important protective roles in several diseases. However, in some cases, these precursors may vary in their ability to enhance NAD+ synthesis via their location in the NAD+ anabolic pathway. Increased synthesis of NAD+ promotes protective cell responses, further demonstrating that NAD+ is a regulatory molecule associated with several biochemical pathways. Future Directions: In the next few years, the refinement of personalized therapy for the use of NAD+ precursors and improved detection methodologies allowing the administration of specific NAD+ precursors in the context of patients' NAD+ levels will lead to a better understanding of the therapeutic role of NAD+ precursors in human diseases.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Jade Berg
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
| | | | - Fatemeh Khorshidi
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Anne Poljak
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
8
|
Toldo I, Bonardi CM, Bettella E, Polli R, Talenti G, Burlina A, Sartori S, Murgia A. Brain malformations associated to Aldh7a1 gene mutations: Report of a novel homozygous mutation and literature review. Eur J Paediatr Neurol 2018; 22:1042-1053. [PMID: 30005813 DOI: 10.1016/j.ejpn.2018.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND The ALDH7A1 gene is known to be responsible for autosomal recessive pyridoxine-dependent epilepsy (OMIM 266100). The phenotypic spectrum of ALDH7A1 mutations is very heterogeneous ranging from refractory epilepsy and neurodevelopmental delay, to multisystem neonatal disorder. AIM The present study aims at describing the phenotype associated with a novel homozygous ALDH7A1 mutation and the spectrum of brain malformations associated with pyridoxine-dependent epilepsy. METHODS We conducted a literature review on the Internet database Pubmed (up to November 2017) searching for ALDH7A1 mutations associated with brain malformations and brain MRI findings. RESULTS We present the case of two siblings, children of related parents. The proband presented neonatal focal seizures not responding to conventional antiepileptic drugs. Electroencephalography showed a suppression burst pattern and several multifocal ictal patterns, responsive to pyridoxine. Brain MRI was normal. Molecular analysis by targeted next-generation sequencing panel for epileptic encephalopathy disclosed a homozygous missense mutation of ALDH7A1. The same mutation was then found in a stored sample of DNA from peripheral blood of an older sister dead 3 years earlier. This girl presented a complex brain malformation diagnosed with a foetal MRI and had neonatal refractory seizures with suppression burst pattern. She died at 6 months of age. LITERATURE REVIEW The brain abnormalities most frequently reported in pyridoxine-dependent epilepsy include: agenesia/hypoplasia of the corpus callosum, not specific white matter abnormalities, large cisterna magna, ventriculomegaly, haemorrhages, cerebellum hypoplasia/dysplasia, and, more rarely, dysplasia of the brainstem and hydrocephalus. DISCUSSION AND CONCLUSIONS ALDH7A1 mutations have been associated to different brain abnormalities, documented by MRI only in few cases. The study cases expand the clinical spectrum of ALDH7A1 associated conditions, suggesting to look for ALDH7A1 mutations not only in classical phenotypes but also in patients with brain malformations, mainly if there is a response to a pyridoxine trial.
Collapse
Affiliation(s)
- Irene Toldo
- Department of Woman's and Child's Health, University Hospital of Padua, Italy.
| | | | - Elisa Bettella
- Department of Woman's and Child's Health, University Hospital of Padua, Italy.
| | - Roberta Polli
- Department of Woman's and Child's Health, University Hospital of Padua, Italy.
| | - Giacomo Talenti
- Department of Neurosciences, University Hospital of Padua, Italy.
| | - Alberto Burlina
- Department of Woman's and Child's Health, University Hospital of Padua, Italy.
| | - Stefano Sartori
- Department of Woman's and Child's Health, University Hospital of Padua, Italy.
| | | |
Collapse
|
9
|
Pena IA, Roussel Y, Daniel K, Mongeon K, Johnstone D, Weinschutz Mendes H, Bosma M, Saxena V, Lepage N, Chakraborty P, Dyment DA, van Karnebeek CDM, Verhoeven-Duif N, Bui TV, Boycott KM, Ekker M, MacKenzie A. Pyridoxine-Dependent Epilepsy in Zebrafish Caused by Aldh7a1 Deficiency. Genetics 2017; 207:1501-1518. [PMID: 29061647 PMCID: PMC5714462 DOI: 10.1534/genetics.117.300137] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/04/2017] [Indexed: 11/25/2022] Open
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare disease characterized by mutations in the lysine degradation gene ALDH7A1 leading to recurrent neonatal seizures, which are uniquely alleviated by high doses of pyridoxine or pyridoxal 5'-phosphate (vitamin B6 vitamers). Despite treatment, neurodevelopmental disabilities are still observed in most PDE patients underlining the need for adjunct therapies. Over 60 years after the initial description of PDE, we report the first animal model for this disease: an aldh7a1-null zebrafish (Danio rerio) displaying deficient lysine metabolism and spontaneous and recurrent seizures in the larval stage (10 days postfertilization). Epileptiform electrographic activity was observed uniquely in mutants as a series of population bursts in tectal recordings. Remarkably, as is the case in human PDE, the seizures show an almost immediate sensitivity to pyridoxine and pyridoxal 5'-phosphate, with a resulting extension of the life span. Lysine supplementation aggravates the phenotype, inducing earlier seizure onset and death. By using mass spectrometry techniques, we further explored the metabolic effect of aldh7a1 knockout. Impaired lysine degradation with accumulation of PDE biomarkers, B6 deficiency, and low γ-aminobutyric acid levels were observed in the aldh7a1-/- larvae, which may play a significant role in the seizure phenotype and PDE pathogenesis. This novel model provides valuable insights into PDE pathophysiology; further research may offer new opportunities for drug discovery to control seizure activity and improve neurodevelopmental outcomes for PDE.
Collapse
Affiliation(s)
- Izabella A Pena
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Yann Roussel
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Kate Daniel
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - Kevin Mongeon
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
| | - Devon Johnstone
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
| | | | - Marjolein Bosma
- Departments of Pediatrics and Clinical Genetics, Academic Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Vishal Saxena
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Nathalie Lepage
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - Pranesh Chakraborty
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
| | - Clara D M van Karnebeek
- Departments of Pediatrics and Clinical Genetics, Academic Medical Centre, 1105 AZ Amsterdam, The Netherlands
- Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver V5Z 4H4, British Columbia, Canada
| | - Nanda Verhoeven-Duif
- Department of Genetics, Center for Molecular Medicine, University Medical Center (UMC), 3584 EA Utrecht, The Netherlands
| | - Tuan Vu Bui
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Alex MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
| |
Collapse
|
10
|
Ramos RJ, Pras-Raves ML, Gerrits J, van der Ham M, Willemsen M, Prinsen H, Burgering B, Jans JJ, Verhoeven-Duif NM. Vitamin B6 is essential for serine de novo biosynthesis. J Inherit Metab Dis 2017; 40:883-891. [PMID: 28801717 DOI: 10.1007/s10545-017-0061-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 11/30/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the metabolically active form of vitamin B6, plays an essential role in brain metabolism as a cofactor in numerous enzyme reactions. PLP deficiency in brain, either genetic or acquired, results in severe drug-resistant seizures that respond to vitamin B6 supplementation. The pathogenesis of vitamin B6 deficiency is largely unknown. To shed more light on the metabolic consequences of vitamin B6 deficiency in brain, we performed untargeted metabolomics in vitamin B6-deprived Neuro-2a cells. Significant alterations were observed in a range of metabolites. The most surprising observation was a decrease of serine and glycine, two amino acids that are known to be elevated in the plasma of vitamin B6 deficient patients. To investigate the cause of the low concentrations of serine and glycine, a metabolic flux analysis on serine biosynthesis was performed. The metabolic flux results showed that the de novo synthesis of serine was significantly reduced in vitamin B6-deprived cells. In addition, formation of glycine and 5-methyltetrahydrofolate was decreased. Thus, vitamin B6 is essential for serine de novo biosynthesis in neuronal cells, and serine de novo synthesis is critical to maintain intracellular serine and glycine. These findings suggest that serine and glycine concentrations in brain may be deficient in patients with vitamin B6 responsive epilepsy. The low intracellular 5-mTHF concentrations observed in vitro may explain the favourable but so far unexplained response of some patients with pyridoxine-dependent epilepsy to folinic acid supplementation.
Collapse
Affiliation(s)
- Rúben J Ramos
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Mia L Pras-Raves
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Johan Gerrits
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Maria van der Ham
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Marcel Willemsen
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Hubertus Prinsen
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Boudewijn Burgering
- Department of Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| | - Judith J Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands.
| | - Nanda M Verhoeven-Duif
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| |
Collapse
|
11
|
Pena IA, MacKenzie A, Van Karnebeek CDM. Current knowledge for pyridoxine-dependent epilepsy: a 2016 update. Expert Rev Endocrinol Metab 2017; 12:5-20. [PMID: 30058881 DOI: 10.1080/17446651.2017.1273107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare genetic condition characterized by intractable and recurrent neonatal seizures that are uniquely alleviated by high doses of pyridoxine (vitamin B6). This recessive disease is caused by mutations in ALDH7A1, a gene encoding Antiquitin, an enzyme central to lysine degradation. This results in the pathogenic accumulation of the lysine intermediates Aminoadipate Semialdehyde (AASA) and its cyclic equilibrium form Piperideine-6-carboxylate (P6C) in body fluids; P6C reacts with pyridoxal-5'-phosphate (PLP, the active form of vitamin B6) causing its inactivation and leading to pyridoxine-dependent seizures. While PDE is responsive to pharmacological dosages of pyridoxine, despite lifelong supplementation, neurodevelopment delays are observed in >75% of PDE cases. Thus, adjunct treatment strategies are emerging to both improve seizure control and moderate the delays in cognition. These adjunctive therapies, lysine restriction and arginine supplementation, separately or in combination (with pyridoxine thus termed 'triple therapy'), have shown promising results and are recommended in all PDE patients. Other new therapeutic strategies currently in preclinical phase of study include antisense therapy and substrate reduction therapy. We present here a comprehensive review of current treatment options as well as PDE phenotype, differential diagnosis, current management and views upon the future of PDE research.
Collapse
Affiliation(s)
- Izabella Agostinho Pena
- a Children's Hospital of Eastern Ontario (CHEO) Research Institute , Ottawa , ON , Canada
- b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , ON , Canada
| | - Alex MacKenzie
- a Children's Hospital of Eastern Ontario (CHEO) Research Institute , Ottawa , ON , Canada
- b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , ON , Canada
| | - Clara D M Van Karnebeek
- c Department of Pediatrics, BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics , University of British Columbia , Vancouver BC , Canada
| |
Collapse
|
12
|
Quantification of γ-Aminobutyric Acid in Cerebrospinal Fluid Using Liquid Chromatography-Electrospray Tandem Mass Spectrometry. Methods Mol Biol 2016; 1378:109-18. [PMID: 26602123 DOI: 10.1007/978-1-4939-3182-8_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We describe a simple stable isotope dilution method for accurate and precise measurement of γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter in human cerebrospinal fluid (CSF) as a clinical diagnostic test. Determination of GABA in CSF (50 μL) was performed utilizing high performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Analysis of free and total GABA requires two individual sample preparations and mass spectrometry analyses. Free GABA in CSF is determined by a 1:2 dilution with internal standard (GABA-D2) and injected directly onto the HPLC-ESI-MS/MS system. Determination of total GABA in CSF requires additional sample preparation in order to hydrolyze all the bound GABA in the sample to the free form. This requires hydrolyzing the sample by boiling in acidic conditions (hydrochloric acid) for 4 h. The sample is then further diluted 1:10 with a 90 % acetonitrile/0.1 % formic acid solution and injected into the HPLC-ESI-MS/MS system. Each assay is quantified using a five-point standard curve and is linear from 6 nM to 1000 nM and 0.63 μM to 80 μM for free and total GABA, respectively.
Collapse
|
13
|
Hudec J, Kobida Ľ, Čanigová M, Lacko-Bartošová M, Ložek O, Chlebo P, Mrázová J, Ducsay L, Bystrická J. Production of γ-aminobutyric acid by microorganisms from different food sources. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1190-1198. [PMID: 25043158 DOI: 10.1002/jsfa.6807] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/17/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND γ-Aminobutyric acid (GABA) is a potentially bioactive component of foods and pharmaceuticals. The aim of this study was screen lactic acid bacteria belonging to the Czech Collection of Microorganisms, and microorganisms (yeast and bacteria) from 10 different food sources for GABA production by fermentation in broth or plant and animal products. RESULTS Under an aerobic atmosphere, very low selectivity of GABA production (from 0.8% to 1.3%) was obtained using yeast and filamentous fungi, while higher selectivity (from 6.5% to 21.0%) was obtained with bacteria. The use of anaerobic conditions, combined with the addition of coenzyme (pyridoxal-5-phosphate) and salts (CaCl2 , NaCl), led to the detection of a low concentration of GABA precursor. Simultaneously, using an optimal temperature of 33 °C, a pH of 6.5 and bacteria from banana (Pseudomonadaceae and Enterobacteriaceae families), surprisingly, a high selectivity of GABA was obtained. A positive impact of fenugreek sprouts on the proteolytic process and GABA production from plant material as a source of GABA precursor was identified. CONCLUSIONS Lactic acid bacteria for the production of new plant and animal GABA-rich products from different natural sources containing GABA precursor can be used.
Collapse
Affiliation(s)
- Jozef Hudec
- Department of Agrochemistry and Plant Nutrition, Slovak Agricultural University, Nitra, Slovakia
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pyridoxine Dependent Epilepsy: Enduring Mystery and Continuing Challenges. Can J Neurol Sci 2012; 39:411-2. [DOI: 10.1017/s0317167100013901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Stockler S, Plecko B, Gospe SM, Coulter-Mackie M, Connolly M, van Karnebeek C, Mercimek-Mahmutoglu S, Hartmann H, Scharer G, Struijs E, Tein I, Jakobs C, Clayton P, Van Hove JLK. Pyridoxine dependent epilepsy and antiquitin deficiency: clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol Genet Metab 2011; 104:48-60. [PMID: 21704546 DOI: 10.1016/j.ymgme.2011.05.014] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 11/18/2022]
Abstract
Antiquitin (ATQ) deficiency is the main cause of pyridoxine dependent epilepsy characterized by early onset epileptic encephalopathy responsive to large dosages of pyridoxine. Despite seizure control most patients have intellectual disability. Folinic acid responsive seizures (FARS) are genetically identical to ATQ deficiency. ATQ functions as an aldehyde dehydrogenase (ALDH7A1) in the lysine degradation pathway. Its deficiency results in accumulation of α-aminoadipic semialdehyde (AASA), piperideine-6-carboxylate (P6C) and pipecolic acid, which serve as diagnostic markers in urine, plasma, and CSF. To interrupt seizures a dose of 100 mg of pyridoxine-HCl is given intravenously, or orally/enterally with 30 mg/kg/day. First administration may result in respiratory arrest in responders, and thus treatment should be performed with support of respiratory management. To make sure that late and masked response is not missed, treatment with oral/enteral pyridoxine should be continued until ATQ deficiency is excluded by negative biochemical or genetic testing. Long-term treatment dosages vary between 15 and 30 mg/kg/day in infants or up to 200 mg/day in neonates, and 500 mg/day in adults. Oral or enteral pyridoxal phosphate (PLP), up to 30 mg/kg/day can be given alternatively. Prenatal treatment with maternal pyridoxine supplementation possibly improves outcome. PDE is an organic aciduria caused by a deficiency in the catabolic breakdown of lysine. A lysine restricted diet might address the potential toxicity of accumulating αAASA, P6C and pipecolic acid. A multicenter study on long term outcomes is needed to document potential benefits of this additional treatment. The differential diagnosis of pyridoxine or PLP responsive seizure disorders includes PLP-responsive epileptic encephalopathy due to PNPO deficiency, neonatal/infantile hypophosphatasia (TNSALP deficiency), familial hyperphosphatasia (PIGV deficiency), as well as yet unidentified conditions and nutritional vitamin B6 deficiency. Commencing treatment with PLP will not delay treatment in patients with pyridox(am)ine phosphate oxidase (PNPO) deficiency who are responsive to PLP only.
Collapse
Affiliation(s)
- Sylvia Stockler
- Division of Biochemical Diseases, British Columbia Children's Hospital, University of British Columbia, 4480 Oak Street, Vancouver BC, Canada V6H 3V4.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bok LA, Maurits NM, Willemsen MA, Jakobs C, Teune LK, Poll-The BT, De Coo IF, Toet MC, Hagebeuk EE, Brouwer OF, Van Der Hoeven JH, Sival DA. The EEG response to pyridoxine-IV neither identifies nor excludes pyridoxine-dependent epilepsy. Epilepsia 2010; 51:2406-11. [DOI: 10.1111/j.1528-1167.2010.02747.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Mills PB, Footitt EJ, Mills KA, Tuschl K, Aylett S, Varadkar S, Hemingway C, Marlow N, Rennie J, Baxter P, Dulac O, Nabbout R, Craigen WJ, Schmitt B, Feillet F, Christensen E, De Lonlay P, Pike MG, Hughes MI, Struys EA, Jakobs C, Zuberi SM, Clayton PT. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). ACTA ACUST UNITED AC 2010; 133:2148-59. [PMID: 20554659 PMCID: PMC2892945 DOI: 10.1093/brain/awq143] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pyridoxine-dependent epilepsy was recently shown to be due to mutations in the ALDH7A1 gene, which encodes antiquitin, an enzyme that catalyses the nicotinamide adenine dinucleotide-dependent dehydrogenation of l-α-aminoadipic semialdehyde/l-Δ1-piperideine 6-carboxylate. However, whilst this is a highly treatable disorder, there is general uncertainty about when to consider this diagnosis and how to test for it. This study aimed to evaluate the use of measurement of urine l-α-aminoadipic semialdehyde/creatinine ratio and mutation analysis of ALDH7A1 (antiquitin) in investigation of patients with suspected or clinically proven pyridoxine-dependent epilepsy and to characterize further the phenotypic spectrum of antiquitin deficiency. Urinary l-α-aminoadipic semialdehyde concentration was determined by liquid chromatography tandem mass spectrometry. When this was above the normal range, DNA sequencing of the ALDH7A1 gene was performed. Clinicians were asked to complete questionnaires on clinical, biochemical, magnetic resonance imaging and electroencephalography features of patients. The clinical spectrum of antiquitin deficiency extended from ventriculomegaly detected on foetal ultrasound, through abnormal foetal movements and a multisystem neonatal disorder, to the onset of seizures and autistic features after the first year of life. Our relatively large series suggested that clinical diagnosis of pyridoxine dependent epilepsy can be challenging because: (i) there may be some response to antiepileptic drugs; (ii) in infants with multisystem pathology, the response to pyridoxine may not be instant and obvious; and (iii) structural brain abnormalities may co-exist and be considered sufficient cause of epilepsy, whereas the fits may be a consequence of antiquitin deficiency and are then responsive to pyridoxine. These findings support the use of biochemical and DNA tests for antiquitin deficiency and a clinical trial of pyridoxine in infants and children with epilepsy across a broad range of clinical scenarios.
Collapse
Affiliation(s)
- Philippa B Mills
- Institute of Child Health, University College London with Great Ormond Street Hospital for Children, National Health Service Trust, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kanno J, Kure S, Narisawa A, Kamada F, Takayanagi M, Yamamoto K, Hoshino H, Goto T, Takahashi T, Haginoya K, Tsuchiya S, Baumeister FAM, Hasegawa Y, Aoki Y, Yamaguchi S, Matsubara Y. Allelic and non-allelic heterogeneities in pyridoxine dependent seizures revealed by ALDH7A1 mutational analysis. Mol Genet Metab 2007; 91:384-9. [PMID: 17433748 DOI: 10.1016/j.ymgme.2007.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 02/15/2007] [Indexed: 11/24/2022]
Abstract
Pyridoxine dependent seizure (PDS) is a disorder of neonates or infants with autosomal recessive inheritance characterized by seizures, which responds to pharmacological dose of pyridoxine. Recently, mutations have been identified in the ALDH7A1 gene in Caucasian families with PDS. To elucidate further the genetic background of PDS, we screened for ALDH7A1 mutations in five PDS families (patients 1-5) that included four Orientals. Diagnosis as having PDS was confirmed by pyridoxine-withdrawal test. Exon sequencing analysis of patients 1-4 revealed eight ALDH7A1 mutations in compound heterozygous forms: five missense mutations, one nonsense mutation, one point mutation at the splicing donor site in intron 1, and a 1937-bp genomic deletion. The deletion included the entire exon 17, which was flanked by two Alu elements in introns 16 and 17. None of the mutations was found in 100 control chromosomes. In patient 5, no mutation was found by the exon sequencing analysis. Furthermore, expression level or nucleotide sequences of ALDH7A1 mRNA in lymphoblasts were normal. Plasma pipecolic acid concentration was not elevated in patient 5. These observations suggest that ALDH7A1 mutation is unlikely to be responsible for patient 5. Abnormal metabolism of GABA/glutamate in brain has long been suggested as the underlying pathophysiology of PDS. CSF glutamate concentration was elevated during the off-pyridoxine period in patient 3, but not in patient 2 or 5. These results suggest allelic and non-allelic heterogeneities of PDS, and that the CSF glutamate elevation does not directly correlate with the presence of ALDH7A1 mutations.
Collapse
Affiliation(s)
- Junko Kanno
- Department of Medical Genetics, Tohoku University School of Medicine, 1-1 Seiryomachi, Aobaku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Teune LK, vd Hoeven JH, Maurits NM, Bos AF, Alffenaar JWC, Reijngoud DJ, Brouwer OF, Sival DA. Pyridoxine induces non-specific EEG alterations in infants with therapy resistant seizures. Seizure 2007; 16:459-64. [PMID: 17408982 DOI: 10.1016/j.seizure.2007.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Revised: 12/21/2006] [Accepted: 02/20/2007] [Indexed: 10/23/2022] Open
Abstract
PURPOSE In infants with frequent therapy resistant seizures (TRS-infants), clinical detection of pyridoxine-dependency (PD) or -responsiveness (PR) occurs by empirical intravenous (IV) pyridoxine administration during recording of the EEG. However, in undiagnosed TRS-infants it is still unclear to what extent EEG alterations by pyridoxine-IV are attributable to PD/PR or to non-specific responses. Before EEG alterations by pyridoxine-IV can be ascribed to PD/PR, these non-specific responses should be excluded first. METHODS In 10 TRS-infants under 1 year of age, we determined the EEG effect by pyridoxine-IV on the EEG-recording. RESULTS After pyridoxine-IV administration, our data indicate declined (10-15%; p<0.05) EEG-amplitudes and total power (magnitude/frequency-band) at frontal, central and centro-temporal electrodes. CONCLUSION In TRS-infants, pyridoxine-IV affects EEG-amplitude and -total power in a non-specific way, which does not identify PD/PR.
Collapse
Affiliation(s)
- L K Teune
- Department of Neurology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Walter FG, Chase PB, Fernandez MC, Cameron D, Roe DJ, Wolfson M. Pyridoxine does not prevent hyperbaric oxygen-induced seizures in rats. J Emerg Med 2006; 31:135-8. [PMID: 17044573 DOI: 10.1016/j.jemermed.2005.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Normobaric supplemental oxygen can prolong seizures not caused by hyperbaric oxygen therapy. In addition, hyperbaric oxygen therapy can cause seizures. The mechanism of hyperbaric oxygen-induced seizures is unknown. We hypothesized that pretreatment with pyridoxine may delay the onset of hyperbaric oxygen-induced seizures, recognizing that pyridoxine is already an antidote for some epileptogenic poisons such as isoniazid and monomethylhydrazine. Therefore, rats were pretreated with intraperitoneal injections of pyridoxine at 48, 24, and 2 h before undergoing hyperbaric oxygen (HBO) treatment at 3 atmospheres absolute with 100% oxygen and were compared to a control group of HBO-treated rats for time to onset of seizures. There was no difference in onset of seizure time between the pyridoxine-treated group of rats and the control rats. Supplemental pyridoxine pretreatment did not alter the time to onset of seizures during HBO treatment in this study.
Collapse
Affiliation(s)
- Frank G Walter
- Division of Medical Toxicology, Department of Emergency Medicine, University of Arizona, College of Medicine, Tucson, Arizona, 85724-5057, USA
| | | | | | | | | | | |
Collapse
|
21
|
Synaptic inhibition of smooth muscles of the human colon: Effects of vitamin B6 and its derivatives. NEUROPHYSIOLOGY+ 2006. [DOI: 10.1007/s11062-006-0049-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Lu MJ, Chiu TC, Chang PL, Ho HT, Chang HT. Determination of glycine, glutamine, glutamate, and γ-aminobutyric acid in cerebrospinal fluids by capillary electrophoresis with light-emitting diode-induced fluorescence detection. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2005.02.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Ellenberger C, Mevissen M, Doherr M, Scholtysik G, Jaggy A. Inhibitory and excitatory neurotransmitters in the cerebrospinal fluid of epileptic dogs. Am J Vet Res 2004; 65:1108-13. [PMID: 15334845 DOI: 10.2460/ajvr.2004.65.1108] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine concentrations of excitatory and inhibitory amino acids in CSF of a large number of dogs with idiopathic epilepsy or genetic epilepsy and to evaluate changes in CSF amino acid concentration with regard to drug treatment and sex. ANIMALS 35 Labrador Retrievers with genetic epilepsy (20 male and 15 female), 94 non-Labrador Retrievers with idiopathic epilepsy (71 male and 23 female), and 20 control dogs (10 male and 10 female). PROCEDURE Collection of CSF was performed > 72 hours after the occurrence of seizures. Cerebrospinal fluid concentrations of gamma-aminobutyric acid (GABA), glutamate (GLU), aspartate (ASP), serine, and glycine were determined by use of high performance liquid chromatography with electrochemical detection. RESULTS CSF concentrations of GABA and GLU were significantly lower in Labrador Retrievers with genetic epilepsy (LR-group dogs) than in control-group dogs or in non-Labrador Retrievers with idiopathic epilepsy (non-LR-group dogs). The GLU-to-GABA ratio was significantly higher in LR-group dogs than in non-LR-group dogs. CSF concentrations of GLU and ASP were significantly lower when all dogs with epilepsy (non-LR- and LR-group dogs combined) were compared with control-group dogs. CONCLUSIONS AND CLINICAL RELEVANCE A decrease in CSF concentrations of GABA appears to play a role in the pathogenesis of genetically determined epilepsy in Labrador Retrievers. However, this decrease in CSF concentrations of GABA may also be a consequence of seizure activity. The GLU-to-GABA ratio may prove to be a useful indicator of genetic epilepsy in Labrador Retrievers.
Collapse
Affiliation(s)
- Claudia Ellenberger
- Division of Clinical Neurology, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, University of Bern, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Abstract
Non-Asian individuals with Down syndrome are much more likely to develop epileptic seizure disorders than individuals without Down syndrome. Examination of nutrient and metabolite levels in patients with these two seemingly disparate disorders reveals numerous similarities. Compared to individuals without these disorders, individuals with Down syndrome and individuals with seizures may have lower levels of vitamin A, vitamin B1, folate, vitamin B12, vitamin C, magnesium, manganese, selenium, zinc, carnitine, carnosine, choline, and possibly serine. Excesses of copper, cysteine, phenylalanine, and superoxide dismutase are also sometimes encountered in both disorders. In addition to common nutritional lower levels and excesses, disorders of metabolism involving vitamin B6, vitamin D, calcium, and tryptophan may play a common role. This paper hypothesizes that nutritional factors may account for the high joint occurrence of these conditions. Further examination of these data may provide insights into nutritional, metabolic and pharmacological treatments for both conditions.
Collapse
Affiliation(s)
- R J Thiel
- Technical Research Department, First National University, 2 Forrest Road, Fort Oglethorpe, GA 30742, USA.
| | | |
Collapse
|
25
|
Alkan A, Kutlu R, Aslan M, Sigirci A, Orkan I, Yakinci C. Pyridoxine-dependent seizures: magnetic resonance spectroscopy findings. J Child Neurol 2004; 19:75-8. [PMID: 15032392 DOI: 10.1177/08830738040190010712] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pyridoxine-dependent seizures are an extremely rare genetic disorder. Early diagnosis and treatment are important for the prevention of permanent brain damage. Elevated levels of glutamate and decreased levels of gamma-aminobutyric acid (GABA) in the frontal and parietal cortices are among the characteristic features of this disorder. These metabolic abnormalities eventually lead to seizures and neuronal loss. In this case report, we present magnetic resonance spectroscopy findings of a 9-year-old girl with pyridoxine-dependent seizures with mental retardation. The N-acetylaspartate-to-creatine ratio was found to be decreased in the frontal and parieto-occipital cortices, which could indicate neuronal loss. Magnetic resonance spectroscopy could be a useful tool in the neuroimaging evaluation for assessment of parenchymal changes despite a normal-appearing brain magnetic resonance image in patients with pyridoxine-dependent seizures.
Collapse
Affiliation(s)
- Alpay Alkan
- Department of Radiology, Turgut Ozal Medical Center, Inonu University School of Medicine, Malatya, Turkey.
| | | | | | | | | | | |
Collapse
|
26
|
Sung JH, Jeong JH, Kim JS, Choi TS, Park JH, Kang HY, Kim YS, Kim DS, Sohn UD. The influences of extremely low frequency magnetic fields on drug-induced convulsion in mouse. Arch Pharm Res 2003; 26:487-92. [PMID: 12877560 DOI: 10.1007/bf02976868] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study investigated the effects of extremely low frequency magnetic fields (ELF-MFs) on the sensitivity of seizure response to bicuculline, picrotoxin and NMDA in mice. The mice were exposed to either a sham or 20 G ELF-MFs for 24 hours. Convulsants were then administered i.p. at various doses. The seizure induction time and duration were measured and lethal dose (LD50) and convulsant dose (CD50) of the clonic and tonic convulsion were calculated. The analysis of glutamate, glycine, taurine and GABA of mouse brain was accomplished by HPLC. The mice exposed to ELF-MFs showed moderately higher CD50, LD50 and onset time on the bicuculline-induced seizure. However, the ELF-MFs did not influence them in the NMDA and picrotoxin-induced seizures. After the exposure to MFs exposure, the glutamate level was increased and GABA was decreased significantly in NMDA and picrotoxin-induced seizure. The level of glutamate and GABA were not changed by MFs in bicuculline-induced seizure. These results suggest that ELF-MFs may alter the convulsion susceptibility through GABAergic mechanism with the involvement of the level of glutamate and GABA.
Collapse
Affiliation(s)
- Ji Hyun Sung
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mueller S, Wieser H. Reply to Letter to the Editor. Brain Res Bull 2002. [DOI: 10.1016/s0361-9230(02)00876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Ames BN, Elson-Schwab I, Silver EA. High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increased K(m)): relevance to genetic disease and polymorphisms. Am J Clin Nutr 2002; 75:616-58. [PMID: 11916749 DOI: 10.1093/ajcn/75.4.616] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
As many as one-third of mutations in a gene result in the corresponding enzyme having an increased Michaelis constant, or K(m), (decreased binding affinity) for a coenzyme, resulting in a lower rate of reaction. About 50 human genetic dis-eases due to defective enzymes can be remedied or ameliorated by the administration of high doses of the vitamin component of the corresponding coenzyme, which at least partially restores enzymatic activity. Several single-nucleotide polymorphisms, in which the variant amino acid reduces coenzyme binding and thus enzymatic activity, are likely to be remediable by raising cellular concentrations of the cofactor through high-dose vitamin therapy. Some examples include the alanine-to-valine substitution at codon 222 (Ala222-->Val) [DNA: C-to-T substitution at nucleo-tide 677 (677C-->T)] in methylenetetrahydrofolate reductase (NADPH) and the cofactor FAD (in relation to cardiovascular disease, migraines, and rages), the Pro187-->Ser (DNA: 609C-->T) mutation in NAD(P):quinone oxidoreductase 1 [NAD(P)H dehy-drogenase (quinone)] and FAD (in relation to cancer), the Ala44-->Gly (DNA: 131C-->G) mutation in glucose-6-phosphate 1-dehydrogenase and NADP (in relation to favism and hemolytic anemia), and the Glu487-->Lys mutation (present in one-half of Asians) in aldehyde dehydrogenase (NAD + ) and NAD (in relation to alcohol intolerance, Alzheimer disease, and cancer).
Collapse
Affiliation(s)
- Bruce N Ames
- Department of Molecular and Cellular Biology, University of California, Berkeley, USA.
| | | | | |
Collapse
|
29
|
Abstract
Pyridoxine-dependent seizures, although a rare clinical entity, have been recognized as an etiology of intractable seizures in neonates and infants for more than 45 years. Recent research has focused on the molecular and neurochemical aspects of this disorder, as well as the optimal treatment of the condition. This review discusses the clinical features and management of patients with pyridoxine-dependent seizures together with a new hypothesis suggesting that an abnormality of pyridoxine transport may underlie the pathophysiology of this autosomal-recessive disorder.
Collapse
Affiliation(s)
- Sidney M Gospe
- Division of Pediatric Neurology, Department of Neurology, University of Washington, and Children's Hospital and Regional Medical Center, Seattle, WA 98105, USA
| |
Collapse
|