1
|
Mechin V, Asproni P, Teruel E, Boutry M, Cozzi A, Pageat P. Does the Farming Method Influence the Porcine Vomeronasal Organ Condition? A Histological Study. Animals (Basel) 2024; 14:2105. [PMID: 39061568 PMCID: PMC11273401 DOI: 10.3390/ani14142105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The vomeronasal organ (VNO) plays a key role in mammals, since it detects pheromones thus enabling social interactions between congeners. VNO inflammatory changes have been shown to severely impact animal life, leading to impaired social interactions in groups, such as in pigs. Environmental air is known to be strongly modified in farms, and it is suspected to be one of the causes of this alteration. This study aimed to compare via histology the VNOs of pigs housed in intensive conditions (n = 38) to those of pigs housed in free-range farming conditions (n = 35). VNO sections were stained in hematoxylin and eosin to assess the presence of nonsensory and sensory epithelium alterations and collagenolysis. The nonsensory epithelium was significantly more inflamed in animals in free-range farming conditions than those in intensive conditions (p < 0.0001) and was more strongly affected by signs of collagenolysis (p < 0.0001). The sensory epithelium seemed to be less altered by the different environmental conditions (p = 0.7267). These results suggest that species-typical pig behaviors, such as digging and rooting for food, could facilitate the presence of microparticles in the oral cavity and their entrance into the vomeronasal canals, leading to changes to the VNO.
Collapse
Affiliation(s)
- Violaine Mechin
- Tissue Biology and Chemical Communication Department, IRSEA—Institute of Research in Semiochemistry and Applied Ethology, 84400 Apt, France; (V.M.); (M.B.)
| | - Pietro Asproni
- Tissue Biology and Chemical Communication Department, IRSEA—Institute of Research in Semiochemistry and Applied Ethology, 84400 Apt, France; (V.M.); (M.B.)
| | - Eva Teruel
- Statistics and Data Management Service, IRSEA—Institute of Research in Semiochemistry and Applied Ethology, 84400 Apt, France;
| | - Marion Boutry
- Tissue Biology and Chemical Communication Department, IRSEA—Institute of Research in Semiochemistry and Applied Ethology, 84400 Apt, France; (V.M.); (M.B.)
| | - Alessandro Cozzi
- Research and Education Board, IRSEA—Institute of Research in Semiochemistry and Applied Ethology, 84400 Apt, France; (A.C.); (P.P.)
| | - Patrick Pageat
- Research and Education Board, IRSEA—Institute of Research in Semiochemistry and Applied Ethology, 84400 Apt, France; (A.C.); (P.P.)
| |
Collapse
|
2
|
Jansen I, Cahalane R, Hengst R, Akyildiz A, Farrell E, Gijsen F, Aikawa E, van der Heiden K, Wissing T. The interplay of collagen, macrophages, and microcalcification in atherosclerotic plaque cap rupture mechanics. Basic Res Cardiol 2024; 119:193-213. [PMID: 38329498 PMCID: PMC11008085 DOI: 10.1007/s00395-024-01033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
The rupture of an atherosclerotic plaque cap overlying a lipid pool and/or necrotic core can lead to thrombotic cardiovascular events. In essence, the rupture of the plaque cap is a mechanical event, which occurs when the local stress exceeds the local tissue strength. However, due to inter- and intra-cap heterogeneity, the resulting ultimate cap strength varies, causing proper assessment of the plaque at risk of rupture to be lacking. Important players involved in tissue strength include the load-bearing collagenous matrix, macrophages, as major promoters of extracellular matrix degradation, and microcalcifications, deposits that can exacerbate local stress, increasing tissue propensity for rupture. This review summarizes the role of these components individually in tissue mechanics, along with the interplay between them. We argue that to be able to improve risk assessment, a better understanding of the effect of these individual components, as well as their reciprocal relationships on cap mechanics, is required. Finally, we discuss potential future steps, including a holistic multidisciplinary approach, multifactorial 3D in vitro model systems, and advancements in imaging techniques. The obtained knowledge will ultimately serve as input to help diagnose, prevent, and treat atherosclerotic cap rupture.
Collapse
Affiliation(s)
- Imke Jansen
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rachel Cahalane
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ranmadusha Hengst
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ali Akyildiz
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Biomechanical Engineering, Technical University Delft, Delft, The Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Frank Gijsen
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Biomechanical Engineering, Technical University Delft, Delft, The Netherlands
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kim van der Heiden
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tamar Wissing
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Banerjee P, Rosales JE, Chau K, Nguyen MTH, Kotla S, Lin SH, Deswal A, Dantzer R, Olmsted-Davis EA, Nguyen H, Wang G, Cooke JP, Abe JI, Le NT. Possible molecular mechanisms underlying the development of atherosclerosis in cancer survivors. Front Cardiovasc Med 2023; 10:1186679. [PMID: 37332576 PMCID: PMC10272458 DOI: 10.3389/fcvm.2023.1186679] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Cancer survivors undergone treatment face an increased risk of developing atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms remain elusive. Recent studies have revealed that chemotherapy can drive senescent cancer cells to acquire a proliferative phenotype known as senescence-associated stemness (SAS). These SAS cells exhibit enhanced growth and resistance to cancer treatment, thereby contributing to disease progression. Endothelial cell (EC) senescence has been implicated in atherosclerosis and cancer, including among cancer survivors. Treatment modalities for cancer can induce EC senescence, leading to the development of SAS phenotype and subsequent atherosclerosis in cancer survivors. Consequently, targeting senescent ECs displaying the SAS phenotype hold promise as a therapeutic approach for managing atherosclerotic CVD in this population. This review aims to provide a mechanistic understanding of SAS induction in ECs and its contribution to atherosclerosis among cancer survivors. We delve into the mechanisms underlying EC senescence in response to disturbed flow and ionizing radiation, which play pivotal role in atherosclerosis and cancer. Key pathways, including p90RSK/TERF2IP, TGFβR1/SMAD, and BH4 signaling are explored as potential targets for cancer treatment. By comprehending the similarities and distinctions between different types of senescence and the associated pathways, we can pave the way for targeted interventions aim at enhancing the cardiovascular health of this vulnerable population. The insights gained from this review may facilitate the development of novel therapeutic strategies for managing atherosclerotic CVD in cancer survivors.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Julia Enterría Rosales
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- School of Medicine, Instituto Tecnológico de Monterrey, Guadalajara, Mexico
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
- Department of Life Science, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Hung Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
4
|
Hanly A, Johnston RD, Lemass C, Jose A, Tornifoglio B, Lally C. Phosphotungstic acid (PTA) preferentially binds to collagen- rich regions of porcine carotid arteries and human atherosclerotic plaques observed using contrast enhanced micro-computed tomography (CE-µCT). Front Physiol 2023; 14:1057394. [PMID: 36818446 PMCID: PMC9932683 DOI: 10.3389/fphys.2023.1057394] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aims: Atherosclerotic plaque rupture in the carotid artery can cause small emboli to travel to cerebral arteries, causing blockages and preventing blood flow leading to stroke. Contrast enhanced micro computed tomography (CEμCT) using a novel stain, phosphotungstic acid (PTA) can provide insights into the microstructure of the vessel wall and atherosclerotic plaque, and hence their likelihood to rupture. Furthermore, it has been suggested that collagen content and orientation can be related to mechanical integrity. This study aims to build on existing literature and establish a robust and reproducible staining and imaging technique to non-destructively quantify the collagen content within arteries and plaques as an alternative to routine histology. Methods: Porcine carotid arteries and human atherosclerotic plaques were stained with a concentration of 1% PTA staining solution and imaged using MicroCT to establish the in situ architecture of the tissue and measure collagen content. A histological assessment of the collagen content was also performed from picrosirius red (PSR) staining. Results: PTA stained arterial samples highlight the reproducibility of the PTA staining and MicroCT imaging technique used with a quantitative analysis showing a positive correlation between the collagen content measured from CEμCT and histology. Furthermore, collagen-rich areas can be clearly visualised in both the vessel wall and atherosclerotic plaque. 3D reconstruction was also performed showing that different layers of the vessel wall and various atherosclerotic plaque components can be differentiated using Hounsfield Unit (HU) values. Conclusion: The work presented here is unique as it offers a quantitative method of segmenting the vessel wall into its individual components and non-destructively quantifying the collagen content within these tissues, whilst also delivering a visual representation of the fibrous structure using a single contrast agent.
Collapse
Affiliation(s)
- A. Hanly
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - R. D. Johnston
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - C. Lemass
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - A. Jose
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - B. Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - C. Lally
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland,*Correspondence: C. Lally,
| |
Collapse
|
5
|
Eckersley A, Ozols M, Chen P, Tam V, Ward LJ, Hoyland JA, Trafford A, Yuan XM, Schiller HB, Chan D, Sherratt MJ. Peptide location fingerprinting identifies species- and tissue-conserved structural remodelling of proteins as a consequence of ageing and disease. Matrix Biol 2022; 114:108-137. [PMID: 35618217 DOI: 10.1016/j.matbio.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022]
Abstract
Extracellular matrices (ECMs) in the intervertebral disc (IVD), lung and artery are thought to undergo age-dependant accumulation of damage by chronic exposure to mechanisms such as reactive oxygen species, proteases and glycation. It is unknown whether this damage accumulation is species-dependant (via differing lifespans and hence cumulative exposures) or whether it can influence the progression of age-related diseases such as atherosclerosis. Peptide location fingerprinting (PLF) is a new proteomic analysis method, capable of the non-targeted identification of structure-associated changes within proteins. Here we applied PLF to publicly available ageing human IVD (outer annulus fibrosus), ageing mouse lung and human arterial atherosclerosis datasets and bioinformatically identified novel target proteins alongside common age-associated differences within protein structures which were conserved between three ECM-rich organs, two species, three IVD tissue regions, sexes and in an age-related disease. We identify peptide yield differences across protein structures which coincide with biological regions, potentially reflecting the functional consequences of ageing or atherosclerosis for macromolecular assemblies (collagen VI), enzyme/inhibitor activity (alpha-2 macroglobulin), activation states (complement C3) and interaction states (laminins, perlecan, fibronectin, filamin-A, collagen XIV and apolipoprotein-B). Furthermore, we show that alpha-2 macroglobulin and collagen XIV exhibit possible shared structural consequences in IVD ageing and arterial atherosclerosis, providing novel links between an age-related disease and intrinsic ageing. Crucially, we also demonstrate that fibronectin, laminin beta chains and filamin-A all exhibit conserved age-associated structural differences between mouse lung and human IVD, providing evidence that ECM, and their associating proteins, may be subjected to potentially similar mechanisms or consequences of ageing across both species, irrespective of differences in lifespan and tissue function.
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, United Kingdom; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Peikai Chen
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, Guangdong 518053, China
| | - Vivian Tam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Liam J Ward
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Judith A Hoyland
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew Trafford
- Division of Cardiovascular Sciences, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xi-Ming Yuan
- Occupational and Environmental Medicine, Division of Prevention, Rehabilitation and Community Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Herbert B Schiller
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
6
|
Tornifoglio B, Stone AJ, Kerskens C, Lally C. Ex Vivo Study Using Diffusion Tensor Imaging to Identify Biomarkers of Atherosclerotic Disease in Human Cadaveric Carotid Arteries. Arterioscler Thromb Vasc Biol 2022; 42:1398-1412. [PMID: 36172867 PMCID: PMC9592180 DOI: 10.1161/atvbaha.122.318112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND This study aims to address the potential of ex vivo diffusion tensor imaging to provide insight into the microstructural composition and morphological arrangement of aged human atherosclerotic carotid arteries. METHODS In this study, whole human carotid arteries were investigated both anatomically and by comparing healthy and diseased regions. Nonrigid image registration was used with unsupervised segmentation to investigate the influence of elastin, collagen, cell density, glycosaminoglycans, and calcium on diffusion tensor imaging derived metrics (fractional anisotropy and mean diffusivity). Early stage atherosclerotic features were also investigated in terms of microstructural components and diffusion tensor imaging metrics. RESULTS All vessels displayed a dramatic decrease in fractional anisotropy compared with healthy animal arterial tissue, while the mean diffusivity was sensitive to regions of advanced disease. Elastin content strongly correlated with both fractional anisotropy (r>0.7, P<0.001) and mean diffusivity (r>-0.79, P<0.0002), and the thickened intima was also distinguishable from arterial media by these metrics. CONCLUSIONS These different investigations point to the potential of diffusion tensor imaging to identify characteristics of arterial disease progression, at early and late-stage lesion development.
Collapse
Affiliation(s)
- Brooke Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering (B.T., A.J.S., C.L.), Ireland
| | - Alan J. Stone
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering (B.T., A.J.S., C.L.), Ireland.,Department of Medical Physics and Clinical Engineering, St. Vincent’s University Hospital, Dublin, Ireland (A.J.S.)
| | - Christian Kerskens
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Trinity College Institute of Neuroscience (C.K.), Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering (B.T., A.J.S., C.L.), Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin (C.L.), Ireland
| |
Collapse
|
7
|
Sun H, Wang S, Chen J, Yu H. Label-free second harmonic generation imaging of cerebral vascular wall in local ischemia mouse model in vivo. Neuroscience 2022; 502:10-24. [PMID: 36055560 DOI: 10.1016/j.neuroscience.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
Abstract
Second harmonic generation (SHG) imaging is label-free and non-invasive, and it has been extensively applied in multiple biological and medical studies, but not in the brain in vivo. In this study, we modified classical two photon excited fluorescence (TPEF) system to perform in vivo simultaneous TPEF and SHG imaging in the local ischemia mouse model. In cerebral vascular walls, we found strong SHG signal, which co-localized with collagen. In the continuous 2 days' in vivo imaging, this SHG signal remained stable in the local ischemic blood vessel in the initial 4 hours, then its signal abruptly increased and got spatially thickened 5 hours after thrombosis, and this tendency continued in the following 48 hours. This study provides direct and precise timeline of rapid collagen change in cerebral vascular walls in vivo, and reveals the subtle but significant temporal-spatial dynamics of this structural signal during local ischemia. Thus, this cerebral in vivo SHG imaging provides a powerful tool to identify the early and subtle pathological change of collagen around clinical key therapeutic time window.
Collapse
Affiliation(s)
- Hengfei Sun
- School of Life Sciences, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Shu Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Hongbo Yu
- School of Life Sciences, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| |
Collapse
|
8
|
He Y, Qin C, Sun Z, Liu Z, Chen Y, Meng K. Atomic force microscopy application to study of the biomechanical properties of the aortic intima in the context of early atherosclerosis. Microsc Res Tech 2022; 85:3411-3417. [PMID: 35804436 DOI: 10.1002/jemt.24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/11/2022]
Abstract
Atherosclerosis is characterized by the infiltration of macrophages, accumulation of lipids, activation of endothelial cells and synthesis of extracellular matrix by vascular smooth muscle cells. However, there have been few atomic force microscopy (AFM) studies of the aortic intima in situ in the context of atherosclerosis. By employing a customized liquid cell for AFM, we investigated the aortic intima obtained from male C57BL/6 ApoE-deficient mice (ApoE-/- ) aged 14 weeks and male C57BL/6 ApoE-sufficient mice (ApoE+/+ ) aged between 18 and 26 weeks that were fed a high-fat and high-cholesterol diet for 4 weeks and performed force spectroscopy mapping of the biomechanical properties of the intima. In the aortas of ApoE-deficient mice, the intima became stiffer than that of ApoE-sufficient mice. In addition, the cytoskeleton of endothelial cells was enlarged, and extracellular matrix accumulated. The biomechanical properties of the aortic intima are altered in early atherogenesis, which may be induced by the enlargement of the endothelial cell cytoskeleton and the increased synthesis of extracellular matrix by activated smooth muscle cells.
Collapse
Affiliation(s)
- Yin He
- Emergency Department, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Chuanyu Qin
- Department of Cardiology of Second Affiliated Hospital of Qiqihaer Medical Collage, Qiqihar, Heilongjiang, People's Republic of China
| | - Zhifu Sun
- Otolaryngology Head and Neck Surgery, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Zesen Liu
- Department of Cardiology of Luhe Hospital, Capital Medical University, Beijing, China
| | - Yan Chen
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Kang Meng
- Department of Cardiology, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| |
Collapse
|
9
|
Tissue-engineered collagenous fibrous cap models to systematically elucidate atherosclerotic plaque rupture. Sci Rep 2022; 12:5434. [PMID: 35361847 PMCID: PMC8971478 DOI: 10.1038/s41598-022-08425-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
A significant amount of vascular thrombotic events are associated with rupture of the fibrous cap that overlie atherosclerotic plaques. Cap rupture is however difficult to predict due to the heterogenous composition of the plaque, unknown material properties, and the stochastic nature of the event. Here, we aim to create tissue engineered human fibrous cap models with a variable but controllable collagen composition, suitable for mechanical testing, to scrutinize the reciprocal relationships between composition and mechanical properties. Myofibroblasts were cultured in 1 × 1.5 cm-sized fibrin-based constrained gels for 21 days according to established (dynamic) culture protocols (i.e. static, intermittent or continuous loading) to vary collagen composition (e.g. amount, type and organization). At day 7, a soft 2 mm ∅ fibrin inclusion was introduced in the centre of each tissue to mimic the soft lipid core, simulating the heterogeneity of a plaque. Results demonstrate reproducible collagenous tissues, that mimic the bulk mechanical properties of human caps and vary in collagen composition due to the presence of a successfully integrated soft inclusion and the culture protocol applied. The models can be deployed to assess tissue mechanics, evolution and failure of fibrous caps or complex heterogeneous tissues in general.
Collapse
|
10
|
Wang N, Xu X, Li H, Feng Q, Wang H, Kang YJ. Atherosclerotic lesion-specific copper delivery suppresses atherosclerosis in high-cholesterol-fed rabbits. Exp Biol Med (Maywood) 2021; 246:2671-2678. [PMID: 34525859 DOI: 10.1177/15353702211046541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dietary cholesterol supplements cause hypercholesterolemia and atherosclerosis along with a reduction of copper concentrations in the atherosclerotic wall in animal models. This study was to determine if target-specific copper delivery to the copper-deficient atherosclerotic wall can block the pathogenesis of atherosclerosis. Male New Zealand white rabbits, 10-weeks-old and averaged 2.0 kg, were fed a diet containing 1% (w/w) cholesterol or the same diet without cholesterol as control. Twelve weeks after the feeding, the animals were injected with copper-albumin microbubbles and subjected to ultrasound sonication specifically directed at the atherosclerotic lesions (Cu-MB-US) for target-specific copper delivery, twice a week for four weeks. This regiment was repeated 3 times with a gap of two weeks in between. Two weeks after the last treatment, the animals were harvested for analyses of serum and aortic pathological changes. Compared to controls, rabbits fed cholesterol-rich diet developed atherosclerotic lesion with a reduction in copper concentrations in the lesion tissue. Cu-MB-US treatment significantly increased copper concentrations in the lesion, and reduced the size of the lesion. Furthermore, copper repletion reduced the number of apoptotic cells as well as the content of cholesterol and phospholipids in the atherosclerotic lesion without a disturbance of the stability of the lesion. The results thus demonstrate that target-specific copper supplementation suppresses the progression of atherosclerosis at least in part through preventing endothelial cell death, thus reducing lipid infiltration in the atherosclerotic lesion.
Collapse
Affiliation(s)
- Na Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinwen Xu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hualin Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qipu Feng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongge Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tennessee Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
11
|
Li J, Wang C, Wang W, Liu L, Zhang Q, Zhang J, Wang B, Wang S, Hou L, Gao C, Yu X, Sun L. PRDX2 Protects Against Atherosclerosis by Regulating the Phenotype and Function of the Vascular Smooth Muscle Cell. Front Cardiovasc Med 2021; 8:624796. [PMID: 33791345 PMCID: PMC8006347 DOI: 10.3389/fcvm.2021.624796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/09/2021] [Indexed: 01/05/2023] Open
Abstract
Peroxiredoxin 2 (PRDX2), an inhibitor of reactive oxygen species (ROS), is potentially involved in the progression of atherosclerosis (AS). The aim of this study was to explore the role and mechanism of PRDX2 in AS. The expression of PRDX2 was evaluated in 14 human carotid artery tissues with or without AS. The results showed that the positive reaction of PRDX2 was observed in the carotid artery vascular smooth muscle cells (CAVSMCs). To assess the mechanism by which PRDX2 may function in AS, the CAVSMCs were transfected with pEX4-PRDX2 and si-PRDX2. The catalase, hydrogen peroxide (H2O2) scavenger, was used to further confirm that PRDX2-induced inhibitory effects might be mediated through reducing ROS levels. Phenotype alteration and functional testing included transcription testing, immunostaining, and expression studies. The drug of MAPK signaling pathway inhibitors SB203580, SP600125, and PD98059 was used to evaluate the underlying mechanism. In this study, we found that the protein level of PRDX2 and the level of H2O2 were higher in the human AS carotid artery tissues than in the normal carotid artery tissues, accompanied with the activation of MAPK signaling pathway. The up-regulation of PRDX2 in the CAVSMCs significantly decreased the expression of ROS, collagen type I (COL I), collagen type III (COL III), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) and inhibited the proliferation, migration, and transformation of the CAVSMCs. The up-regulation of PRDX2 reversed the effect of the CAVSMCs treated with tumor necrosis factor-α (TNF-α). In addition, PRDX2 down-regulation promoted the protein levels of p-p38, p-JNK, and p-ERK, which was confirmed in relevant MAPK inhibitor treatment experiments. Our results suggest a protective role of PRDX2, as a scavenger of ROS, in AS progression through inhibiting the VSMC phenotype alteration and function via MAPK signaling pathway.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Cong Wang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wenjing Wang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lingzi Liu
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qingqing Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jun Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Bo Wang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Li Hou
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chuanzhou Gao
- Department of Electron Microscope, Dalian Medical University, Dalian, China
| | - Xiao Yu
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lei Sun
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Vacante F, Rodor J, Lalwani MK, Mahmoud AD, Bennett M, De Pace AL, Miller E, Van Kuijk K, de Bruijn J, Gijbels M, Williams TC, Clark MB, Scanlon JP, Doran AC, Montgomery R, Newby DE, Giacca M, O'Carroll D, Hadoke PWF, Denby L, Sluimer JC, Baker AH. CARMN Loss Regulates Smooth Muscle Cells and Accelerates Atherosclerosis in Mice. Circ Res 2021; 128:1258-1275. [PMID: 33622045 DOI: 10.1161/circresaha.120.318688] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Francesca Vacante
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Julie Rodor
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Mukesh K Lalwani
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Amira D Mahmoud
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Matthew Bennett
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Azzurra L De Pace
- Institute for Regeneration and Repair, Centre for Regenerative Medicine (A.D.P., D.O.), University of Edinburgh, Scotland
| | - Eileen Miller
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Kim Van Kuijk
- Pathology, Maastricht Medical Center, the Netherlands (K.V.K., J.d., J.C.S., A.H.B.)
| | - Jenny de Bruijn
- Pathology, Maastricht Medical Center, the Netherlands (K.V.K., J.d., J.C.S., A.H.B.)
| | - Marion Gijbels
- Pathology CARIM, Cardiovascular Research Institute Maastricht, GROW-School for Oncology and Developmental Biology, Maastricht University, the Netherlands (M. Gijbels)
| | - Thomas C Williams
- Insitute of Genetics and Molecular Medicine (T.C.W.), University of Edinburgh, Scotland
| | - Michael B Clark
- Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, The University of Melbourne, Australia (M.B.C.)
| | - Jessica P Scanlon
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Amanda C Doran
- Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (A.C.D)
| | | | - David E Newby
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Mauro Giacca
- Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, the Netherlands (M. Gijbels).,King's College London, England (M. Giacca)
| | - Dónal O'Carroll
- Institute for Regeneration and Repair, Centre for Regenerative Medicine (A.D.P., D.O.), University of Edinburgh, Scotland
| | - Patrick W F Hadoke
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Laura Denby
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Judith C Sluimer
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland.,Pathology, Maastricht Medical Center, the Netherlands (K.V.K., J.d., J.C.S., A.H.B.)
| | - Andrew H Baker
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland.,Pathology, Maastricht Medical Center, the Netherlands (K.V.K., J.d., J.C.S., A.H.B.)
| |
Collapse
|
13
|
Tornifoglio B, Stone AJ, Johnston RD, Shahid SS, Kerskens C, Lally C. Diffusion tensor imaging and arterial tissue: establishing the influence of arterial tissue microstructure on fractional anisotropy, mean diffusivity and tractography. Sci Rep 2020; 10:20718. [PMID: 33244026 PMCID: PMC7693170 DOI: 10.1038/s41598-020-77675-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
This study investigates diffusion tensor imaging (DTI) for providing microstructural insight into changes in arterial tissue by exploring how cell, collagen and elastin content effect fractional anisotropy (FA), mean diffusivity (MD) and tractography. Five ex vivo porcine carotid artery models (n = 6 each) were compared-native, fixed native, collagen degraded, elastin degraded and decellularised. Vessels were imaged at 7 T using a DTI protocol with b = 0 and 800 s/mm2 and 10 isotopically distributed directions. FA and MD were evaluated in the vessel media and compared across models. FA values measured in native (p < 0.0001), fixed native (p < 0.0001) and collagen degraded (p = 0.0018, p = 0.0016, respectively) were significantly higher than those in elastin degraded and decellularised arteries. Native and fixed native had significantly lower MD values than elastin degraded (p < 0.0001) and decellularised tissue (p = 0.0032, p = 0.0003, respectively). Significantly lower MD was measured in collagen degraded compared with the elastin degraded model (p = 0.0001). Tractography yielded helically arranged tracts for native and collagen degraded vessels only. FA, MD and tractography were found to be highly sensitive to changes in the microstructural composition of arterial tissue, specifically pointing to cell, not collagen, content as the dominant source of the measured anisotropy in the vessel wall.
Collapse
Affiliation(s)
- B Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - A J Stone
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - R D Johnston
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - S S Shahid
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - C Kerskens
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - C Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
14
|
Cai X, Wei W, Liu Z, Bai Z, Lei J, Xiao J. In Situ Imaging of Pathological Collagen by Electrostatic Repulsion-Destabilized Peptide Probes. ACS APPLIED BIO MATERIALS 2020; 3:7492-7499. [DOI: 10.1021/acsabm.0c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenyu Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhao Liu
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhongtian Bai
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Junqiang Lei
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
15
|
Diaz-Ricart M, Torramade-Moix S, Pascual G, Palomo M, Moreno-Castaño AB, Martinez-Sanchez J, Vera M, Cases A, Escolar G. Endothelial Damage, Inflammation and Immunity in Chronic Kidney Disease. Toxins (Basel) 2020; 12:toxins12060361. [PMID: 32492843 PMCID: PMC7354562 DOI: 10.3390/toxins12060361] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) patients have an accelerated atherosclerosis, increased risk of thrombotic-ischemic complications, and excessive mortality rates when compared with the general population. There is also evidence of an endothelial damage in which the proinflammatory state, the enhanced oxidative stress, or the accumulation of toxins due to their reduced renal clearance in uremia play a role. Further, there is evidence that uremic endothelial cells are both involved in and victims of the activation of the innate immunity. Uremic endothelial cells produce danger associated molecular patterns (DAMPS), which by binding to specific pattern recognition receptors expressed in multiple cells, including endothelial cells, induce the expression of adhesion molecules, the production of proinflammatory cytokines and an enhanced production of reactive oxygen species in endothelial cells, which constitute a link between immunity and inflammation. The connection between endothelial damage, inflammation and defective immunity in uremia will be reviewed here.
Collapse
Affiliation(s)
- Maribel Diaz-Ricart
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain
- Barcelona Endothelium Team, 08036 Barcelona, Spain
- Correspondence:
| | - Sergi Torramade-Moix
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain
| | | | - Marta Palomo
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Barcelona Endothelium Team, 08036 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, 08036 Barcelona, Spain
| | - Ana Belen Moreno-Castaño
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain
- Barcelona Endothelium Team, 08036 Barcelona, Spain
| | - Julia Martinez-Sanchez
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Barcelona Endothelium Team, 08036 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, 08036 Barcelona, Spain
| | - Manel Vera
- Nephrology Department. Hospital Clinic, 08036 Barcelona, Spain; (M.V.); (A.C.)
| | - Aleix Cases
- Nephrology Department. Hospital Clinic, 08036 Barcelona, Spain; (M.V.); (A.C.)
| | - Gines Escolar
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain
- Barcelona Endothelium Team, 08036 Barcelona, Spain
| |
Collapse
|
16
|
Nam GS, Lee KS, Nam KS. Anti‑platelet activity of mineral‑balanced deep sea water is mediated via the regulation of Akt and ERK pathway crosstalk. Int J Mol Med 2020; 45:658-668. [PMID: 31894254 DOI: 10.3892/ijmm.2019.4424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/14/2019] [Indexed: 11/06/2022] Open
Abstract
Mineral‑balanced deep sea water (MBDSW), an unlimited natural sea source, has been demonstrated to minimize the risk of developing cardiovascular diseases, such as obesity, hypertension, inflammation and hyperlipidemia. This study investigated the effects of MBDSW [magnesium (Mg):calcium (Ca) ratio, 3:1] on platelet activation. MBDSW significantly inhibited the collagen‑ and thrombin‑induced platelet aggregation of human platelets. In collagen‑induced platelets, MBDSW inhibited intracellular calcium mobilization, granule secretion [serotonin, adenosine triphosphate (ATP) and P‑selectin expression] and thromboxane A2 (TXA2) production. Moreover, MBDSW markedly inhibited Akt and extracellular signal‑regulated kinase (ERK) phosphorylation, but not that of c‑Jun N‑terminal kinase (JNK) and p38. Moreover, MBDSW phosphorylated inositol 1,4,5‑triphosphate receptor (IP3R) and vasodilator‑stimulated phosphoprotein (VASP), and it increased the cyclic adenosine monophosphate (cAMP) level in collagen‑induced human platelets. Dipyridamole, a phosphodiesterase (PDE) inhibitor, significantly increased the cAMP level and regulated the Akt, ERK and VASP (Ser157) levels in a manner similar to that of MBDSW. In addition, LY294002, an Akt inhibitor, inhibited the phosphorylation of ERK, and U0126, an ERK inhibitor, inhibited the phosphorylation of Akt. Taken together, the results of the present investigation suggest that the inhibitory effects of MBDSW on platelet aggregation may be associated with the cross‑inhibition of Akt and ERK phosphorylation. These results strongly indicate that MBDSW may have preventive or therapeutic potential for platelet aggregation‑mediated diseases, such as thrombosis, atherosclerosis and myocardial infarction.
Collapse
Affiliation(s)
- Gi Suk Nam
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk‑do 38066, Republic of Korea
| | - Kyu-Shik Lee
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk‑do 38066, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk‑do 38066, Republic of Korea
| |
Collapse
|
17
|
Zhu K, Meng Q, Zhang Z, Yi T, He Y, Zheng J, Lei W. Aryl hydrocarbon receptor pathway: Role, regulation and intervention in atherosclerosis therapy (Review). Mol Med Rep 2019; 20:4763-4773. [PMID: 31638212 PMCID: PMC6854528 DOI: 10.3892/mmr.2019.10748] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/05/2019] [Indexed: 12/20/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand‑activated transcription factor originally isolated and characterized as the dioxin or xenobiotic receptor. With the discovery of endogenous ligands and studies of AhR knockout mice, AhR has been found to serve an important role in several biological processes, including immune responses and developmental and pathological regulation. In particular, it has been considered as a new major player in cardiovascular diseases. Recent studies have revealed that the development of atherosclerosis is closely associated with AhR function. However, the roles of the AhR in the pathological development of atherosclerosis and atherosclerosis‑associated diseases remain unclear. The current review presents the molecular mechanisms involved in the regulation of AhR expression during inflammation, oxidative stress and lipid deposition. Additionally, the role of the AhR in atherosclerosis and atherosclerosis‑associated diseases is reviewed.
Collapse
Affiliation(s)
- Kaixi Zhu
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Qingqi Meng
- Department of Orthopedics, Guangzhou Red Cross Hospital, Guangzhou, Guangdong 510000, P.R. China
| | - Zhi Zhang
- Department of Vascular, Thyroid and Breast Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Tao Yi
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yuan He
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, USA
| | - Wei Lei
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
18
|
Walas D, Nowicki-Osuch K, Alibhai D, von Linstow Roloff E, Coghill J, Waterfall C, Paton JF. Inflammatory pathways are central to posterior cerebrovascular artery remodelling prior to the onset of congenital hypertension. J Cereb Blood Flow Metab 2019; 39:1803-1817. [PMID: 29651914 PMCID: PMC6724458 DOI: 10.1177/0271678x18769180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerebral artery hypoperfusion may provide the basis for linking ischemic stroke with hypertension. Brain hypoperfusion may induce hypertension that may serve as an auto-protective mechanism to prevent ischemic stroke. We hypothesised that hypertension is caused by remodelling of the cerebral arteries, which is triggered by inflammation. We used a congenital rat model of hypertension and examined age-related changes in gene expression of the cerebral arteries using RNA sequencing. Prior to hypertension, we found changes in signalling pathways associated with the immune system and fibrosis. Validation studies using second harmonics generation microscopy revealed upregulation of collagen type I and IV in both tunica externa and media. These changes in the extracellular matrix of cerebral arteries pre-empted hypertension accounting for their increased stiffness and resistance, both potentially conducive to stroke. These data indicate that inflammatory driven cerebral artery remodelling occurs prior to the onset of hypertension and may be a trigger elevating systemic blood pressure in genetically programmed hypertension.
Collapse
Affiliation(s)
- Dawid Walas
- 1 School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | | | - Dominic Alibhai
- 3 Wolfson Bioimaging Facility, School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Eva von Linstow Roloff
- 1 School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Jane Coghill
- 4 Genomics Facility, School of Biological Sciences, Bristol, UK
| | | | - Julian Fr Paton
- 1 School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK.,5 Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| |
Collapse
|
19
|
Lin H, Ni T, Zhang J, Meng L, Gao F, Pan S, Luo H, Xu F, Ru G, Chi J, Guo H. Knockdown of Herp alleviates hyperhomocysteinemia mediated atherosclerosis through the inhibition of vascular smooth muscle cell phenotype switching. Int J Cardiol 2018; 269:242-249. [PMID: 30017525 DOI: 10.1016/j.ijcard.2018.07.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis. We aimed to investigate whether Homocysteine-responsive endoplasmic reticulum protein (Herp) was involved in VSMC phenotypic switching and affected atheroprogression. METHODS To assess the role of Herp in homocysteine (Hcy)-associated atherosclerosis, Herp-/- and LDLR-/- double knockout mice were generated and fed with a high methionine diet (HMD) to induce Hyperhomocysteinemia (HHcy). Atherosclerotic lesions, cholesterol homeostasis, endoplasmic reticulum (ER) stress activation, and the phenotype of VSMCs were assessed in vivo. We used siRNAs to knockdown Herp in cultured VSMCs to further validate our findings in vitro. RESULTS HMD significantly activated the activating transcription factor 6 (ATF6)/Herp arm of ER stress in LDLR-/- mice, and induced the phenotypic switch of VSMCs, with the loss of contractile proteins (SMA and calponin) and an increase of OPN protein. Herp-/-/LDLR-/- mice developed reduced atherosclerotic lesions in the aortic sinus and the whole aorta when compared with LDLR-/- mice. However, Herp deficiency had no effect on diet-induced HHcy and hyperlipidemia. Inhibition of VSMC phenotypic switching, decreased proliferation and collagen accumulation were observed in Herp-/-/LDLR-/- mice when compared with LDLR-/- mice. In vitro experiments demonstrated that Hcy caused VSMC phenotypic switching, promoted cell proliferation and migration; this was reversed by Herp depletion. We achieved similar results via inhibition of ER stress using 4-phenylbutyric-acid (4-PBA) in Hcy-treated VSMCs. CONCLUSION Herp deficiency inhibits the phenotypic switch of VSMCs and the development of atherosclerosis, thus providing novel insights into the role of Herp in atherogenesis.
Collapse
Affiliation(s)
- Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tingjuan Ni
- Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Jie Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Feidan Gao
- Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Sunlei Pan
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Hangqi Luo
- Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Fukang Xu
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Guomei Ru
- Medical Research Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
20
|
Sasikumar P, AlOuda KS, Kaiser WJ, Holbrook LM, Kriek N, Unsworth AJ, Bye AP, Sage T, Ushioda R, Nagata K, Farndale RW, Gibbins JM. The chaperone protein HSP47: a platelet collagen binding protein that contributes to thrombosis and hemostasis. J Thromb Haemost 2018; 16:946-959. [PMID: 29512284 PMCID: PMC6434988 DOI: 10.1111/jth.13998] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Indexed: 11/30/2022]
Abstract
Essentials Heat shock protein 47 (HSP47), a collagen specific chaperone is present on the platelet surface. Collagen mediated platelet function was reduced following blockade or deletion of HSP47. GPVI receptor regulated signalling was reduced in HSP47 deficient platelets. Platelet HSP47 tethers to exposed collagen thus modulating thrombosis and hemostasis. SUMMARY Objective Heat shock protein 47 (HSP47) is an intracellular chaperone protein that is vital for collagen biosynthesis in collagen secreting cells. This protein has also been shown to be present on the surface of platelets. Given the importance of collagen and its interactions with platelets in triggering hemostasis and thrombosis, in this study we sought to characterize the role of HSP47 in these cells. Methods and Results The deletion of HSP47 in mouse platelets or its inhibition in human platelets reduced their function in response to collagen and the GPVI agonist (CRP-XL), but responses to thrombin were unaltered. In the absence of functional HSP47, the interaction of collagen with platelets was reduced, and this was associated with reduced GPVI-collagen binding, signalling and platelet activation. Thrombus formation on collagen, under arterial flow conditions, was also decreased following the inhibition or deletion of HSP47, in the presence or absence of eptifibatide, consistent with a role for HSP47 in enhancing platelet adhesion to collagen. Platelet adhesion under flow to von Willebrand factor was unaltered following HSP47 inhibition. Laser-induced thrombosis in cremaster muscle arterioles was reduced and bleeding time was prolonged in HSP47-deficient mice or following inhibition of HSP47. Conclusions Our study demonstrates the presence of HSP47 on the platelet surface, where it interacts with collagen, stabilizes platelet adhesion and increases collagen-mediated signalling and therefore thrombus formation and hemostasis.
Collapse
Affiliation(s)
- P. Sasikumar
- Institute for Cardiovascular and Metabolic ResearchSchool of Biological SciencesUniversity of ReadingReadingUK
| | - K. S. AlOuda
- Institute for Cardiovascular and Metabolic ResearchSchool of Biological SciencesUniversity of ReadingReadingUK
| | - W. J. Kaiser
- Institute for Cardiovascular and Metabolic ResearchSchool of Biological SciencesUniversity of ReadingReadingUK
| | - L. M. Holbrook
- Institute for Cardiovascular and Metabolic ResearchSchool of Biological SciencesUniversity of ReadingReadingUK
| | - N. Kriek
- Institute for Cardiovascular and Metabolic ResearchSchool of Biological SciencesUniversity of ReadingReadingUK
| | - A. J. Unsworth
- Institute for Cardiovascular and Metabolic ResearchSchool of Biological SciencesUniversity of ReadingReadingUK
| | - A. P. Bye
- Institute for Cardiovascular and Metabolic ResearchSchool of Biological SciencesUniversity of ReadingReadingUK
| | - T. Sage
- Institute for Cardiovascular and Metabolic ResearchSchool of Biological SciencesUniversity of ReadingReadingUK
| | - R. Ushioda
- Laboratory of Molecular and Cellular BiologyFaculty of Life SciencesKyoto Sangyo UniversityKyotoJapan
| | - K. Nagata
- Laboratory of Molecular and Cellular BiologyFaculty of Life SciencesKyoto Sangyo UniversityKyotoJapan
| | - R. W. Farndale
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - J. M. Gibbins
- Institute for Cardiovascular and Metabolic ResearchSchool of Biological SciencesUniversity of ReadingReadingUK
| |
Collapse
|
21
|
Miteva K, Madonna R, De Caterina R, Van Linthout S. Innate and adaptive immunity in atherosclerosis. Vascul Pharmacol 2018; 107:S1537-1891(17)30464-0. [PMID: 29684642 DOI: 10.1016/j.vph.2018.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/03/2018] [Accepted: 04/15/2018] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is a chronic inflammatory disorder of the large and medium-size arteries characterized by the subendothelial accumulation of cholesterol, immune cells, and extracellular matrix. At the early onset of atherogenesis, endothelial dysfunction takes place. Atherogenesis is further triggered by the accumulation of cholesterol-carrying low-density lipoproteins, which acquire properties of damage-associated molecular patterns and thereby trigger an inflammatory response. Following activation of the innate immune response, mainly governed by monocytes and macrophages, the adaptive immune response is started which further promotes atherosclerotic plaque formation. In this review, an overview is given describing the role of damage-associated molecular patterns, NLRP3 inflammasome activation, and innate and adaptive immune cells in the atherogenesis process.
Collapse
Affiliation(s)
- Kapka Miteva
- Department of Biomedical Sciences, Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Milano, Italy
| | - Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Raffaele De Caterina
- Center of Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany; Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
22
|
Hechler B, Gachet C. Comparison of two murine models of thrombosis induced by atherosclerotic plaque injury. Thromb Haemost 2017; 105 Suppl 1:S3-12. [DOI: 10.1160/ths10-11-0730] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/29/2011] [Indexed: 11/05/2022]
Abstract
SummaryArterial thrombosis occurs at sites of erosion or rupture of atherosclerotic vascular lesions. To better study the pathophysiology of this complex phenomenon, there is a need for animal models of localised thrombosis at sites of atherosclerotic lesions with closer resemblance to the human pathology as compared to commonly used thrombosis models in healthy vessels. In the present study, we describe and compare a new model of thrombosis induced by atherosclerotic plaque rupture in the carotid artery from ApoE-/- mice using a suture needle to a milder model of ultrasound-induced plaque injury. Needle injury induces atherosclerotic plaque rupture with exposure of plaque material and formation of a thrombus that is larger, nearly occlusive and more stable as compared to that formed by application of ultrasounds. These two models have common features such as the concomitant involvement of platelet activation, thrombin generation and fibrin formation, which translates into sensitivity toward both antiplatelet drugs and anticoagulants. On the other hand, they display differences with respect to the role of the platelet collagen receptor GPVI, the plaque rupture model being less sensitive to its inhibition as compared to the ultrasound-induced injury, which may be related to the amount of thrombin generated. These models represent an improvement as compared to models in healthy vessels and may help identify specific plaque triggers of thrombosis. They should therefore be useful to evaluate new antithrombotic targets.
Collapse
|
23
|
Huang AH, Balestrini JL, Udelsman BV, Zhou KC, Zhao L, Ferruzzi J, Starcher BC, Levene MJ, Humphrey JD, Niklason LE. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries. Tissue Eng Part C Methods 2017; 22:524-33. [PMID: 27108525 DOI: 10.1089/ten.tec.2015.0309] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tissue-engineered blood vessels (TEVs) are typically produced using the pulsatile, uniaxial circumferential stretch to mechanically condition and strengthen the arterial grafts. Despite improvements in the mechanical integrity of TEVs after uniaxial conditioning, these tissues fail to achieve critical properties of native arteries such as matrix content, collagen fiber orientation, and mechanical strength. As a result, uniaxially loaded TEVs can result in mechanical failure, thrombus, or stenosis on implantation. In planar tissue equivalents such as artificial skin, biaxial loading has been shown to improve matrix production and mechanical properties. To date however, multiaxial loading has not been examined as a means to improve mechanical and biochemical properties of TEVs during culture. Therefore, we developed a novel bioreactor that utilizes both circumferential and axial stretch that more closely simulates loading conditions in native arteries, and we examined the suture strength, matrix production, fiber orientation, and cell proliferation. After 3 months of biaxial loading, TEVs developed a formation of mature elastic fibers that consisted of elastin cores and microfibril sheaths. Furthermore, the distinctive features of collagen undulation and crimp in the biaxial TEVs were absent in both uniaxial and static TEVs. Relative to the uniaxially loaded TEVs, tissues that underwent biaxial loading remodeled and realigned collagen fibers toward a more physiologic, native-like organization. The biaxial TEVs also showed increased mechanical strength (suture retention load of 303 ± 14.53 g, with a wall thickness of 0.76 ± 0.028 mm) and increased compliance. The increase in compliance was due to combinatorial effects of mature elastic fibers, undulated collagen fibers, and collagen matrix orientation. In conclusion, biaxial stretching is a potential means to regenerate TEVs with improved matrix production, collagen organization, and mechanical properties.
Collapse
Affiliation(s)
- Angela H Huang
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | - Jenna L Balestrini
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | | | - Kevin C Zhou
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | - Liping Zhao
- 2 School of Medicine, Yale University , New Haven, Connecticut
| | - Jacopo Ferruzzi
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | - Barry C Starcher
- 3 Department of Biochemistry, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Michael J Levene
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | - Jay D Humphrey
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | - Laura E Niklason
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut.,2 School of Medicine, Yale University , New Haven, Connecticut
| |
Collapse
|
24
|
Halper J. Basic Components of Vascular Connective Tissue and Extracellular Matrix. ADVANCES IN PHARMACOLOGY 2017; 81:95-127. [PMID: 29310805 DOI: 10.1016/bs.apha.2017.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Though the composition of the three layers constituting the blood vessel wall varies among the different types of blood vessels, and some layers may even be missing in capillaries, certain basic components, and properties are shared by all blood vessels, though each histologically distinct layer contains a unique complement of extracellular components, growth factors and cytokines, and cell types as well. The structure and composition of vessel layers informs and is informed by the function of the particular blood vessel. The adaptation of the composition and the resulting function of the extracellular matrix (ECM) to changes in circulation/blood flow and a variety of other extravascular stimuli can be characterized as remodeling spearheaded by vascular cells. There is a surprising amount of cell traffic among the three layers. It starts with endothelial cell mediated transmigration of inflammatory cells from the bloodstream into the subendothelium, and then into tissue adjoining the blood vessel. Smooth muscle cells and a variety of adventitial cells reside in tunica media and tunica externa, respectively. The latter cells are a mixture of progenitor/stem cells, fibroblasts, myofibroblasts, pericytes, macrophages, and dendritic cells and respond to endothelial injury by transdifferentiation as they travel into the two inner layers, intima and media for corrective mission in the ECM composition. This chapter addresses the role of various vascular cell types and ECM components synthesized by them in maintenance of normal structure and in their contribution to major pathological processes, such as atherosclerosis, organ fibrosis, and diabetic retinopathy.
Collapse
Affiliation(s)
- Jaroslava Halper
- College of Veterinary Medicine and AU/UGA Medical Partnership, The University of Georgia, Athens, GA, United States.
| |
Collapse
|
25
|
Chronic iron overload induces functional and structural vascular changes in small resistance arteries via NADPH oxidase-dependent O 2 − production. Toxicol Lett 2017; 279:43-52. [DOI: 10.1016/j.toxlet.2017.07.497] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/04/2017] [Accepted: 07/05/2017] [Indexed: 01/19/2023]
|
26
|
Akyildiz AC, Chai CK, Oomens CWJ, van der Lugt A, Baaijens FPT, Strijkers GJ, Gijsen FJH. 3D Fiber Orientation in Atherosclerotic Carotid Plaques. J Struct Biol 2017; 200:28-35. [PMID: 28838817 DOI: 10.1016/j.jsb.2017.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/18/2017] [Accepted: 08/20/2017] [Indexed: 11/26/2022]
Abstract
Atherosclerotic plaque rupture is the primary trigger of fatal cardiovascular events. Fibrillar collagen in atherosclerotic plaques and their directionality are anticipated to play a crucial role in plaque rupture. This study aimed assessing 3D fiber orientations and architecture in atherosclerotic plaques for the first time. Seven carotid plaques were imaged ex-vivo with a state-of-the-art Diffusion Tensor Imaging (DTI) technique, using a high magnetic field (9.4Tesla) MRI scanner. A 3D spin-echo sequence with uni-polar diffusion sensitizing pulsed field gradients was utilized for DTI and fiber directions were assessed from diffusion tensor measurements. The distribution of the 3D fiber orientations in atherosclerotic plaques were quantified and the principal fiber orientations (circumferential, longitudinal or radial) were determined. Overall, 52% of the fiber orientations in the carotid plaque specimens were closest to the circumferential direction, 34% to the longitudinal direction, and 14% to the radial direction. Statistically no significant difference was measured in the amount of the fiber orientations between the concentric and eccentric plaque sites. However, concentric plaque sites showed a distinct structural organization, where the principally longitudinally oriented fibers were closer to the luminal side and the principally circumferentially oriented fibers were located more abluminally. The acquired unique information on 3D plaque fiber direction will help understanding pathobiological mechanisms of atherosclerotic plaque progression and pave the road to more realistic biomechanical plaque modeling for rupture assessment.
Collapse
Affiliation(s)
- Ali C Akyildiz
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Chen-Ket Chai
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Cees W J Oomens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Aad van der Lugt
- Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frank J H Gijsen
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
27
|
The arterial microenvironment: the where and why of atherosclerosis. Biochem J 2017; 473:1281-95. [PMID: 27208212 DOI: 10.1042/bj20150844] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Abstract
The formation of atherosclerotic plaques in the large and medium sized arteries is classically driven by systemic factors, such as elevated cholesterol and blood pressure. However, work over the past several decades has established that atherosclerotic plaque development involves a complex coordination of both systemic and local cues that ultimately determine where plaques form and how plaques progress. Although current therapeutics for atherosclerotic cardiovascular disease primarily target the systemic risk factors, a large array of studies suggest that the local microenvironment, including arterial mechanics, matrix remodelling and lipid deposition, plays a vital role in regulating the local susceptibility to plaque development through the regulation of vascular cell function. Additionally, these microenvironmental stimuli are capable of tuning other aspects of the microenvironment through collective adaptation. In this review, we will discuss the components of the arterial microenvironment, how these components cross-talk to shape the local microenvironment, and the effect of microenvironmental stimuli on vascular cell function during atherosclerotic plaque formation.
Collapse
|
28
|
Durgin BG, Cherepanova OA, Gomez D, Karaoli T, Alencar GF, Butcher JT, Zhou YQ, Bendeck MP, Isakson BE, Owens GK, Connelly JJ. Smooth muscle cell-specific deletion of Col15a1 unexpectedly leads to impaired development of advanced atherosclerotic lesions. Am J Physiol Heart Circ Physiol 2017; 312:H943-H958. [PMID: 28283548 PMCID: PMC5451587 DOI: 10.1152/ajpheart.00029.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/28/2022]
Abstract
Atherosclerotic plaque rupture with subsequent embolic events is a major cause of sudden death from myocardial infarction or stroke. Although smooth muscle cells (SMCs) produce and respond to collagens in vitro, there is no direct evidence in vivo that SMCs are a crucial source of collagens and that this impacts lesion development or fibrous cap formation. We sought to determine how conditional SMC-specific knockout of collagen type XV (COL15A1) in SMC lineage tracing mice affects advanced lesion formation given that 1) we have previously identified a Col15a1 sequence variant associated with age-related atherosclerosis, 2) COL15A1 is a matrix organizer enhancing tissue structural integrity, and 3) small interfering RNA-mediated Col15a1 knockdown increased migration and decreased proliferation of cultured human SMCs. We hypothesized that SMC-derived COL15A1 is critical in advanced lesions, specifically in fibrous cap formation. Surprisingly, we demonstrated that SMC-specific Col15a1 knockout mice fed a Western diet for 18 wk failed to form advanced lesions. SMC-specific Col15a1 knockout resulted in lesions reduced in size by 78%, with marked reductions in numbers and proliferating SMCs, and lacked a SMC and extracellular matrix-rich lesion or fibrous cap. In vivo RNA-seq analyses on SMC Col15a1 knockout and wild-type lesions suggested that a mechanism for these effects is through global repression of multiple proatherogenic inflammatory pathways involved in lesion development. These results provide the first direct evidence that a SMC-derived collagen, COL15A1, is critical during lesion pathogenesis, but, contrary to expectations, its loss resulted in marked attenuation rather than exacerbation of lesion pathogenesis.NEW & NOTEWORTHY We report the first direct in vivo evidence that a smooth muscle cell (SMC)-produced collagen, collagen type XV (COL15A1), is critical for atherosclerotic lesion development. SMC Col15a1 knockout markedly attenuated advanced lesion formation, likely through reducing SMC proliferation and impairing multiple proatherogenic inflammatory processes.
Collapse
Affiliation(s)
- Brittany G Durgin
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Olga A Cherepanova
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Delphine Gomez
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Themistoclis Karaoli
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Gabriel F Alencar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Yu-Qing Zhou
- Department of Laboratory Medicine and Pathobiology, Ted Rogers Centre for Heart Research TBEP, University of Toronto, Toronto, Ontario, Canada; and
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology, Ted Rogers Centre for Heart Research TBEP, University of Toronto, Toronto, Ontario, Canada; and
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Jessica J Connelly
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia; .,Department of Psychology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
29
|
New Altered Non-Fibrillar Collagens in Human Dilated Cardiomyopathy: Role in the Remodeling Process. PLoS One 2016; 11:e0168130. [PMID: 27936202 PMCID: PMC5148085 DOI: 10.1371/journal.pone.0168130] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/24/2016] [Indexed: 01/12/2023] Open
Abstract
Background In dilated cardiomyopathy (DCM), cardiac failure is accompanied by profound alterations of extracellular matrix associated with the progression of cardiac dilation and left ventricular (LV) dysfunction. Recently, we reported alterations of non-fibrillar collagen expression in ischemic cardiomyopathy linked to fibrosis and cardiac remodeling. We suspect that expression changes in genes coding for non-fibrillar collagens may have a potential role in DCM development. Objectives This study sought to analyze changes in the expression profile of non-fibrillar collagen genes in patients with DCM and to examine relationships between cardiac remodeling parameters and the expression levels of these genes. Methods and Results Twenty-three human left ventricle tissue samples were obtained from DCM patients (n = 13) undergoing heart transplantation and control donors (n = 10) for RNA sequencing analysis. We found increased mRNA levels of six non-fibrillar collagen genes, such as COL4A5, COL9A1, COL21A1, and COL23A1 (P < 0.05 for all), not previously described in DCM. Protein levels of COL8A1 and COL16A1 (P < 0.05 for both), were correspondingly increased. We also identified TGF-β1 significantly upregulated and related to both COL8A1 and COL16A1. Interestingly, we found a significant relationship between LV mass index and the gene expression level of COL8A1 (r = 0.653, P < 0.05). Conclusions In our research, we identified new non-fibrillar collagens with altered expression in DCM, being COL8A1 overexpression directly related to LV mass index, suggesting that they may be involved in the progression of cardiac dilation and remodeling.
Collapse
|
30
|
Zhang K, Chen JY, Qin W, Li JA, Guan FX, Huang N. Constructing bio-layer of heparin and type IV collagen on titanium surface for improving its endothelialization and blood compatibility. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:81. [PMID: 26936367 DOI: 10.1007/s10856-016-5693-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
The modification of cardiovascular stent surface for a better micro-environment has gradually changed to multi-molecule, multi-functional designation. In this study, heparin (Hep) and type IV collagen (IVCol) were used as the functional molecule to construct a bifunctional micro-environment of anticoagulation and promoting endothelialization on titanium (Ti). The surface characterization results (AFM, Alcian Blue 8GX Staining and fluorescence staining of IVCol) indicated that the bio-layer of Hep and IVCol were successfully fabricated on the Ti surface through electrostatic self-assembly. The APTT and platelet adhesion test demonstrated that the bionic layer possessed better blood compatibility compared with Ti surface. The adhesion, proliferation, migration and apoptosis tests of endothelial cells proved that the Hep/IVCol layer was able to enhance the endothelialization of the Ti surface. The in vivo animal implantation results manifested that the bionic surface could encourage new endothelialization. This work provides an important reference for the construction of multifunction micro-environment on the cardiovascular scaffold surface.
Collapse
Affiliation(s)
- Kun Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Zhengzhou University, 40 University Road, Zhengzhou, 450052, People's Republic of China.
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Jun-ying Chen
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Wei Qin
- Jiangsu Heze Allian Cells Bioscience Co., Ltd, Changzhou, 213000, People's Republic of China
| | - Jing-an Li
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Fang-xia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China
- Center of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Zhengzhou University, 40 University Road, Zhengzhou, 450052, People's Republic of China
| | - Nan Huang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| |
Collapse
|
31
|
Ribeiro Júnior RF, Marques VB, Nunes DO, Ronconi KDS, de Araújo JFP, Rodrigues PL, Padilha AS, Vassallo DV, Graceli JB, Stefanon I. Tributyltin chloride increases phenylephrine-induced contraction and vascular stiffness in mesenteric resistance arteries from female rats. Toxicol Appl Pharmacol 2016; 295:26-36. [PMID: 26873547 DOI: 10.1016/j.taap.2016.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 02/03/2016] [Accepted: 02/06/2016] [Indexed: 01/20/2023]
Abstract
Tributyltin chloride (TBT) is an organotin compound that reduces estrogen levels in female rats. We aimed to investigate the effects of TBT exposure on vascular tonus and vascular remodelling in the resistance arteries of female rats. Rats were treated daily with TBT (500 ng/kg) for 15 days. TBT did not change arterial blood pressure but did modify some morpho-physiological parameters of third-order mesenteric resistance arteries in the following ways: (1) decreased lumen and external diameters; (2) increased wall/lm ratio and wall thickness; (3) decreased distensibility and increased stiffness; (4) increased collagen deposition; and (5) increased pulse wave velocity. TBT exposure increased the phenylephrine-induced contractile response in mesenteric resistance arteries. However, vasodilatation responses induced by acetylcholine and sodium nitroprusside were not modified by TBT. It is suggested that TBT exposure reduces vascular nitric oxide (NO) production, because:(1) L-NAME incubation did not cause a leftward shift in the concentration-response curve for phenylephrine; (2) both eNOS protein expression; (3) in situ NO production were reduced. Incubation with L-NAME; and (4) SOD shifted the phenylephrine response curve to the left in TBT rats. Tiron, catalase, ML-171 and VAS2870 decreased vascular reactivity to phenylephrine only in TBT rats. Moreover, increased superoxide anion production was observed in the mesenteric resistance arteries of TBT rats accompanied by an increase in gp91phox, catalase, AT1 receptor and total ERK1/2 protein expression. In conclusion, these findings show that TBT induced alterations are most likely due to a reduction of NO production combined with increased O2(-) production derived from NADPH oxidase and ERK1/2 activation. These findings offer further evidence that TBT is an environmental risk factor for cardiovascular disease.
Collapse
Affiliation(s)
| | | | - Dieli Oliveira Nunes
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | - Paula Lopes Rodrigues
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Brazil
| | - Ivanita Stefanon
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil
| |
Collapse
|
32
|
Peng Y, Kim JM, Park HS, Yang A, Islam C, Lakatta EG, Lin L. AGE-RAGE signal generates a specific NF-κB RelA "barcode" that directs collagen I expression. Sci Rep 2016; 6:18822. [PMID: 26729520 PMCID: PMC4700418 DOI: 10.1038/srep18822] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/26/2015] [Indexed: 01/10/2023] Open
Abstract
Advanced glycation end products (AGEs) are sugar-modified biomolecules that accumulate in the body with advancing age, and are implicated in the development of multiple age-associated structural and functional abnormities and diseases. It has been well documented that AGEs signal via their receptor RAGE to activate several cellular programs including NF-κB, leading to inflammation. A large number of stimuli can activate NF-κB; yet different stimuli, or the same stimulus for NF-κB in different cellular settings, produce a very different transcriptional landscape and physiological outcome. The NF-κB barcode hypothesis posits that cellular network dynamics generate signal-specific post-translational modifications, or a “barcode” to NF-κB, and that a signature “barcode” mediates a specific gene expression pattern. In the current study, we established that AGE-RAGE signaling results in NF-κB activation that directs collagen Ia1 and Ia2 expression. We further demonstrated that AGE-RAGE signal induces phosphorylation of RelA at three specific residues, T254, S311, and S536. These modifications are required for transcription of collagen I genes and are a consequence of cellular network dynamics. The increase of collagen content is a hallmark of arterial aging, and our work provides a potential mechanistic link between RAGE signaling, NF-κB activation, and aging-associated arterial alterations in structure and function.
Collapse
Affiliation(s)
- Yunqian Peng
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institute of Health, Baltimore, MD 21224
| | - Ji-Min Kim
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institute of Health, Baltimore, MD 21224
| | - Hal-Sol Park
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institute of Health, Baltimore, MD 21224
| | - Annie Yang
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institute of Health, Baltimore, MD 21224
| | - Celia Islam
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institute of Health, Baltimore, MD 21224
| | - Edward G Lakatta
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institute of Health, Baltimore, MD 21224
| | - Li Lin
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institute of Health, Baltimore, MD 21224
| |
Collapse
|
33
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in atherosclerosis. Acta Physiol (Oxf) 2015; 214:33-50. [PMID: 25677529 DOI: 10.1111/apha.12466] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 12/30/2022]
Abstract
Vascular smooth muscle cells (VSMCs) exhibit phenotypic and functional plasticity in order to respond to vascular injury. In case of the vessel damage, VSMCs are able to switch from the quiescent 'contractile' phenotype to the 'proinflammatory' phenotype. This change is accompanied by decrease in expression of smooth muscle (SM)-specific markers responsible for SM contraction and production of proinflammatory mediators that modulate induction of proliferation and chemotaxis. Indeed, activated VSMCs could efficiently proliferate and migrate contributing to the vascular wall repair. However, in chronic inflammation that occurs in atherosclerosis, arterial VSMCs become aberrantly regulated and this leads to increased VSMC dedifferentiation and extracellular matrix formation in plaque areas. Proatherosclerotic switch in VSMC phenotype is a complex and multistep mechanism that may be induced by a variety of proinflammatory stimuli and hemodynamic alterations. Disturbances in hemodynamic forces could initiate the proinflammatory switch in VSMC phenotype even in pre-clinical stages of atherosclerosis. Proinflammatory signals play a crucial role in further dedifferentiation of VSMCs in affected vessels and propagation of pathological vascular remodelling.
Collapse
Affiliation(s)
- D. A. Chistiakov
- Research Center for Children's Health; Moscow Russia
- The Mount Sinai Community Clinical Oncology Program; Mount Sinai Comprehensive Cancer Center; Mount Sinai Medical Center; Miami Beach FL USA
| | - A. N. Orekhov
- Institute for Atherosclerosis; Skolkovo Innovative Center; Moscow Russia
- Laboratory of Angiopathology; Institute of General Pathology and Pathophysiology; Russian Academy of Sciences; Moscow Russia
- Department of Biophysics; Biological Faculty; Moscow State University; Moscow Russia
| | - Y. V. Bobryshev
- Institute for Atherosclerosis; Skolkovo Innovative Center; Moscow Russia
- Faculty of Medicine; School of Medical Sciences; University of New South Wales; Kensington Sydney NSW Australia
- School of Medicine; University of Western Sydney; Campbelltown NSW Australia
| |
Collapse
|
34
|
Yun SP, Lee SJ, Oh SY, Jung YH, Ryu JM, Suh HN, Kim MO, Oh KB, Han HJ. Reactive oxygen species induce MMP12-dependent degradation of collagen 5 and fibronectin to promote the motility of human umbilical cord-derived mesenchymal stem cells. Br J Pharmacol 2015; 171:3283-97. [PMID: 24627968 DOI: 10.1111/bph.12681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Reactive oxygen species (ROS) are potent regulators of stem cell behaviour; however, their physiological significance as regards MMP-mediated regulation of the motility of human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) has not been characterized. In the present study, we investigated the role of hydrogen peroxide (H2O2 ) and associated signalling pathways in promoting UCB-MSCs motility. EXPERIMENTAL APPROACH The regulatory effects of H2O2 on the activation of PKC, MAPKs, NF-κB and β-catenin were determined. The expressions of MMP and extracellular matrix proteins were examined. Pharmacological inhibitors and gene-specific siRNA were used to identify the signalling pathways of H2O2 that affect UCB-MSCs motility. An experimental skin wound-healing model was used to confirm the functional role of UCB-MSCs treated with H2O2 in ICR mice. KEY RESULTS H2O2 increased the motility of UCB-MSCs by activating PKCα via a calcium influx mechanism. H2O2 activated ERK and p38 MAPK, which are responsible for the distinct activation of transcription factors NF-κB and β-catenin. UCB-MSCs expressed eight MMP genes, but only MMP12 expression was uniquely regulated by NF-κB and β-catenin activation. H2O2 increased the MMP12-dependent degradation of collagen 5 (COL-5) and fibronectin (FN) associated with UCB-MSCs motility. Finally, topical transplantation of UCB-MSCs treated with H2O2 enhanced skin wound healing in mice. CONCLUSIONS AND IMPLICATIONS H2O2 stimulated UCB-MSCs motility by increasing MMP12-dependent degradation of COL-5 and FN through the activation of NF-κB and glycogen synthase kinase-3β/β-catenin, which is critical for providing a suitable microenvironment for MSCs transplantation and re-epithelialization of skin wounds in mice.
Collapse
Affiliation(s)
- Seung Pil Yun
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xu J, Shi GP. Vascular wall extracellular matrix proteins and vascular diseases. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2106-2119. [PMID: 25045854 DOI: 10.1016/j.bbadis.2014.07.008] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 01/08/2023]
Abstract
Extracellular matrix proteins form the basic structure of blood vessels. Along with providing basic structural support to blood vessels, matrix proteins interact with different sets of vascular cells via cell surface integrin or non-integrin receptors. Such interactions induce vascular cell de novo synthesis of new matrix proteins during blood vessel development or remodeling. Under pathological conditions, vascular matrix proteins undergo proteolytic processing, yielding bioactive fragments to influence vascular wall matrix remodeling. Vascular cells also produce alternatively spliced variants that induce vascular cell production of different matrix proteins to interrupt matrix homeostasis, leading to increased blood vessel stiffness; vascular cell migration, proliferation, or death; or vascular wall leakage and rupture. Destruction of vascular matrix proteins leads to vascular cell or blood-borne leukocyte accumulation, proliferation, and neointima formation within the vascular wall; blood vessels prone to uncontrolled enlargement during blood flow diastole; tortuous vein development; and neovascularization from existing pathological tissue microvessels. Here we summarize discoveries related to blood vessel matrix proteins within the past decade from basic and clinical studies in humans and animals - from expression to cross-linking, assembly, and degradation under physiological and vascular pathological conditions, including atherosclerosis, aortic aneurysms, varicose veins, and hypertension.
Collapse
Affiliation(s)
- Junyan Xu
- Department of Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Sprague L, Muccioli M, Pate M, Singh M, Xiong C, Ostermann A, Niese B, Li Y, Li Y, Courreges MC, Benencia F. Dendritic cells: In vitro culture in two- and three-dimensional collagen systems and expression of collagen receptors in tumors and atherosclerotic microenvironments. Exp Cell Res 2014; 323:7-27. [PMID: 24569142 DOI: 10.1016/j.yexcr.2014.01.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 01/25/2014] [Accepted: 01/28/2014] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are immune cells found in the peripheral tissues where they sample the organism for infections or malignancies. There they take up antigens and migrate towards immunological organs to contact and activate T lymphocytes that specifically recognize the antigen presented by these antigen presenting cells. In the steady state there are several types of resident DCs present in various different organs. For example, in the mouse, splenic DC populations characterized by the co-expression of CD11c and CD8 surface markers are specialized in cross-presentation to CD8 T cells, while CD11c/SIRP-1α DCs seem to be dedicated to activating CD4 T cells. On the other hand, DCs have also been associated with the development of various diseases such as cancer, atherosclerosis, or inflammatory conditions. In such disease, DCs can participate by inducing angiogenesis or immunosuppression (tumors), promoting autoimmune responses, or exacerbating inflammation (atherosclerosis). This change in DC biology can be prompted by signals in the microenvironment. We have previously shown that the interaction of DCs with various extracellular matrix components modifies the immune properties and angiogenic potential of these cells. Building on those studies, herewith we analyzed the angiogenic profile of murine myeloid DCs upon interaction with 2D and 3D type-I collagen environments. As determined by PCR array technology and quantitative PCR analysis we observed that interaction with these collagen environments induced the expression of particular angiogenic molecules. In addition, DCs cultured on collagen environments specifically upregulated the expression of CXCL-1 and -2 chemokines. We were also able to establish DC cultures on type-IV collagen environments, a collagen type expressed in pathological conditions such as atherosclerosis. When we examined DC populations in atherosclerotic veins of Apolipoprotein E deficient mice we observed that they expressed adhesion molecules capable of interacting with collagen. Finally, to further investigate the interaction of DCs with collagen in other pathological conditions, we determined that both murine ovarian and breast cancer cells express several collagen molecules that can contribute to shape their particular tumor microenvironment. Consistently, tumor-associated DCs were shown to express adhesion molecules capable of interacting with collagen molecules as determined by flow cytometry analysis. Of particular relevance, tumor-associated DCs expressed high levels of CD305/LAIR-1, an immunosuppressive receptor. This suggests that signaling through this molecule upon interaction with collagen produced by tumor cells might help define the poorly immunogenic status of these cells in the tumor microenvironment. Overall, these studies demonstrate that through interaction with collagen proteins, DCs can be capable of modifying the microenvironments of inflammatory disease such as cancer or atherosclerosis.
Collapse
Affiliation(s)
- Leslee Sprague
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, USA
| | - Maria Muccioli
- Molecular and Cellular Biology Program, Ohio University, USA
| | - Michelle Pate
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, USA
| | - Manindra Singh
- Molecular and Cellular Biology Program, Ohio University, USA
| | - Chengkai Xiong
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, USA
| | - Alexander Ostermann
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, USA
| | - Brandon Niese
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, USA
| | - Yihan Li
- Molecular and Cellular Biology Program, Ohio University, USA
| | - Yandi Li
- Molecular and Cellular Biology Program, Ohio University, USA
| | - Maria Cecilia Courreges
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, USA
| | - Fabian Benencia
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, USA; Molecular and Cellular Biology Program, Ohio University, USA; Diabetes Institute, Ohio University, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, USA.
| |
Collapse
|
37
|
Mechanisms of improved aortic stiffness by arotinolol in spontaneously hypertensive rats. PLoS One 2014; 9:e88722. [PMID: 24533142 PMCID: PMC3923047 DOI: 10.1371/journal.pone.0088722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/09/2014] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES This study investigates the effects on aortic stiffness and vasodilation by arotinolol and the underlying mechanisms in spontaneously hypertensive rats (SHR). METHODS The vasodilations of rat aortas, renal and mesenteric arteries were evaluated by isometric force recording. Nitric oxide (NO) was measured in human aortic endothelial cells (HAECs) by fluorescent probes. Sixteen-week old SHRs were treated with metoprolol (200 mg·kg-1·d⁻¹), arotinolol (30 mg·kg-1·d⁻¹) for 8 weeks. Central arterial pressure (CAP) and pulse wave velocity (PWV) were evaluated via catheter pressure transducers. Collagen was assessed by immunohistochemistry and biochemistry assay, while endothelial nitric oxide synthase (eNOS) and eNOS phosphorylation (p-eNOS) of HAECs or aortas were analyzed by western blotting. RESULTS Arotinolol relaxed vascular rings and the relaxations were attenuated by Nω-nitro-L-arginine methyl ester (L-NAME, NO synthase inhibitor) and the absence of endothelium. Furthermore, arotinolol-induced relaxations were attenuated by 4-aminopyridine (4-AP, Kv channels blocker). Arotinolol produced more nitric oxide compared to metoprolol and increased the expression of p-eNOS in HAECs. These results indicated that arotinolol-induced vasodilation involves endothelium-derived NO and Kv channels. The treatement with arotinolol in 8 weeks, but not metoprolol, markedly decreased CAP and PWV. Biochemistry assay and immunohistochemistry showed that aortic collagen depositions in the arotinolol groups were reduced compared with SHRs with metoprolol. Moreover, eNOS phosphorylation was significantly increased in aortinolol-treated SHR compared with SHRs with metoprolol. CONCLUSIONS Arotinolol improves arterial stiffness in SHR, which involved in increasing NO and decreasing collagen contents in large arteries.
Collapse
|
38
|
Caffeic acid phenethyl ester, a 5-lipoxygenase enzyme inhibitor, alleviates diabetic atherosclerotic manifestations: effect on vascular reactivity and stiffness. Chem Biol Interact 2014; 213:28-36. [PMID: 24508943 DOI: 10.1016/j.cbi.2014.01.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/29/2013] [Accepted: 01/30/2014] [Indexed: 01/07/2023]
Abstract
Atherosclerosis is a major macrovascular complication of diabetes that increases the risks for myocardial infarction, stroke, and other vascular diseases. The effect of a selective 5-lipoxygenase enzyme inhibitor; caffeic acid phenethyl ester (CAPE) on diabetes-induced atherosclerotic manifestations was investigated. Insulin deficiency or resistance was induced by STZ or fructose respectively. Atherosclerosis developed when rats were left for 8 or 12 weeks subsequent STZ or fructose administration respectively. CAPE (30 mg kg(-1) day(-1)) was given in the last 6 weeks. Afterwards, blood pressure (BP) was recorded. Then, isolated aorta reactivity to KCl and phenylephrine (PE) was studied. Blood glucose level, serum levels of insulin, tumor necrosis factor α (TNF-α) as well as advanced glycation end products (AGEs) were determined. Moreover aortic haem oxygenase-1 (HO-1) protein expression and collagen deposition were also assessed. Insulin deficiency and resistance were accompanied with elevated BP, exaggerated response to KCl and PE, elevated serum TNF-α and AGEs levels. Both models showed marked increase in collagen deposition. However, CAPE alleviated systolic and diastolic BP elevations and the exaggerated vascular contractility to both PE and KCl in both models without affecting AGEs level. CAPE inhibited TNF-α serum level elevation, induced aortic HO-1 expression and reduced collagen deposition. CAPE prevented development of hyperinsulinemia in insulin resistance model without any impact on the developed hyperglycemia in insulin deficiency model. In conclusion, CAPE offsets the atherosclerotic changes associated with diabetes via amelioration of the significant functional and structural derangements in the vessels in addition to its antihyperinsulinemic effect in insulin resistant model.
Collapse
|
39
|
Khedoe PPSJ, Wong MC, Wagenaar GTM, Plomp JJ, van Eck M, Havekes LM, Rensen PCN, Hiemstra PS, Berbée JFP. The effect of PPE-induced emphysema and chronic LPS-induced pulmonary inflammation on atherosclerosis development in APOE*3-LEIDEN mice. PLoS One 2013; 8:e80196. [PMID: 24303000 PMCID: PMC3841138 DOI: 10.1371/journal.pone.0080196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/30/2013] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by pulmonary inflammation, airways obstruction and emphysema, and is a risk factor for cardiovascular disease (CVD). However, the contribution of these individual COPD components to this increased risk is unknown. Therefore, the aim of this study was to determine the contribution of emphysema in the presence or absence of pulmonary inflammation to the increased risk of CVD, using a mouse model for atherosclerosis. Because smoke is a known risk factor for both COPD and CVD, emphysema was induced by intratracheal instillation of porcine pancreatic elastase (PPE). METHODS Hyperlipidemic APOE*3-Leiden mice were intratracheally instilled with vehicle, 15 or 30 µg PPE and after 4 weeks, mice received a Western-type diet (WTD). To study the effect of emphysema combined with pulmonary inflammation on atherosclerosis, mice received 30 µg PPE and during WTD feeding, mice were intranasally instilled with vehicle or low-dose lipopolysaccharide (LPS; 1 µg/mouse, twice weekly). After 20 weeks WTD, mice were sacrificed and emphysema, pulmonary inflammation and atherosclerosis were analysed. RESULTS Intratracheal PPE administration resulted in a dose-dependent increase in emphysema, whereas atherosclerotic lesion area was not affected by PPE treatment. Additional low-dose intranasal LPS administration induced a low-grade systemic IL-6 response, as compared to vehicle. Combining intratracheal PPE with intranasal LPS instillation significantly increased the number of pulmonary macrophages and neutrophils. Plasma lipids during the study were not different. LPS instillation caused a limited, but significant increase in the atherosclerotic lesion area. This increase was not further enhanced by PPE. CONCLUSION This study shows for the first time that PPE-induced emphysema both in the presence and absence of pulmonary inflammation does not affect atherosclerotic lesion development.
Collapse
Affiliation(s)
- P. Padmini S. J Khedoe
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | - Man C. Wong
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerry T. M. Wagenaar
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap J. Plomp
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Miranda van Eck
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Louis M. Havekes
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Organization for Applied Scientific Research, Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Patrick C. N. Rensen
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jimmy F. P. Berbée
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
40
|
Rafatian N, Karunakaran D, Rayner KJ, Leenen FHH, Milne RW, Whitman SC. Cathepsin G deficiency decreases complexity of atherosclerotic lesions in apolipoprotein E-deficient mice. Am J Physiol Heart Circ Physiol 2013; 305:H1141-8. [PMID: 23934850 DOI: 10.1152/ajpheart.00618.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cathepsin G is a serine protease with a broad range of catalytic activities, including production of angiotensin II, degradation of extracellular matrix and cell-cell junctions, modulation of chemotactic responses, and induction of apoptosis. Cathepsin G mRNA expression is increased in human coronary atheroma vs. the normal vessel. To assess whether cathepsin G modulates atherosclerosis, cathepsin G knockout (Cstg(-/-)) mice were bred with apolipoprotein E knockout (Apoe(-/-)) mice to obtain Ctsg(+/-)Apoe(-/-) and Ctsg(+/+)Apoe(-/-) mice. Heterozygous cathepsin G deficiency led to a 70% decrease in cathepsin G activity in bone marrow cells, but this reduced activity did not impair generation of angiotensin II in bone marrow-derived macrophages (BMDM). Atherosclerotic lesions were compared in male Cstg(+/-)Apoe(-/-) and Cstg(+/+)Apoe(-/-) mice after 8 wk on a high-fat diet. Plasma cholesterol levels and cholesterol distribution within serum lipoprotein fractions did not differ between genotypes nor did the atherosclerotic lesion areas in either the aortic root or aortic arch. Cstg(+/-)Apoe(-/-) mice, however, showed a lower percentage of complex lesions within the aortic root and a smaller number of apoptotic cells compared with Cstg(+/+)Apoe(-/-) littermates. Furthermore, apoptotic Cstg(-/-) BMDM were more efficiently engulfed by phagocytic BMDM than were apoptotic Ctsg(+/+) BMDM. Thus cathepsin G activity may impair efferocytosis, which could lead to an accumulation of lesion-associated apoptotic cells and the accelerated progression of early atherosclerotic lesions to more complex lesions in Apoe(-/-) mice.
Collapse
Affiliation(s)
- Naimeh Rafatian
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Faugeroux J, Nematalla H, Li W, Clement M, Robidel E, Frank M, Curis E, Ait-Oufella H, Caligiuri G, Nicoletti A, Hagege A, Messas E, Bruneval P, Jeunemaitre X, Bergaya S. Angiotensin II promotes thoracic aortic dissections and ruptures in Col3a1 haploinsufficient mice. Hypertension 2013; 62:203-8. [PMID: 23630948 DOI: 10.1161/hypertensionaha.111.00974] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vascular Ehlers-Danlos syndrome is a dramatic inherited disease caused by mutations of type III collagen (COL3A1) gene, associated with early-onset occurrence of arterial ruptures. Col3a1(+/-) heterozygous mice, the only vascular Ehlers-Danlos syndrome model available to date, have no spontaneous early vascular phenotype. Our objective was to determine the susceptibility of Col3a1(+/-) mice to develop arterial ruptures under high blood pressure (BP) conditions induced by a 4-week infusion of angiotensin II (AngII). AngII (1 μg/kg per minute) significantly and comparably increased systolic BP in Col3a1(+/-) and Col3a1(+/+) mice but led to a higher premature mortality rate in Col3a1(+/-) mice compared with Col3a1(+/+) mice (73% versus 36%; P=0.03), particularly during the first-week infusion (55% versus 0%). Echocardiography and histological analysis evidenced that early deaths were caused by thoracic aortic ruptures preceded by dissections and associated with low aortic collagen fibrils content. Remarkably, lowering the dose of AngII (0.5 μg/kg per minute) rescued the first-week premature deaths of Col3a1(+/-) mice while decreasing the rises in systolic BP (P=0.05 compared with the high-dose AngII), resulting in similar mortality rates in both groups of mice at the end of the 4-week period (30% versus 50% in Col3a1(+/-) and Col3a1(+/+) mice; P=0.30). Finally, norepinephrine infusion (3.9 μg/kg per minute) did not induced significant mortality in both groups, whereas it significantly increased systolic BP, comparably with the high and with the low dose of AngII in Col3a1(+/-) mice (P=0.53 and P=1.00, respectively). Our findings demonstrated the extreme sensitivity of Col3a1 insufficient mice to prematurely develop thoracic aortic ruptures in response to AngII and its associated high levels in BP.
Collapse
Affiliation(s)
- Julie Faugeroux
- INSERM U970, Paris Cardiovascular Research Center, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Guo J, Saylor DM, Glaser EP, Patwardhan DV. Impact of artificial plaque composition on drug transport. J Pharm Sci 2013; 102:1905-1914. [PMID: 23568279 DOI: 10.1002/jps.23537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/28/2013] [Accepted: 03/18/2013] [Indexed: 11/07/2022]
Abstract
Drug-eluting stent (DES) implantation is a common treatment for atherosclerosis. The safety and efficacy of these devices will depend on the uptake and distribution of drug into the vessel wall. It is established that the composition of atherosclerotic vessels can vary dramatically with patients' age and gender. However, studies focused on elucidating and quantifying the impact of these variations on important drug transport properties, such as diffusion (D) and partition (k) coefficients, are limited. We have developed an improved tissue mimic or artificial plaque to probe the effect of varying concentrations of plaque constituents on drug transport in vitro. Based on these artificial plaques, we have quantified the impact of gelatin (hydrolyzed collagen) and lipid (cholesterol) concentration on D and k using two model drugs, tetracycline and fluvastatin. We found that for tetracycline, increasing the collagen concentration from 0.025 to 0.100 (w/w) resulted in a fivefold decrease in diffusivity, whereas there was no discernible impact on solubility. Increasing the lipid concentration up to 0.034 (w/w) resulted in only minor changes to transport properties of tetracycline. However, fluvastatin exhibited nearly a fivefold increase in k and 10-fold decrease in D with increased lipid concentration. These results were in reasonable agreement with existing models and exhibited behavior consistent with previous observations on drugs commonly used in DES applications. These observations suggest that variations in the chemical characteristics of atherosclerotic plaque can significantly alter the release rate and distribution of drug following DES implantation.
Collapse
Affiliation(s)
- Ji Guo
- Division of Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland 20993.
| | - David M Saylor
- Division of Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Ethan P Glaser
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250
| | - Dinesh V Patwardhan
- Division of Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland 20993
| |
Collapse
|
43
|
Wang L, Yao L, Guo D, Wang C, Wan B, Ji G, Yang C, Zhang J, Sheng Z, Fu W, Wang Y. Gene Expression Profiling in Acute Stanford Type B Aortic Dissection. Vasc Endovascular Surg 2012; 46:300-9. [PMID: 22534613 DOI: 10.1177/1538574412443315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Lixin Wang
- Department of vascular surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dong H, Blaivas M, Wang MM. Bidirectional encroachment of collagen into the tunica media in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Brain Res 2012; 1456:64-71. [PMID: 22503071 DOI: 10.1016/j.brainres.2012.03.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 01/25/2023]
Abstract
Arteries in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) are susceptible to smooth muscle loss and fibrosis, but the molecular components underlying these dramatic vascular changes are not well characterized. The purpose of this study was to investigate the distribution of collagen isoforms in the cerebral vessels of North American CADASIL patients with classical NOTCH3 mutations. Expression of types I-VI collagen in brains obtained at autopsy from six CADASIL patients with cysteine-altering mutations in NOTCH3 was compared to control brain expression. We identified a consistent increase of types I, III, IV, and VI collagen in CADASIL brains. Strong accumulation of types I, III, IV and VI collagen was noted in all calibers of vessels, including small and medium-sized leptomeningeal arteries, small penetrating white matter arteries, and capillaries. Within leptomeningeal arteries, where we could define the three tunicae of each vessel, we found distinct collagen subtype distribution patterns in CADASIL. Types I and III collagen were largely found in either adventitial/medial or transmural locations. Type IV collagen was strictly intimal/medial. Type VI collagen was adventitial or adventitial/medial. Within the thickened penetrating arteries of CADASIL patients, all four collagens extended through most of the arterial wall. We observed increased staining of capillaries in CADASIL for types I, IV, and VI collagen. In conclusion, brain vascular collagen subtypes are increased in CADASIL in multiple layers of all sizes of arteries, with disease-specific changes most prominent in the tunica media and thickened small penetrating vessels. In diseased arteries, types I, III, and VI collagen spreads from an external location (adventitia) into the vascular media, while type IV collagen accumulates in an internal pattern (intima and media). These observations are consistent with a pathological role for collagen accumulation in the vascular media in CADASIL.
Collapse
Affiliation(s)
- Hairong Dong
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | | | | |
Collapse
|
45
|
Molecular mechanism of force induced stabilization of collagen against enzymatic breakdown. Biomaterials 2012; 33:3852-9. [PMID: 22401852 DOI: 10.1016/j.biomaterials.2012.02.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 02/01/2012] [Indexed: 01/25/2023]
Abstract
Collagen cleavage, facilitated by collagenases of the matrix metalloproteinase (MMP) family, is crucial for many physiological and pathological processes such as wound healing, tissue remodeling, cancer invasion and organ morphogenesis. Earlier work has shown that mechanical force alters the cleavage rate of collagen. However, experimental results yielded conflicting data on whether applying force accelerates or slows down the degradation rate. Here we explain these discrepancies and propose a molecular mechanism by which mechanical force might change the rate of collagen cleavage. We find that a type I collagen heterotrimer is unfolded in its equilibrium state and loses its triple helical structure at the cleavage site without applied force, possibly enhancing enzymatic breakdown as each chain is exposed and can directly undergo hydrolysis. Under application of force, the naturally unfolded region refolds into a triple helical structure, potentially protecting the molecule against enzymatic breakdown. In contrast, a type I collagen homotrimer retains a triple helical structure even without applied force, making it more resistant to enzyme cleavage. In the case of the homotrimer, the application of force may directly lead to molecular unwinding, resulting in a destabilization of the molecule under increased mechanical loading. Our study explains the molecular mechanism by which force may regulate the formation and breakdown of collagenous tissue.
Collapse
|
46
|
Mendelboum Raviv S, Szekeres-Csiki K, Jenei A, Nagy J, Shenkman B, Savion N, Harsfalvi J. Coating conditions matter to collagen matrix formation regarding von Willebrand factor and platelet binding. Thromb Res 2011; 129:e29-35. [PMID: 22056526 DOI: 10.1016/j.thromres.2011.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/30/2011] [Accepted: 09/25/2011] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Von Willebrand factor (VWF) and platelet binding needs a uniform collagen matrix therefore we aimed to find an optimal condition for the preparation of human type-I and type-III collagen matrices. METHOD The effects of pH, salt and ligand concentration and binding time were tested when collagen matrices were prepared by adsorption. Surface-bound collagen and collagen-bound VWF measured by specific antibodies. Platelet adhesion was tested under flow conditions at a shear rate of 1800s(-1) for 2 min. Matrices and platelets were visualized by atomic force and scanning electron microscope. RESULTS The extent of human collagens type-I and III binding to the surface was 10 and 4 times greater and binding was maximal under 8-16 hours, when coated from physiological buffer solution versus acid solution. Collagen fibrils were more developed and platelet adhesion was higher, with more organized and denser aggregates. VWF binding was parallel to the surface bound collagen in both collagen types. CONCLUSION Collagen coating of surfaces for VWF binding and platelet adhesion studies is very variable from acid solution. Our experiments provide evidences that neutralizing the acid and adding NaCl in physiological concentration, thereby facilitating formation of collagen fibril molecules in solution, results in efficient coating of human type-I and type III collagens, which then bind normal VWF equally well.
Collapse
|
47
|
Skjøt-Arkil H, Barascuk N, Larsen L, Dziegiel M, Henriksen K, Karsdal MA. Tumor necrosis factor-α and receptor activator of nuclear factor-κB ligand augment human macrophage foam-cell destruction of extracellular matrix through protease-mediated processes. Assay Drug Dev Technol 2011; 10:69-77. [PMID: 22053710 DOI: 10.1089/adt.2010.0366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
By secreting proteases such as cathepsins and matrix metalloproteinases (MMPs), macrophage foam cells may be a major cause of ruptured atherosclerotic plaques. The aims of the present study were to investigate in vitro role of human macrophage foam cells in degrading type I collagen, a major component of extracellular matrix (ECM) in plaques, and to establish whether the pro-inflammatory molecules, tumor necrosis factor (TNF)-alpha, and receptor activator of nuclear factor-κB ligand (RANK-L) increase this degradation. CD14+ monocytes isolated from peripheral blood were differentiated into macrophage foam cells and cultured on a type I collagen matrix in the presence of TNF-alpha and RANK-L. Matrix degradation was measured by the cathepsin K-generated C-terminal cross-linked telopeptide of type I collagen (CTX-I) and the MMP-generated carboxyterminal telopeptide of type I collagen (ICTP) in supernatants showing that macrophage foam cells secrete MMPs and cathepsin K, resulting in release of ICTP and CTX-I. Stimulation with TNF-alpha increased CTX-I and ICTP dose dependently, with ICTP levels increasing by 59% and CTX-I levels increasing by 43%. RANK-L enhanced the release of CTX-I and ICTP by 56% and 72%, respectively. This is, to our knowledge, the first data describing a simple in vitro system in which macrophage foam cells degradation of matrix proteins can be monitored. This degradation can be enhanced by cytokines since TNF-alpha and RANK-L significantly increased the matrix degradation. This in vitro system in part is a model system for the macrophage-mediated proteolytic degradation of the ECM, which is found in many diseases with an inflammatory component.
Collapse
|
48
|
Qiu X, Fandel TM, Lin G, Huang YC, Dai YT, Lue TF, Lin CS. Cavernous smooth muscle hyperplasia in a rat model of hyperlipidaemia-associated erectile dysfunction. BJU Int 2011; 108:1866-72. [PMID: 21895927 DOI: 10.1111/j.1464-410x.2011.10162.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED What's known on the subject? and what does the study add? Increased cavernous smooth muscle content has been repeatedly observed in rat models of hyperlipidaemia - associated erectile dysfunction. This study shows that the increased smooth muscle content is due to hyperplasia. OBJECTIVE • To investigate the structural changes, including possible smooth muscle hyperplasia, in the penis of a hyperlipidaemia-associated erectile dysfunction (ED) animal model. MATERIALS AND METHODS • Hyperlipidaemia was induced in rats through a high-fat diet. • Penile tissues of normal and hyperlipidaemic rats were stained with Alexa-488-conjugated phalloidin and/or with antibodies against rat endothelial cell antigen, neuronal nitric oxide synthase (nNOS), and collagen type IV (Col-IV) before image and statistical analyses were carried out. • The main outcome measures were the smooth muscle, endothelial, Col-IV and nNOS content of the corpus cavernosum. RESULTS • Phalloidin intensely stained all smooth muscle in the penis, revealing the circular and longitudinal components of cavernous smooth muscle (CSM). • The CSM content was significantly higher in the hyperlipidaemic than in the normal rats (P < 0.05). • Cell numbers in both circular and longitudinal CSM were significantly higher in the hyperlipidaemic than in the normal rats (P < 0.05). • Cavernous endothelial content was significantly lower in hyperlipidaemic than in normal rats (P < 0.05). • nNOS-positive nerves within the dorsal nerves, around the dorsal arteries, and in the corpora cavernosa were all significantly lower in the hyperlipidaemic than in the normal rats (P < 0.05). CONCLUSIONS • Hyperlipidaemia is associated with reduced nNOS-positive nerves, reduced endothelium, and increased CSM in the penis. • The increased CSM is attributable to hyperplasia. • These structural changes may explain why hyperlipidaemic men are more likely to develop ED.
Collapse
Affiliation(s)
- Xuefeng Qiu
- Knuppe Molecular Urology Laboratory, Department of Urology, University of California, San Francisco, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Improved penile histology by phalloidin stain: circular and longitudinal cavernous smooth muscles, dual-endothelium arteries, and erectile dysfunction-associated changes. Urology 2011; 78:970.e1-8. [PMID: 21840580 DOI: 10.1016/j.urology.2011.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/17/2011] [Accepted: 06/06/2011] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate whether fluorochrome-conjugated phalloidin can delineate cavernous smooth muscle (CSM) cells and whether it can be combined with immunofluorescence (IF) staining to quantify erectile dysfunction (ED)-associated changes. METHODS ED was induced by cavernous nerve crush in rats. Penile tissues of control and ED rats were stained with Alexa-488-conjugated phalloidin and/or with antibodies against rat endothelial cell antigen (RECA), CD31, neuronal nitric oxide synthase (nNOS), and collagen-IV (Col-IV). RESULTS Phalloidin was able to delineate CSM as composed of a circular and a longitudinal compartment. When combined with IF stain for CD31 or RECA, it helped the identification of the helicine arteries as covered by endothelial cells on both sides of the smooth muscle layer. When combined with IF stain for nNOS, it helped the identification that nNOS-positive nerves were primarily localized within the dorsal nerves and in the adventitia of dorsal arteries. When combined with IF stain for Col-IV, it helped identify that Col-IV was localized around smooth muscles and beneath the endothelium. Phalloidin also facilitated the quantitative analysis of ED-related changes in the penis. In rats with cavernous nerve injury, RECA or Col-IV expression did not change significantly, but CSM and nNOS nerve contents decreased significantly. CONCLUSION Phalloidin stain improved penile histology, enabling the visualization of the circular and longitudinal compartments in the CSM. It also worked synergistically with IF stain, permitting the visualization of the dual endothelial covering in helicine arteries, and facilitating the quantification of ED-related histologic changes.
Collapse
|
50
|
Barascuk N, Vassiliadis E, Larsen L, Wang J, Zheng Q, Xing R, Cao Y, Crespo C, Lapret I, Sabatini M, Villeneuve N, Vilaine JP, Rasmussen LM, Register TC, Karsdal MA. Development and validation of an enzyme-linked immunosorbent assay for the quantification of a specific MMP-9 mediated degradation fragment of type III collagen--A novel biomarker of atherosclerotic plaque remodeling. Clin Biochem 2011; 44:900-6. [PMID: 21549691 DOI: 10.1016/j.clinbiochem.2011.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 03/16/2011] [Accepted: 04/10/2011] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Degradation of collagen in the arterial wall by matrix metalloproteinases is the hallmark of atherosclerosis. We have developed an ELISA for the quantification of type III collagen degradation mediated by MMP-9 in urine. DESIGN AND METHODS A monoclonal antibody targeting a specific MMP-9 generated fragment of collagen III was used in a competitive ELISA. The assay was validated in urine and arterial tissue of Apolipoprotein-E knockout (ApoE-KO) mice. RESULTS The lower limit of detection was 0.5ng/mL, intra- and inter-assay coefficients of variation were below 10%. By the end of 20weeks of the study, urine levels of the novel CO3-610 biomarker in ApoE-KO mice increased by two-fold (p<0.0001) and were three-fold higher than in control mice. Western blots confirmed high expression of CO3-610 in arterial extracts of ApoE-KO mice. CONCLUSION We have developed a novel competitive ELISA, capable of measuring a urine biomarker indicative of pathological extracellular matrix remodeling in a mouse model of atherosclerosis.
Collapse
Affiliation(s)
- Natasha Barascuk
- Nordic Bioscience A/S, Herlev, Denmark; University of Southern Denmark, Odense, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|