1
|
Bales AM, Lock AL. Effects of increasing dietary inclusion of high oleic acid soybeans on milk production of high-producing dairy cows. J Dairy Sci 2024:S0022-0302(24)00864-6. [PMID: 38825117 DOI: 10.3168/jds.2024-24781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
Recent research has highlighted the importance of dietary fatty acid profile of fatty acid supplements on production responses of high-producing dairy cows. Conventional soybeans contain ∼15% oleic acid and ∼50% linoleic acid whereas high oleic acid soybeans (HOSB) contain ∼70% oleic acid and ∼7% linoleic acid. We determined the effect of increasing dietary inclusion of roasted and ground HOSB on production responses of high-producing dairy cows. Twenty-four multiparous Holstein cows (50.7 ± 4.45 kg/d of milk; 122 ± 57 DIM) were randomly assigned to treatment sequences in a replicated 4 × 4 Latin square design with 21-d periods. Treatments were increasing doses of HOSB at 0, 8, 16, and 24% DM. The HOSB replaced conventional soybean meal and hulls to maintain similar diet nutrient composition (% DM) of 27.4 - 29.4% (NDF), 20.6% forage NDF, 27.5% starch, and 15.9 - 16.5% CP. Total fatty acid content of treatments was 1.65, 3.11, 4.52, and 5.97% DM, respectively. Pre-planned polynomial orthogonal contrasts included the linear, quadratic, and cubic effects of increasing HOSB. Increasing dietary inclusion of HOSB linearly decreased DMI and milk urea nitrogen and increased yields of milk, 3.5% fat corrected milk, energy corrected milk, and milk fat, and quadratically increased milk protein. The increased response to milk fat was due to an increase in preformed milk fatty acids. Due to the increase in milk component yields and decrease in DMI, there was an increase in feed efficiency. Increasing HOSB inclusion linearly decreased plasma BUN concentration and tended to decrease plasma insulin. Increasing HOSB had no effect on BW change or BCS change. In summary, increasing dietary inclusion of HOSB up to 24% DM increased production responses of high-producing dairy cows and did not affect body reserves.
Collapse
Affiliation(s)
- A M Bales
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - A L Lock
- Department of Animal Science, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
2
|
Afarani OR, Zali A, Dehghan-Banadaki M, Kahyani A, Esfahani MA, Ahmadi F. Altering palmitic acid and stearic acid ratios in the diet of early-lactation Holsteins under heat stress: Feed intake, digestibility, feeding behavior, milk yield and composition, and plasma metabolites. J Dairy Sci 2023; 106:6171-6184. [PMID: 37500434 DOI: 10.3168/jds.2022-22934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/17/2023] [Indexed: 07/29/2023]
Abstract
The objective of this study was to evaluate the effects of varying the ratio of dietary palmitic (C16:0; PA) and stearic (C18:0; SA) acids on nutrient digestibility, production, and blood metabolites of early-lactation Holsteins under mild-to-moderate heat stress. Eight multiparous Holsteins (body weight = 589 ± 45 kg; days in milk = 51 ± 8 d; milk production = 38.5 ± 2.4 kg/d; mean ± standard deviation) were used in a duplicated 4 × 4 Latin square design (21-d periods inclusive of 7-d data collection). The PA (88.9%)- and SA (88.5%)-enriched fat supplements, either individually or in combination, were added to diets at 2% of dry matter (DM) to formulate the following treatments: (1) 100PA:0SA (100% PA + 0% SA), (2) 66PA:34SA (66% PA + 34% SA), (3) 34PA:66SA (34% PA + 66% SA), and (4) 0PA:100SA (0% PA + 100% SA). Diets offered, in the form of total mixed rations, were formulated to be isonitrogenous (crude protein = 17.2% of DM) and isocaloric (net energy for lactation = 1.69 Mcal/kg DM), with a forage-to-concentrate ratio of 40:60. Ambient temperature-humidity index averaged 72.9 throughout the experiment, suggesting that cows were under mild-to-moderate heat stress. No differences in DM intake across treatments were detected (mean 23.5 ± 0.64 kg/d). Increasing the dietary proportion of SA resulted in a linear decrease in total-tract digestibility of total fatty acids, but organic matter, DM, neutral detergent fiber, and crude protein digestibilities were not different across treatments. Decreasing dietary PA-to-SA had no effect on the time spent eating (340 min/d), rumination (460 min/d), and chewing (808 min/d). As dietary PA-to-SA decreased, milk fat concentration and yield decreased linearly, resulting in a linear decrease of 3.5% fat-corrected milk production and milk fat-to-protein ratio. Feed efficiency expressed as kg 3.5% fat-corrected milk/kg DM intake decreased linearly with decreasing the proportion of PA-to-SA in the diet. Treatments had no effect on milk protein and lactose content. A linear increase in de novo and preformed fatty acids was identified as the ratio of PA to SA decreased, while PA and SA concentrations of milk fat decreased and increased linearly, respectively. A linear reduction in blood nonesterified fatty acids and glucose was detected as the ratio of PA to SA decreased. Insulin concentration increased linearly from 10.3 in 100PA:0SA to 13.1 µIU/mL in 0PA:100SA, whereas blood β-hydroxybutyric acid was not different across treatments. In conclusion, the heat-stressed Holsteins in early-lactation phase fed diets richer in PA versus SA produced greater fat-corrected milk and were more efficient in converting feed to fat-corrected milk.
Collapse
Affiliation(s)
- O Ramezani Afarani
- Department of Animal Science, Agricultural and Natural Resources College, University of Tehran, Karaj 77871-31587, Iran
| | - A Zali
- Department of Animal Science, Agricultural and Natural Resources College, University of Tehran, Karaj 77871-31587, Iran.
| | - M Dehghan-Banadaki
- Department of Animal Science, Agricultural and Natural Resources College, University of Tehran, Karaj 77871-31587, Iran
| | - A Kahyani
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - M Asemi Esfahani
- Department of Animal Science, Khuzestan Ramin Agriculture and Natural Resources, Molasani, Ahvaz 63417-73637, Iran
| | - F Ahmadi
- Department of Eco-friendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, South Korea
| |
Collapse
|
3
|
Litherland NB, Beaulieu AD, Reynolds CK, Drackley JK. Effects of esterification, saturation and amount of fatty acids infused into the rumen or abomasum in lactating dairy cows. J Anim Physiol Anim Nutr (Berl) 2023; 107:12-27. [PMID: 35119129 DOI: 10.1111/jpn.13690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 01/10/2023]
Abstract
Our objective was to determine the effects of chemical structure, amount, and site of infusion of long-chain fatty acids (LCFA) in lactating dairy cows. Six multiparous Holstein cows were used in a 6 × 6 Latin square design with 21-d periods. During d 1 to 14, 250 g/d of LCFA and during d 15 to 21, 500 g/d of LCFA were infused continuously into either the rumen or abomasum. Treatments were 1) Control (CONT); 200 g/d of meat solubles plus 12 g/d of Tween 80 in 10 L of water, administered half in the rumen and half in abomasum; 2) control plus mostly saturated LCFA into the abomasum (SFAA); 3) control plus mostly saturated LCFA into the rumen (SFAR); 4) control plus soy (mostly unsaturated LCFA) free fatty acids (FFA) into the abomasum (UFAA); 5) control plus soy triglycerides (TG) into the abomasum (TGA); and 6) control plus soy TG into the rumen (TGR). The first 10 d of each period were for adaptation and washout from the previous treatment. The diet consisted of 30% (dry matter basis) corn silage, 20% alfalfa silage and 50% concentrate. Cows infused with UFAA had lower dry matter intake and milk yield than those infused with SFAA or TGA and reductions were greater at the higher infusion amount. Milk fat yield was decreased by UFAA relative to other treatments. Unsaturated LCFA decreased milk fat yield more than saturated LCFA. All LCFA treatments decreased short- and medium-chain FA in milk relative to CONT, with greatest decreases for UFAA. Apparent total tract digestibilities of nutrient fractions were decreased by UFAA compared with TGA and SFAA and tended to be lower at the higher infusion amount. Apparent digestibility of total fatty acids (FA) was greater for SFAR than for SFAA. Plasma glucagon-like peptide-1 was greater for cows infused with UFAA than SFAA or TGA and increased at the higher amount. Plasma cholecystokinin was greater for cows infused with LCFA compared with CONT. Postruminal unsaturated FFA reduced intake and digestibility of nutrients and FA compared with postruminal TG infusion; saturated FA did not decrease dry matter intake or disrupt nutrient digestion. Glucagon-like peptide-1 may be involved in regulation of feed intake by long-chain fatty acids.
Collapse
Affiliation(s)
| | | | | | - James K Drackley
- Department of Animal Sciences, University of Illinois, Urbana, US
| |
Collapse
|
4
|
Effects of altering the ratio of n-6 to n-3 fatty acids and concentrations of polyunsaturated fatty acids in diets on milk production and energy balance of Holstein cows. APPLIED ANIMAL SCIENCE 2022. [DOI: 10.15232/aas.2022-02310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Chemosensing of fat digestion by the expression pattern of GPR40, GPR120, CD36 and enteroendocrine profile in sheep. Res Vet Sci 2022; 150:89-97. [DOI: 10.1016/j.rvsc.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/20/2022] [Accepted: 05/28/2022] [Indexed: 11/20/2022]
|
6
|
Bernard L, Pomiès D, Aronen I, Ferlay A. Effect of concentrate enriched with palmitic acid versus rapeseed oil on dairy performance, milk fatty acid composition, and mammary lipogenic gene expression in mid-lactation Holstein cows. J Dairy Sci 2021; 104:11621-11633. [PMID: 34364640 DOI: 10.3168/jds.2020-20023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/26/2021] [Indexed: 11/19/2022]
Abstract
This study was performed to characterize the effect of a concentrate supplemented with free palmitic acid (4% on a DM basis; PA) or rapeseed oil (4% on a DM basis; RO) compared with a no-added-lipid control concentrate (CT) on the performance of dairy cows fed a corn silage-based diet over a 9-wk period. After a 3-wk pre-experimental period, 54 Holstein cows were randomly allocated to 3 experimental treatments to receive forage ad libitum with a fixed amount of CT, RO, or PA (8 kg/d for 2-yr-old primiparous; 10 kg/d for older cows). During the experiment, dry matter intake, milk yield and composition, fatty acid (FA) yields and FA profile, and feed efficiency were determined. At wk 9 of the experimental period, the mRNA levels of 10 genes involved in lipid metabolism in mammary tissue biopsy samples were measured. Compared with CT, RO and PA increased forage intake. Compared with CT, RO increased concentrate intake, the value being intermediate for PA. Compared with CT, RO increased milk yield (+2.0 kg/d) and decreased milk fat and protein content (-3.8 and -1.2 g/kg, respectively), whereas PA increased milk fat content (+4.1 g/kg). Compared with CT and RO treatments, PA increased milk fat yield (+179 g/d) and 3.5% fat-corrected milk and energy-corrected milk output (+2.8 and +2.3 kg/d, respectively), and thus improved feed efficiency (+7.3%). Compared with CT treatment, RO increased milk contents of the sum of >C16 FA, monounsaturated FA, polyunsaturated FA, trans FA, and n-3 FA, whereas PA decreased these FA contents (except n-3 FA) and also decreased n-6 FA. The variations in milk fat yield and content and FA secretion at wk 9 were not associated with modifications in mammary expression of 10 genes involved in major lipid pathways, except for the transcription factor PPARG1, which tended to be higher in PA versus RO treatment. This study demonstrated that PA improved milk fat yield and feed efficiency compared with RO and suggests that factors other than gene expression, such as substrate availability for mammary metabolism or other levels of regulation (transcriptional, posttranscriptional, translational or posttranslational), could play a key role in milk fat and FA responses to changes in diet composition in cows.
Collapse
Affiliation(s)
- L Bernard
- VetAgroSup, UMR Herbivores, Université Clermont Auvergne, INRAE, 63122 Saint-Genès-Champanelle, France
| | - D Pomiès
- VetAgroSup, UMR Herbivores, Université Clermont Auvergne, INRAE, 63122 Saint-Genès-Champanelle, France
| | - I Aronen
- Raisio Plc, PO Box 101, Raisionkaari 55, FIN-21201 Raisio, Finland
| | - A Ferlay
- VetAgroSup, UMR Herbivores, Université Clermont Auvergne, INRAE, 63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
7
|
Boland TM, Pierce KM, Kelly AK, Kenny DA, Lynch MB, Waters SM, Whelan SJ, McKay ZC. Feed Intake, Methane Emissions, Milk Production and Rumen Methanogen Populations of Grazing Dairy Cows Supplemented with Various C 18 Fatty Acid Sources. Animals (Basel) 2020; 10:E2380. [PMID: 33322624 PMCID: PMC7764364 DOI: 10.3390/ani10122380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/05/2023] Open
Abstract
Emissions of methane (CH4) from dairy production systems are environmentally detrimental and represent an energy cost to the cow. This study evaluated the effect of varying C18 fatty acid sources on CH4 emissions, milk production and rumen methanogen populations in grazing lactating dairy cows. Forty-five Holstein Friesian cows were randomly allocated to one of three treatments (n = 15). Cows were offered 15 kg dry matter (DM)/d of grazed pasture plus supplementary concentrates (4 kg DM/d) containing either stearic acid (SA), linseed oil (LO), or soy oil (SO). Cows offered LO and SO had lower pasture DM intake (DMI) than those offered SA (11.3, 11.5 vs. 12.6 kg/d). Cows offered LO and SO had higher milk yield (21.0, 21.3 vs. 19.7 kg/d) and milk protein yield (0.74, 0.73 vs. 0.67 kg/d) than those offered SA. Emissions of CH4 (245 vs. 293, 289 g/d, 12.4 vs. 15.7, 14.8 g/kg of milk and 165 vs. 207, 195 g/kg of milk solids) were lower for cows offered LO than those offered SA or SO. Methanobrevibacter ruminantium abundance was reduced in cows offered LO compared to SA. Offering supplementary concentrates containing LO can reduce enteric CH4 emissions from pasture fed dairy cows.
Collapse
Affiliation(s)
- Tommy M. Boland
- School of Agriculture and Food Science, University College Dublin, Dublin 4 D04 V1W8, Ireland; (K.M.P.); (A.K.K.); (M.B.L.); (Z.C.M.)
| | - Karina M. Pierce
- School of Agriculture and Food Science, University College Dublin, Dublin 4 D04 V1W8, Ireland; (K.M.P.); (A.K.K.); (M.B.L.); (Z.C.M.)
| | - Alan K. Kelly
- School of Agriculture and Food Science, University College Dublin, Dublin 4 D04 V1W8, Ireland; (K.M.P.); (A.K.K.); (M.B.L.); (Z.C.M.)
| | - David A. Kenny
- Teagasc Animal and Bioscience Department, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, C15 PW93, Ireland; (D.A.K.); (S.M.W.)
| | - Mary B. Lynch
- School of Agriculture and Food Science, University College Dublin, Dublin 4 D04 V1W8, Ireland; (K.M.P.); (A.K.K.); (M.B.L.); (Z.C.M.)
| | - Sinéad M. Waters
- Teagasc Animal and Bioscience Department, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, C15 PW93, Ireland; (D.A.K.); (S.M.W.)
| | | | - Zoe C. McKay
- School of Agriculture and Food Science, University College Dublin, Dublin 4 D04 V1W8, Ireland; (K.M.P.); (A.K.K.); (M.B.L.); (Z.C.M.)
| |
Collapse
|
8
|
Effect of partial replacement of dietary starch with fiber and fat on performance, feeding behavior, ruminal fermentation and some blood metabolites of Holstein calves. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Sears A, Gonzalez O, Alberto A, Young A, de Souza J, Relling A, Batistel F. Effect of feeding a palmitic acid-enriched supplement on production responses and nitrogen metabolism of mid-lactating Holstein and Jersey cows. J Dairy Sci 2020; 103:8898-8909. [PMID: 32713701 DOI: 10.3168/jds.2020-18232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/11/2020] [Indexed: 12/25/2022]
Abstract
This study evaluated the effect of feeding a palmitic acid-enriched supplement on production responses and nitrogen metabolism of mid-lactating Holstein and Jersey cows. Eighty mid-lactating dairy cows, 40 Holstein and 40 Jersey, were used in a randomized complete block design with a split-plot arrangement; the main plot was breed and the subplot was fatty acid treatment. Cows within each breed were assigned to 1 of 2 treatments: (1) control diet with no fat supplement or (2) control diet plus a palmitic acid-enriched supplement dosed at 1.5% of diet dry matter (PA treatment). The treatment period was 6 wk with the final 3 wk used for data and sample collection. There were no treatment × breed interactions for the variables analyzed. Compared with control, PA treatment increased milk fat yield (1.36 vs. 1.26 kg/d) and tended to increase 3.5% fat-corrected milk (35.6 vs. 34.0 kg/d) and energy-corrected milk (35.7 vs. 34.1 kg/d). There was no effect of PA treatment on dry matter intake, milk yield, milk protein yield, milk lactose yield, body condition score, body weight (BW) change, nitrogen intake, and variables related to nitrogen metabolism and excretion. Compared with Holstein cows, Jersey cows had greater dry matter intake as a percent of BW (4.90 vs. 3.37% of BW) and lower milk production (29.6 vs. 32.7 kg/d) and milk lactose yield (1.58 vs. 1.42 kg/d), but tended to have greater milk fat yield (1.36 vs. 1.26 kg/d). There was a breed effect on BW change; Holstein cows gained 0.385 kg/d during the experiment, and Jersey cows gained 0.145 kg/d. Jersey cows had lower nitrogen intake (636 vs. 694 g/d), blood urea nitrogen (12.6 vs. 13.8 mg/dL), urine total nitrogen (125 vs. 145 g/d), and urine total nitrogen as a percent of nitrogen intake (19.5 vs. 21.1%). Overall, feeding a palmitic acid-enriched supplement increased milk fat yield as well as dry matter and fiber digestibility in both Holstein and Jersey cows. The PA treatment did not have any major effects on nitrogen metabolism in both Holstein and Jersey cows. In addition, our results indicated that Jersey cows had lower urinary nitrogen excretion (g/d) than Holstein cows.
Collapse
Affiliation(s)
- Austin Sears
- Animal, Dairy and Veterinary Sciences Department, Utah State University, Logan 84322
| | - Osvaldo Gonzalez
- Animal, Dairy and Veterinary Sciences Department, Utah State University, Logan 84322
| | - Anthony Alberto
- Animal, Dairy and Veterinary Sciences Department, Utah State University, Logan 84322
| | - Allen Young
- Animal, Dairy and Veterinary Sciences Department, Utah State University, Logan 84322
| | | | - Alejandro Relling
- Department of Animal Sciences, The Ohio State University, Wooster 44691
| | - Fernanda Batistel
- Animal, Dairy and Veterinary Sciences Department, Utah State University, Logan 84322.
| |
Collapse
|
10
|
Western MM, de Souza J, Lock AL. Effects of commercially available palmitic and stearic acid supplements on nutrient digestibility and production responses of lactating dairy cows. J Dairy Sci 2020; 103:5131-5142. [PMID: 32253043 DOI: 10.3168/jds.2019-17242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/31/2020] [Indexed: 11/19/2022]
Abstract
We evaluated the effects of commercially available fatty acid (FA) supplements containing palmitic (C16:0) and stearic acid (C18:0) on nutrient digestibility and production responses of dairy cows. Thirty-six mid-lactation (146 ± 55 d in milk) multiparous Holstein cows were randomly assigned to twelve 3 × 3 balanced truncated Latin squares, with 3 treatments and 2 consecutive 35-d periods, with the final 5 d used for sample and data collection. Treatments were (1) a control diet containing no supplemental FA (CON), (2) a control diet supplemented with a commercially available C16:0 supplement (PA), and (3) a control diet supplemented with a commercially available C16:0 and C18:0 supplement (MIX). Supplements were fed at 1.5% dry matter and replaced soyhulls in CON. The statistical model included the random effect of cow nested within square and the fixed effects of treatment, period, square, and their interactions. Preplanned contrasts were (1) overall effect of FA treatments [CON vs. the average of the FA treatments (FAT); 1/2 (PA + MIX)], and (2) effect of FA supplement (PA vs. MIX). Treatment had no effects on dry matter intake, body weight, or body weight change. Compared with CON, FAT decreased digestibilities of total FA and 18-carbon FA but did not affect dry matter and neutral detergent fiber digestibility. Compared with MIX, PA increased dry matter and neutral detergent fiber digestibilities by 3.6 and 4.8 percentage units, respectively. The PA also increased total FA and 18-carbon FA digestibilities but did not alter 16-carbon FA digestibility compared with MIX. Using a Lucas test, we estimated apparent digestibility coefficients of 0.768 and 0.553 for the PA and MIX supplements, respectively. Compared with CON, FAT increased milk yield and tended to increase energy-corrected milk, but did not affect yield of milk fat or milk protein. The PA increased energy-corrected milk and milk fat yield but had no effect on milk protein yield compared with MIX. Our results indicate that dairy cows producing around 45 kg of milk respond better to a FA supplement enriched in C16:0 compared with a supplement containing both C16:0 and C18:0, which is likely due in part to PA increasing FA and neutral detergent fiber digestibility compared with MIX.
Collapse
Affiliation(s)
- Marin M Western
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - Jonas de Souza
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - Adam L Lock
- Department of Animal Science, Michigan State University, East Lansing 48824.
| |
Collapse
|
11
|
Abomasally infused SFA with varying chain length differently affect milk production and composition and alter hepatic and mammary gene expression in lactating cows. Br J Nutr 2020; 124:386-395. [DOI: 10.1017/s0007114520000379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe aim of the present study was to compare the effects of post-ruminally infused fat supplements, varying in fatty acid (FA) chain length, on animal performance, metabolism and milk FA. Eleven multiparous Holstein dairy cows were used in a replicated incomplete 3 × 3 Latin square design with 7-d periods, separated by 7-d washouts. Treatments were administered as abomasal infusions of enrichments providing 280 g/d of FA: (1) palmitic acid (98·4 % 16 : 0; PA), (2) caprylic and capric acids (56·2 % 8 : 0, 43·8 % 10 : 0; medium-chain TAG (MCT)) and (3) stearic acid (99·0 % 18 : 0; SA). Relative to PA, SA decreased the efficiency of fat-corrected milk production, which was associated with a tendency for higher DM intake and lower FA absorption with SA, whereas MCT was not different from PA for these variables. Milk fat concentration and yield were increased by PA relative to SA, but only fat yield tended to be greater relative to MCT. Relative to PA, MCT increased milk fat concentration of FA < 16 C, whereas SA increased FA > 16 C. Expression of mammary stearoyl-coA desaturase 1 was lower with SA than with PA. Relative to PA, liver expression of adenosine monophosphate-activated protein kinase-1 and pyruvate kinase was increased with MCT, whereas expression of these genes tended to be increased by SA. The mechanism of increased fat secretion with PA does not seem to be related to a modulation of the expression of lipogenesis-related genes, but rather to increased substrate availability as reflected by milk FA profile.
Collapse
|
12
|
da Cruz WFG, Schoonmaker JP, de Resende FD, Siqueira GR, Rodrigues LM, Zamudio GDR, Ladeira MM. Effects of maternal protein supplementation and inclusion of rumen-protected fat in the finishing diet on nutrient digestibility and expression of intestinal genes in Nellore steers. Anim Sci J 2019; 90:1200-1211. [PMID: 31317623 DOI: 10.1111/asj.13273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/23/2019] [Accepted: 06/18/2019] [Indexed: 11/28/2022]
Abstract
The study aimed to evaluate nutrient digestibility and intestine gene expression in the progeny from cows supplemented during gestation and fed diets with or without rumen-protected fat (RPF) in the feedlot. Forty-eight Nellore steers, averaging 340 kg, were housed in individual pens and allotted in a completely randomized design using a 2 × 2 factorial arrangement (dams nutrition × RPF). Cows' supplementation started after 124 ± 21 days of gestation. The feedlot lasted 135 days and diets had the inclusion of zero or 6% of RPF. Digestibility was evaluated by total feces collection. Steers were slaughtered using the concussion technique and samples of pancreas and small intestine were collected immediately after the slaughter to analyze α-amylase activity, and the expression of SLC5A1, CD36, and CCK and villi morphometry. Feeding RPF increased nutrients digestibility (p < 0.01). There was no effect of maternal nutrition on digestibility and α-amylase activity in steers (p > 0.05). Duodenal expression of SLC5A1, CD36, and CCK increased in the progeny from restricted cows. In conclusion, protein restriction during mid to late gestation of dams has long-term effects on small-intestine length and on expression of membrane transporters genes in the duodenum of the progeny. However, maternal nutrition does not affect digestibility in the feedlot.
Collapse
Affiliation(s)
- Wendell F G da Cruz
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Jon P Schoonmaker
- Department of Animal Science, Purdue University, West Lafayette, Indiana, USA
| | | | | | - Liziana M Rodrigues
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Germán D R Zamudio
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Marcio M Ladeira
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| |
Collapse
|
13
|
Vegetable Oils Rich in Polyunsaturated Fatty Acids Supplementation of Dairy Cows' Diets: Effects on Productive and Reproductive Performance. Animals (Basel) 2019; 9:ani9050205. [PMID: 31052193 PMCID: PMC6562551 DOI: 10.3390/ani9050205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Ruminants milk contains some bioactive lipids that have a beneficial effect on human health. The present study aimed to evaluate the benefit of incorporating polyunsaturated fatty acids rich vegetable oils on productive and reproductive performance of dairy cows. The results show that including polyunsaturated fatty acids and rich vegetable oils in rations of dairy cows improve the nutritional profile of milk and some reproductive parameters. Ruminant milk often has a negative image for health because of its fat content and its composition. A way to improve the nutritional profile of the milk is to supplement dairy cows’ diets with polyunsaturated vegetable oils, which makes it healthier for the consumer and improves the commercial value of the milk in view of the continued decline in fertility among dairy cows. The possibility of supplementing the diet with vegetable oils rich in polyunsaturated fatty acids as a means of improving reproductive performance has considerable interest for dairy producers. Abstract The aim of this study was to determine how polyunsaturated fatty acids (PUFA) supplementation can affect the productive and reproductive performance in dairy cows subjected to a fixed-time artificial insemination (TAI) protocol under farm conditions. One hundred and ninety-eight Holstein non-pregnant cows were used. Treatments consisted of a control diet (CON), without added oil, and two diets supplemented with either 2.3% soybean oil (SOY) or 2.3% linseed oil (LIN) as dry matter. The diets were formulated to be isoenergetic and isoproteic. Dry matter intake and milk yield were similar among treatments (p > 0.05). Both the percentage of fat (p = 0.011) and protein (p = 0.022) were higher in milk from animals not fed with oil (CON). The greatest saturated fatty acid (SFA) concentration (p < 0.0001) was observed in milk from cows fed the control diet, without added oil. The monounsaturated fatty acids (MUFA), PUFA, and the n-3 PUFA content was higher (p < 0.0001) in the milk from animals fed with oil with respect to the control treatment. The C18:2 cis-9, trans-11 in the milk of animals fed with oil supplements was significantly higher (p < 0.0001) than in that of the control group. Animals supplemented with linseed oil tended to show higher plasma progesterone level (p = 0.09) and a higher number of pregnant cows on the first artificial insemination (p = 0.07). These animals tended to reduce the number of TAI (p = 0.08). In brief, results showed that vegetable oils rich in PUFA supplementation considerably improve the nutritional profile of milk. PUFA n-3 supplementation slightly improves some reproductive parameters in dairy cows subjected to the fixed-time artificial insemination (TAI) protocol.
Collapse
|
14
|
Nur Atikah I, Alimon AR, Yaakub H, Abdullah N, Jahromi MF, Ivan M, Samsudin AA. Profiling of rumen fermentation, microbial population and digestibility in goats fed with dietary oils containing different fatty acids. BMC Vet Res 2018; 14:344. [PMID: 30558590 PMCID: PMC6297943 DOI: 10.1186/s12917-018-1672-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 10/25/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The effects of the dietary oils with differing fatty acid profiles on rumen fermentation, microbial population, and digestibility in goats were investigated. In Experiment I, rumen microbial population and fermentation profiles were evaluated on 16 fistulated male goats that were randomly assigned to four treatment groups: i) control (CNT), ii) olive oil (OL), iii) palm olein oil (PO), and iv) sunflower oil (SF). In Experiment II, another group of 16 male goats was randomly assigned to the same dietary treatments for digestibility determination. RESULTS Rumen ammonia concentration was higher in CNT group compared to treatment groups receiving dietary oils. The total VFA and acetate concentration were higher in SF and OL groups, which showed that they were significantly affected by the dietary treatments. There were no differences in total microbial population. However, fibre degrading bacteria populations were affected by the interaction between treatment and day of sampling. Significant differences were observed in apparent digestibility of crude protein and ether extract of treatment groups containing dietary oils compared to the control group. CONCLUSIONS This study demonstrated that supplementation of different dietary oils containing different fatty acid profiles improved rumen fermentation by reducing ammonia concentration and increasing total VFA concentration, altering fibre degrading bacteria population, and improving apparent digestibility of crude protein and ether extract.
Collapse
Affiliation(s)
- I. Nur Atikah
- Institute of Tropical Agriculture, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - A. R. Alimon
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - H. Yaakub
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - N. Abdullah
- Institute of Tropical Agriculture, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - M. F. Jahromi
- Institute of Tropical Agriculture, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - M. Ivan
- Institute of Tropical Agriculture, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - A. A. Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
15
|
Palmquist DL, Jenkins TC. A 100-Year Review: Fat feeding of dairy cows. J Dairy Sci 2018; 100:10061-10077. [PMID: 29153155 DOI: 10.3168/jds.2017-12924] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/21/2017] [Indexed: 12/18/2022]
Abstract
Over 100 years, the Journal of Dairy Science has recorded incredible changes in the utilization of fat for dairy cattle. Fat has progressed from nothing more than a contaminant in some protein supplements to a valuable high-energy substitute for cereal grains, a valuable energy source in its own right, and a modifier of cellular metabolism that is under active investigation in the 21st century. Milestones in the use of fats for dairy cattle from 1917 to 2017 result from the combined efforts of noted scientists and industry personnel worldwide, with much of the research published in Journal of Dairy Science. We are humbled to have been asked to contribute to this historical collection of significant developments in fat research over the past 100 years. Our goal is not to detail all the work published as each development moved forward; rather, it is to point out when publication marked a significant change in thinking regarding use of fat supplements. This approach forced omission of critically important names and publications in many journals as ideas moved forward. However, we hope that a description of the major changes in fat feeding during the past 100 years will stimulate reflection on progress in fat research and encourage further perusal of details of significant events.
Collapse
Affiliation(s)
- D L Palmquist
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691.
| | - T C Jenkins
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634
| |
Collapse
|
16
|
Kuhla B, Metges CC, Hammon HM. Endogenous and dietary lipids influencing feed intake and energy metabolism of periparturient dairy cows. Domest Anim Endocrinol 2016; 56 Suppl:S2-S10. [PMID: 27345317 DOI: 10.1016/j.domaniend.2015.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/30/2015] [Accepted: 12/06/2015] [Indexed: 11/21/2022]
Abstract
The high metabolic priority of the mammary gland for milk production, accompanied by limited feed intake around parturition results in a high propensity to mobilize body fat reserves. Under these conditions, fuel selection of many peripheral organs is switched, for example, from carbohydrate to fat utilization to spare glucose for milk production and to ensure partitioning of tissue- and dietary-derived nutrients toward the mammary gland. For example, muscle tissue uses nonesterified fatty acids (NEFA) but releases lactate and amino acids in a coordinated order, thereby providing precursors for milk synthesis or hepatic gluconeogenesis. Tissue metabolism and in concert, nutrient partitioning are controlled by the endocrine system involving a reduction in insulin secretion and systemic insulin sensitivity and orchestrated changes in plasma hormones such as insulin, adiponectin, insulin growth factor-I, growth hormone, glucagon, leptin, glucocorticoids, and catecholamines. However, the endocrine system is highly sensitive and responsive to an overload of fatty acids no matter if excessive NEFA supply originates from exogenous or endogenous sources. Feeding a diet containing rumen-protected fat from late lactation to calving and beyond exerts similar negative effects on energy intake, glucose and insulin concentrations as does a high extent of body fat mobilization around parturition in regard to the risk for ketosis and fatty liver development. High plasma NEFA concentrations are thought not to act directly at the brain level, but they increase the energy charge of the liver which is, signaled to the brain to diminish feed intake. Cows differing in fat mobilization during the transition phase differ in their hepatic energy charge, whole body fat oxidation, glucose metabolism, plasma ghrelin, and leptin concentrations and in feed intake several week before parturition. Hence, a high lipid load, no matter if stored, mobilized or fed, affects the endocrine system, metabolism, and feed intake, and increases the risk for metabolic disorders. Future research should focus on a timely parallel increase in feed intake and milk yield during early lactation to reduce the impact of body fat on feed intake, metabolic health, and negative energy balance.
Collapse
Affiliation(s)
- B Kuhla
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", Dummerstorf, 18196, Germany.
| | - C C Metges
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", Dummerstorf, 18196, Germany
| | - H M Hammon
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", Dummerstorf, 18196, Germany
| |
Collapse
|
17
|
Piantoni P, Lock A, Allen M. Milk production responses to dietary stearic acid vary by production level in dairy cattle. J Dairy Sci 2015; 98:1938-49. [DOI: 10.3168/jds.2014-8634] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/22/2014] [Indexed: 11/19/2022]
|
18
|
Marti S, Pérez M, Aris A, Bach A, Devant M. Effect of dietary energy density and meal size on growth performance, eating pattern, and carcass and meat quality in Holstein steers fed high-concentrate diets. J Anim Sci 2014; 92:3515-25. [DOI: 10.2527/jas.2014-7832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- S. Marti
- Department of Ruminant Production, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - M. Pérez
- IRTA-Monells, Finca Camps i Armet, 17121 Monells, Girona, Spain
| | - A. Aris
- Department of Ruminant Production, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - A. Bach
- Department of Ruminant Production, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - M. Devant
- Department of Ruminant Production, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| |
Collapse
|
19
|
Singh M, Sehgal JP, Roy AK, Pandita S, Rajesh G. Effect of prill fat supplementation on hormones, milk production and energy metabolites during mid lactation in crossbred cows. Vet World 2014. [DOI: 10.14202/vetworld.2014.384-388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Stocks SE, Allen MS. Effects of lipid and propionic acid infusions on feed intake of lactating dairy cows. J Dairy Sci 2014; 97:2297-304. [PMID: 24534511 DOI: 10.3168/jds.2013-7066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 12/05/2013] [Indexed: 11/19/2022]
Abstract
Propionic acid is more hypophagic for cows with elevated hepatic acetyl coenzyme A (CoA) concentration in the postpartum period. The objective of this experiment was to evaluate the interaction of hepatic acetyl CoA concentration, which is elevated by intravenous lipid infusion, and intraruminal propionic acid infusion on feed intake and feeding behavior responses of lactating cows. Eight multiparous, ruminally cannulated, Holstein dairy cows past peak lactation were used in a replicated 4×4 Latin square experiment with a 2×2 factorial arrangement of treatments. Treatments were propionic acid (PI) infused intraruminally at 0.5mol/h for 18h starting 6h before feeding and behavior monitoring or sham control (CO), and intravenous jugular infusion of lipid (LI, Intralipid 20%; Baxter US, Deerfield, IL) or saline (SI, 0.9% NaCl; Baxter US) infused at 250mL/h for 12h before feeding and behavior monitoring, and then 500mL/h for 12h after feeding. Changes in plasma concentrations of metabolites and hormones and hepatic acetyl CoA from before infusion until the end of infusion were evaluated. We observed a tendency for an interaction between PI and LI for the change in plasma nonesterified fatty acid (NEFA) concentration from the preliminary day to the end of the infusion period. Infusion of propionic acid decreased dry matter intake (DMI) 15% compared with CO, but lipid infusion did not affect DMI over the 12h following feeding. Infusion of propionic acid tended to decrease hepatic acetyl CoA concentration from the preliminary day to the end of the infusion compared with CO, consistent with PI decreasing DMI by stimulating oxidation of acetyl CoA. Contrary to our expectations, LI did not increase concentration of NEFA or β-hydroxybutyrate in plasma, concentration of acetyl CoA in the liver, or milk fat yield, suggesting that the infused lipid was stored or oxidized by extra-hepatic tissues. As a result, we detected no interaction between PI and LI for DMI. Although the effect of PI on DMI was consistent with our previous results, this lipid infusion model using cows past peak lactation was not useful to simulate the lipolytic state of cows in the postpartum period in this experiment.
Collapse
Affiliation(s)
- S E Stocks
- Department of Animal Science, Michigan State University, East Lansing 48824-1225
| | - M S Allen
- Department of Animal Science, Michigan State University, East Lansing 48824-1225.
| |
Collapse
|
21
|
Rico J, Allen M, Lock A. Compared with stearic acid, palmitic acid increased the yield of milk fat and improved feed efficiency across production level of cows. J Dairy Sci 2014; 97:1057-66. [DOI: 10.3168/jds.2013-7432] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022]
|
22
|
Abstract
The control of energy intake is complex, including mechanisms that act independently (e.g. distention, osmotic effects, fuel-sensing) as well as interacting factors that are likely to affect feeding via their effects on hepatic oxidation. Effects of ruminant diets on feed intake vary greatly because of variation in their filling effects, as well as the type and temporal absorption of fuels. Effects of nutrients on endocrine response and gene expression affect energy partitioning, which in turn affects feeding behaviour by altering clearance of fuels from the blood. Dominant mechanisms controlling feed intake change with physiological state, which is highly variable among ruminants, especially through the lactation cycle. Ruminal distention might dominate control of feed intake when ruminants consume low-energy diets or when energy requirements are high, but fuel-sensing by tissues is likely to dominate control of feed intake when fuel supply is in excess of that required. The liver is likely to be a primary sensor of energy status because it is supplied by fuels from the portal drained viscera as well as the general circulation, it metabolises a variety of fuels derived from both the diet and tissues, and a signal related to hepatic oxidation of fuels is conveyed to feeding centres in the brain by hepatic vagal afferents stimulating or inhibiting feeding, depending on its energy status. The effects of somatotropin on export of fuels by milk secretion, effects of insulin on gluconeogenesis, and both on mobilisation and repletion of tissues, determine fuel availability and feed intake over the lactation cycle. Control of feed intake by hepatic energy status, affected by oxidation of fuels, is an appealing conceptual model because it integrates effects of various fuels and physiological states on feeding behaviour.
Collapse
|
23
|
Piantoni P, Lock A, Allen M. Palmitic acid increased yields of milk and milk fat and nutrient digestibility across production level of lactating cows. J Dairy Sci 2013; 96:7143-7154. [DOI: 10.3168/jds.2013-6680] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022]
|
24
|
Hollmann M, Beede DK. Comparison of effects of dietary coconut oil and animal fat blend on lactational performance of Holstein cows fed a high-starch diet. J Dairy Sci 2012; 95:1484-99. [PMID: 22365230 DOI: 10.3168/jds.2011-4792] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/22/2011] [Indexed: 11/19/2022]
Abstract
Dietary medium-chain fatty acids (C(8:0) through C(12:0)) are researched for their potential to reduce enteric methane emissions and to increase N utilization efficiency in ruminants. We aimed to 1) compare coconut oil (CNO; ~60% medium-chain fatty acids) with a source of long-chain fatty acids (animal fat blend; AFB) on lactational responses in a high-starch diet and 2) determine the effect of different dietary concentrations of CNO on dry matter intake (DMI). In experiment 1, the control diet (CTRL) contained (dry basis) 40% forage (71% corn silage, and alfalfa hay and haylage), 26% NDF, and 35% starch. Isonitrogenous treatment diets contained 5.0% of AFB (5%-AFB), CNO (5%-CNO), or a 1-to-1 mixture of AFB and CNO (5%-AFB-CNO) and 0.8% corn gluten meal in place of corn grain. Thirty-two multiparous dairy cows (201 ± 46 d postpartum; 42.0 ± 5.5 kg/d 3.5% fat-corrected milk yield) were adapted to CTRL, blocked by milk yield, and randomly assigned to 1 of 4 treatment diets for 21 d with samples and data collected from d 15 through 21. Treatment 5%-CNO decreased DMI markedly and precipitously and was discontinued after d 5. In wk 3, 5%-AFB and especially 5%-AFB-CNO lowered total-tract NDF digested vs. CTRL (2.6 vs. 1.8 vs. 3.1 kg/d, respectively), likely because fat treatments reduced DMI and 5%-AFB-CNO impaired total-tract NDF digestibility. Milk fat concentrations were 3.10% (CTRL), 2.51% (5%-AFB), and 1.97% (5%-AFB-CNO) and correlated negatively to concentrations of C(18:2 trans-10,cis-12) in milk fat. Additionally, 5%-AFB and 5%-AFB-CNO tended to lower milk yield and decreased yields of solids-corrected milk and milk protein compared with CTRL. Fat treatments decreased milk lactose concentration, but increased milk citrate concentration. Moreover, cows fed 5%-AFB-CNO produced less solids-corrected milk than did cows fed 5%-AFB. In experiment 2, diets similar to CTRL contained 2.0, 3.0, or 4.0% CNO. Fifteen multiparous cows (219 ± 42 d postpartum; 42.1 ± 7.0 kg milk yield; mean ± SD) were blocked by DMI and randomly assigned to 1 of 3 treatment diets for an 8-d evaluation. Dietary concentration of CNO affected DMI, with the greatest depression at 4.0% CNO. Overall, dietary CNO depressed DMI and NDF digestibility of a high-starch diet compared with AFB. Feeding CNO to lactating cows equal to or greater than 2.5% decreased lactational performance or DMI.
Collapse
Affiliation(s)
- M Hollmann
- Department of Animal Science, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|
25
|
Fukumori R, Sugino T, Shingu H, Moriya N, Hasegawa Y, Kojima M, Kangawa K, Obitsu T, Kushibiki S, Taniguchi K. Effects of calcium salts of long-chain fatty acids and rumen-protected methionine on plasma concentrations of ghrelin, glucagon-like peptide-1 (7 to 36) amide and pancreatic hormones in lactating cows. Domest Anim Endocrinol 2012; 42:74-82. [PMID: 22056209 DOI: 10.1016/j.domaniend.2011.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 11/22/2022]
Abstract
Our objective was to determine the effects of calcium salts of long-chain fatty acids (CLFAs) and rumen-protected methionine (RPM) on plasma concentrations of ghrelin, glucagon-like peptide-1 (7 to 36) amide, and pancreatic hormones in lactating cows. Four Holstein cows in midlactation were used in a 4 by 4 Latin square experiment in each 2-wk period. Cows were fed corn silage-based diets with supplements of CLFAs (1.5% added on dry matter basis), RPM (20 g/d), CLFAs plus RPM, and without supplement. Jugular blood samples were taken from 1 h before to 2 h after morning feeding at 10-min intervals on day 12 of each period. CLFAs decreased dry matter intake, but RPM did not affect dry matter intake. Both supplements of CLFAs and RPM did not affect metabolizable energy intake and milk yield and composition. Plasma concentrations of NEFAs, triglyceride (TG), and total cholesterol (T-Cho) were increased with CLFAs alone, but increases of plasma concentrations of TG and T-Cho were moderated by CLFAs plus RPM. Calcium salts of long-chain fatty acids increased plasma ghrelin concentration, and the ghrelin concentration with CLFAs plus RPM was the highest among the treatments. Plasma concentrations of glucagon-like peptide-1, glucagon, and insulin were decreased with CLFAs, whereas adding RPM moderated the decrease of plasma glucagon concentration by CLFAs. These results indicate that the addition of methionine to cows given CLFAs increases plasma concentrations of ghrelin and glucagon associated with the decrease in plasma concentrations of TG and T-Cho.
Collapse
Affiliation(s)
- R Fukumori
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yayou KI, Kitagawa S, Ito S, Kasuya E, Sutoh M. Effect of oxytocin, prolactin-releasing peptide, or corticotropin-releasing hormone on feeding behavior in steers. Gen Comp Endocrinol 2011; 174:287-91. [PMID: 21945119 DOI: 10.1016/j.ygcen.2011.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 08/29/2011] [Accepted: 09/04/2011] [Indexed: 12/25/2022]
Abstract
As a preliminary step to elucidate the involvement of central neurotransmitters in the dip in voluntary feed intake during the perinatal period in cows, we investigated the effect of intracerebroventricular (ICV) administration of oxytocin, prolactin-releasing peptide (PrRP), or corticotropin-releasing hormone (CRH), the central functions of all of which undergo drastic changes during the perinatal period, on feed intake in steers. Thirty minutes before the onset of feeding, the treatment solution was injected into the third ventricle through an implanted cannula, and feeding-related behaviors were observed for 1 h after the onset of feeding. Neither ICV oxytocin (5 and 50 μg) nor PrRP (2 and 20 nmol) reduced feed intake (n=6). Twenty nanomoles of bovine CRH noticeably inhibited feeding behavior compared with vehicle treatment (n=5, p<0.05). Fifty micrograms of oxytocin reduced latency to the first water access after feeding onset (p<0.1), which may be because of the stimulation of arginine vasopressin V1b receptor by the high dose of oxytocin. We conclude that CRH inhibits feeding behavior by its central action in this species, although this could also be an indirect effect due to the increased expression of abnormal behaviors caused by CRH. Central administration of neither oxytocin nor PrRP reduced feed intake in steers. Although the effects of sex steroids need to be examined, it appears that increased activity of oxytocin, and possibly PrRP, during the perinatal period does not contribute to the dip in voluntary feed intake in this species. On the other hand, it makes sense that suppressed central CRH activity during the perinatal period should act in the direction of maintaining or even increasing food intake to aid a steady supply of energy to the fetus or offspring. We thus speculate that CRH is not a prime candidate involved in the dip in voluntary feed intake during the perinatal period in cows.
Collapse
Affiliation(s)
- Ken-ichi Yayou
- Laboratory of Neurobiology, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | |
Collapse
|
27
|
Niemann H, Kuhla B, Flachowsky G. Perspectives for feed-efficient animal production1. J Anim Sci 2011; 89:4344-63. [DOI: 10.2527/jas.2011-4235] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
28
|
van Vuuren A, van Wikselaar P, van Riel J, Klop A, Bastiaans J. Persistency of the effect of long-term administration of a whey protein gel composite of soybean and linseed oils on performance and milk fatty acid composition of dairy cows. Livest Sci 2010. [DOI: 10.1016/j.livsci.2010.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Fouladi-Nashta AA, Wonnacott KE, Gutierrez CG, Gong JG, Sinclair KD, Garnsworthy PC, Webb R. Oocyte quality in lactating dairy cows fed on high levels of n-3 and n-6 fatty acids. Reproduction 2009; 138:771-81. [PMID: 19633135 DOI: 10.1530/rep-08-0391] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Different fatty acid (FA) sources are known to influence reproductive hormones in cattle, yet there is little information on how dietary FAs affect oocyte quality. Effects of three dietary sources of FAs (supplying predominantly palmitic and oleic, linoleic (n-6) or linolenic (n-3) acids) on developmental potential of oocytes were studied in lactating dairy cows. A total of 12 Holstein cows received three diets containing rumen inert fat (RIF), soyabean or linseed as the main FA source for three periods of 25 days in a Latin-square design. Within each period, oocytes were collected in four ovum pick-up sessions at 3-4 day intervals. FA profiles in plasma and milk reflected profiles of dietary FA sources, but major FAs in granulosa cells were not affected. Dietary FA source did not affect plasma concentrations of leptin, insulin, IGF1, GH, or amino acids. RIF led to a higher proportion of cleaved embryos than soya or linseed, but blastocyst yield and embryo quality were not affected. It is concluded that the ovary buffers oocytes against the effects of fluctuations in plasma n-3 and n-6 FAs, resulting in only modest effects on their developmental potential.
Collapse
Affiliation(s)
- Ali A Fouladi-Nashta
- Division of Animal Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Neuroendocrine and physiological regulation of intake with particular reference to domesticated ruminant animals. Nutr Res Rev 2009; 21:207-34. [PMID: 19087372 DOI: 10.1017/s0954422408138744] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The central nervous system undertakes the homeostatic role of sensing nutrient intake and body reserves, integrating the information, and regulating energy intake and/or energy expenditure. Few tasks regulated by the brain hold greater survival value, particularly important in farmed ruminant species, where the demands of pregnancy, lactation and/or growth are not easily met by often bulky plant-based and sometimes nutrient-sparse diets. Information regarding metabolic state can be transmitted to the appetite control centres of the brain by a diverse array of signals, such as stimulation of the vagus nerve, or metabolic 'feedback' factors derived from the pituitary gland, adipose tissue, stomach/abomasum, intestine, pancreas and/or muscle. These signals act directly on the neurons located in the arcuate nucleus of the medio-basal hypothalamus, a key integration, and hunger (orexigenic) and satiety (anorexigenic) control centre of the brain. Interest in human obesity and associated disorders has fuelled considerable research effort in this area, resulting in increased understanding of chronic and acute factors influencing feed intake. In recent years, research has demonstrated that these results have relevance to animal production, with genetic selection for production found to affect orexigenic hormones, feeding found to reduce the concentration of acute controllers of orexigenic signals, and exogenous administration of orexigenic hormones (i.e. growth hormone or ghrelin) reportedly increasing DM intake in ruminant animals as well as single-stomached species. The current state of knowledge on factors influencing the hypothalamic orexigenic and anorexigenic control centres is reviewed, particularly as it relates to domesticated ruminant animals, and potential avenues for future research are identified.
Collapse
|
31
|
Garnsworthy P, Lock A, Mann G, Sinclair K, Webb R. Nutrition, Metabolism, and Fertility in Dairy Cows: 2. Dietary Fatty Acids and Ovarian Function. J Dairy Sci 2008; 91:3824-33. [DOI: 10.3168/jds.2008-1032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Relling AE, Reynolds CK. Abomasal infusion of casein, starch and soybean oil differentially affect plasma concentrations of gut peptides and feed intake in lactating dairy cows. Domest Anim Endocrinol 2008; 35:35-45. [PMID: 18308502 DOI: 10.1016/j.domaniend.2008.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 01/08/2008] [Accepted: 01/09/2008] [Indexed: 11/16/2022]
Abstract
The effects of specific nutrients on secretion and plasma concentrations of gut peptides (glucagon-like peptide-1((7-36)) amide (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin-8 (CCK)) differ across species, but are not reported for cattle. Our objective was to determine acute (hours) and chronic (1 week) effects of increased abomasal supply of protein, carbohydrate, or fat to the small intestine on dry matter intake (DMI) and plasma concentrations of GLP-1, GIP, CCK, and insulin. Four mid-lactation Holstein cows were used in a 4 x 4 Latin square design experiment. Treatments were 7-day abomasal infusions of water, soybean oil (500 g/d), corn starch (1100 g/d), or casein (800 g/d). Jugular vein plasma was obtained over 7h at the end of the first and last day of infusions. Oil infusion decreased DMI on day 7, but total metabolizable energy (ME) supply (diet plus infusate) did not differ from water infusion. Casein and starch infusion had no effect on feed DMI; thus, ME supply increased. Decreased DMI on day 7 of oil infusion was accompanied by increased plasma GLP-1 concentration, but decreased plasma CCK concentration. Increased plasma GIP concentration was associated with increased ME supply on day 7 of casein and starch infusion. Casein infusion tended to increase plasma CCK concentration on both days of sampling, and increased plasma GLP-1 and insulin concentration on day 1 of infusion. The present data indicate a sustained elevation of plasma concentration of GLP-1, but not CCK, may contribute to the reduced DMI observed in dairy cows provided supplemental fat.
Collapse
Affiliation(s)
- Alejandro E Relling
- Department of Animal Science, The Ohio State University, OARDC, 1680 Madison Avenue, Wooster 44691-4096, USA
| | | |
Collapse
|
33
|
Bradford B, Harvatine K, Allen M. Dietary Unsaturated Fatty Acids Increase Plasma Glucagon-Like Peptide-1 and Cholecystokinin and May Decrease Premeal Ghrelin in Lactating Dairy Cows. J Dairy Sci 2008; 91:1443-50. [DOI: 10.3168/jds.2007-0670] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Relling AE, Reynolds CK. Feeding Rumen-Inert Fats Differing in Their Degree of Saturation Decreases Intake and Increases Plasma Concentrations of Gut Peptides in Lactating Dairy Cows. J Dairy Sci 2007; 90:1506-15. [PMID: 17297124 DOI: 10.3168/jds.s0022-0302(07)71636-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our objective was to determine the effect of feeding rumen-inert fats differing in their degree of saturation on dry matter intake (DMI), milk production, and plasma concentrations of insulin, glucagon-like peptide 1 (7-36) amide (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin (CCK) in lactating dairy cows. Four midlactation, primiparous Holstein cows were used in a 4 x 4 Latin square experiment with 2-wk periods. Cows were fed a control mixed ration ad libitum, and treatments were the dietary addition (3.5% of ration dry matter) of 3 rumen-inert fats as sources of mostly saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), or polyunsaturated fatty acids (PUFA). Daily DMI, milk yield, and composition were measured on the last 4 d of each period. Jugular vein blood was collected every 30 min over a 7-h period on d 12 and 14 of each period for analysis of plasma concentrations of hormones, glucose, and nonesterified fatty acids. Feeding fat decreased DMI, and the decrease tended to be greater for MUFA and PUFA compared with SFA. Plasma concentration of GLP-1 increased when fat was fed and was greater for MUFA and PUFA. Feeding fat increased plasma glucose-dependent insulinotropic polypeptide and CCK concentrations and decreased plasma insulin concentration. Plasma CCK concentration was greater for MUFA and PUFA than for SFA and was greater for MUFA than PUFA. Decreases in DMI in cows fed fat were associated with increased plasma concentrations of GLP-1 and CCK and a decreased insulin concentration. The role of these peptides in regulating DMI in cattle fed fat requires further investigation.
Collapse
Affiliation(s)
- A E Relling
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster 44691-4096, USA
| | | |
Collapse
|
35
|
Lorenzo-Figueras M, Merritt AM. Role of cholecystokinin in the gastric motor response to a meal in horses. Am J Vet Res 2006; 67:1998-2005. [PMID: 17144800 DOI: 10.2460/ajvr.67.12.1998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To measure plasma cholecystokinin (CCK) activity and the effect of a CCK-1 receptor antagonist on accommodation of the proximal portion of the stomach, and subsequent gastric emptying, in horses after ingestion of high-fat or high-carbohydrate meals. ANIMALS 6 healthy adult horses with gastric cannulas. PROCEDURES In the first study, horses were offered a high-fat (8% fat) or a high-carbohydrate (3% fat) pelleted meal of identical volume, caloric density, and protein content. Related plasma CCK-like activity was measured by radioimmunoassay (RIA). In a separate experiment, a horse was fed a grain meal with corn oil and phenylalanine, and plasma CCK activity was assessed by bioassay. A second study evaluated the effect of a CCK-1 receptor antagonist, devazepide (0.1 mg/kg, IV), on gastric accommodation and emptying following a meal of grain supplemented with either corn oil (12.3% fat) or an isocaloric amount of glucose (2.9% fat). Gastric tone was measured by a barostat and emptying by the (13)C-octanoic acid breath test. RESULTS No plasma CCK-like activity was detected by RIA or bioassay before or after ingestion of meals. Preprandial devazepide did not alter the gastric accommodation response but did significantly shorten the gastric half-emptying time and time to peak breath (13)CO(2) content with the glucose-enriched meal. CONCLUSIONS AND CLINICAL RELEVANCE In horses, CCK participates in regulating the gastric motor response to a meal. Compared with other species, horses may be more responsive to carbohydrate than fat. A vagovagal reflex most likely mediates this regulation, with CCK as a paracrine intermediary at the intestinal level.
Collapse
Affiliation(s)
- Mireia Lorenzo-Figueras
- Island Whirl Equine Colic Research Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-0136, USA
| | | |
Collapse
|
36
|
Hutchison S, Kegley EB, Apple JK, Wistuba TJ, Dikeman ME, Rule DC. Effects of adding poultry fat in the finishing diet of steers on performance, carcass characteristics, sensory traits, and fatty acid profiles. J Anim Sci 2006; 84:2426-35. [PMID: 16908647 DOI: 10.2527/jas.2005-446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Use of poultry fat in the finishing diets of steers has not been studied as a potential source of added energy. Therefore, 60 Angus crossbred steers were fed 1 of 3 dietary treatments consisting of 1) a corn-soybean meal control diet devoid of added fat; 2) the control diet formulated with 4% tallow; or 3) the control diet formulated with 4% poultry fat. Addition of fat did not (P = 0.17) affect ADG for the 112-d study. The inclusion of tallow in the diet reduced (P < 0.05) ADFI of steers compared with those on the control diet; however, ADFI of steers fed poultry fat did not differ from those fed the control (P = 0.06) or the tallow (P = 0.36) diets. At d 55, steers consuming either fat source had improved (P < 0.05) G:F compared with steers fed the control diet. For the entire 112 d, steers consuming the poultry fat diet gained more efficiently (P < 0.05) than the control steers, and the tallow-fed steers were intermediate and not different from the other groups (P > or = 0.14). The inclusion of fat in the diet did not (P > or = 0.15) affect carcass characteristics. Steaks from the steers consuming diets with added fat were darker (lower L* value; P < 0.05) than the controls; however, dietary treatments did not (P > or = 0.10) affect any other objective color measurements or discoloration scores during retail display. Thiobarbituric acid reactive substances for LM steaks did not differ (P = 0.21) by dietary treatment. The cooked LM steaks from steers fed poultry fat did not (P > or = 0.80) differ in juiciness or flavor intensity from steaks of steers fed the control or tallow diets. There were also no differences (P = 0.18) in off flavors as a result of added dietary fat. In the LM and adipose tissue, percentages of total SFA were increased (P = 0.05) by adding supplemental fat to the diet, regardless of source. In the LM, total MUFA were decreased (P = 0.02) by adding supplemental fat. Conversely, diet did not (P > or = 0.14) affect the proportions of total PUFA in either tissue or total MUFA in the adipose tissue. Results indicated that replacing beef tallow in finishing diets with poultry fat, a more economical energy source, had no detrimental effects on growth performance, carcass characteristics, retail display life, fatty acid profiles, or palatability.
Collapse
Affiliation(s)
- S Hutchison
- Department of Animal Science, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | | | | | | | |
Collapse
|
37
|
Jönsson E, Forsman A, Einarsdottir IE, Egnér B, Ruohonen K, Björnsson BT. Circulating levels of cholecystokinin and gastrin-releasing peptide in rainbow trout fed different diets. Gen Comp Endocrinol 2006; 148:187-94. [PMID: 16630620 DOI: 10.1016/j.ygcen.2006.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 02/06/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
Cholecystokinin (CCK) and gastrin-releasing peptide (GRP) are gastrointestinal peptides thought to be important regulators of intake and digestion of food in vertebrates. In this study, pre- and postprandial plasma levels of CCK and GRP were measured in rainbow trout (Oncorhynchus mykiss) by the establishment of homologous radioimmunoassays, and the hormonal levels assessed in relation to dietary lipid:protein ratio and food intake. Fish were acclimated to either a high protein/low lipid diet (HP/LL diet; 14.1% lipids) or a normal protein/high lipid diet (NP/HL diet; 31.4% lipids). On three consecutive sampling days, radio-dense lead-glass beads were included in the diets for assessment of feed intake. Fish were terminally sampled for blood and stomach contents prior to feeding at time 0, and at 0.3, 1, 2, 4, 6, and 24 h after feeding. There was a postprandial elevation of plasma CCK levels, which was most evident after 4 and 6 h. Fish fed the NP/HL diet had higher plasma CCK levels compared with those fed the HP/LL diet. Plasma CCK levels were not affected by the amount of food ingested. GRP levels in plasma were not influenced by sampling time, diet, or feed intake. The results indicate that the endocrine release of gastrointestinal CCK is increased during feeding and may be further influenced by the dietary lipid:protein ratio in rainbow trout. Plasma GRP levels, on the other hand, appear not to be influenced by feeding or diet composition.
Collapse
Affiliation(s)
- Elisabeth Jönsson
- Fish Endocrinology Laboratory, Department of Zoology/Zoophysiology, Göteborg University, Box 463, S-405 30 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Animal models have been invaluable for studying aspects of food intake regulation that for various reasons cannot be observed in humans. The dairy cow is a unique animal model because of an unrivaled energy requirement; its great drive to eat results in feeding behavior responses to treatments within the physiological range. Cows' docile nature and large size make them ideal for measuring temporal treatment effects because digestion and absorption kinetics and responses in endocrine systems, gene expression, metabolite pools and fluxes, and feeding behavior can be measured simultaneously. Thus, cows are important models to investigate interactions of short-term signals regulating food intake. Furthermore, different physiological states throughout the lactation cycle provide powerful models to study how short- and long-term signals interact to affect long-term energy status. The use of the cow as a model can lead to breakthroughs in understanding the complex interactions of signals regulating food intake.
Collapse
Affiliation(s)
- Michael S Allen
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | |
Collapse
|
39
|
Mir P, Ivan M, Mears G, Ross C, Entz T, Mir Z. Effects of dietary protein and sunflower seed supplementation on physico-chemical characteristics of small intestinal digesta and plasma cholecystokinin concentrations in lambs. Small Rumin Res 2005. [DOI: 10.1016/j.smallrumres.2004.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Litherland NB, Thire S, Beaulieu AD, Reynolds CK, Benson JA, Drackley JK. Dry matter intake is decreased more by abomasal infusion of unsaturated free fatty acids than by unsaturated triglycerides. J Dairy Sci 2005; 88:632-43. [PMID: 15653530 DOI: 10.3168/jds.s0022-0302(05)72727-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous experiments from our group have demonstrated that abomasal infusion of unsaturated free fatty acids (FFA) markedly decreases dry matter intake (DMI) in dairy cows. In contrast, experiments from other groups have noted smaller decreases in DMI when unsaturated triglycerides (TG) were infused postruminally. Our hypothesis was that unsaturated FFA would be more potent inhibitors of DMI than an equivalent amount of unsaturated TG. Four Holstein cows in late lactation were used in a single reversal design. Cows were fed a total mixed ration containing (DM basis) 23% alfalfa silage, 23% corn silage, 40.3% ground shelled corn, and 10.5% soybean meal. Two cows received soy FFA (UFA; 0, 200, 400, 600 g/d) and 2 received soy oil (TG) in the same amounts; cows then were switched to the other lipid source. Cows were abomasally infused with each amount for 5-d periods. The daily amount of lipid was pulse-dosed in 4 equal portions at 0600, 1000, 1700, and 2200 h; no emulsifiers were used and there was no sign of digestive disturbance. Both lipid sources linearly decreased DMI, with a significant interaction between lipid source and amount. Slope-ratio analysis indicated that UFA were about 2 times more potent in decreasing DMI than were TG. Decreased DMI led to decreased milk production. Milk fat content was increased linearly by lipid infusion. Milk fat yield decreased markedly for UFA infusion but was relatively unaffected by infusion of TG. Contents of short- and medium-chain fatty acids in milk fat decreased as the amount of either infusate increased. Contents of C(18:2) and C(18:3) in milk fat were increased linearly by abomasal infusion of either fat source; cis-9 C(18:1) was unaffected. Transfer of infused C(18:2) to milk fat was 35.6, 42.5, and 27.8% for 200, 400, and 600 g/d of UFA, and 34.3, 39.6, and 34.0% for respective amounts of TG. Glucagon-like peptide-1 (7-36) amide (GLP-1) concentration in plasma significantly increased as DMI decreased with increasing infusion amount of UFA or TG. Plasma concentration of cholecystokinin-octapeptide (CCK-8) was unaffected by lipid infusion. These results indicate that unsaturated FFA reaching the duodenum are more potent inhibitors of DMI than are unsaturated TG; the effect may be at least partially mediated by GLP-1.
Collapse
Affiliation(s)
- N B Litherland
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| | | | | | | | | | | |
Collapse
|
41
|
Reidelberger RD, Hernandez J, Fritzsch B, Hulce M. Abdominal vagal mediation of the satiety effects of CCK in rats. Am J Physiol Regul Integr Comp Physiol 2004; 286:R1005-12. [PMID: 14701717 DOI: 10.1152/ajpregu.00646.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CCK type 1 (CCK1) receptor antagonists differing in blood-brain barrier permeability were used to test the hypothesis that satiety is mediated in part by CCK action at CCK1 receptors on vagal sensory nerves innervating the small intestine. Devazepide penetrates the blood-brain barrier; A-70104, the dicyclohexylammonium salt of Nα-3-quinolinoyl-d-Glu- N,N-dipentylamide, does not. At dark onset, non-food-deprived control rats and rats with subdiaphragmatic vagotomies received a bolus injection of devazepide (2.5 μmol/kg iv) or a 3-h infusion of A-70104 (3 μmol·kg−1·h−1 iv) either alone or coadministered with a 2-h intragastric infusion of peptone (0.75 or 1 g/h). Food intake was determined from continuous computer recordings of changes in food bowl weight. In control rats both antagonists stimulated food intake and attenuated the anorexic response to intragastric infusion of peptone. In contrast, only devazepide was effective in stimulating food intake in vagotomized rats. Thus endogenous CCK appears to act both at CCK1 receptors beyond the blood-brain barrier and by a CCK1 receptor-mediated mechanism involving abdominal vagal nerves to inhibit food intake.
Collapse
Affiliation(s)
- Roger D Reidelberger
- Department of Veterans Affairs-Nebraska Western Iowa Health Care System, and Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, USA.
| | | | | | | |
Collapse
|
42
|
Reidelberger RD, Castellanos DA, Hulce M. Effects of peripheral CCK receptor blockade on food intake in rats. Am J Physiol Regul Integr Comp Physiol 2003; 285:R429-37. [PMID: 12738611 DOI: 10.1152/ajpregu.00176.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type A cholecystokinin receptor (CCKAR) antagonists differing in blood-brain barrier permeability were used to test the hypothesis that satiety is mediated, in part, by CCK action at CCKARs located peripheral to the blood-brain barrier. At dark onset, non-food-deprived rats received a bolus injection of devazepide (2.5 micromol/kg iv), a 3-h infusion of A-70104 (1 or 3 micromol x kg-1 x h-1 iv), or vehicle either alone or coadministered with a 3-h infusion of CCK-8 (10 nmol x kg-1 x h-1 iv) or a 2-h intragastric infusion of peptone (1 g/h). Food intake was determined from continuous computer recordings of changes in food bowl weight. Devazepide penetrates the blood-brain barrier; A-70104, the dicyclohexylammonium salt of Nalpha-3-quinolinoyl-d-Glu-N,N-dipentylamide (A-65186), does not. CCK-8 inhibited 3-h food intake by more than 50% and both A-70104 and devazepide abolished this response. A-70104 and devazepide stimulated food intake and similarly attenuated the anorexic response to intragastric infusion of peptone. Thus endogenous CCK appears to act, in part, at CCKARs peripheral to the blood-brain barrier to inhibit food intake.
Collapse
Affiliation(s)
- Roger D Reidelberger
- Department of Veterans Affairs, Nebraska Western Iowa Health Care System, Omaha 68105, USA.
| | | | | |
Collapse
|
43
|
Reidelberger RD, Heimann D, Kelsey L, Hulce M. Effects of peripheral CCK receptor blockade on feeding responses to duodenal nutrient infusions in rats. Am J Physiol Regul Integr Comp Physiol 2003; 284:R389-98. [PMID: 12414437 DOI: 10.1152/ajpregu.00529.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type A cholecystokinin receptor (CCKAR) antagonists differing in blood-brain barrier permeability were used to test the hypothesis that duodenal delivery of protein, carbohydrate, and fat produces satiety in part by an essential CCK action at CCKARs located peripheral to the blood-brain barrier. Fasted rats with open gastric fistulas received devazepide (1 mg/kg iv) or A-70104 (700 nmol. kg(-1). h(-1) iv) and either a 30-min intravenous infusion of CCK-8 (10 nmol. kg(-1). h(-1)) or duodenal infusion of peptone, maltose, or Intralipid beginning 10 min before 30-min access to 15% sucrose. Devazepide penetrates the blood-brain barrier; A-70104, the dicyclohexylammonium salt of Nalpha-3-quinolinoyl-d-Glu-N,N-dipentylamide, does not. CCK-8 inhibited sham feeding by approximately 50%, and both A-70104 and devazepide abolished this response. Duodenal infusion of each of the macronutrients dose dependently inhibited sham feeding. A-70104 and devazepide attenuated inhibitory responses to each macronutrient. Thus endogenous CCK appears to act in part at CCKARs peripheral to the blood-brain barrier to inhibit food intake.
Collapse
|