1
|
Pouso P, Cabana Á, Francia V, Silva A. Vasotocin but not isotocin is involved in the emergence of the dominant-subordinate status in males of the weakly electric fish, Gymnotus omarorum. Horm Behav 2024; 158:105446. [PMID: 37945472 DOI: 10.1016/j.yhbeh.2023.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The establishment of the dominant-subordinate status implies a clear behavioral asymmetry between contenders that arises immediately after the resolution of the agonistic encounter and persists during the maintenance of stable dominance hierarchies. Changes in the activity of the brain social behavior network (SBN) are postulated to be responsible for the establishment and maintenance of the dominant-subordinate status. The hypothalamic nonapeptides of the vasopressin (AVP) and oxytocin (OT) families are known to modulate the activity of the SBN in a context-dependent manner across vertebrates, including status-dependent modulations. We searched for status-dependent asymmetries in AVP-like (vasotocin, AVT) and OT-like (isotocin, IT) cell number and activation immediately after the establishment of dominance in males of the weakly electric fish, Gymnotus omarorum, which displays the best understood example of non-breeding territorial aggression among teleosts. We used immunolabeling (FOS, AVT, and IT) of preoptic area (POA) neurons after dyadic agonistic encounters. This study is among the first to show in teleosts that AVT, but not IT, is involved in the establishment of the dominant-subordinate status. We also found status-dependent subregion-specific changes of AVT cell number and activation. These results confirm the involvement of AVT in the establishment of dominance and support the speculation that AVT is released from dominants' AVT neurons.
Collapse
Affiliation(s)
- Paula Pouso
- Depto Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay; Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, Montevideo 11600, Uruguay
| | - Álvaro Cabana
- Instituto de Fundamentos y Métodos, Facultad de Psicología, Universidad de la República, Montevideo 11800, Uruguay
| | - Virginia Francia
- Depto Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, Montevideo 11600, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
2
|
Kelly AM. A consideration of brain networks modulating social behavior. Horm Behav 2022; 141:105138. [PMID: 35219166 DOI: 10.1016/j.yhbeh.2022.105138] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 11/04/2022]
Abstract
A primary goal of the field of behavioral neuroendocrinology is to understand how the brain modulates complex behavior. Over the last 20 years we have proposed various brain networks to explain behavioral regulation, however, the parameters by which these networks are identified are often ill-defined and reflect our personal scientific biases based on our area of expertise. In this perspective article, I question our characterization of brain networks underlying behavior and their utility. Using the Social Behavior Network as a primary example, I outline issues with brain networks commonly discussed in the field of behavioral neuroendocrinology, argue that we reconsider how we identify brain networks underlying behavior, and urge the future use of analytical tools developed by the field of Network Neuroscience. With modern statistical/mathematical tools and state of the art technology for brain imaging, we can strive to minimize our bias and generate brain networks that may more accurately reflect how the brain produces behavior.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States of America.
| |
Collapse
|
3
|
Ghahramani ZN, Perelmuter JT, Varughese J, Kyaw P, Palmer WC, Sisneros JA, Forlano PM. Activation of noradrenergic locus coeruleus and social behavior network nuclei varies with duration of male midshipman advertisement calls. Behav Brain Res 2022; 423:113745. [PMID: 35033611 DOI: 10.1016/j.bbr.2022.113745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Vocal courtship is vital to the reproductive success of many vertebrates and is therefore a highly-motivated behavioral state. Catecholamines have been shown to play an essential role in the expression and maintenance of motivated vocal behavior, such as the coordination of vocal-motor output in songbirds. However, it is not well-understood if this relationship applies to anamniote vocal species. Using the plainfin midshipman fish model, we tested whether specific catecholaminergic (i.e., dopaminergic and noradrenergic) nuclei and nodes of the social behavior network (SBN) are differentially activated in vocally courting (humming) versus non-humming males. Herein, we demonstrate that tyrosine hydroxylase immunoreactive (TH-ir) neuron number in the noradrenergic locus coeruleus (LC) and induction of cFos (an immediate early gene product and proxy for neural activation) in the preoptic area differentiated humming from non-humming males. Furthermore, we found relationships between activation of the LC and SBN nuclei with the total amount of time that males spent humming, further reinforcing a role for these specific brain regions in the production of motivated reproductive-related vocalizations. Finally, we found that patterns of functional connectivity between catecholaminergic nuclei and nodes of the SBN differed between humming and non-humming males, supporting the notion that adaptive behaviors (such as the expression of advertisement hums) emerge from the interactions between various catecholaminergic nuclei and the SBN.
Collapse
Affiliation(s)
- Zachary N Ghahramani
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, USA; Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA; Doctoral Subprograms in Ecology, Evolutionary Biology and Behavior,.
| | - Jonathan T Perelmuter
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA; Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA; Neuroscience, and Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA
| | - Joshua Varughese
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | - Phoo Kyaw
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | | | - Joseph A Sisneros
- Departments of Biology and Psychology,; University of Washington, Seattle, WA, USA; Virginia Bloedel Hearing Research Center, Seattle, WA, USA
| | - Paul M Forlano
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA; Doctoral Subprograms in Ecology, Evolutionary Biology and Behavior,; Neuroscience, and Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA; Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA.
| |
Collapse
|
4
|
Campos SM, Belkasim SS. Chemical Communication in Lizards and a Potential Role for Vasotocin in Modulating Social Interactions. Integr Comp Biol 2021; 61:205-220. [PMID: 33940600 DOI: 10.1093/icb/icab044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lizards use chemical communication to mediate many reproductive, competitive, and social behaviors, but the neuroendocrine mechanisms underlying chemical communication in lizards are not well understood and understudied. By implementing a neuroendocrine approach to the study of chemical communication in reptiles, we can address a major gap in our knowledge of the evolutionary mechanisms shaping chemical communication in vertebrates. The neuropeptide arginine vasotocin (AVT) and its mammalian homolog vasopressin are responsible for a broad spectrum of diversity in competitive and reproductive strategies in many vertebrates, mediating social behavior through the chemosensory modality. In this review, we posit that, though limited, the available data on AVT-mediated chemical communication in lizards reveal intriguing patterns that suggest AVT plays a more prominent role in lizard chemosensory behavior than previously appreciated. We argue that these results warrant more research into the mechanisms used by AVT to modify the performance of chemosensory behavior and responses to conspecific chemical signals. We first provide a broad overview of the known social functions of chemical signals in lizards, the glandular sources of chemical signal production in lizards (e.g., epidermal secretory glands), and the chemosensory detection methods and mechanisms used by lizards. Then, we review the locations of vasotocinergic populations and neuronal projections in lizard brains, as well as sites of peripheral receptors for AVT in lizards. Finally, we end with a case study in green anoles (Anolis carolinensis), discussing findings from recently published work on the impact of AVT in adult males on chemosensory communication during social interactions, adding new data from a similar study in which we tested the impact of AVT on chemosensory behavior of adult females. We offer concluding remarks on addressing several fundamental questions regarding the role of AVT in chemosensory communication and social behavior in lizards.
Collapse
Affiliation(s)
- Stephanie M Campos
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| | - Selma S Belkasim
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| |
Collapse
|
5
|
Kelly AM, Seifert AW. Distribution of Vasopressin and Oxytocin Neurons in the Basal Forebrain and Midbrain of Spiny Mice (Acomys cahirinus). Neuroscience 2021; 468:16-28. [PMID: 34102266 DOI: 10.1016/j.neuroscience.2021.05.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
The nonapeptides vasopressin (VP) and oxytocin (OT) are present in some form in most vertebrates. VP and OT play critical roles in modulating physiology and are well-studied for their influences on a variety of social behaviors, ranging from affiliation to aggression. Their anatomical distributions have been mapped for numerous species across taxa, demonstrating relatively strong evolutionary conservation in distributions throughout the basal forebrain and midbrain. Here we examined the distribution of VP-immunoreactive (-ir) and OT-ir neurons in a gregarious, cooperatively breeding rodent species, the spiny mouse (Acomys cahirinus), for which nonapeptide mapping does not yet exist. Immunohistochemical techniques revealed VP-ir and OT-ir neuronal populations throughout the hypothalamus and amygdala of males and females that are consistent with those of other rodents. However, a novel population of OT-ir neurons was observed in the median preoptic nucleus of both sexes, located dorsally to the anterior commissure. Furthermore, we found widespread sex differences in OT neuronal populations, with males having significantly more OT-ir neurons than females. However, we observed a sex difference in only one VP cell group - that of the bed nucleus of the stria terminalis (BST), a VP neuronal population that exhibits a phylogenetically widespread sexual dimorphism. These findings provide mapping distributions of VP and OT neurons in Acomys cahirinus. Spiny mice lend themselves to the study of mammalian cooperation and sociality, and the nonapeptide neuronal mapping presented here can serve as a basic foundation for the study of nonapeptide-mediated behavior in a group of highly social rodents.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA.
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, 675 Rose Street, Lexington KY 40508, USA
| |
Collapse
|
6
|
Neural substrates involved in the cognitive information processing in teleost fish. Anim Cogn 2021; 24:923-946. [PMID: 33907938 PMCID: PMC8360893 DOI: 10.1007/s10071-021-01514-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 02/04/2023]
Abstract
Over the last few decades, it has been shown that fish, comprising the largest group of vertebrates and in many respects one of the least well studied, possess many cognitive abilities comparable to those of birds and mammals. Despite a plethora of behavioural studies assessing cognition abilities and an abundance of neuroanatomical studies, only few studies have aimed to or in fact identified the neural substrates involved in the processing of cognitive information. In this review, an overview of the currently available studies addressing the joint research topics of cognitive behaviour and neuroscience in teleosts (and elasmobranchs wherever possible) is provided, primarily focusing on two fundamentally different but complementary approaches, i.e. ablation studies and Immediate Early Gene (IEG) analyses. More recently, the latter technique has become one of the most promising methods to visualize neuronal populations activated in specific brain areas, both during a variety of cognitive as well as non-cognition-related tasks. While IEG studies may be more elegant and potentially easier to conduct, only lesion studies can help researchers find out what information animals can learn or recall prior to and following ablation of a particular brain area.
Collapse
|
7
|
Sparapani S, Millet-Boureima C, Oliver J, Mu K, Hadavi P, Kalostian T, Ali N, Avelar CM, Bardies M, Barrow B, Benedikt M, Biancardi G, Bindra R, Bui L, Chihab Z, Cossitt A, Costa J, Daigneault T, Dault J, Davidson I, Dias J, Dufour E, El-Khoury S, Farhangdoost N, Forget A, Fox A, Gebrael M, Gentile MC, Geraci O, Gnanapragasam A, Gomah E, Haber E, Hamel C, Iyanker T, Kalantzis C, Kamali S, Kassardjian E, Kontos HK, Le TBU, LoScerbo D, Low YF, Mac Rae D, Maurer F, Mazhar S, Nguyen A, Nguyen-Duong K, Osborne-Laroche C, Park HW, Parolin E, Paul-Cole K, Peer LS, Philippon M, Plaisir CA, Porras Marroquin J, Prasad S, Ramsarun R, Razzaq S, Rhainds S, Robin D, Scartozzi R, Singh D, Fard SS, Soroko M, Soroori Motlagh N, Stern K, Toro L, Toure MW, Tran-Huynh S, Trépanier-Chicoine S, Waddingham C, Weekes AJ, Wisniewski A, Gamberi C. The Biology of Vasopressin. Biomedicines 2021; 9:89. [PMID: 33477721 PMCID: PMC7832310 DOI: 10.3390/biomedicines9010089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Vasopressins are evolutionarily conserved peptide hormones. Mammalian vasopressin functions systemically as an antidiuretic and regulator of blood and cardiac flow essential for adapting to terrestrial environments. Moreover, vasopressin acts centrally as a neurohormone involved in social and parental behavior and stress response. Vasopressin synthesis in several cell types, storage in intracellular vesicles, and release in response to physiological stimuli are highly regulated and mediated by three distinct G protein coupled receptors. Other receptors may bind or cross-bind vasopressin. Vasopressin is regulated spatially and temporally through transcriptional and post-transcriptional mechanisms, sex, tissue, and cell-specific receptor expression. Anomalies of vasopressin signaling have been observed in polycystic kidney disease, chronic heart failure, and neuropsychiatric conditions. Growing knowledge of the central biological roles of vasopressin has enabled pharmacological advances to treat these conditions by targeting defective systemic or central pathways utilizing specific agonists and antagonists.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Chiara Gamberi
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada; (S.S.); (C.M.-B.); (J.O.); (K.M.); (P.H.); (T.K.); (N.A.); (C.M.A.); (M.B.); (B.B.); (M.B.); (G.B.); (R.B.); (L.B.); (Z.C.); (A.C.); (J.C.); (T.D.); (J.D.); (I.D.); (J.D.); (E.D.); (S.E.-K.); (N.F.); (A.F.); (A.F.); (M.G.); (M.C.G.); (O.G.); (A.G.); (E.G.); (E.H.); (C.H.); (T.I.); (C.K.); (S.K.); (E.K.); (H.K.K.); (T.B.U.L.); (D.L.); (Y.F.L.); (D.M.R.); (F.M.); (S.M.); (A.N.); (K.N.-D.); (C.O.-L.); (H.W.P.); (E.P.); (K.P.-C.); (L.S.P.); (M.P.); (C.-A.P.); (J.P.M.); (S.P.); (R.R.); (S.R.); (S.R.); (D.R.); (R.S.); (D.S.); (S.S.F.); (M.S.); (N.S.M.); (K.S.); (L.T.); (M.W.T.); (S.T.-H.); (S.T.-C.); (C.W.); (A.J.W.); (A.W.)
| |
Collapse
|
8
|
Kelly AM, Wilson LC. Aggression: Perspectives from social and systems neuroscience. Horm Behav 2020; 123:104523. [PMID: 31002771 DOI: 10.1016/j.yhbeh.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/16/2023]
Abstract
Exhibiting behavioral plasticity in order to mount appropriate responses to dynamic and novel social environments is crucial to the survival of all animals. Thus, how animals regulate flexibility in the timing, duration, and intensity of specific behaviors is of great interest to biologists. In this review, we discuss how animals rapidly respond to social challenges, with a particular focus on aggression. We utilize a conceptual framework to understand the neural mechanisms of aggression that is grounded in Wingfield and colleagues' Challenge Hypothesis, which has profoundly influenced how scientists think about aggression and the mechanisms that allow animals to exhibit flexible responses to social instability. Because aggressive behavior is rooted in social interactions, we propose that mechanisms modulating prosocial behavior may be intricately tied to mechanisms of aggression. Therefore, in order to better understand how aggressive behavior is mediated, we draw on perspectives from social neuroscience and discuss how social context, species-typical behavioral phenotype, and neural systems commonly studied in relation to prosocial behavior (i.e., neuropeptides) contribute to organizing rapid responses to social challenges. Because complex behaviors are not the result of one mechanism or a single neural system, we consider how multiple neural systems important for prosocial and aggressive behavior (i.e., neuropeptides and neurosteroids) interact in the brain to produce behavior in a rapid, context-appropriate manner. Applying a systems neuroscience perspective and seeking to understand how multiple systems functionally integrate to rapidly modulate behavior holds great promise for expanding our knowledge of the mechanisms underlying social behavioral plasticity.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| | - Leah C Wilson
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
9
|
Silva AC, Zubizarreta L, Quintana L. A Teleost Fish Model to Understand Hormonal Mechanisms of Non-breeding Territorial Behavior. Front Endocrinol (Lausanne) 2020; 11:468. [PMID: 32793118 PMCID: PMC7390828 DOI: 10.3389/fendo.2020.00468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Aggressive behaviors occurring dissociated from the breeding season encourage the search of non-gonadal underlying regulatory mechanisms. Brain estrogen has been shown to be a key modulator of this behavior in bird and mammal species, and it remains to be understood if this is a common mechanism across vertebrates. This review focuses on the contributions of Gymnotus omarorum, the first teleost species in which estrogenic modulation of non-breeding aggression has been demonstrated. Gymnotus omarorum displays year-long aggression, which has been well characterized in the non-breeding season. In the natural habitat, territory size is independent of sex and determined by body size. During the breeding season, on the other hand, territory size no longer correlates to body size, but rather to circulating estrogens and gonadosomatic index in females, and 11-ketotestosterone in males. The hormonal mechanisms underlying non-breeding aggression have been explored in dyadic encounters in lab settings. Males and females display robust aggressive contests, whose outcome depends only on body size asymmetry. This agonistic behavior is independent of gonadal hormones and fast acting androgens. Nevertheless, it is dependent on fast acting estrogenic action, as acute aromatase blockers affect aggression engagement, intensity, and outcome. Transcriptomic profiling in the preoptic area region shows non-breeding individuals express aromatase and other steroidogenic enzyme transcripts. This teleost model reveals there is a role of brain estrogen in the control of non-breeding aggression which seems to be common among distant vertebrate species.
Collapse
Affiliation(s)
- Ana C. Silva
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Lucía Zubizarreta
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Laboratorio de Neurofisiología Celular y Sináptica, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Quintana
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- *Correspondence: Laura Quintana
| |
Collapse
|
10
|
Tripp JA, Bass AH. Galanin immunoreactivity is sexually polymorphic in neuroendocrine and vocal-acoustic systems in a teleost fish. J Comp Neurol 2019; 528:433-452. [PMID: 31469908 PMCID: PMC10128891 DOI: 10.1002/cne.24765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023]
Abstract
Galanin is a peptide that regulates pituitary hormone release, feeding, and reproductive and parental care behaviors. In teleost fish, increased galanin expression is associated with territorial, reproductively active males. Prior transcriptome studies of the plainfin midshipman (Porichthys notatus), a highly vocal teleost fish with two male morphs that follow alternative reproductive tactics, show that galanin is upregulated in the preoptic area-anterior hypothalamus (POA-AH) of nest-holding, courting type I males during spawning compared to cuckolding type II males. Here, we investigate possible differences in galanin immunoreactivity in the brain of both male morphs and females with a focus on vocal-acoustic and neuroendocrine networks. We find that females differ dramatically from both male morphs in the number of galanin-expressing somata and in the distribution of fibers, especially in brainstem vocal-acoustic nuclei and other sensory integration sites that also differ, though less extensively, between the male morphs. Double labeling shows that primarily separate populations of POA-AH neurons express galanin and the nonapeptides arginine-vasotocin or isotocin, homologues of mammalian arginine vasopressin and oxytocin that are broadly implicated in neural mechanisms of vertebrate social behavior including morph-specific actions on vocal neurophysiology in midshipman. Finally, we report a small population of POA-AH neurons that coexpress galanin and the neurotransmitter γ-aminobutyric acid. Together, the results indicate that galanin neurons in midshipman fish likely modulate brain activity at a broad scale, including targeted effects on vocal motor, sensory and neuroendocrine systems; are unique from nonapeptide-expressing populations; and play a role in male-specific behaviors.
Collapse
Affiliation(s)
- Joel A Tripp
- Department of Neurobiology & Behavior, Cornell University, Ithaca, New York
| | - Andrew H Bass
- Department of Neurobiology & Behavior, Cornell University, Ithaca, New York
| |
Collapse
|
11
|
Hiraki-Kajiyama T, Yamashita J, Yokoyama K, Kikuchi Y, Nakajo M, Miyazoe D, Nishiike Y, Ishikawa K, Hosono K, Kawabata-Sakata Y, Ansai S, Kinoshita M, Nagahama Y, Okubo K. Neuropeptide B mediates female sexual receptivity in medaka fish, acting in a female-specific but reversible manner. eLife 2019; 8:39495. [PMID: 31383257 PMCID: PMC6684226 DOI: 10.7554/elife.39495] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/18/2019] [Indexed: 12/28/2022] Open
Abstract
Male and female animals display innate sex-specific mating behaviors. In teleost fish, altering the adult sex steroid milieu can effectively reverse sex-typical mating behaviors, suggesting remarkable sexual lability of their brains as adults. In the teleost medaka, neuropeptide B (NPB) is expressed female-specifically in the brain nuclei implicated in mating behavior. Here, we demonstrate that NPB is a direct mediator of estrogen action on female mating behavior, acting in a female-specific but reversible manner. Analysis of regulatory mechanisms revealed that the female-specific expression of NPB is dependent on direct transcriptional activation by estrogen via an estrogen-responsive element and is reversed in response to changes in the adult sex steroid milieu. Behavioral studies of NPB knockouts revealed that female-specific NBP mediates female receptivity to male courtship. The female-specific NPB signaling identified herein is presumably a critical element of the neural circuitry underlying sexual dimorphism and lability of mating behaviors in teleosts.
Collapse
Affiliation(s)
- Towako Hiraki-Kajiyama
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Japan
| | - Junpei Yamashita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiko Yokoyama
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Kikuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mikoto Nakajo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Daichi Miyazoe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Nishiike
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kaito Ishikawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Hosono
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukika Kawabata-Sakata
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Satoshi Ansai
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshitaka Nagahama
- Division of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Forlano PM, Licorish RR, Ghahramani ZN, Timothy M, Ferrari M, Palmer WC, Sisneros JA. Attention and Motivated Response to Simulated Male Advertisement Call Activates Forebrain Dopaminergic and Social Decision-Making Network Nuclei in Female Midshipman Fish. Integr Comp Biol 2018; 57:820-834. [PMID: 28992072 DOI: 10.1093/icb/icx053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Little is known regarding the coordination of audition with decision-making and subsequent motor responses that initiate social behavior including mate localization during courtship. Using the midshipman fish model, we tested the hypothesis that the time spent by females attending and responding to the advertisement call is correlated with the activation of a specific subset of catecholaminergic (CA) and social decision-making network (SDM) nuclei underlying auditory- driven sexual motivation. In addition, we quantified the relationship of neural activation between CA and SDM nuclei in all responders with the goal of providing a map of functional connectivity of the circuitry underlying a motivated state responsive to acoustic cues during mate localization. In order to make a baseline qualitative comparison of this functional brain map to unmotivated females, we made a similar correlative comparison of brain activation in females who were unresponsive to the advertisement call playback. Our results support an important role for dopaminergic neurons in the periventricular posterior tuberculum and ventral thalamus, putative A11 and A13 tetrapod homologues, respectively, as well as the posterior parvocellular preoptic area and dorsomedial telencephalon, (laterobasal amygdala homologue) in auditory attention and appetitive sexual behavior in fishes. These findings may also offer insights into the function of these highly conserved nuclei in the context of auditory-driven reproductive social behavior across vertebrates.
Collapse
Affiliation(s)
- Paul M Forlano
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA.,Biology Subprogram in Ecology, Evolutionary Biology, and Behavior, The Graduate Center, City University of New York, New York, NY, USA.,Biology Subprogram in Neuroscience, The Graduate Center, City University of New York, New York, NY, USA.,Psychology Subprogram in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA.,Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, NY, USA
| | - Roshney R Licorish
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | - Zachary N Ghahramani
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA.,Biology Subprogram in Ecology, Evolutionary Biology, and Behavior, The Graduate Center, City University of New York, New York, NY, USA
| | - Miky Timothy
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | | | - William C Palmer
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, WA, USA.,Virginia Bloedel Hearing Research Center, Seattle, WA, USA
| |
Collapse
|
13
|
Kelly AM, Saunders AG, Ophir AG. Mechanistic substrates of a life history transition in male prairie voles: Developmental plasticity in affiliation and aggression corresponds to nonapeptide neuronal function. Horm Behav 2018; 99:14-24. [PMID: 29407458 PMCID: PMC5880752 DOI: 10.1016/j.yhbeh.2018.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/12/2018] [Accepted: 01/23/2018] [Indexed: 11/17/2022]
Abstract
Although prairie vole (Microtus ochrogaster) social behavior is well-characterized in adults, surprisingly little is known about the development of social behavior in voles. Further, the overwhelming majority of studies in prairie voles examine social behavior in a reproductive context. Here, we examine developmental plasticity in affiliation and aggression and their underlying neural correlates. Using sexually naïve males, we characterized interactions with an age-matched, novel, same-sex conspecific in four different age groups that span pre-weaning to adulthood. We found that prosocial behavior decreased and aggression increased as males matured. Additionally, pre-weaning males were more prosocial than nonsocial, whereas post-weaning males were more nonsocial than prosocial. We also examined nonapeptide neural activity in response to a novel conspecific in brain regions important for promoting sociality and aggression using the immediate early gene cFos. Assessment of developmental changes in neural activity showed that vasopressin neurons in the medial bed nucleus of the stria terminalis exhibit functional plasticity, providing a potential functional mechanism that contributes to this change in sociality as prairie voles mature. This behavioral shift corresponds to the transition from a period of allopatric cohabitation with siblings to a period of time when voles disperse and presumably attempt to establish and defend territories. Taken together our data provide a putative mechanism by which brain and behavior prepare for the opportunity to pairbond (characterized by selective affiliation with a partner and aggression toward unfamiliar conspecifics) by undergoing changes away from general affiliation and toward selective aggression, accounting for this important life history event.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
14
|
Loveland JL, Hu CK. Commentary: Arginine Vasotocin Preprohormone Is Expressed in Surprising Regions of the Teleost Forebrain. Front Endocrinol (Lausanne) 2018; 9:63. [PMID: 29545774 PMCID: PMC5838006 DOI: 10.3389/fendo.2018.00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/12/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jasmine L. Loveland
- Behavioural Genetics and Evolutionary Ecology Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany
- *Correspondence: Jasmine L. Loveland,
| | - Caroline K. Hu
- Department of Organismic and Evolutionary Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, MA, United States
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, MA, United States
| |
Collapse
|
15
|
Field KE, Maruska KP. Context-dependent chemosensory signaling, aggression and neural activation patterns in gravid female African cichlid fish. ACTA ACUST UNITED AC 2017; 220:4689-4702. [PMID: 29074701 DOI: 10.1242/jeb.164574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/23/2017] [Indexed: 01/19/2023]
Abstract
Social animals must constantly assess their environment to make appropriate behavioral decisions. The use of various sensory modalities is imperative in this process and it is hypothesized that the highly conserved brain nuclei comprising the social decision-making network (SDMN) integrates social information with an animal's internal state to elicit behavioral responses. Here, we used the highly social African cichlid fish, Astatotilapia burtoni, to investigate whether reproductively receptive (gravid) females show contextual chemosensory signaling, social behaviors and neural activation patterns within the SDMN. We exposed gravid females to different social contexts: (1) dominant male (inter-sexual reproductive); (2) mouth brooding (non-receptive) female; (3) gravid female (intra-sexual aggressive); (4) juvenile fish (low social salience); and (5) empty compartment (control). By injecting females with a blue dye to visualize urine pulses, we found that gravid females show context-dependent urination, exhibiting higher urination rates in the presence of dominant males (reproductive context) and mouth brooding females (aggressive contexts). Further, gravid females show contextual aggression with increased aggressive displays toward mouth brooding females compared with other gravid females. Using in situ hybridization to quantify cells expressing the immediate early gene cfos as a measure of neural activation, we also show that certain regions of the SDMN in gravid females are differentially activated after exposure to high compared with low social salience contexts. Coupled with previous reports, these results demonstrate true chemosensory communication in both sexes of a single fish species, as well as reveal the neural substrates mediating intra- and inter-sexual social behaviors in females.
Collapse
Affiliation(s)
- Karen E Field
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
16
|
Baran NM. Sensitive Periods, Vasotocin-Family Peptides, and the Evolution and Development of Social Behavior. Front Endocrinol (Lausanne) 2017; 8:189. [PMID: 28824549 PMCID: PMC5539493 DOI: 10.3389/fendo.2017.00189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/19/2017] [Indexed: 01/15/2023] Open
Abstract
Nonapeptides, by modulating the activity of neural circuits in specific social contexts, provide an important mechanism underlying the evolution of diverse behavioral phenotypes across vertebrate taxa. Vasotocin-family nonapeptides, in particular, have been found to be involved in behavioral plasticity and diversity in social behavior, including seasonal variation, sexual dimorphism, and species differences. Although nonapeptides have been the focus of a great deal of research over the last several decades, the vast majority of this work has focused on adults. However, behavioral diversity may also be explained by the ways in which these peptides shape neural circuits and influence social processes during development. In this review, I synthesize comparative work on vasotocin-family peptides during development and classic work on early forms of social learning in developmental psychobiology. I also summarize recent work demonstrating that early life manipulations of the nonapeptide system alter attachment, affiliation, and vocal learning in zebra finches. I thus hypothesize that vasotocin-family peptides are involved in the evolution of social behaviors through their influence on learning during sensitive periods in social development.
Collapse
Affiliation(s)
- Nicole M. Baran
- Department of Psychology, Cornell University, Ithaca, NY, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
17
|
Weitekamp CA, Hofmann HA. Neuromolecular correlates of cooperation and conflict during territory defense in a cichlid fish. Horm Behav 2017; 89:145-156. [PMID: 28108326 DOI: 10.1016/j.yhbeh.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 01/07/2023]
Abstract
Cooperative behavior is widespread among animals, yet the neural mechanisms have not been studied in detail. We examined cooperative territory defense behavior and associated neural activity in candidate forebrain regions in the cichlid fish, Astatotilapia burtoni. We find that a territorial male neighbor will engage in territory defense dependent on the perceived threat of the intruder. The resident male, on the other hand, engages in defense based on the size and behavior of his partner, the neighbor. In the neighbor, we find that an index of engagement correlates with neural activity in the putative homolog of the mammalian basolateral amygdala and in the preoptic area, as well as in preoptic dopaminergic neurons. In the resident, neighbor behavior is correlated with neural activity in the homolog of the mammalian hippocampus. Overall, we find distinct neural activity patterns between the neighbor and the resident, suggesting that an individual perceives and processes an intruder challenge differently during cooperative territory defense depending on its own behavioral role.
Collapse
Affiliation(s)
- Chelsea A Weitekamp
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78705, USA
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78705, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78705, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78705, USA.
| |
Collapse
|
18
|
Lind CM, Birky NK, Porth AM, Farrell TM. Vasotocin receptor blockade disrupts maternal care of offspring in a viviparous snake, Sistrurus miliarius. Biol Open 2017; 6:283-289. [PMID: 28069591 PMCID: PMC5312107 DOI: 10.1242/bio.022616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parental care is a complex social behavior that is widespread among vertebrates. The neuroendocrine regulation of parent-offspring social behavior has been well-described in mammals, and to a lesser extent, in birds and fish. However, little is known regarding the underlying mechanisms that mediate the expression of care behaviors in squamate reptiles. In mammalian model species and humans, posterior pituitary hormones of the oxytocin and vasopressin families mediate parental care behaviors. To test the hypothesis that the regulatory role of posterior pituitary neuropeptides is conserved in a viviparous squamate reptile, we pharmacologically blocked the vasotocin receptor in post-parturient pigmy rattlesnakes, Sistrurus miliarius, and monitored the spatial relationship between mothers and offspring relative to controls. Mothers in the control group demonstrated spatial aggregation with offspring, with mothers having greater post-parturient energy stores aggregating more closely with their offspring. Blockade of vasotocin receptors eliminated evidence of spatial aggregation between mothers and offspring and eliminated the relationship between maternal energetic status and spatial aggregation. Our results are the first to implicate posterior pituitary neuropeptides in the regulation of maternal behavior in a squamate reptile and are consistent with the hypothesis that the neuroendocrine mechanisms underlying social behaviors are broadly conserved among vertebrates.
Collapse
Affiliation(s)
- Craig M Lind
- Department of Biology, Stetson University, Deland, FL 32723, USA
| | | | - Anita M Porth
- Department of Biology, Stetson University, Deland, FL 32723, USA
| | | |
Collapse
|
19
|
Wilczynski W, Quispe M, Muñoz MI, Penna M. Arginine Vasotocin, the Social Neuropeptide of Amphibians and Reptiles. Front Endocrinol (Lausanne) 2017; 8:186. [PMID: 28824546 PMCID: PMC5545607 DOI: 10.3389/fendo.2017.00186] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/18/2017] [Indexed: 12/04/2022] Open
Abstract
Arginine vasotocin (AVT) is the non-mammalian homolog of arginine vasopressin (AVP) and, like vasopressin, serves as an important modulator of social behavior in addition to its peripheral functions related to osmoregulation, reproductive physiology, and stress hormone release. In amphibians and reptiles, the neuroanatomical organization of brain AVT cells and fibers broadly resembles that seen in mammals and other taxa. Both parvocellular and magnocellular AVT-containing neurons are present in multiple populations located mainly in the basal forebrain from the accumbens-amygdala area to the preoptic area and hypothalamus, from which originate widespread fiber connections spanning the brain with a particularly heavy innervation of areas associated with social behavior and decision-making. As for mammalian AVP, AVT is present in greater amounts in males in many brain areas, and its presence varies seasonally, with hormonal state, and in males with differing social status. AVT's social influence is also conserved across herpetological taxa, with significant effects on social signaling and aggression, and, based on the very small number of studies investigating more complex social behaviors in amphibians and reptiles, AVT may also modulate parental care and social bonding when it is present in these vertebrates. Within this conserved pattern, however, both AVT anatomy and social behavior effects vary significantly across species. Accounting for this diversity represents a challenge to understanding the mechanisms by which AVT exerts its behavioral effects, as well are a potential tool for discerning the structure-function relationships underlying AVT's many effects on behavior.
Collapse
Affiliation(s)
- Walter Wilczynski
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States
- *Correspondence: Walter Wilczynski,
| | - Maricel Quispe
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Matías I. Muñoz
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Penna
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
20
|
Rodriguez-Santiago M, Nguyen J, Winton LS, Weitekamp CA, Hofmann HA. Arginine Vasotocin Preprohormone Is Expressed in Surprising Regions of the Teleost Forebrain. Front Endocrinol (Lausanne) 2017; 8:195. [PMID: 28855890 PMCID: PMC5557731 DOI: 10.3389/fendo.2017.00195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/25/2017] [Indexed: 01/14/2023] Open
Abstract
Nonapeptides play a fundamental role in the regulation of social behavior, among numerous other functions. In particular, arginine vasopressin and its non-mammalian homolog, arginine vasotocin (AVT), have been implicated in regulating affiliative, reproductive, and aggressive behavior in many vertebrate species. Where these nonapeptides are synthesized in the brain has been studied extensively in most vertebrate lineages. While several hypothalamic and forebrain populations of vasopressinergic neurons have been described in amniotes, the consensus suggests that the expression of AVT in the brain of teleost fish is limited to the hypothalamus, specifically the preoptic area (POA) and the anterior tuberal nucleus (putative homolog of the mammalian ventromedial hypothalamus). However, as most studies in teleosts have focused on the POA, there may be an ascertainment bias. Here, we revisit the distribution of AVT preprohormone mRNA across the dorsal and ventral telencephalon of a highly social African cichlid fish. We first use in situ hybridization to map the distribution of AVT preprohormone mRNA across the telencephalon. We then use quantitative real-time polymerase chain reaction to assay AVT expression in the dorsomedial telencephalon, the putative homolog of the mammalian basolateral amygdala. We find evidence for AVT preprohormone mRNA in regions previously not associated with the expression of this nonapeptide, including the putative homologs of the mammalian extended amygdala, hippocampus, striatum, and septum. In addition, AVT preprohormone mRNA expression within the basolateral amygdala homolog differs across social contexts, suggesting a possible role in behavioral regulation. We conclude that the surprising presence of AVT preprohormone mRNA within dorsal and medial telencephalic regions warrants a closer examination of possible AVT synthesis locations in teleost fish, and that these may be more similar to what is observed in mammals and birds.
Collapse
Affiliation(s)
- Mariana Rodriguez-Santiago
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| | - Jessica Nguyen
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Lin S. Winton
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Chelsea A. Weitekamp
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| | - Hans A. Hofmann
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
- *Correspondence: Hans A. Hofmann,
| |
Collapse
|
21
|
Dumais KM, Veenema AH. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. Front Neuroendocrinol 2016; 40:1-23. [PMID: 25951955 PMCID: PMC4633405 DOI: 10.1016/j.yfrne.2015.04.003] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/31/2022]
Abstract
The neuropeptides vasopressin (VP) and oxytocin (OT) and their receptors in the brain are involved in the regulation of various social behaviors and have emerged as drug targets for the treatment of social dysfunction in several sex-biased neuropsychiatric disorders. Sex differences in the VP and OT systems may therefore be implicated in sex-specific regulation of healthy as well as impaired social behaviors. We begin this review by highlighting the sex differences, or lack of sex differences, in VP and OT synthesis in the brain. We then discuss the evidence showing the presence or absence of sex differences in VP and OT receptors in rodents and humans, as well as showing new data of sexually dimorphic V1a receptor binding in the rat brain. Importantly, we find that there is lack of comprehensive analysis of sex differences in these systems in common laboratory species, and we find that, when sex differences are present, they are highly brain region- and species-specific. Interestingly, VP system parameters (VP and V1aR) are typically higher in males, while sex differences in the OT system are not always in the same direction, often showing higher OT expression in females, but higher OT receptor expression in males. Furthermore, VP and OT receptor systems show distinct and largely non-overlapping expression in the rodent brain, which may cause these receptors to have either complementary or opposing functional roles in the sex-specific regulation of social behavior. Though still in need of further research, we close by discussing how manipulations of the VP and OT systems have given important insights into the involvement of these neuropeptide systems in the sex-specific regulation of social behavior in rodents and humans.
Collapse
Affiliation(s)
- Kelly M Dumais
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA.
| | - Alexa H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
22
|
Montagnese CM, Székely T, Csillag A, Zachar G. Distribution of vasotocin- and vasoactive intestinal peptide-like immunoreactivity in the brain of blue tit (Cyanistes coeruleus). Front Neuroanat 2015; 9:90. [PMID: 26236200 PMCID: PMC4500960 DOI: 10.3389/fnana.2015.00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/23/2015] [Indexed: 12/06/2022] Open
Abstract
Blue tits (Cyanistes coeruleus) are songbirds, used as model animals in numerous studies covering a wide field of research. Nevertheless, the distribution of neuropeptides in the brain of this avian species remains largely unknown. Here we present some of the first results on distribution of Vasotocine (AVT) and Vasoactive intestinal peptide (VIP) in the brain of males and females of this songbird species, using immunohistochemistry mapping. The bulk of AVT-like cells are found in the hypothalamic supraoptic, paraventricular and suprachiasmatic nuclei, bed nucleus of the stria terminalis, and along the lateral forebrain bundle. Most AVT-like fibers course toward the median eminence, some reaching the arcopallium, and lateral septum. Further terminal fields occur in the dorsal thalamus, ventral tegmental area and pretectal area. Most VIP-like cells are in the lateral septal organ and arcuate nucleus. VIP-like fibers are distributed extensively in the hypothalamus, preoptic area, lateral septum, diagonal band of Broca. They are also found in the bed nucleus of the stria terminalis, amygdaloid nucleus of taenia, robust nucleus of the arcopallium, caudo-ventral hyperpallium, nucleus accumbens and the brainstem. Taken together, these results suggest that both AVT and VIP immunoreactive structures show similar distribution to other avian species, emphasizing evolutionary conservatism in the history of vertebrates. The current study may enable future investigation into the localization of AVT and VIP, in relation to behavioral and ecological traits in the brain of tit species.
Collapse
Affiliation(s)
- Catherine M Montagnese
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Hungary
| | - Tamás Székely
- Department of Biology and Biochemistry, University of Bath Bath, UK
| | - András Csillag
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Hungary
| |
Collapse
|
23
|
Albers HE. Species, sex and individual differences in the vasotocin/vasopressin system: relationship to neurochemical signaling in the social behavior neural network. Front Neuroendocrinol 2015; 36:49-71. [PMID: 25102443 PMCID: PMC4317378 DOI: 10.1016/j.yfrne.2014.07.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/23/2014] [Accepted: 07/27/2014] [Indexed: 11/16/2022]
Abstract
Arginine-vasotocin (AVT)/arginine vasopressin (AVP) are members of the AVP/oxytocin (OT) superfamily of peptides that are involved in the regulation of social behavior, social cognition and emotion. Comparative studies have revealed that AVT/AVP and their receptors are found throughout the "social behavior neural network (SBNN)" and display the properties expected from a signaling system that controls social behavior (i.e., species, sex and individual differences and modulation by gonadal hormones and social factors). Neurochemical signaling within the SBNN likely involves a complex combination of synaptic mechanisms that co-release multiple chemical signals (e.g., classical neurotransmitters and AVT/AVP as well as other peptides) and non-synaptic mechanisms (i.e., volume transmission). Crosstalk between AVP/OT peptides and receptors within the SBNN is likely. A better understanding of the functional properties of neurochemical signaling in the SBNN will allow for a more refined examination of the relationships between this peptide system and species, sex and individual differences in sociality.
Collapse
Affiliation(s)
- H Elliott Albers
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
24
|
Kelly AM, Goodson JL. Social functions of individual vasopressin-oxytocin cell groups in vertebrates: what do we really know? Front Neuroendocrinol 2014; 35:512-29. [PMID: 24813923 DOI: 10.1016/j.yfrne.2014.04.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/18/2014] [Accepted: 04/25/2014] [Indexed: 12/26/2022]
Abstract
Vasopressin-oxytocin (VP-OT) nonapeptides modulate numerous social and stress-related behaviors, yet these peptides are made in multiple nuclei and brain regions (e.g., >20 in some mammals), and VP-OT cells in these areas often exhibit overlapping axonal projections. Furthermore, the magnocellular cell groups release peptide volumetrically from dendrites and soma, which gives rise to paracrine modulation in distal brain areas. Nonapeptide receptors also tend to be promiscuous. Hence, behavioral effects that are mediated by any given receptor type (e.g., the OT receptor) in a target brain region cannot be conclusively attributed to either VP or OT, nor to a specific cell group. We here review what is actually known about the social behavior functions of nonapeptide cell groups, with a focus on aggression, affiliation, bonding, social stress, and parental behavior, and discuss recent studies that demonstrate a diversity of sex-specific contributions of VP-OT cell groups to gregariousness and pair bonding.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
25
|
Hypothalamic oxytocin and vasopressin neurons exert sex-specific effects on pair bonding, gregariousness, and aggression in finches. Proc Natl Acad Sci U S A 2014; 111:6069-74. [PMID: 24711411 DOI: 10.1073/pnas.1322554111] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Antagonism of oxytocin (OT) receptors (OTRs) impairs the formation of pair bonds in prairie voles (Microtus ochrogaster) and zebra finches (Taenioypygia guttata), and also reduces the preference for the larger of two groups ("gregariousness") in finches. These effects tend to be stronger in females. The contributions of specific peptide cell groups to these processes remain unknown, however. This issue is complicated by the fact that OTRs in finches and voles bind not only forms of OT, but also vasopressin (VP), and >10 cell groups produce each peptide in any given species. Using RNA interference, we found that knockdown of VP and OT production in the paraventricular nucleus of the hypothalamus exerts diverse behavioral effects in zebra finches, most of which are sexually differentiated. Our data show that knockdown of VP production significantly reduces gregariousness in both sexes and exerts sex-specific effects on aggression directed toward opposite-sex birds (increases in males; decreases in females), whereas OT knockdown produces female-specific deficits in gregariousness, pair bonding, and nest cup ownership; reduces side-by-side perching in both sexes; modulates stress coping; and induces hyperphagia in males. These findings demonstrate that paraventricular neurons are major contributors to the effects of VP-OT peptides on pair bonding and gregariousness; reveal previously unknown effects of sex-specific peptide on opposite-sex aggression; and demonstrate a surprising lack of effects on same-sex aggression. Finally, the observed effects of OT knockdown on feeding and stress coping parallel findings in mammals, suggesting that OT modulation of these processes is evolutionarily conserved across the amniote vertebrate classes.
Collapse
|
26
|
Knobloch HS, Grinevich V. Evolution of oxytocin pathways in the brain of vertebrates. Front Behav Neurosci 2014; 8:31. [PMID: 24592219 PMCID: PMC3924577 DOI: 10.3389/fnbeh.2014.00031] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/21/2014] [Indexed: 01/08/2023] Open
Abstract
The central oxytocin system transformed tremendously during the evolution, thereby adapting to the expanding properties of species. In more basal vertebrates (paraphyletic taxon Anamnia, which includes agnathans, fish and amphibians), magnocellular neurosecretory neurons producing homologs of oxytocin reside in the wall of the third ventricle of the hypothalamus composing a single hypothalamic structure, the preoptic nucleus. This nucleus further diverged in advanced vertebrates (monophyletic taxon Amniota, which includes reptiles, birds, and mammals) into the paraventricular and supraoptic nuclei with accessory nuclei (AN) between them. The individual magnocellular neurons underwent a process of transformation from primitive uni- or bipolar neurons into highly differentiated neurons. Due to these microanatomical and cytological changes, the ancient release modes of oxytocin into the cerebrospinal fluid were largely replaced by vascular release. However, the most fascinating feature of the progressive transformations of the oxytocin system has been the expansion of oxytocin axonal projections to forebrain regions. In the present review we provide a background on these evolutionary advancements. Furthermore, we draw attention to the non-synaptic axonal release in small and defined brain regions with the aim to clearly distinguish this way of oxytocin action from the classical synaptic transmission on one side and from dendritic release followed by a global diffusion on the other side. Finally, we will summarize the effects of oxytocin and its homologs on pro-social reproductive behaviors in representatives of the phylogenetic tree and will propose anatomically plausible pathways of oxytocin release contributing to these behaviors in basal vertebrates and amniots.
Collapse
Affiliation(s)
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Center (DKFZ), Max Planck Institute for Medical Research, University of HeidelbergHeidelberg, Germany
| |
Collapse
|
27
|
Abstract
The emerging field of "neuro-evo-devo" is beginning to reveal how the molecular and neural substrates that underlie brain function are based on variations in evolutionarily ancient and conserved neurochemical and neural circuit themes. Comparative work across bilaterians is reviewed to highlight how early neural patterning specifies modularity of the embryonic brain, which lays a foundation on which manipulation of neurogenesis creates adjustments in brain size. Small variation within these developmental mechanisms contributes to the evolution of brain diversity. Comparing the specification and spatial distribution of neural phenotypes across bilaterians has also suggested some major brain evolution trends, although much more work on profiling neural connections with neurochemical specificity across a wide diversity of organisms is needed. These comparative approaches investigating the evolution of brain form and function hold great promise for facilitating a mechanistic understanding of how variation in brain morphology, neural phenotypes, and neural networks influences brain function and behavioral diversity across organisms.
Collapse
Affiliation(s)
- Lauren A O'Connell
- Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
28
|
Kabelik D, Alix VC, Burford ER, Singh LJ. Aggression- and sex-induced neural activity across vasotocin populations in the brown anole. Horm Behav 2013. [PMID: 23201179 DOI: 10.1016/j.yhbeh.2012.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Activity within the social behavior neural network is modulated by the neuropeptide arginine vasotocin (AVT) and its mammalian homologue arginine vasopressin (AVP). However, central AVT/AVP release causes different behavioral effects across species and social environments. These differences may be due to the activation of different neuronal AVT/AVP populations or to similar activity patterns causing different behavioral outputs. We examined neural activity (assessed as Fos induction) within AVT neurons in male brown anole lizards (Anolis sagrei) participating in aggressive or sexual encounters. Lizards possess simple amniote nervous systems, and their examination provides a comparative framework to complement avian and mammalian studies. In accordance with findings in other species, AVT neurons in the anole paraventricular nucleus (PVN) were activated during aggressive encounters; but unlike in other species, a positive correlation was found between aggression levels and activation. Activation of AVT neurons within the supraoptic nucleus (SON) occurred nonspecifically with participation in either aggressive or sexual encounters. Activation of AVT neurons in the preoptic area (POA) and bed nucleus of the stria terminalis (BNST) was associated with engagement in sexual behaviors. The above findings are congruent with neural activation patterns observed in other species, even when the behavioral outputs (i.e., aggression level) differed. However, aggressive encounters also increased activation of AVT neurons in the BNST, which is incongruous with findings in other species. Thus, some species differences involve the encoding of social stimuli as different neural activation patterns within the AVT/AVP network, whereas other behavioral differences arise downstream of this system.
Collapse
Affiliation(s)
- David Kabelik
- Department of Biology, Rhodes College, 2000N Parkway, Memphis, TN, 38112, USA.
| | | | | | | |
Collapse
|
29
|
Maruska KP, Zhang A, Neboori A, Fernald RD. Social opportunity causes rapid transcriptional changes in the social behaviour network of the brain in an African cichlid fish. J Neuroendocrinol 2013; 25:145-57. [PMID: 22958303 PMCID: PMC3537875 DOI: 10.1111/j.1365-2826.2012.02382.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/11/2012] [Accepted: 09/02/2012] [Indexed: 10/27/2022]
Abstract
Animals constantly integrate external stimuli with their own internal physiological state to make appropriate behavioural decisions. Little is known, however, about where in the brain the salience of these signals is evaluated, or which neural and transcriptional mechanisms link this integration to adaptive behaviours. We used an African cichlid fish Astatotilapia burtoni to test the hypothesis that a new social opportunity activates the conserved 'social behaviour network' (SBN), a collection of brain nuclei known to regulate social behaviours across vertebrates. We measured mRNA levels of immediate early genes (IEGs) in microdissected brain regions as a proxy for neuronal activation, and discovered that IEGs were higher in all SBN nuclei in males that were given an opportunity to rise in social rank compared to control stable subordinate and dominant individuals. Furthermore, because the presence of sex-steroid receptors is one defining criteria of SBN nuclei, we also tested whether social opportunity or status influenced androgen and oestrogen receptor mRNA levels within these same regions. There were several rapid region-specific changes in receptor mRNA levels induced by social opportunity, most notably in oestrogen receptor subtypes in areas that regulate social aggression and reproduction, suggesting that oestrogenic signalling pathways play an important role in regulating male status. Several receptor mRNA changes occurred in regions with putative homologies to the mammalian septum and extended amygdala, two regions shared by SBN and reward circuits, suggesting an important role in the integration of social salience, stressors, hormonal state and adaptive behaviours. We also demonstrated increases in plasma sex- and stress-steroids at 30 min after a rise in social rank. This rapid endocrine and transcriptional response suggests that the SBN is involved in the integration of social inputs with internal hormonal state to facilitate the transition to dominant status, which ultimately leads to improved fitness for the previously reproductively-suppressed individual.
Collapse
Affiliation(s)
- K P Maruska
- Department of Biology, Stanford University, Stanford, CA, USA.
| | | | | | | |
Collapse
|
30
|
Ramallo MR, Grober M, Cánepa MM, Morandini L, Pandolfi M. Arginine-vasotocin expression and participation in reproduction and social behavior in males of the cichlid fish Cichlasoma dimerus. Gen Comp Endocrinol 2012; 179:221-31. [PMID: 22940647 DOI: 10.1016/j.ygcen.2012.08.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 08/06/2012] [Accepted: 08/13/2012] [Indexed: 11/17/2022]
Abstract
In non-mammalian vertebrates, the nonapeptide arginine-vasotocin (AVT) is involved in the regulation of social behavior related to reproduction and aggression. The cichlid fish Cichlasoma dimerus is a monogamous species with complex social hierarchies. Males are found in one of two basic alternative phenotypes: Non-territorial and territorial males. In this work we characterize the vasotocinergic system in males of C. dimerus in relation to social status with particular emphasis on the various putative sites of action of AVT across the hypothalamic-pituitary-gonad (HPG) axis, and its effects on reproductive and social behavior. The location and distribution of vasotocinergic neurons in the brain was studied, highlighting a morphometric analysis of AVT producing neurons in males of different social status. The effect of AVT on pituitary gonadotropin secretion was analyzed by single pituitary culture while expression of AVT in peripheral organs was studied by RT-PCR using specific primers. Finally, the role of AVT on testicular androgen release was assessed by in vitro incubation of testis. Results showed a positive effect of AVT on gonadotropin secretion, where β-LH showcased a triphasic response under increasing AVT concentration, while β-FSH's response was dose-dependent and directly proportional. AVT showed a positive and concentration-dependent effect over testicular androgens synthesis and secretion in vitro. Vasotocin expression was observed in testicular somatic tissue located in the interstitial compartment. Thus, the AVT system in C. dimerus appears to be of high complexity, with multiple sites of action in the hypothalamus-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Martín Roberto Ramallo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
31
|
Abstract
Animals evaluate and respond to their social environment with adaptive decisions. Revealing the neural mechanisms of such decisions is a major goal in biology. We analyzed expression profiles for 10 neurochemical genes across 12 brain regions important for decision-making in 88 species representing five vertebrate lineages. We found that behaviorally relevant brain regions are remarkably conserved over 450 million years of evolution. We also find evidence that different brain regions have experienced different selection pressures, because spatial distribution of neuroendocrine ligands are more flexible than their receptors across vertebrates. Our analysis suggests that the diversity of social behavior in vertebrates can be explained, in part, by variations on a theme of conserved neural and gene expression networks.
Collapse
Affiliation(s)
- Lauren A O'Connell
- Institute for Cellular and Molecular Biology and Section of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
32
|
Distribution of nonapeptide systems in the forebrain of an African cichlid fish, Astatotilapia burtoni. J Chem Neuroanat 2012; 44:86-97. [PMID: 22668656 DOI: 10.1016/j.jchemneu.2012.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 01/27/2023]
Abstract
Nonapeptides and their receptors have important functions in mediating social behavior across vertebrates. Where these nonapeptides are synthesized in the brain has been studied extensively in most vertebrate lineages, yet we know relatively little about the neural distribution of nonapeptide receptors outside of mammals. As nonapeptides play influential roles in behavioral regulation in all vertebrates, including teleost fish, we mapped the distributions of the receptors for arginine vasotocin (AVT; homolog of arginine vasopressin) and isotocin (IST; homolog of oxytocin/mesotocin) throughout the forebrain of Astatotilapia burtoni, an African cichlid fish with behavioral phenotypes that are plastic and reversible based on the immediate social environment. We characterized the distribution of the AVT V1a2 receptor (V1aR) and the IST receptor (ITR) using both immunohistochemistry for protein detection and in situ hybridization for mRNA detection, as well as AVT and IST using immunohistochemistry. Expression of the neuropeptide receptors was widely distributed throughout the fore- and midbrain, including the proposed teleost homologs of the mammalian amygdala complex, striatum, hypothalamus, and ventral tegmental area. We conclude that although the location of nonapeptide synthesis is restricted compared to tetrapod vertebrates, the distribution of nonapeptide receptors is highly conserved across taxa. Our results significantly extend our knowledge of where nonapeptides act in the brains of teleosts to mediate social transitions and behavior.
Collapse
|
33
|
Goodson JL, Kelly AM, Kingsbury MA. Evolving nonapeptide mechanisms of gregariousness and social diversity in birds. Horm Behav 2012; 61:239-50. [PMID: 22269661 PMCID: PMC3312996 DOI: 10.1016/j.yhbeh.2012.01.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 01/06/2012] [Accepted: 01/07/2012] [Indexed: 12/22/2022]
Abstract
Of the major vertebrate taxa, Class Aves is the most extensively studied in relation to the evolution of social systems and behavior, largely because birds exhibit an incomparable balance of tractability, diversity, and cognitive complexity. In addition, like humans, most bird species are socially monogamous, exhibit biparental care, and conduct most of their social interactions through auditory and visual modalities. These qualities make birds attractive as research subjects, and also make them valuable for comparative studies of neuroendocrine mechanisms. This value has become increasingly apparent as more and more evidence shows that social behavior circuits of the basal forebrain and midbrain are deeply conserved (from an evolutionary perspective), and particularly similar in birds and mammals. Among the strongest similarities are the basic structures and functions of avian and mammalian nonapeptide systems, which include mesotocin (MT) and arginine vasotocin (VT) systems in birds, and the homologous oxytocin (OT) and vasopressin (VP) systems, respectively, in mammals. We here summarize these basic properties, and then describe a research program that has leveraged the social diversity of estrildid finches to gain insights into the nonapeptide mechanisms of grouping, a behavioral dimension that is not experimentally tractable in most other taxa. These studies have used five monogamous, biparental finch species that exhibit group sizes ranging from territorial male-female pairs to large flocks containing hundreds or thousands of birds. The results provide novel insights into the history of nonapeptide functions in amniote vertebrates, and yield remarkable clarity on the nonapeptide biology of dinosaurs and ancient mammals. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
34
|
Chaube R, Singh RK, Joy KP. Estrogen regulation of brain vasotocin secretion in the catfish Heteropneustes fossilis: an interaction with catecholaminergic system. Gen Comp Endocrinol 2012; 175:206-13. [PMID: 22138221 DOI: 10.1016/j.ygcen.2011.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/22/2011] [Accepted: 11/11/2011] [Indexed: 02/04/2023]
Abstract
Vasotocin (VT) is a basic neurohypophysial nonapeptide in non-mammalian vertebrates and is involved in diverse functions like osmoregulation, reproduction, metabolism and behavior. In this study, we report that estradiol-17β (E(2)) regulates brain and plasma VT secretion through the involvement of the catecholaminergic (CA) system. To demonstrate this, E(2) level was altered through ovariectomy (OVX, 3 weeks) and replacement study with low and high E(2) doses (0.1 and 0.5 μg/g body weight). CA activity was inhibited by treatment with α-methylparatyrosine (α-MPT; 250 μg/g body weight), a competitive inhibitor of tyrosine hydroxylase. VT was assayed by an enzyme immunoassay method. In the sham group, the low E(2) dose produced 82% and 104% increase, respectively, in brain and plasma VT levels. The high E(2) dose decreased the VT levels significantly. The low E(2) dose decreased brain E(2) but elevated plasma E(2). In the high E(2) group, the E(2) level increased further in both brain and plasma. OVX resulted in a significant inhibition (69% and 25%, respectively) of both brain and plasma VT, which was correlated with low E(2) levels. The low E(2) dose not only reversed the inhibition, but increased the VT level in both brain and plasma in comparison to the sham groups. The high E(2) replacement inhibited VT levels further low in both brain and plasma. The α-MPT treatment inhibited VT levels significantly in both sham and OVX groups. The drug treatment abolished partially the restorative effect of the low E(2) dose in the ovariectomized fish. In the high E(2) dose group, α-MPT decreased brain and plasma VT levels further low compared to the sham + 0. 5 μg E(2) group or OVX + 0.5 μg E(2) group except the brain VT level, which increased in the OVX+0.5 μg E(2) group. It is inferred that E(2) may exert biphasic effects on VT through the mediation of the CA system.
Collapse
Affiliation(s)
- Radha Chaube
- Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi 221 005, India
| | | | | |
Collapse
|
35
|
Kelly AM, Kingsbury MA, Hoffbuhr K, Schrock SE, Waxman B, Kabelik D, Thompson RR, Goodson JL. Vasotocin neurons and septal V1a-like receptors potently modulate songbird flocking and responses to novelty. Horm Behav 2011; 60:12-21. [PMID: 21295577 PMCID: PMC3106146 DOI: 10.1016/j.yhbeh.2011.01.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/24/2011] [Accepted: 01/27/2011] [Indexed: 02/06/2023]
Abstract
Previous comparisons of territorial and gregarious finches (family Estrildidae) suggest the hypothesis that arginine vasotocin (VT) neurons in the medial bed nucleus of the stria terminalis (BSTm) and V(1a)-like receptors in the lateral septum (LS) promote flocking behavior. Consistent with this hypothesis, we now show that intraseptal infusions of a V(1a) antagonist in male zebra finches (Taeniopygia guttata) reduce gregariousness (preference for a group of 10 versus 2 conspecific males), but have no effect on the amount of time that subjects spend in close proximity to other birds ("contact time"). The antagonist also produces a profound increase in anxiety-like behavior, as exhibited by an increased latency to feed in a novelty-suppressed feeding test. Bilateral knockdown of VT production in the BSTm using LNA-modified antisense oligonucleotides likewise produces increases in anxiety-like behavior and a potent reduction in gregariousness, relative to subjects receiving scrambled oligonucleotides. The antisense oligonucleotides also produced a modest increase in contact time, irrespective of group size. Together, these combined experiments provide clear evidence that endogenous VT promotes preferences for larger flock sizes, and does so in a manner that is coupled to general anxiolysis. Given that homologous peptide circuitry of the BSTm-LS is found across all tetrapod vertebrate classes, these findings may be predictive for other highly gregarious species.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Biology, Indiana University,1001 East Third Street, Bloomington, IN 47405, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Forlano PM, Bass AH. Neural and hormonal mechanisms of reproductive-related arousal in fishes. Horm Behav 2011; 59:616-29. [PMID: 20950618 PMCID: PMC3033489 DOI: 10.1016/j.yhbeh.2010.10.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 10/02/2010] [Indexed: 01/05/2023]
Abstract
The major classes of chemicals and brain pathways involved in sexual arousal in mammals are well studied and are thought to be of an ancient, evolutionarily conserved origin. Here we discuss what is known of these neurochemicals and brain circuits in fishes, the oldest and most species-rich group of vertebrates from which tetrapods arose over 350 million years ago. Highlighted are case studies in vocal species where well-delineated sensory and motor pathways underlying reproductive-related behaviors illustrate the diversity and evolution of brain mechanisms driving sexual motivation between (and within) sexes. Also discussed are evolutionary insights from the neurobiology and reproductive behavior of elasmobranch fishes, the most ancient lineage of jawed vertebrates, which are remarkably similar in their reproductive biology to terrestrial mammals.
Collapse
Affiliation(s)
- Paul M. Forlano
- Department of Biology and Aquatic Research and Environmental Assessment Center, Brooklyn College of The City University of New York, 2900 Bedford Ave, Brooklyn, NY 11210, USA;
| | - Andrew H. Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
37
|
Goodson JL, Kingsbury MA. Nonapeptides and the evolution of social group sizes in birds. Front Neuroanat 2011; 5:13. [PMID: 21427780 PMCID: PMC3049320 DOI: 10.3389/fnana.2011.00013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 02/16/2011] [Indexed: 01/06/2023] Open
Abstract
Species-typical patterns of grouping have profound impacts on many aspects of physiology and behavior. However, prior to our recent studies in estrildid finches, neural mechanisms that titrate species-typical group-size preferences, independent of other aspects of social organization (e.g., mating system and parental care), have been wholly unexplored, likely because species-typical group size is typically confounded with other aspects of behavior and biology. An additional complication is that components of social organization are evolutionarily labile and prone to repeated divergence and convergence. Hence, we cannot assume that convergence in social structure has been produced by convergent modifications to the same neural characters, and thus any comparative approach to grouping must include not only species that differ in their species-typical group sizes, but also species that exhibit convergent evolution in this aspect of social organization. Using five estrildid finch species that differ selectively in grouping (all biparental and monogamous) we have demonstrated that neural motivational systems evolve in predictable ways in relation to species-typical group sizes, including convergence in two highly gregarious species and convergence in two relatively asocial, territorial species. These systems include nonapeptide (vasotocin and mesotocin) circuits that encode the valence of social stimuli (positive–negative), titrate group-size preferences, and modulate anxiety-like behaviors. Nonapeptide systems exhibit functional and anatomical properties that are biased toward gregarious species, and experimental reductions of nonapeptide signaling by receptor antagonism and antisense oligonucleotides significantly decrease preferred group sizes in the gregarious zebra finch. Combined, these findings suggest that selection on species-typical group size may reliably target the same neural motivation systems when a given social structure evolves independently.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
38
|
Searcy BT, Bradford CS, Thompson RR, Filtz TM, Moore FL. Identification and characterization of mesotocin and V1a-like vasotocin receptors in a urodele amphibian, Taricha granulosa. Gen Comp Endocrinol 2011; 170:131-43. [PMID: 20920503 DOI: 10.1016/j.ygcen.2010.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/13/2010] [Accepted: 09/24/2010] [Indexed: 11/24/2022]
Abstract
The cDNA sequences encoding the mesotocin receptor (MTR) and vasotocin 1a receptor (VTR-1a) were identified in a urodele amphibian, the rough-skinned newt, Taricha granulosa. Saturation binding of [(3)H]oxytocin (OT) to the Taricha MTR (tMTR) was best fit by a two-state model; a high affinity-low abundance site and a lower affinity-high abundance site. Competition-binding studies found the following rank-order affinities for the tMTR: mesotocin (MT)>OT≈vasotocin (VT)>vasopressin (VP)>isotocin (IT). Inositol phosphate (IP) accumulation studies demonstrated functional activity of both the tMTR and Taricha VTR-1a (tVTR-1a) in a heterologous cell culture system. The rank-order potencies for the tMTR were MT>OT>VT≈VP>IT. The combined binding and IP results indicate that VT may act as a partial agonist of the tMTR. Rank-order potencies for the tVTR-1a were VT>VP>MT≈OT>IT. For both receptors, stimulation of IP accumulation was blocked by d(CH(2))(5)[Tyr(Me)(2)]AVP (Manning compound) and d(CH(2))(5)[Tyr(Me)(2),Thr(4),Tyr-NH(2)]OVT (OTA). OTA was a more potent antagonist for the transiently expressed tMTR while Manning compound was relatively more potent at inhibiting IP accumulation in tVTR-1a expressing cells. In contradiction to earlier assumptions, the absolute IC(50) of Manning compound was lower for the tMTR (27nM±13) than the tVTR-1a (586nM±166) indicating its potential higher affinity for the tMTR, a finding with special relevance to interpretation of comparative studies investigating the behavioral and physiological actions of neurohypophysial peptides in non-mammalian species.
Collapse
Affiliation(s)
- Brian T Searcy
- Zoology Department, Oregon State University, Corvallis, OR, USA.
| | | | | | | | | |
Collapse
|
39
|
O'Connell LA, Fontenot MR, Hofmann HA. Characterization of the dopaminergic system in the brain of an African cichlid fish, Astatotilapia burtoni. J Comp Neurol 2010; 519:75-92. [DOI: 10.1002/cne.22506] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Munchrath LA, Hofmann HA. Distribution of sex steroid hormone receptors in the brain of an African cichlid fish, Astatotilapia burtoni. J Comp Neurol 2010; 518:3302-26. [PMID: 20575061 DOI: 10.1002/cne.22401] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sex steroid hormones released from the gonads play an important role in mediating social behavior across all vertebrates. Many effects of these gonadal hormones are mediated by nuclear steroid hormone receptors, which are crucial for integration in the brain of external (e.g., social) signals with internal physiological cues to produce an appropriate behavioral output. The African cichlid fish Astatotilapia burtoni presents an attractive model system for the study of how internal cues and external social signals are integrated in the brain as males display robust plasticity in the form of two distinct, yet reversible, behavioral and physiological phenotypes depending on the social environment. In order to better understand where sex steroid hormones act to regulate social behavior in this species, we have determined the distribution of the androgen receptor, estrogen receptor alpha, estrogen receptor beta, and progesterone receptor mRNA and protein throughout the telencephalon and diencephalon and some mesencephalic structures of A. burtoni. All steroid hormone receptors were found in key brain regions known to modulate social behavior in other vertebrates including the proposed teleost homologs of the mammalian amygdalar complex, hippocampus, striatum, preoptic area, anterior hypothalamus, ventromedial hypothalamus, and ventral tegmental area. Overall, there is high concordance of mRNA and protein labeling. Our results significantly extend our understanding of sex steroid pathways in the cichlid brain and support the important role of nuclear sex steroid hormone receptors in modulating social behaviors in teleosts and across vertebrates.
Collapse
Affiliation(s)
- Lauren A Munchrath
- Section of Integrative Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78705, USA
| | | |
Collapse
|
41
|
Dunbar RIM. The social role of touch in humans and primates: Behavioural function and neurobiological mechanisms. Neurosci Biobehav Rev 2010; 34:260-8. [PMID: 18662717 DOI: 10.1016/j.neubiorev.2008.07.001] [Citation(s) in RCA: 427] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 07/03/2008] [Accepted: 07/06/2008] [Indexed: 11/19/2022]
Affiliation(s)
- R I M Dunbar
- British Academy Centenary Research Project, Institute of Cognitive & Evolutionary Anthropology, University of Oxford, 64 Banbury Road, Oxford OX2 6PN, United Kingdom.
| |
Collapse
|
42
|
Goodson JL, Kabelik D. Dynamic limbic networks and social diversity in vertebrates: from neural context to neuromodulatory patterning. Front Neuroendocrinol 2009; 30:429-441. [PMID: 19520105 PMCID: PMC2763925 DOI: 10.1016/j.yfrne.2009.05.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 05/11/2009] [Accepted: 05/22/2009] [Indexed: 11/19/2022]
Abstract
Vertebrate animals exhibit a spectacular diversity of social behaviors, yet a variety of basic social behavior processes are essential to all species. These include social signaling; discrimination of conspecifics and sexual partners; appetitive and consummatory sexual behaviors; aggression and dominance behaviors; and parental behaviors (the latter with rare exceptions). These behaviors are of fundamental importance and are regulated by an evolutionarily conserved, core social behavior network (SBN) of the limbic forebrain and midbrain. The SBN encodes social information in a highly dynamic, distributed manner, such that behavior is most strongly linked to the pattern of neural activity across the SBN, not the activity of single loci. Thus, shifts in the relative weighting of activity across SBN nodes can conceivably produce almost limitless variation in behavior, including diversity across species (as weighting is modified through evolution), across behavioral contexts (as weights change temporally) and across behavioral phenotypes (as weighting is specified through heritable and developmental processes). Individual neural loci may also express diverse relationships to behavior, depending upon temporal variations in their functional connectivity to other brain regions ("neural context"). We here review the basic properties of the SBN and show how behavioral variation relates to functional connectivity of the network, and discuss ways in which neuroendocrine factors adjust network activity to produce behavioral diversity. In addition to the actions of steroid hormones on SBN state, we examine the temporally plastic and evolutionarily labile properties of the nonapeptides (the vasopressin- and oxytocin-like neuropeptides), and show how variations in nonapeptide signaling within the SBN serve to promote behavioral diversity across social contexts, seasons, phenotypes and species. Although this diversity is daunting in its complexity, the search for common "organizing principles" has become increasingly fruitful. We focus on multiple aspects of behavior, including sexual behavior, aggression and affiliation, and in each of these areas, we show how broadly relevant insights have been obtained through the examination of behavioral diversity in a wide range of vertebrate taxa.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - David Kabelik
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
43
|
Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon MC, Pelletier G, Vaudry H. Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 2009; 30:259-301. [PMID: 19505496 DOI: 10.1016/j.yfrne.2009.05.006] [Citation(s) in RCA: 283] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/12/2009] [Accepted: 05/21/2009] [Indexed: 01/09/2023]
Abstract
Neuroactive steroids synthesized in neuronal tissue, referred to as neurosteroids, are implicated in proliferation, differentiation, activity and survival of nerve cells. Neurosteroids are also involved in the control of a number of behavioral, neuroendocrine and metabolic processes such as regulation of food intake, locomotor activity, sexual activity, aggressiveness, anxiety, depression, body temperature and blood pressure. In this article, we summarize the current knowledge regarding the existence, neuroanatomical distribution and biological activity of the enzymes responsible for the biosynthesis of neurosteroids in the brain of vertebrates, and we review the neuronal mechanisms that control the activity of these enzymes. The observation that the activity of key steroidogenic enzymes is finely tuned by various neurotransmitters and neuropeptides strongly suggests that some of the central effects of these neuromodulators may be mediated via the regulation of neurosteroid production.
Collapse
Affiliation(s)
- Jean Luc Do Rego
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 413, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Goodson JL, Kabelik D, Schrock SE. Dynamic neuromodulation of aggression by vasotocin: influence of social context and social phenotype in territorial songbirds. Biol Lett 2009; 5:554-6. [PMID: 19493876 DOI: 10.1098/rsbl.2009.0316] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The homologous neuropeptides vasotocin (VT) and vasopressin (VP) influence agonistic behaviours across many taxa, but peptide-behaviour relationships are complex and purportedly species-specific. Putative species-specific effects in songbirds are confounded with context, however, such that territorial species have been tested only in resident-intruder paradigms and gregarious species have been tested only in a mate competition paradigm. Using the territorial violet-eared waxbill (Estrildidae: Uraeginthus granatina), we now show that a V(1a) receptor antagonist reduces male aggression during mate competition (as in gregarious finches), but does not affect resident-intruder aggression in dominant males. However, the V(1a) antagonist disinhibits aggression in less aggressive (typically subordinate) males. These results are consistent with recent data on the activation of different VT cell groups during positive and negative social interactions. Thus, VT influences aggression similarly across territorial and gregarious species, but in context- and phenotype-specific ways that probably reflect the differential activation of discrete VT cell groups.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
45
|
Maruska KP. Sex and temporal variations of the vasotocin neuronal system in the damselfish brain. Gen Comp Endocrinol 2009; 160:194-204. [PMID: 19071127 DOI: 10.1016/j.ygcen.2008.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/26/2008] [Accepted: 11/18/2008] [Indexed: 11/21/2022]
Abstract
The neuropeptide vasotocin (VT) is an important regulator of reproduction and social behaviors, and hypothesized to function as a neuromodulator of sensory and motor processing. In adult fishes, VT is primarily produced in three different cell groups (parvocellular, magnocellular, and gigantocellular) within preoptic nuclei, but little is known about sex and seasonal variations of these somata and their relationship to sensory and motor processing. I used immunocytochemistry to (1) test for sex and seasonal variations in VT-immunoreactive (-ir) somata number, size, and fiber densities in the brain of a soniferous damselfish, and (2) test the hypothesis that VT-ir axons project to and vary seasonally in sensory and motor regions of the brain. Sex differences in somata number and size were restricted to parvocellular neurons, while seasonal variations were found within parvocellular and gigantocellular, but not magnocellular neurons. Both males and females had more gigantocellular neurons during peak spawning compared to other times. VT-ir fibers were most abundant in sensory and motor processing regions of the auditory-mechanosensory torus semicircularis (TS), facial lobe, and vagal motor nucleus (VMN), while sparse innervation was found to the tectum and hindbrain auditory and mechanosensory nuclei. VT-ir fiber densities in the TS and VMN were higher during peak spawning, and correlated with gigantocellular (TS, VMN) and parvocellular (TS) somata number. These results provide neuroanatomical support for a relationship between temporal changes in specific VT somata and projections to some sensory and motor processing regions in the damselfish brain that may influence complex communicative and social behaviors.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Zoology, University of Hawai'i at Manoa, 2538 The Mall, Honolulu, HI 96822, USA.
| |
Collapse
|
46
|
Goodson JL, Rinaldi J, Kelly AM. Vasotocin neurons in the bed nucleus of the stria terminalis preferentially process social information and exhibit properties that dichotomize courting and non-courting phenotypes. Horm Behav 2009; 55:197-202. [PMID: 19013174 PMCID: PMC2652745 DOI: 10.1016/j.yhbeh.2008.10.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/09/2008] [Accepted: 10/09/2008] [Indexed: 11/17/2022]
Abstract
Neurons within the medial bed nucleus of the stria terminalis (BSTm) that produce arginine vasotocin (VT; in non-mammals) or arginine vasopressin (VP; in mammals) have been intensively studied with respect to their anatomy and neuroendocrine regulation. However, almost no studies have examined how these neurons process stimuli in the animals' immediate environment. We recently showed that in five estrildid finch species, VT-immunoreactive (-ir) neurons in the BSTm increase their Fos expression selectively in response to positively-valenced social stimuli (i.e., stimuli that should elicit affiliation). Using male zebra finches, a highly gregarious estrildid, we now extend those findings to show that VT-Fos coexpression is induced by a positive social stimulus (a female), but not by a positive non-social stimulus (a water bath in bath-deprived birds), although the female and bath stimuli induced Fos equally within a nearby control region, the medial preoptic nucleus. In concurrent experiments, we also show that the properties of BSTm VT-ir neurons strongly differentiate males that diverge in social phenotype. Males who reliably fail to court females ("non-courters") have dramatically fewer VT-ir neurons in the BSTm than do reliable courters, and the VT-ir neurons of non-courters fail to exhibit Fos induction in response to a female stimulus.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
47
|
Eaton JL, Holmqvist B, Glasgow E. Ontogeny of vasotocin-expressing cells in zebrafish: selective requirement for the transcriptional regulators orthopedia and single-minded 1 in the preoptic area. Dev Dyn 2008; 237:995-1005. [PMID: 18330923 DOI: 10.1002/dvdy.21503] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The neurohypophysial peptide arginine vasotocin, and its mammalian ortholog arginine vasopressin, influence a wide range of physiological and behavioral responses, including aspects of sexual and social behaviors, osmoregulation, stress response, metabolism, blood pressure, and circadian rhythms. Here, we demonstrate that, in zebrafish (Danio rerio), the vasotocin precursor gene arginine vasotocin-neurophysin (avt) is expressed in two domains in the developing embryo: the dorsal preoptic area and the ventral hypothalamus. In the dorsal preoptic area, avt-expressing cells are intermingled with isotocin-neurophysin (ist) -expressing cells, and these neurons project to the neurohypophysis (posterior pituitary). In the dorsal preoptic area, the transcriptional regulators orthopedia b (otpb) and simple-minded 1 (sim1) are required for expression of both avt and ist. In contrast, otp and sim1 are not required for avt expression in the ventral hypothalamus. Thus, the development of these two avt expression domains is influenced by separate gene regulatory networks.
Collapse
Affiliation(s)
- Jennifer L Eaton
- Department of Biology, The University of Akron, Akron, Ohio, USA
| | | | | |
Collapse
|
48
|
Marsh KE, Creutz LM, Hawkins MB, Godwin J. Aromatase immunoreactivity in the bluehead wrasse brain, Thalassoma bifasciatum: immunolocalization and co-regionalization with arginine vasotocin and tyrosine hydroxylase. Brain Res 2006; 1126:91-101. [PMID: 17045250 PMCID: PMC1876742 DOI: 10.1016/j.brainres.2006.09.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 09/07/2006] [Accepted: 09/07/2006] [Indexed: 12/11/2022]
Abstract
Sex steroid hormones regulate various neural functions that control vertebrate sociosexual behavior. A number of sex steroids can be synthesized de novo in the brain, including estrogens by the enzyme aromatase. Aromatase, the neuropeptides arginine vasotocin/vasopressin, and the monoamine neurotransmitter dopamine have all been implicated in the control of male sexual and aggressive behavior in a variety of vertebrates. This study examined the expression of brain aromatase in the bluehead wrasse (Thalassoma bifasciatum), a teleost fish that exhibits socially controlled behavioral and gonadal sex change. We used immunocytochemistry (ICC) to characterize distributions of aromatase-immunoreactive (ir) cells, and to examine their relationship with AVT-ir neurons and tyrosine hydroxylase-ir (TH-ir) neurons in key sensory and integrative areas of the brain of this species. Aromatase-ir appeared to be in glial cell populations, and was found in the dorsal and ventral telencephalon, the preoptic area of the hypothalamus, and the lateral recess of the third ventricle, among other brain areas. Aromatase-ir fibers are closely associated with AVT-ir neurons throughout the preoptic area, indicating the potential for functional interactions. Aromatase-ir cell bodies and fibers were also co-regionalized with TH-ir neurons, suggesting possible interaction between the dopaminergic system and neural estrogen production. The presence of aromatase in brain regions important in the regulation of sexual and aggressive behavior suggests that local estrogen synthesis could regulate sex change through effects on signaling systems that subserve reproductive behavior and function.
Collapse
Affiliation(s)
| | | | | | - John Godwin
- *Corresponding author. , Mailing address: Department of Zoology, NC State University, Campus Box 7617, 127, D.Clark Labs, Raleigh, NC 27695-7617, Telephone: (919) 513-2936, Fax: (919) 515-2698
| |
Collapse
|
49
|
Rosen GJ, De Vries GJ, Villalba C, Weldele ML, Place NJ, Coscia EM, Glickman SE, Forger NG. Distribution of vasopressin in the forebrain of spotted hyenas. J Comp Neurol 2006; 498:80-92. [PMID: 16856162 DOI: 10.1002/cne.21032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The extreme virilization of the female spotted hyena raises interesting questions with respect to sexual differentiation of the brain and behavior. Females are larger and more aggressive than adult, non-natal males and dominate them in social encounters; their external genitalia also are highly masculinized. In many vertebrates, the arginine vasopressin (VP) innervation of the forebrain, particularly that of the lateral septum, is associated with social behaviors such as aggression and dominance. Here, we used immunohistochemistry to examine the distribution of VP cells and fibers in the forebrains of adult spotted hyenas. We find the expected densely staining VP immunoreactive (VP-ir) neurons in the paraventricular and supraoptic nuclei, as well as an unusually extensive distribution of magnocelluar VP-ir neurons in accessory regions. A small number of VP-ir cell bodies are present in the suprachiasmatic nucleus and bed nucleus of the stria terminalis; however, there are extensive VP-ir fiber networks in presumed projection areas of these nuclei, for example, the subparaventricular zone and lateral septum, respectively. No significant sex differences were detected in the density of VP-ir fibers in any area examined. In the lateral septum, however, marked variability was observed. Intact females exhibited a dense fiber network, as did two of the four males examined; the two other males had almost no VP-ir septal fibers. This contrasts with findings in many other vertebrate species, in which VP innervation of the lateral septum is consistently greater in males than in females.
Collapse
Affiliation(s)
- Greta J Rosen
- Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
De Vries GJ, Panzica GC. Sexual differentiation of central vasopressin and vasotocin systems in vertebrates: different mechanisms, similar endpoints. Neuroscience 2005; 138:947-55. [PMID: 16310321 PMCID: PMC1457099 DOI: 10.1016/j.neuroscience.2005.07.050] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 07/14/2005] [Accepted: 07/25/2005] [Indexed: 10/25/2022]
Abstract
Vasopressin neurons in the bed nucleus of the stria terminalis and amygdala and vasotocin neurons in homologous areas in non-mammalian vertebrates show some of the most consistently found neural sex differences, with males having more cells and denser projections than females. These projections have been implicated in social and reproductive behaviors but also in autonomic functions. The sex differences in these projections may cause as well as prevent sex differences in these functions. This paper discusses the anatomy, steroid dependency, and sexual differentiation of these neurons. Although the final steps in sexual differentiation of vasopressin/vasotocin expression may be similar across vertebrate species, what triggers differentiation may vary dramatically. For example, during development, estrogen masculinizes vasopressin expression in rats but feminizes its counterpart in Japanese quail. Apparently, nature consistently finds a way of maintaining sex differences in vasopressin and vasotocin pathways, suggesting that the function of these differences is important enough that it was conserved during evolution.
Collapse
Affiliation(s)
- G J De Vries
- Center for Neuroendocrine Studies, Department of Psychology, University of Massachusetts, Amherst, 01003, USA.
| | | |
Collapse
|