1
|
Liu X, Zhang J, Sun W, Cao J, Ma Z. COX-2 in lung cancer: Mechanisms, development, and targeted therapies. Chronic Dis Transl Med 2024; 10:281-292. [PMID: 39429482 PMCID: PMC11483542 DOI: 10.1002/cdt3.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 10/22/2024] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related death worldwide, with non-small cell lung cancer (NSCLC) comprising 85% of all cases. COX-2, an enzyme induced significantly under stress conditions, catalyzes the conversion of free arachidonic acid into prostaglandins. It exhibits high expression in various tumors and is closely linked to LC progression. COX-2 functions as a pivotal driver in cancer pathogenesis by promoting prostaglandin E2 synthesis and facilitating tumor cell occurrence and development. Furthermore, COX-2 holds potential as a predictive marker for early-stage NSCLC, guiding targeted therapy in patients with early COX-2 overexpression. Additionally, combining COX-2 inhibitors with diverse treatment modalities enhances tumor therapeutic efficacy, minimizes adverse effects on healthy tissues, and improves overall patient survival rates posttreatment. In conclusion, combined therapy targeting COX-2 presents a promising novel strategy for NSCLC treatment, offering avenues for improving prognosis and effective tumor treatment. This review provides novel insights and ideas for developing new treatment strategies to improve the prognosis of NSCLC.
Collapse
Affiliation(s)
- Xueqi Liu
- Department of Respiratory MedicinePostgraduate Training Base of Jinzhou Medical University in the General Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Junli Zhang
- Department of Respiratory MedicineGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Wenwu Sun
- Department of Respiratory MedicineGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Jianping Cao
- Department of Respiratory MedicineGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Zhuang Ma
- Department of Respiratory MedicineGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| |
Collapse
|
2
|
Eltarahony M, El-Deeb N, Abu-Serie M, El-Shall H. Biovalorization of whey waste as economic nutriment for mycogenic production of single cell oils with promising antibiofilm and anticancer potentiality. J Biol Eng 2024; 18:62. [PMID: 39497156 PMCID: PMC11533293 DOI: 10.1186/s13036-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/05/2024] [Indexed: 11/06/2024] Open
Abstract
The production of value-added bio-compounds from rejuvenated sources and their recruitment for healthcare services are paramount objectives in the agenda of white biotechnology. Hereupon, the current study focused on economic production of single cell oils (SCOs) from oleaginous fungi Alternaria sp. (A-OS) and Drechslera sp. (D-OS) using cheese whey waste stream, followed by their evaluation as antibiofilm and anticancer agents, for the first time. As a sole substrate for growth, the whey aided in lipid accumulation by 3.22 and 4.33 g/L, which representing 45.3 and 48.2% lipid content in Drechslera sp. (D-OS) and Alternaria sp. (A-OS), respectively. Meanwhile, a higher unsaturation degree was detected in A-OS by 62.18% comparing to 53.15% of D-OS, with advantageous presence of omega-6 poly unsaturated fatty acid by 22.67% and 15.04% for A-OS and D-OD, respectively, as revealed by GC-MS and FTIR characterization analysis. Interestingly, an eminent and significant (P ≤ 0.05) antibiofilm potency was observed in a dose-dependent modality upon employing both SCOs as antibiofilm agents. Whereas, 100 µg/mL of A-OS recorded superior inhibition of P. aeruginosa, S. aureus and C. albicans biofilms development by 84.10 ± 0.445, 90.37 ± 0.065 and 94.96 ± 0.21%, respectively. Whereas, D-OS (100 µg/mL) thwarted the biofilms of P. aeruginosa, S. aureus and C. albicans by 47.41 ± 2.83, 62.63 ± 5.82 and 78.67 ± 0.23%, correspondingly. Besides, the metabolic performance of cells within biofilm matrix, protein, carbohydrate contents and hydrophobicity of examined biofilms were also curtailed in a significant correlation with biofilm biomass (r ≥ 0.9). Further, as anticancer agents, D-OS recorded higher potency against A549 and CaCo-2 cell lines with IC50 values of 2.55 and 3.425% and SI values of 10.1 and 7.5, respectively. However, A-OS recorded 8.275% and 2.88 for IC50 and SI of Caco-2 cells, respectively. Additionally, A-OS activated caspase 3 by 64.23 ± 1.18% and 53.77 ± 0.995% more than D-OS (52.09 ± 0.222% and 49.72 ± 0.952%) in A549 and Caco-2 cells, respectively. Furthermore, the enzymes, which associated with cancer invasion, metastasis, and angiogenesis (i.e., MMP2 and MMP9) were strongly inhibited by A-OS with 18.58% and 8.295%, respectively as IC50 values; while D-OS results recorded 23.61% and 13.16%, respectively, which could be ascribed to the higher ω-6/ω-3 contents of A-OS. The promising results of the current study opens up the vision to employ SCOs as anti-infective nutraceuticals and in complementary/alternative therapy and prophylactic programs as well.
Collapse
Affiliation(s)
- Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, 21934, Egypt.
| | - Nehal El-Deeb
- Pharmaceutical Bioproducts Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Marwa Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, 21934, Egypt
| | - Hadeel El-Shall
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
3
|
Wang YH, Lin CW, Huang CW. Polyunsaturated Fatty Acids as Potential Treatments for COVID-19-Induced Anosmia. Biomedicines 2024; 12:2085. [PMID: 39335598 PMCID: PMC11428228 DOI: 10.3390/biomedicines12092085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Some individuals with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) experience anosmia, or loss of smell. Although the prevalence of anosmia has decreased with the emergence of the Omicron variant, it remains a significant concern. This review examines the potential role of polyunsaturated fatty acids (PUFAs), particularly omega-3 PUFAs, in treating COVID-19-induced anosmia by focusing on the underlying mechanisms of the condition. Omega-3 PUFAs are known for their anti-inflammatory, neuroprotective, and neurotransmission-enhancing properties, which could potentially aid in olfactory recovery. However, study findings are inconsistent. For instance, a placebo-controlled randomized clinical trial found no significant effect of omega-3 PUFA supplementation on olfactory recovery in patients with COVID-19-induced anosmia. These mixed results highlight the limitations of existing research, including small sample sizes, lack of placebo controls, short follow-up periods, and combined treatments. Therefore, more rigorous, large-scale studies are urgently needed to definitively assess the therapeutic potential of omega-3 PUFAs for olfactory dysfunction. Further research is also crucial to explore the broader role of PUFAs in managing viral infections and promoting sensory recovery.
Collapse
Affiliation(s)
- Yu-Han Wang
- Department of Education, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chung-Wei Lin
- Department of Education, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chiung-Wei Huang
- Department of Physiology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
4
|
Schmidt S. An Inflammatory Question? Prenatal Air Pollution, Childhood Allergic Rhinitis, and Healthy Fats. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:74001. [PMID: 39008406 PMCID: PMC11249087 DOI: 10.1289/ehp15219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024]
Abstract
A study of more than 650 toddlers found that two polyunsaturated fatty acids were associated with fewer cases of allergic rhinitis (hay fever) in children who had been exposed prenatally to higher levels of PM2.5.
Collapse
|
5
|
Sanluca C, Spagnolo P, Mancinelli R, De Bartolo MI, Fava M, Maccarrone M, Carotti S, Gaudio E, Leuti A, Vivacqua G. Interaction between α-Synuclein and Bioactive Lipids: Neurodegeneration, Disease Biomarkers and Emerging Therapies. Metabolites 2024; 14:352. [PMID: 39057675 PMCID: PMC11278689 DOI: 10.3390/metabo14070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
The present review provides a comprehensive examination of the intricate dynamics between α-synuclein, a protein crucially involved in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, and endogenously-produced bioactive lipids, which play a pivotal role in neuroinflammation and neurodegeneration. The interaction of α-synuclein with bioactive lipids is emerging as a critical factor in the development and progression of neurodegenerative and neuroinflammatory diseases, offering new insights into disease mechanisms and novel perspectives in the identification of potential biomarkers and therapeutic targets. We delve into the molecular pathways through which α-synuclein interacts with biological membranes and bioactive lipids, influencing the aggregation of α-synuclein and triggering neuroinflammatory responses, highlighting the potential of bioactive lipids as biomarkers for early disease detection and progression monitoring. Moreover, we explore innovative therapeutic strategies aimed at modulating the interaction between α-synuclein and bioactive lipids, including the development of small molecules and nutritional interventions. Finally, the review addresses the significance of the gut-to-brain axis in mediating the effects of bioactive lipids on α-synuclein pathology and discusses the role of altered gut lipid metabolism and microbiota composition in neuroinflammation and neurodegeneration. The present review aims to underscore the potential of targeting α-synuclein-lipid interactions as a multifaceted approach for the detection and treatment of neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Chiara Sanluca
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Paolo Spagnolo
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | | | - Marina Fava
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Simone Carotti
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| | - Eugenio Gaudio
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | - Alessandro Leuti
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Giorgio Vivacqua
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| |
Collapse
|
6
|
Laro J, Xue B, Zheng J, Ness M, Perlman S, McCall LI. SARS-CoV-2 infection unevenly impacts metabolism in the coronal periphery of the lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595414. [PMID: 38952797 PMCID: PMC11216382 DOI: 10.1101/2024.05.22.595414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
COVID-19 significantly decreases amino acids, fatty acids, and most eicosanoidsSARS-CoV-2 preferentially localizes to central lung tissueMetabolic disturbance is highest in peripheral tissue, not central like viral loadSpatial metabolomics allows detection of metabolites not altered overallSARS-CoV-2, the virus responsible for COVID-19, is a highly contagious virus that can lead to hospitalization and death. COVID-19 is characterized by its involvement in the lungs, particularly the lower lobes. To improve patient outcomes and treatment options, a better understanding of how SARS-CoV-2 impacts the body, particularly the lower respiratory system, is required. In this study, we sought to understand the spatial impact of COVID-19 on the lungs of mice infected with mouse-adapted SARS2-N501Y MA30 . Overall, infection caused a decrease in fatty acids, amino acids, and most eicosanoids. When analyzed by segment, viral loads were highest in central lung tissue, while metabolic disturbance was highest in peripheral tissue. Infected peripheral lung tissue was characterized by lower levels of fatty acids and amino acids when compared to central lung tissue. This study highlights the spatial impacts of SARS-CoV-2 and helps explain why peripheral lung tissue is most damaged by COVID-19.
Collapse
|
7
|
Ziegler AK, Jensen JK, Jiménez-Gallardo L, Rissler J, Gudmundsson A, Nilsson JÅ, Isaksson C. Dietary fatty acids modulate oxidative stress response to air pollution but not to infection. Front Physiol 2024; 15:1391806. [PMID: 38784118 PMCID: PMC11112072 DOI: 10.3389/fphys.2024.1391806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Anthropogenic changes to the environment expose wildlife to many pollutants. Among these, tropospheric ozone is of global concern and a highly potent pro-oxidant. In addition, human activities include several other implications for wildlife, e.g., changed food availability and changed distribution of pathogens in cities. These co-occurring habitat changes may interact, thereby modulating the physiological responses and costs related to anthropogenic change. For instance, many food items associated with humans (e.g., food waste and feeders for wild birds) contain relatively more ω6-than ω3-polyunsaturated fatty acids (PUFAs). Metabolites derived from ω6-PUFAs can enhance inflammation and oxidative stress towards a stimulus, whereas the opposite response is linked to ω3-derived metabolites. Hence, we hypothesized that differential intake of ω6-and ω3-PUFAs modulates the oxidative stress state of birds and thereby affects the responses towards pro-oxidants. To test this, we manipulated dietary ω6:ω3 ratios and ozone levels in a full-factorial experiment using captive zebra finches (Taeniopygia guttata). Additionally, we simulated an infection, thereby also triggering the immune system's adaptive pro-oxidant release (i.e., oxidative burst), by injecting lipopolysaccharide. Under normal air conditions, the ω3-diet birds had a lower antioxidant ratio (GSH/GSSG ratio) compared to the ω6-diet birds. When exposed to ozone, however, the diet effect disappeared. Instead, ozone exposure overall reduced the total concentration of the key antioxidant glutathione (tGSH). Moreover, the birds on the ω6-rich diet had an overall higher antioxidant capacity (OXY) compared to birds fed a ω3-rich diet. Interestingly, only the immune challenge increased oxidative damage, suggesting the oxidative burst of the immune system overrides the other pro-oxidative processes, including diet. Taken together, our results show that ozone, dietary PUFAs, and infection all affect the redox-system, but in different ways, suggesting that the underlying responses are decoupled despite that they all increase pro-oxidant exposure or generation. Despite lack of apparent cumulative effect in the independent biomarkers, the combined single effects could together reduce overall cellular functioning and efficiency over time in wild birds exposed to pathogens, ozone, and anthropogenic food sources.
Collapse
Affiliation(s)
| | - Johan Kjellberg Jensen
- Department of Biology, Lund University, Lund, Sweden
- Centre for Environmental and Climate Science (CEC), Lund University, Lund, Sweden
| | - Lucía Jiménez-Gallardo
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Jenny Rissler
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
- Bioeconomy and Health, RISE Research Institutes of Sweden, Lund, Sweden
| | - Anders Gudmundsson
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | | | | |
Collapse
|
8
|
Hu H, Li A, Shi C, Chen L, Zhao Z, Yin X, Zhang Q, Huang Y, Pan H. Mulberry branch fiber improved lipid metabolism and egg yolk fatty acid composition of laying hens via the enterohepatic axis. MICROBIOME 2024; 12:73. [PMID: 38605412 PMCID: PMC11010431 DOI: 10.1186/s40168-024-01788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The utilization of mulberry branch fiber (MF), the largest by-product of the sericulture industry, is an important issue. Supplementation with MF as a dietary fiber for poultry may serve as a useful application. However, little is known about the effects of MF on liver lipid metabolism and egg yolk fatty acid composition of laying hens and their underlying mechanisms. In this study, we performed a multi-omics investigation to explore the variations in liver lipid metabolism, egg yolk fatty acid composition, gut microbiota, and the associations among them induced by dietary MF in laying hens. RESULTS Dietary MF had no harmful effects on the laying performance or egg quality in laying hens. The enzyme activities associated with lipid metabolism in the liver were altered by the addition of 5% MF, resulting in reduced liver fat accumulation. Furthermore, dietary 5% MF induced the variation in the fatty acid profiles of egg yolk, and increased the polyunsaturated fatty acid (PUFA) content. We observed a significant reduction in the diversity of both gut bacteria and changes in their compositions after the addition of MF. Dietary MF significantly increased the abundance of genes involved in fatty acid biodegradation, and short-chain fatty acids biosynthesis in the gut microbiota of laying hens. The significant correlations were observed between the liver lipid metabolism enzyme activities of hepatic lipase, lipoprotein lipase, and total esterase with gut microbiota, including negative correlations with gut microbiota diversity, and multiple correlations with gut bacteria and viruses. Moreover, various correlations between the contents of PUFAs and monounsaturated fatty acids in egg yolk with the gut microbiota were obtained. Based on partial-least-squares path modeling integrated with the multi-omics datasets, we deduced the direct effects of liver enzyme activities and gut bacterial compositions on liver fat content and the roles of liver enzyme activities and gut bacterial diversity on egg yolk fatty acid composition. CONCLUSIONS The results indicate that dietary MF is beneficial to laying hens as it reduces the liver fat and improves egg yolk fatty acid composition through the enterohepatic axis. Video Abstract.
Collapse
Affiliation(s)
- Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Anjian Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Changyou Shi
- University of Maryl and School of Medicine, Baltimore, MD, 21228, USA
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100193, China
| | - Zelong Zhao
- Shanghai BIOZERON Biotechnology Co., Ltd, Shanghai, 201800, China
| | - Xiaojian Yin
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qiang Zhang
- WOD Poultry Research Institute, Beijing, 100193, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
9
|
Yang Y, Wang X, Yang M, Wei S, Li Y. Integrated Analysis of Per- and Polyfluoroalkyl Substance Exposure and Metabolic Profiling of Elderly Residents Living near Industrial Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4104-4114. [PMID: 38373080 DOI: 10.1021/acs.est.3c09014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are widely used in industrial production, causing potential health risks to the residents living around chemical industrial plants; however, the lack of data on population exposure and adverse effects impedes our understanding and ability to prevent risks. In this study, we performed screening and association analysis on exogenous PFAS pollutants and endogenous small-molecule metabolites in the serum of elderly residents living near industrial plants. Exposure levels of 11 legacy and novel PFASs were determined. PFOA and PFOS were major contributors, and PFNA, PFHxS, and 6:2 Cl-PFESA also showed high detection frequencies. Association analysis among PFASs and 287 metabolites identified via non-target screening was performed with adjustments of covariates and false discovery rate. Strongly associated metabolites were predominantly lipid and lipid-like molecules. Steroid hormone biosynthesis, primary bile acid biosynthesis, and fatty-acid-related pathways, including biosynthesis of unsaturated fatty acids, linoleic acid metabolism, α-linolenic acid metabolism, and fatty acid biosynthesis, were enriched as the metabolic pathways associated with mixed exposure to multiple PFASs, providing metabolic explanation and evidence for the potential mediating role of adverse health effects as a result of PFAS exposure. Our study achieved a comprehensive screening of PFAS exposure and associated metabolic profiling, demonstrating the promising application for integrated analysis of exposome and metabolome.
Collapse
Affiliation(s)
- Yajing Yang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Minmin Yang
- Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, People's Republic of China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yuqian Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
10
|
Iizasa S, Nagao K, Tsuge K, Nagano Y, Yanagita T. Identification of genes regulated by lipids from seaweed Susabinori (Pyropia yezoensis) involved in the improvement of hepatic steatosis: Insights from RNA-Seq analysis in obese db/db mice. PLoS One 2023; 18:e0295591. [PMID: 38085726 PMCID: PMC10715663 DOI: 10.1371/journal.pone.0295591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Hepatic steatosis is an early stage in the progression of non-alcoholic fatty liver disease (NAFLD) and can lead to the development of non-alcoholic steatohepatitis (NASH), a major cause of liver-related morbidity and mortality. Identification of dietary components that can alleviate hepatic steatosis is crucial for developing effective therapeutic strategies for NAFLD. Recently, we demonstrated the impact of lipids extracted from the marine red alga Susabinori (Pyropia yezoensis) in a murine model of type 2-diabete (db/db). We found that Susabinori lipids (SNL), abundant in eicosapentaenoic acid (EPA)-containing polar lipids, protected against obesity-induced hepatic steatosis in db/db mice. To understand the specific genes or biological pathways underlying the effects of SNL, we conducted RNA-Seq analysis of the hepatic transcriptome. By performing comparative analysis of differentially expressed genes between normal mice and db/db mice consuming a control diet, as well as SNL-fed db/db mice, we identified the 15 SNL-dependent up-regulated genes that were down-regulated in db/db mice but up-regulated by SNL feeding. Gene ontology and pathway analysis on these 15 genes demonstrated a significant association with the metabolisms of arachidonic acid (AA) and linoleic acid (LA). Furthermore, we observed alterations in the expression levels of monoacylglycerol lipase (Magl) and fatty acid-binding protein 4 (Fabp4) in the SNL-fed db/db mice, both of which are implicated in AA and LA metabolism. Additionally, the livers of SNL-fed db/db mice exhibited reduced levels of AA and LA, but a high accumulation of EPA. In conclusion, the SNL diet might affect the metabolisms of AA and LA, which contribute to the improvement of hepatic steatosis. Our findings provide insights into the molecular mechanisms underlying the beneficial effects of SNL.
Collapse
Affiliation(s)
- Sayaka Iizasa
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Koji Nagao
- Department of Applied Biochemistry and Food Science, Saga University, Saga, Japan
| | | | - Yukio Nagano
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Teruyoshi Yanagita
- Department of Applied Biochemistry and Food Science, Saga University, Saga, Japan
- Department of Health and Nutrition Science, Nishikyushu University, Saga, Japan
- Saga Foods & Cosmetics Laboratory, Division of Research and Development Promotion, Saga Prefectural Regional Industry Support Center, Saga, Japan
| |
Collapse
|
11
|
Krupnik N, Israel A, Meiri D. Seasonal variation in the metabolome expression of Jania rubens (Rhodophyta) reveals eicosapentaenoic acid as a potential anticancer metabolite. Sci Rep 2023; 13:15559. [PMID: 37730882 PMCID: PMC10511708 DOI: 10.1038/s41598-023-42497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Seaweeds of the intertidal zone are subjected to diverse stresses due to environmental changes in radiation, salinity, water quality, herbivore communities, etc. Thus, marine seaweeds developed various unique compounds to deal with environmental fluctuations. Therefore, they are a good source of unique novel compounds. Here, we explored the seasonal metabolomic changes in Jania rubens and found notable changes between extracts of different seasons in the metabolomic profile and in their anticancer activity. The most bioactive extract was from samples collected during the Fall season, which demonstrated an LC50 of 178.39 (± 10.02 SD) µg/ml toward Non Small Cell Lung Cancer (NSCLC) followed by the Winter season extract. The Fall and Winter extracts also displayed more resemblance in their metabolic profile relative to Spring and Summer extracts. The Fall extract was fractionated and tested for cytotoxic activity toward an array of cancer cell lines. Eventually, using a bio-guided assay and multiple fractionation steps, we isolated and identified the essential fatty acid, eicosapentaenoic acid, as the active anticancer agent, showing an LC50 of 5.23 (± 0.07 SD) µg/ml toward NSCLC. Our results emphasize the potential use of J. rubens as a source of beneficial fatty acids and stress the importance of environmental effects on metabolic constitutes.
Collapse
Affiliation(s)
- Nimrod Krupnik
- Faculty of Biology, Technion, 32000, Haifa, Israel
- Israel Oceanographic & Limnological Research, The National Institute of Oceanography, Tel Shikmona 8030, 31080, Haifa, Israel
| | - Alvaro Israel
- Israel Oceanographic & Limnological Research, The National Institute of Oceanography, Tel Shikmona 8030, 31080, Haifa, Israel
| | - David Meiri
- Faculty of Biology, Technion, 32000, Haifa, Israel.
| |
Collapse
|
12
|
Zhu H, Kurokawa M, Chen M, Wang Q, Inoue M, Takao T. Characteristic fragmentation of polyunsaturated fatty acids with allylic vicinal diols in positive-ion LC/ESI-MS/MS. J Lipid Res 2023; 64:100384. [PMID: 37172692 PMCID: PMC10276150 DOI: 10.1016/j.jlr.2023.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
A characteristic fragmentation was observed for PUFAs that contain allylic vicinal diol groups (resolvin D1, D2, D4, E3, lipoxin A4, B4, and maresin 2), which were derivatized with N,N-dimethylethylenediamine (DMED), in positive-ion ESI-MS/MS. The findings indicate that when these compounds contain an allylic hydroxyl group that is located distal to the terminal DMED moiety in the case of resolvin D1, D4, and lipoxin A4, an aldehyde (-CH=O) is predominately formed, which arises from the breakdown in between vicinal diols, whereas, in the case of an allylic hydroxyl group that is located proximal to the DMED moiety, as in resolvin D2, E3, lipoxin B4, and maresin 2, an allylic carbene (-CH=CH-CH:) is formed. These specific fragmentations could be used as diagnostic ions for characterizing the above seven PUFAs. As a result, it was possible to detect resolvin D1, D2, E3, lipoxin A4, and B4 in sera (20 μl) obtained from healthy volunteers by multiple-reaction monitoring using LC/ESI-MS/MS.
Collapse
Affiliation(s)
- Huibin Zhu
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Mone Kurokawa
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Mengyao Chen
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Qiuyi Wang
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
13
|
Pinar-Martí A, Gignac F, Fernández-Barrés S, Romaguera D, Sala-Vila A, Lázaro I, Ranzani OT, Persavento C, Delgado A, Carol A, Torrent J, Gonzalez J, Roso E, Barrera-Gómez J, López-Vicente M, Boucher O, Nieuwenhuijsen M, Turner MC, Burgaleta M, Canals J, Arija V, Basagaña X, Ros E, Salas-Salvadó J, Sunyer J, Julvez J. Effect of walnut consumption on neuropsychological development in healthy adolescents: a multi-school randomised controlled trial. EClinicalMedicine 2023; 59:101954. [PMID: 37096186 PMCID: PMC10121389 DOI: 10.1016/j.eclinm.2023.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/26/2023] Open
Abstract
Background Omega-3 fatty acids are critical for neuropsychological functioning. Adolescence is increasingly believed to entail brain vulnerability to dietary intake. The potential benefit on adolescent neurodevelopment of consuming walnuts, a source of omega-3 alpha-linolenic acid (ALA), remains unclear. Methods We conducted a 6-month multi-school-based randomised controlled nutrition intervention trial to assess whether walnut consumption has beneficial effects on the neuropsychological and behavioural development of adolescents. The study took place between 04/01/2016 and 06/30/2017 in twelve different high schools in Barcelona, Spain (ClinicalTrials.gov Identifier: NCT02590848). A total of 771 healthy teenagers aged 11-16 years were randomised into two equal groups (intervention or control). The intervention group received 30 g/day of raw walnut kernels to be incorporated into their diet for 6 months. Multiple primary endpoints concerning neuropsychological (working memory, attention, fluid intelligence, and executive function) and behavioural (socio-emotional and attention deficit hyperactivity disorder [ADHD] symptoms) development were assessed at baseline and after intervention. Red blood cell (RBC) ALA status was determined at baseline and 6 months as a measure of compliance. Main analyses were based on intention-to-treat using a linear mixed-effects model. A per-protocol effect of the intervention was analysed using inverse-probability weighting to account for post-randomisation prognostic factors (including adherence) using generalised estimating equations. Findings In intention-to-treat analyses, at 6 months there were no statistically significant changes between the intervention and control groups for all primary endpoints. RBC ALA (%) significantly increased only in the intervention group, coefficient = 0.04 (95% Confidence Interval (CI) = 0.03, 0.06; p < 0.0001). The per-protocol (adherence-adjusted) effect on improvement in attention score (hit reaction time variability) was -11.26 ms (95% CI = -19.92, -2.60; p = 0.011) for the intervention group as compared to the control group, improvement in fluid intelligence score was 1.78 (95% CI = 0.90, 2.67; p < 0.0001), and reduction of ADHD symptom score was -2.18 (95% CI = -3.70, -0.67; p = 0.0050). Interpretation Our study suggested that being prescribed eating walnuts for 6 months did not improve the neuropsychological function of healthy adolescents. However, improved sustained attention, fluid intelligence, and ADHD symptoms were observed in participants who better complied with the walnut intervention. This study provides a foundation for further clinical and epidemiological research on the effect of walnuts and ALA on neurodevelopment in adolescents. Funding This study was supported by Instituto de Salud Carlos III through the projects 'CP14/00108, PI16/00261, PI21/00266' (co-funded by European Union Regional Development Fund 'A way to make Europe'). The California Walnut Commission (CWC) has given support by supplying the walnuts for free for the Walnuts Smart Snack Dietary Intervention Trial.
Collapse
Affiliation(s)
- Ariadna Pinar-Martí
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Clinical and Epidemiological Neuroscience Group (NeuroÈpia), 43204 Reus (Tarragona), Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
- ISGlobal, Barcelona, Spain
| | - Florence Gignac
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
- ISGlobal, Barcelona, Spain
| | - Silvia Fernández-Barrés
- ISGlobal, Barcelona, Spain
- Agència de Salut Pública de Barcelona, Pl. Lesseps 1, 08023, Barcelona, Spain
| | - Dora Romaguera
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Clinical and Epidemiological Neuroscience Group (NeuroÈpia), 43204 Reus (Tarragona), Catalonia, Spain
- ISGlobal, Barcelona, Spain
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma de Mallorca, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Aleix Sala-Vila
- The Fatty Acid Research Institute, Sioux Falls, SD, USA
- Cardiovascular Risk and Nutrition, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Catalonia, Spain
| | - Iolanda Lázaro
- Cardiovascular Risk and Nutrition, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | - Olivier Boucher
- Centre de Recherche du Centre Hospitalier de l'Université de Montreal (CHUM), Montreal, QC, Canada
| | | | - Michelle C. Turner
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
- ISGlobal, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Josefina Canals
- Nutrition and Public Health Unit, Research Group on Nutrition and Mental Health (NUTRISAM), Faculty of Medicine and Health Science, Universitat Rovira I Virgili, 43201 Reus, Spain
| | - Victoria Arija
- Nutrition and Public Health Unit, Research Group on Nutrition and Mental Health (NUTRISAM), Faculty of Medicine and Health Science, Universitat Rovira I Virgili, 43201 Reus, Spain
| | - Xavier Basagaña
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
- ISGlobal, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Emilio Ros
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Jordi Salas-Salvadó
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, 43204 Reus, Catalonia, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain
| | - Jordi Sunyer
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
- ISGlobal, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jordi Julvez
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Clinical and Epidemiological Neuroscience Group (NeuroÈpia), 43204 Reus (Tarragona), Catalonia, Spain
- ISGlobal, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Corresponding author. Institut d'Investigació Sanitària Pere Virgili (IISPV), NeuroÈpia Group, Hospital Universitari Sant Joan de Reus, 43204 Reus (Tarragona), Catalonia, Spain.
| |
Collapse
|
14
|
Zhang P, Pan Y, Wu S, He Y, Wang J, Chen L, Zhang S, Zhang H, Zhao Y, Niu L, Gan M, Wang Y, Shen L, Zhu L. n-3 PUFA Promotes Ferroptosis in PCOS GCs by Inhibiting YAP1 through Activation of the Hippo Pathway. Nutrients 2023; 15:nu15081927. [PMID: 37111146 PMCID: PMC10145554 DOI: 10.3390/nu15081927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder characterized by hyperandrogenemia with multiple suspended sinus follicles, thickened cortical tissue, and excessive proliferation of ovarian granulosa cells that severely affects the fertility and quality of life of women. The addition of n-3 PUFA to the diet may slightly reduce body weight and greatly alleviate disturbed blood hormone levels in PCOS mice. We treated KGN as a cell model for n-3 PUFA addition and showed that n-3 PUFA inhibited the proliferation of GCs and promoted ferroptosis in ovarian granulosa cells. We used CCK-8, fluorescence quantitative transmission electron microscopy experiments and ferroptosis marker gene detection and other methods. Furthermore, n-3 PUFA was found to promote YAP1 exocytosis by activating Hippo and weakening the cross-talk between YAP1 and Nrf2 by activating the Hippo signaling pathway. In this study, we found that n-3 PUFA inhibited the over proliferation of granulosa cells in ovarian follicles by activating Hippo, promoting YAP1 exocytosis, weakening the cross-talk between YAP1 and Nrf2, and ultimately activating the ferroptosis sensitivity of ovarian granulosa cells. We demonstrate that n-3 PUFA can alleviate the hormonal and estrous cycle disorder with PCOS by inhibiting the YAP1-Nrf2 crosstalk that suppresses over proliferating ovarian granulosa cells and promotes iron death in GCs. These findings reveal the molecular mechanisms by which n-3 PUFA attenuates PCOS and identify YAP1-Nrf2 as a potential therapeutic target for regulation granulosa cells in PCOS.
Collapse
Affiliation(s)
- Peiwen Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuheng Pan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Wu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxu He
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Lei Chen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Zhang
- Sichaun Center for Animal Disease Control, Chengdu 610041, China
| | - Ye Zhao
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
15
|
Lian Z, Han J, Cao Y, Yao W, Niu X, Xu M, Xu J, Zhu Q. Epicatechin Inhibited Lipid Oxidation and Protein Lipoxidation in a Fish Oil-Fortified Dairy Mimicking System. Foods 2023; 12:foods12071559. [PMID: 37048380 PMCID: PMC10094342 DOI: 10.3390/foods12071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
In this study, a typical tea polyphenol epicatechin (EC) was investigated for its impact on the oxidative stability of whey protein isolate (WPI) in a fish oil-fortified emulsion. The oil-in-water emulsion system consisted of fish oil (1%, w/w), WPI (6 mg/mL), and EC (0.1, 1, and 2 mM), and the oxidation reaction was catalyzed by Fenton's reagent at 25 °C for 24 h. The results showed EC exhibited a dose-dependent activity in the reduction of lipid oxidation (TBARS) and protein carbonylation. A Western blot analysis demonstrated that protein lipoxidation was inhibited by EC via interrupting the covalent binding of lipid secondary oxidation products, MDA, onto proteins. In addition, protein lipoxidation induced a loss of tryptophan fluorescence, and protein hydrolysis was partially recovered by EC. The findings of this study provide an in-depth understanding of the performance of phenolic antioxidants in relieving lipid oxidation and subsequent protein lipoxidation in oil-containing dairy products.
Collapse
Affiliation(s)
- Zhenghao Lian
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiahui Han
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Cao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenhua Yao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoying Niu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingfeng Xu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Xu
- Jiaxing Key Laboratory of Preparation and Application of Advanced Materials for Energy Conservation and Emission Reduction, School of Advanced Materials & Engineering, Jiaxing Nanhu University, 572 South Yuexiu Road, Jiaxing 314001, China
| | - Qin Zhu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
16
|
Luo W, Xu Y, Gu X, Zhang J, Wang J, Geng F. Divergence of Liver Lipidomes in Tibetan and Yorkshire Pigs Living at Different Altitudes. Molecules 2023; 28:molecules28072991. [PMID: 37049754 PMCID: PMC10095695 DOI: 10.3390/molecules28072991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The Tibetan pig is a characteristic breed of the Qinghai-Tibet Plateau with distinct physiological and meat quality attributes. The liver lipid profile can offer an important perspective to explore the uniqueness of Tibetan pigs. A quantitative comparison of liver lipidomes revealed significant differences in the lipid profiles between Tibetan and Yorkshire pigs raised at different altitudes. The abundance of lipids in the livers of pigs raised at a high altitude was higher than that of pigs raised at a lower altitude, whereas the abundance of lipids in the livers of Yorkshire pigs was higher than that of Tibetan pigs raised at the same altitude. Of the 1101 lipids identified, 323 and 193 differentially abundant lipids (DALs) were identified in the pairwise comparisons of Tibetan and Yorkshire pigs raised at different altitudes, respectively. The DALs of Tibetan pigs consisted mainly of 161 triglycerides, along with several acylcarnitines, represented by carnitine C2:0, and significant changes in the abundance of some phospholipids. The DALs of Yorkshire pigs were more complex, with significant increases in the abundance of triglycerides, cholesteryl esters, and free fatty acids, and decreases in the abundance of some phospholipids. This research provides strong theoretical and data support for the high-quality development of the highland livestock industry.
Collapse
Affiliation(s)
- Wei Luo
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yisha Xu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuedong Gu
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jinqiu Wang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence:
| |
Collapse
|
17
|
Chen Z, Ma Y, Gou L, Zhang S, Wang Z. Construction of caffeic acid modified porous starch as the dual-functional microcapsule for encapsulation and antioxidant property. Int J Biol Macromol 2023; 228:358-365. [PMID: 36581026 DOI: 10.1016/j.ijbiomac.2022.12.189] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/13/2022] [Accepted: 12/17/2022] [Indexed: 12/27/2022]
Abstract
A dual-functional food-grade microcapsule, which was constructed by caffeic acid and porous starch was obtained. Caffeic acid modified porous starch (CA-PS) was accordingly synthesized successfully by esterification. Carbonyl signal observed by 13C solid state NMR (170 ppm) and FT-IR (1745 cm-1), indicating the formation of ester bond. BET of CA-PS was determined as 44.8 m2/g by N2 adsorption analysis. The results proved CA-PS has both excellent adsorption and antioxidant activity. Furthermore, it has been applied for encapsulation of linoleic acid (LA) to prevent its degradation effectively, because LA adsorbed in porous adsorbents without antioxidant activity may still suffer serious oxidation. Besides, 1H NMR Integral of LA did not show a significant decay. This observation demonstrated CA-PS indeed has the better performance on protection of LA than PS. We expect this work will boost research on designing and employing multi-functional starchy materials for further applications.
Collapse
Affiliation(s)
- Zidi Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| | - Lina Gou
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| | - Zhipeng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
18
|
Jensen JK, Ziegler AK, Isaxon C, Jiménez-Gallardo L, Garcia Domínguez S, Nilsson JÅ, Rissler J, Isaksson C. Quantifying the influence of urban biotic and abiotic environmental factors on great tit nestling physiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160225. [PMID: 36400300 DOI: 10.1016/j.scitotenv.2022.160225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/28/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
There is a long history of avian studies investigating the impacts of urbanization. While differences in several life-history traits have been documented, either between urban and rural populations or across generalized urbanization gradients, a detailed understanding of which specific environmental variables cause these phenotypic differences is still lacking. Here, we quantified several local environmental variables coupled to urbanization (air pollution, tree composition, ambient temperature, and artificial light at night [ALAN]) within territories of breeding great tits (Parus major). We linked the environmental variables to physiological measures of the nestlings (circulating fatty acid composition [FA], antioxidant capacity and an oxidative damage marker [malondialdehyde; MDA]), to garner a mechanistic understanding of the impact of urbanization. We found that the antioxidant capacity of nestlings decreased with higher numbers of oak trees and levels of PM2.5 (airborne particulate matter with a diameter < 2.5 μm). Furthermore, the ratio of ω6:ω3 polyunsaturated FAs, important for immune function, was positively correlated with PM2.5 concentration, while being negatively associated with ambient temperature and number of non-native trees in the territory. Body mass and wing length both increased with the number of local oak trees. We also show, through a principal component analysis, that while the environmental variables fall into an urbanization gradient, this gradient is insufficient to explain the observed physiological responses. Therefore, accounting for individual environmental variables in parallel, and thus allowing for interactions between these, is crucial to fully understand the urban ecosystem.
Collapse
Affiliation(s)
- Johan Kjellberg Jensen
- Department of Biology, Lund University, Lund, Sweden; Centre for Environmental and Climate Science (CEC), Lund University, Lund, Sweden.
| | | | - Christina Isaxon
- NanoLund, Lund University, Lund, Sweden; Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Lucía Jiménez-Gallardo
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | | | | | - Jenny Rissler
- NanoLund, Lund University, Lund, Sweden; Ergonomics and Aerosol Technology, Lund University, Lund, Sweden; Bioeconomy and Health, RISE Research Institutes of Sweden, Lund, Sweden
| | | |
Collapse
|
19
|
Qiu J, Peng G, Tang Y, Li S, Liu Z, Zheng J, Wang Y, Liu H, Wei L, Su Y, Lin Y, Dai W, Zhang Z, Chen X, Ding L, Guo W, Zhu X, Xu P, Mo M. Lipid profiles in the cerebrospinal fluid of rats with 6-hydroxydopamine-induced lesions as a model of Parkinson's disease. Front Aging Neurosci 2023; 14:1077738. [PMID: 36742201 PMCID: PMC9895836 DOI: 10.3389/fnagi.2022.1077738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative disease with characteristic pathological abnormalities, including the loss of dopaminergic (DA) neurons, a dopamine-depleted striatum, and microglial activation. Lipid accumulation exhibits a close relationship with these pathologies in PD. Methods Here, 6-hydroxydopamine (6-OHDA) was used to construct a rat model of PD, and the lipid profile in cerebrospinal fluid (CSF) obtained from model rats was analyzed using lipidomic approaches. Results Establishment of this PD model was confirmed by apomorphine-induced rotation behaviors, loss of DA neurons, depletion of dopamine in the striatum, and microglial activation after 6-OHDA-induced lesion generation. Unsupervised and supervised methods were employed for lipid analysis. A total of 172 lipid species were identified in CSF and subsequently classified into 18 lipid families. Lipid families, including eicosanoids, triglyceride (TG), cholesterol ester (CE), and free fatty acid (FFA), and 11 lipid species exhibited significantly altered profiles 2 weeks after 6-OHDA administration, and significant changes in eicosanoids, TG, CE, CAR, and three lipid species were noted 5 weeks after 6-OHDA administration. During the period of 6-OHDA-induced lesion formation, the lipid families and species showed concentration fluctuations related to the recovery of behavior and nigrostriatal abnormalities. Correlation analysis showed that the levels of eicosanoids, CE, TG families, and TG (16:0_20:0_18:1) exhibited positive relationships with apomorphine-induced rotation behaviors and negative relationships with tyrosine hydroxylase (TH) expression in the midbrain. Conclusion These results revealed that non-progressive nigrostriatal degeneration induced by 6-OHDA promotes the expression of an impairment-related lipidomic signature in CSF, and the level of eicosanoids, CE, TG families, and TG (16:0_20:0_18:1) in CSF may reveal pathological changes in the midbrain after 6-OHDA insult.
Collapse
Affiliation(s)
- Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoyou Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuting Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyin Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zengfu Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiayun Zheng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunxin Wang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanqun Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijian Wei
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yilin Su
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Dai
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiling Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoqin Zhu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Internal Medicine, Huilai People’s Hospital, Jieyang, China
| |
Collapse
|
20
|
Zeng L, Lv H, Wang X, Xue R, Zhou C, Liu X, Yu H. Causal effects of fatty acids on depression: Mendelian randomization study. Front Nutr 2022; 9:1010476. [PMID: 36562041 PMCID: PMC9763462 DOI: 10.3389/fnut.2022.1010476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives Fatty acids (FA) are widely believed to play a role in the pathophysiology of depression. However, the causal relationships between FA and depression remain elusive and warrant further research. We aimed to investigate the potential causal relationship between FA [saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA)] and the risk of depression using Mendelian randomization (MR) analysis. Methods We conducted a two-sample MR analysis using large-scale European-based genome-wide association studies (GWASs) summary data related to depression (n = 500,199 individuals) and FA [saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA)] levels. MR analysis was performed using the Wald ratio and inverse variance-weighted (IVW) methods, and sensitivity analysis was conducted by the simple mode, weighted mode, weighted median method, and MR-Egger method. Results We found the causal effects for the levels of oleic acid (OA; OR = 1.07, p = 5.72 × 10-4), adrenic acid (OR = 0.74, p = 1.01 × 10-3), α-linolenic acid (ALA; OR = 2.52, p = 1.01 × 10-3), eicosapentaenoic acid (EPA; OR = 0.84, p = 3.11 × 10-3) on depression risk, after Bonferroni correction. The sensitivity analyses indicated similar trends. No causal effect between the levels of SFA and depression risk was observed. Conclusion Our study suggests that adrenic acid and EPA are protective against the risk of depression, while OA and ALA are potential risk factors for depression. Nonetheless, the underlying mechanisms that mediate the association between these FAs and depression risk should be investigated in further experiments.
Collapse
Affiliation(s)
- Lingsi Zeng
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China
| | - Honggang Lv
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China
| | - Xubo Wang
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong, China
| | - Ranran Xue
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong, China
| | - Cong Zhou
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China
| | - Xia Liu
- Department of Sleep Medicine, Shandong Daizhuang Hospital, Jining, Shandong, China,Xia Liu,
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China,*Correspondence: Hao Yu,
| |
Collapse
|
21
|
Duarte B, Goessling JW, Fonseca VF, Jacobsen SE, Matos AR. Quinoa variety identification based on fatty acid composition and multivariate chemometrics approaches. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
22
|
Bang G, Park JH, Park C, Kim KJ, Kim JK, Lee SY, Kim JY, Park YH. High-resolution metabolomics-based biomarker discovery using exhaled breath condensate from patients with lung cancer. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractEarly diagnosis and treatment are critical for improving the survival of patients with lung cancer, which is the leading cause of cancer-related deaths worldwide. In this study, we investigated whether the metabolomics analysis of exhaled breath condensate (EBC) from patients with lung cancer can provide biomarkers that can be used for noninvasive screening for lung cancer diagnosis. EBC samples obtained from patients with lung cancer (n = 20) and healthy individuals (n = 5) were subjected to high-resolution metabolomics (HRM) using liquid chromatography–mass spectrometry (LC–MS). Univariate analysis, with a false discovery rate (FDR), q = 0.05, and hierarchical clustering analysis were performed to discover significantly different metabolites between the healthy controls and patients with lung cancer. This was followed by the identification of the metabolites using the METLIN database. Pathway analysis based on the identified metabolites revealed that arachidonic acid (AA) metabolism was the most significantly affected pathway. Finally, 5-hydroxyicosatetraenoic acid (HETE) (m/z 343.2233, [M + Na]+), a metabolite involved in AA metabolism, was found to be significantly higher in patients with lung cancer than in healthy counterparts. Our finding suggested that the HRM of EBC samples is a useful approach for identifying biomarkers for noninvasive screening for lung cancer diagnosis.
Collapse
|
23
|
Muscogiuri G, Barrea L, Cantone MC, Guarnotta V, Mazzilli R, Verde L, Vetrani C, Colao A, Faggiano A. Neuroendocrine Tumors: A Comprehensive Review on Nutritional Approaches. Cancers (Basel) 2022; 14:cancers14184402. [PMID: 36139562 PMCID: PMC9496842 DOI: 10.3390/cancers14184402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroendocrine neoplasms are a heterogeneous group of neoplasms with increasing incidence, high prevalence, and survival worldwide. About 90% of cases are well differentiated forms, the so-called neuroendocrine tumors (NETs), with slow proliferation rates and prolonged survival but frequent development of liver metastases and endocrine syndromes. Both the tumor itself and systemic therapy may have an impact on patient nutrition. Malnutrition has a negative impact on outcome in patients with NETs, as well as obesity. In addition, obesity and metabolic syndrome have been shown to be risk factors for both the development and prognosis of NET. Therefore, dietary assessment based on body composition and lifestyle modifications should be an integral part of the treatment of NET patients. Nutrition plans, properly formulated by a dietician, are an integral part of the multidisciplinary treatment team for patients with NETs because they allow an improvement in quality of life, providing a tailored approach based on nutritional needs and nutritional manageable signs and/or symptoms related to pharmacological treatment. The aim of this review is to condense the latest evidence on the role of the most used dietary models, the Mediterranean diet, the ketogenic diet, and intermittent fasting, in the context of NETs, while considering the clinical and molecular mechanisms by which these dietary models act.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia ed Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Cattedra Unesco “Educazione alla Salute e allo Sviluppo Sostenibile”, Università Federico II, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-0817463779; Fax: +39-081-746-3688
| | - Luigi Barrea
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Direzionale, Isola F2, 80143 Naples, Italy
| | - Maria Celeste Cantone
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20157 Milan, Italy
| | - Valentina Guarnotta
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, 90127 Palermo, Italy
| | - Rossella Mazzilli
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00185 Rome, Italy
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
| | - Claudia Vetrani
- Unità di Endocrinologia, Diabetologia ed Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Cattedra Unesco “Educazione alla Salute e allo Sviluppo Sostenibile”, Università Federico II, 80131 Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia ed Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Cattedra Unesco “Educazione alla Salute e allo Sviluppo Sostenibile”, Università Federico II, 80131 Naples, Italy
| | - Antongiulio Faggiano
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
24
|
Transcriptome Analysis of the Adipose Tissue of Luchuan and Duroc Pigs. Animals (Basel) 2022; 12:ani12172258. [PMID: 36077979 PMCID: PMC9454924 DOI: 10.3390/ani12172258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Fat is a vital body tissue of pigs and a crucial index that affects the production efficiency of pigs. In this study, Duroc pigs and Luchuan pigs were used as animal materials, transcriptome sequencing was used to compare the back adipose tissue of the two breeds, to explore the key reason of difference in fat deposition. The result provided new ideas and reference for further study of fat development. Abstract Fat deposition is a crucial element in pig production that affects production efficiency, quality and consumer choices. In this study, Duroc pigs, a Western, famous lean pig breed, and Luchuan pigs, a Chinese, native obese pig breed, were used as animal materials. Transcriptome sequencing was used to compare the back adipose tissue of Duroc and Luchuan pigs, to explore the key genes regulating fat deposition. The results showed that 418 genes were highly expressed in the Duroc pig, and 441 genes were highly expressed in the Luchuan pig. In addition, the function enrichment analysis disclosed that the DEGs had been primarily enriched in lipid metabolism, storage and transport pathways. Furthermore, significant differences in the metabolic pathways of alpha-linolenic acid, linoleic acid and arachidonic acid explained the differences in the flavor of the two kinds of pork. Finally, the gene set enrichment analysis (GSEA) exposed that the difference in fat deposition between Duroc and Luchuan pigs may be due to the differential regulation of the metabolism pathway of fatty acid. Therefore, this study described the differential expression transcriptional map of adipose tissue of Duroc pig and Luchuan pig, identified the functional genes regulating pig fat deposition, and provided new hypotheses and references for further study of fat development.
Collapse
|
25
|
Fatty Acid Composition of the Seeds of Vicia faba var. major Genotypes from Turkey. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Poultry Meat and Eggs as an Alternative Source of n-3 Long-Chain Polyunsaturated Fatty Acids for Human Nutrition. Nutrients 2022; 14:nu14091969. [PMID: 35565936 PMCID: PMC9099610 DOI: 10.3390/nu14091969] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/10/2023] Open
Abstract
The beneficial effects of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) on human health are widely known. Humans are rather inefficient in synthesizing n-3 LC-PUFA; thus, these compounds should be supplemented in the diet. However, most Western human diets have unbalanced n-6/n-3 ratios resulting from eating habits and the fact that fish sources (rich in n-3 LC-PUFA) are not sufficient (worldwide deficit ~347,956 t/y) to meet the world requirements. In this context, it is necessary to find new and sustainable sources of n-3 LC-PUFA. Poultry products can provide humans n-3 LC-PUFA due to physiological characteristics and the wide consumption of meat and eggs. The present work aims to provide a general overview of the main strategies that should be adopted during rearing and postproduction to enrich and preserve n-3 LC-PUFA in poultry products. The strategies include dietary supplementation of α-Linolenic acid (ALA) or n-3 LC-PUFA, or enhancing n-3 LC-PUFA by improving the LA (Linoleic acid)/ALA ratio and antioxidant concentrations. Moreover, factors such as genotype, rearing system, transport, and cooking processes can impact the n-3 LC-PUFA in poultry products. The use of a multifactorial view in the entire production chain allows the relevant enrichment and preservation of n-3 LC-PUFA in poultry products.
Collapse
|
27
|
Bauer KC, York EM, Cirstea MS, Radisavljevic N, Petersen C, Huus KE, Brown EM, Bozorgmehr T, Berdún R, Bernier L, Lee AHY, Woodward SE, Krekhno Z, Han J, Hancock REW, Ayala V, MacVicar BA, Finlay BB. Gut microbes shape microglia and cognitive function during malnutrition. Glia 2022; 70:820-841. [PMID: 35019164 PMCID: PMC9305450 DOI: 10.1002/glia.24139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022]
Abstract
Fecal-oral contamination promotes malnutrition pathology. Lasting consequences of early life malnutrition include cognitive impairment, but the underlying pathology and influence of gut microbes remain largely unknown. Here, we utilize an established murine model combining malnutrition and iterative exposure to fecal commensals (MAL-BG). The MAL-BG model was analyzed in comparison to malnourished (MAL mice) and healthy (CON mice) controls. Malnourished mice display poor spatial memory and learning plasticity, as well as altered microglia, non-neuronal CNS cells that regulate neuroimmune responses and brain plasticity. Chronic fecal-oral exposures shaped microglial morphology and transcriptional profile, promoting phagocytic features in MAL-BG mice. Unexpectedly, these changes occurred independently from significant cytokine-induced inflammation or blood-brain barrier (BBB) disruption, key gut-brain pathways. Metabolomic profiling of the MAL-BG cortex revealed altered polyunsaturated fatty acid (PUFA) profiles and systemic lipoxidative stress. In contrast, supplementation with an ω3 PUFA/antioxidant-associated diet (PAO) mitigated cognitive deficits within the MAL-BG model. These findings provide valued insight into the malnourished gut microbiota-brain axis, highlighting PUFA metabolism as a potential therapeutic target.
Collapse
Affiliation(s)
- Kylynda C. Bauer
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Elisa M. York
- Psychiatry Department, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverCanada
| | - Mihai S. Cirstea
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Nina Radisavljevic
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Biochemistry and Molecular Biology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Charisse Petersen
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
| | - Kelsey E. Huus
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Eric M. Brown
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | | | - Rebeca Berdún
- Institut de Recerca Biomèdica de Lleida (IRB‐Lleida)LleidaSpain
- Department of Experimental MedicineUniversitat de Lleida (UdL)LleidaSpain
| | - Louis‐Philippe Bernier
- Psychiatry Department, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverCanada
| | - Amy H. Y. Lee
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Sarah E. Woodward
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Zakhar Krekhno
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
| | - Jun Han
- The Metabolomics Innovation CentreUniversity of VictoriaVictoriaCanada
| | - Robert E. W. Hancock
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Victoria Ayala
- Institut de Recerca Biomèdica de Lleida (IRB‐Lleida)LleidaSpain
- Department of Experimental MedicineUniversitat de Lleida (UdL)LleidaSpain
| | - Brian A. MacVicar
- Psychiatry Department, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverCanada
| | - Barton Brett Finlay
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
- Biochemistry and Molecular Biology DepartmentUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
28
|
Antioxidant and Anti-Colorectal Cancer Properties in Methanolic Extract of Mangrove-Derived Schizochytrium sp. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work studied the antioxidant and anti-colorectal cancer properties of a potential strain of thraustochytrids, Schizochytrium sp. (SMKK1), isolated from mangrove leaf litter. The biomass was extracted with methanol and screened for antioxidant activity using six different assays. The extract exhibited the highest total antioxidant activity (87.37 ± 1.22%) and the lowest nitric oxide radical (75.12 ± 2.22%), and the activity increased with the concentration of the extract. The methanolic extract was further tested for in vitro cytotoxicity on the colon cancer cell line (HT29). The extract was also analyzed for polyunsaturated fatty acids using GC-MS. The five predominant HTVS-based compounds, viz., arachidonic acid, linolenic acid (alpha-linolenic acid and gamma-linolenic acid), eicosapentaenoic acid, and docosahexaenoic acid, were identified in the extract, and these were tested against the colon cancer protein IGF binding (IGF-1) using the in silico docking method. The results revealed that all the five compounds were capable of destroying the colon oncoprotein responsible for anti-colon carcinogen, based on activation energy and also good hydrogen bond interaction against IGF binding proteins. Of the compounds, docosahexaenoic acid was the most effective, having a docking score of −10.8 Kcal/mol. All the five fatty acids passed the ADMET test and were hence accepted for further clinical trials towards the development of anticancer drugs.
Collapse
|
29
|
Saafi EB, Arem AE, Chahdoura H, Flamini G, Lachheb B, Ferchichi A, Hammami M, Achour L. Nutritional properties, aromatic compounds and in vitro antioxidant activity of ten date palm fruit (Phoenix dactylifera L.) varieties grown in Tunisia. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902020000318871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
30
|
Insight on Polyunsaturated Fatty Acids in Endometrial Receptivity. Biomolecules 2021; 12:biom12010036. [PMID: 35053184 PMCID: PMC8773570 DOI: 10.3390/biom12010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Endometrial receptivity plays a crucial role in fertilization as well as pregnancy outcome in patients faced with fertility challenges. The optimization of endometrial receptivity may help with normal implantation of the embryo, and endometrial receptivity may be affected by numerous factors. Recently, the role of lipids in pregnancy has been increasingly recognized. Fatty acids and their metabolites may be involved in all stages of pregnancy and play a role in supporting cell proliferation and development, participating in cell signaling and regulating cell function. Polyunsaturated fatty acids, in particular, are essential fatty acids for the human body that can affect the receptivity of the endometrium through in a variety of methods, such as producing prostaglandins, estrogen and progesterone, among others. Additionally, polyunsaturated fatty acids are also involved in immunity and the regulation of endometrial decidualization. Fatty acids are essential for fetal placental growth and development. The interrelationship of polyunsaturated fatty acids with these substances and how they may affect endometrial receptivity will be reviewed in this article.
Collapse
|
31
|
Ziegler O, Sriram N, Gelev V, Radeva D, Todorov K, Feng J, Sellke FW, Robson SC, Hiromura M, Alexandrov BS, Usheva A. The cardiac molecular setting of metabolic syndrome in pigs reveals disease susceptibility and suggests mechanisms that exacerbate COVID-19 outcomes in patients. Sci Rep 2021; 11:19752. [PMID: 34611227 PMCID: PMC8492658 DOI: 10.1038/s41598-021-99143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022] Open
Abstract
Although metabolic syndrome (MetS) is linked to an elevated risk of cardiovascular disease (CVD), the cardiac-specific risk mechanism is unknown. Obesity, hypertension, and diabetes (all MetS components) are the most common form of CVD and represent risk factors for worse COVID-19 outcomes compared to their non MetS peers. Here, we use obese Yorkshire pigs as a highly relevant animal model of human MetS, where pigs develop the hallmarks of human MetS and reproducibly mimics the myocardial pathophysiology in patients. Myocardium-specific mass spectroscopy-derived metabolomics, proteomics, and transcriptomics enabled the identity and quality of proteins and metabolites to be investigated in the myocardium to greater depth. Myocardium-specific deregulation of pro-inflammatory markers, propensity for arterial thrombosis, and platelet aggregation was revealed by computational analysis of differentially enriched pathways between MetS and control animals. While key components of the complement pathway and the immune response to viruses are under expressed, key N6-methyladenosin RNA methylation enzymes are largely overexpressed in MetS. Blood tests do not capture the entirety of metabolic changes that the myocardium undergoes, making this analysis of greater value than blood component analysis alone. Our findings create data associations to further characterize the MetS myocardium and disease vulnerability, emphasize the need for a multimodal therapeutic approach, and suggests a mechanism for observed worse outcomes in MetS patients with COVID-19 comorbidity.
Collapse
Affiliation(s)
- Olivia Ziegler
- Division of Cardiothoracic Surgery, Department of Surgery and, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Nivedita Sriram
- Division of Cardiothoracic Surgery, Department of Surgery and, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Vladimir Gelev
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
- Department of Chemistry, Sofia University, Sofia, Bulgaria
| | - Denitsa Radeva
- Department of Chemistry, Sofia University, Sofia, Bulgaria
| | - Kostadin Todorov
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
- Medical University, Sofia, Bulgaria
| | - Jun Feng
- Division of Cardiothoracic Surgery, Department of Surgery and, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery and, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Simon C Robson
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Makoto Hiromura
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
- Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | | | - Anny Usheva
- Division of Cardiothoracic Surgery, Department of Surgery and, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
32
|
Roppongi T, Miyagawa Y, Fujita H, Adachi S. Effect of Oil-Droplet Diameter on Lipid Oxidation in O/W Emulsions. J Oleo Sci 2021; 70:1225-1230. [PMID: 34483218 DOI: 10.5650/jos.ess21145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effect of oil-droplet diameter on lipid oxidation in O/W emulsions is unclear, and conflicting results have been reported. These conflictions may be due to different experimental conditions being used, such as the type of oil, the type of emulsifier, temperature, and the range of oil-droplet diameters tested. The method used to evaluate the oxidation could also have varied among studies. In O/W emulsions, oxygen dissolved in the aqueous phase is transferred to the oil phase through the oil-water interface and is consumed in the oil phase by oxidation. Therefore, the effect of the oil-droplet diameter on the lipid oxidation rate was evaluated by simultaneously solving the mass balance equations of oxygen and oil in the oil phase. The simulation showed that the oil-droplet diameter does not affect the lipid oxidation rate in O/W emulsions with oil-droplet diameters on the order of micrometers or less because the oxidation reaction itself is rate-limiting.
Collapse
Affiliation(s)
- Takao Roppongi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Yayoi Miyagawa
- Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science
| | - Hiroyuki Fujita
- Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science
| | - Shuji Adachi
- Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science
| |
Collapse
|
33
|
de Souza MMM, da Boa Morte ES, Cardoso LG, Nunes DV, de Souza CO, Druzian JI, Cardoso RDCV. Nutritional contribution of shellfish from the biodiversity of Todos os Santos Bay, Brazil. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Leung KS, Galano JM, Yau YF, Oger C, Durand T, Lee JCY. Walnut-Enriched Diet Elevated α-Linolenic Acid, Phytoprostanes, and Phytofurans in Rat Liver and Heart Tissues and Modulated Anti-inflammatory Lipid Mediators in the Liver. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9094-9101. [PMID: 33351614 DOI: 10.1021/acs.jafc.0c06690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
α-Linolenic acid (ALA) and its non-enzymatic oxidized products, namely, phytoprostanes and phytofurans, are found in some nuts. The uptake and deposition of these compounds are not well-defined. Walnut has high ALA and a considerable amount of phytoprostanes and phytofurans compared to other common nuts. When fed to rodents, ALA and eicosapentaenoic acid levels increased in the liver and heart tissues compared to the control diet. Furthermore, phytoprostanes and phytofurans were elevated 3-fold in both tissues after a walnut diet, indicating that they are not only contributed from the diet but also generated through in vivo autoxidation of ALA found in the walnuts. It was further noted that a walnut diet reduced 5-F2t-isoprostanes and 12-hydroxyeicosatetraenoic acid and induced 4-F4t-neuroprostane and significant amounts of anti-inflammatory hydroxydocosahexaenoic acid in the liver only. Altogether, high ALA in a walnut diet elevated phytoprostanes and phytofurans in the liver and heart tissues and showed the regulation of anti-inflammatory lipid mediators in the liver only.
Collapse
Affiliation(s)
- Kin Sum Leung
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Pok Fu Lam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, 34093 Montpellier, France
| | - Yu Fung Yau
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Pok Fu Lam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, 34093 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, 34093 Montpellier, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Pok Fu Lam, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
35
|
Total Replacement of Fishmeal by Spirulina (Arthrospira platensis) and Its Effect on Growth Performance and Product Quality of African Catfish (Clarias gariepinus). SUSTAINABILITY 2021. [DOI: 10.3390/su13168726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Microalgae are increasingly being studied to replace fishmeal in aquafeed production. Low level Spirulina supplementation to various fish species has been widely investigated, demonstrating enhanced growth and better product quality. In order to evaluate the effects of a full fishmeal replacement with Spirulina (Arthrospira platensis) on growth and product quality in African catfish (Clarias gariepinus), two isoenergetic diets were formulated and fed for ten weeks to 120 fish with an average initial weight of 50 ± 3 g. Full supplementation of Spirulina resulted in reduced growth (p < 0.001) whereas feed conversion ratio was on par (p > 0.05). Furthermore, Spirulina-fed fish showed a more intense yellow coloration in skin, and raw and cooked fillet (p < 0.001). The analysis of fatty acids revealed higher proportions of C16:0 (p < 0.001) and C18:2n6 (p < 0.05) in fish fed the Spirulina-diet while C24:0 (p < 0.01) and C20:5n3 (p < 0.001) were found to be higher in the control group. Even though no statistically significant differences in the overall SFA, MUFA and PUFA were detected, a slight increase of the n6/n3 ratio was observed in the Spirulina-fed fish. Without further optimization of the feed ration, a complete fishmeal replacement with Spirulina can lead to economic losses. It remains to be studied whether the observed changes in product quality affect consumer acceptance.
Collapse
|
36
|
Augimeri G, Montalto FI, Giordano C, Barone I, Lanzino M, Catalano S, Andò S, De Amicis F, Bonofiglio D. Nutraceuticals in the Mediterranean Diet: Potential Avenues for Breast Cancer Treatment. Nutrients 2021; 13:2557. [PMID: 34444715 PMCID: PMC8400469 DOI: 10.3390/nu13082557] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022] Open
Abstract
The traditional Mediterranean Diet constitutes a food model that refers to the dietary patterns of the population living in countries bordering the Mediterranean Sea in the early 1960s. A huge volume of literature data suggests that the Mediterranean-style diet provides several dietary compounds that have been reported to exert beneficial biological effects against a wide spectrum of chronic illnesses, such as cardiovascular and neurodegenerative diseases and cancer including breast carcinoma. Among bioactive nutrients identified as protective factors for breast cancer, natural polyphenols, retinoids, and polyunsaturated fatty acids (PUFAs) have been reported to possess antioxidant, anti-inflammatory, immunomodulatory and antitumoral properties. The multiple anticancer mechanisms involved include the modulation of molecular events and signaling pathways associated with cell survival, proliferation, differentiation, migration, angiogenesis, antioxidant enzymes and immune responses. This review summarizes the anticancer action of some polyphenols, like resveratrol and epigallocatechin 3-gallate, retinoids and omega-3 PUFAs by highlighting the important hallmarks of cancer in terms of (i) cell cycle growth arrest, (ii) apoptosis, (iii) inflammation and (iv) angiogenesis. The data collected from in vitro and in vivo studies strongly indicate that these natural compounds could be the prospective candidates for the future anticancer therapeutics in breast cancer disease.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
| | - Francesca Ida Montalto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Marilena Lanzino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
37
|
Giroli MG, Werba JP, Risé P, Porro B, Sala A, Amato M, Tremoli E, Bonomi A, Veglia F. Effects of Mediterranean Diet or Low-Fat Diet on Blood Fatty Acids in Patients with Coronary Heart Disease. A Randomized Intervention Study. Nutrients 2021; 13:nu13072389. [PMID: 34371898 PMCID: PMC8308706 DOI: 10.3390/nu13072389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
The Mediterranean diet (MD) prevents cardiovascular disease by different putative mechanisms, including modifications in the blood fatty acid (FA) profile. Polytherapy for secondary cardiovascular prevention might mask the effect of MD on the FA profile. This study was aimed to assess whether MD, in comparison with a low-fat diet (LFD), favorably modifies the blood FA profile in patients with coronary heart disease (CHD) on polytherapy. One hundred and twenty patients with a recent history of coronary stenting, randomized to MD or to LFD, completed 3 months of this open-label dietary intervention study. Diet Mediterranean-ness was evaluated using the Mediterranean Diet Adherence Screener (MeDAS) score. Both diets significantly reduced saturated FA (p < 0.01). Putative favorable changes in total n-3 FA (p = 0.03) and eicosapentaenoic acid plus docosahexaenoic acid (EPA + DHA; p = 0.04) were significantly larger with MD than with LFD. At 3 months, in the whole cohort, the MeDAS score correlated inversely with palmitic acid (R = −0.21, p = 0.02), and with palmitoleic acid (R = −0.32, p = 0.007), and positively with total n-3 FA (R = 0.19, p = 0.03), EPA (R = 0.28, p = 0.002), and EPA + DHA (R = 0.21, p = 0.02). In CHD patients on polytherapy, both MD and LFD shift FA blood composition towards a healthier profile, with a more favorable effect of MD on omega−3 levels.
Collapse
Affiliation(s)
- Monica Gianna Giroli
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, 20138 Milan, Italy; (J.P.W.); (B.P.); (M.A.); (E.T.); (A.B.); (F.V.)
- Correspondence: ; Tel.: +39-(0)2-5800-2617
| | - José Pablo Werba
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, 20138 Milan, Italy; (J.P.W.); (B.P.); (M.A.); (E.T.); (A.B.); (F.V.)
| | - Patrizia Risé
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti, 9, 20133 Milan, Italy; (P.R.); (A.S.)
| | - Benedetta Porro
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, 20138 Milan, Italy; (J.P.W.); (B.P.); (M.A.); (E.T.); (A.B.); (F.V.)
| | - Angelo Sala
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti, 9, 20133 Milan, Italy; (P.R.); (A.S.)
- IRIB Consiglio Nazionale delle Ricerche, Via Ugo la Malfa, 153, 90146 Palermo, Italy
| | - Manuela Amato
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, 20138 Milan, Italy; (J.P.W.); (B.P.); (M.A.); (E.T.); (A.B.); (F.V.)
| | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, 20138 Milan, Italy; (J.P.W.); (B.P.); (M.A.); (E.T.); (A.B.); (F.V.)
- Maria Cecilia Hospital, Via Corriera, 1, 48033 Cotignola, Italy
| | - Alice Bonomi
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, 20138 Milan, Italy; (J.P.W.); (B.P.); (M.A.); (E.T.); (A.B.); (F.V.)
| | - Fabrizio Veglia
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, 20138 Milan, Italy; (J.P.W.); (B.P.); (M.A.); (E.T.); (A.B.); (F.V.)
| |
Collapse
|
38
|
Xu R, Liang J, Cheng M, Wu H, Wu H, Cao S, Zhao W, Xu R, Zhou A. Liver and urine metabolomics reveal the protective effect of Gandou decoction in copper-laden Hepatolenticular degeneration model rats. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122844. [PMID: 34246170 DOI: 10.1016/j.jchromb.2021.122844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Hepatolenticular degeneration (HLD) is an inherited disorder associated with human copper metabolism. Gandou decoction (GDD), a traditional Chinese medicinal formula, has been used as a therapeutic agent for the treatment of HLD in China for decades. Recent pharmacological evaluation in our laboratory has demonstrated that GDD exerts positive and beneficial effects on HLD model rats. However, its underlying therapeutic mechanisms are not yet well understood. To explore the potential therapeutic effects of GDD against HLD, liver and urine metabolomics approach combined with histopathological examination were performed to reveal the underlying mechanisms. Changes in metabolic profiles were estimated by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) coupled with multivariate statistical analyses. The results indicated that GDD could significantly improve liver pathological variations. Moreover, 19 and 11 significantly altered metabolites were found in the liver and urine between the normal and model groups, respectively. After GDD treatment, the levels of all these disordered metabolites showed different degrees of improvement compared with the model group, including lysoPC(18:2), lysoPE(20:2/0:0), PC(18:1/14:1), alpha-linolenic acid, sphinganine, taurochenodesoxycholic acid, tetracosahexaenoic acid, 13-OxoODE, and 13-L-hydroperoxyl inoleic acid. Metabolic pathway enrichment suggested that lipid and oxidative stress metabolism were the two main pathways that participated in copper-laden rat models with GDD administration. This work indicates that GDD could achieve a therapeutic effect on HLD by ameliorating the associated metabolic disturbances.
Collapse
Affiliation(s)
- Rujing Xu
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Juan Liang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Meimei Cheng
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Hongfei Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Huan Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Shijian Cao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230026, China
| | - Wenchen Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Ruichao Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - An Zhou
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China.
| |
Collapse
|
39
|
Sales S, Lourenço HM, Pessoa MF, Pombo A, Félix PM, Bandarra NM. Chemical Composition and Omega 3 Human Health Benefits of Two Sea Cucumber Species of North Atlantic. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1909683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sabrina Sales
- GeoBioTec, Department of Earth Sciences, Faculty of Science and Technology, New University of Lisbon, Lisbon, Portugal
- Department of Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere (IPMA), Lisbon, Portugal
| | - Helena Maria Lourenço
- Department of Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere (IPMA), Lisbon, Portugal
| | - Maria Fernanda Pessoa
- GeoBioTec, Department of Earth Sciences, Faculty of Science and Technology, New University of Lisbon, Lisbon, Portugal
| | - Ana Pombo
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal
| | - Pedro Miguel Félix
- MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Narcisa Maria Bandarra
- Department of Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere (IPMA), Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| |
Collapse
|
40
|
Unsaturated fatty acids as a co-therapeutic agents in cancer treatment. Mol Biol Rep 2021; 48:2909-2916. [PMID: 33821440 DOI: 10.1007/s11033-021-06319-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Chemotherapy is standard treatments for many malignancies. However, in most cases, this method is not able to induce apoptosis and in many cases, with cancer recurrence, leads to patient death. There are several procedure to control and suppress malignant cells, but among these methods, administration of ɷ-3 fatty acids and ɷ-6 fatty due to their destructive effects on cancer cells is more prominent. Many clinical studies have shown beneficial effects of ɷ-3 and ɷ-6 fatty acids in cardiovascular disorders, asthma, rheumatoid arthritis, osteoporosis and in most cancers such as colon, breast, prostate and other malignancies. Studies showed that polyunsaturated fatty acids (PUFAs) have a toxic effect on cancer cells. However, the exact mechanism of how ɷ- fatty acids affect cancer cells is still unknown. In this review alternative issues of malignancies co-treatments agents such as PUFAs have been studied. Also, the latest known PUFAs mechanisms on malignancies have been described.
Collapse
|
41
|
Marentette JO, Anderson CC, Prutton KM, Jennings EQ, Rauniyar AK, Galligan JJ, Roede JR. Trisomy 21 impairs PGE2 production in dermal fibroblasts. Prostaglandins Other Lipid Mediat 2021; 153:106524. [PMID: 33418267 PMCID: PMC7965340 DOI: 10.1016/j.prostaglandins.2020.106524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 11/18/2022]
Abstract
The triplication of human chromosome 21 results in Down syndrome (DS), the most common genetic form of intellectual disability. This aneuploid condition also results in an enhanced risk of a spectrum of comorbid conditions, such as leukemia, early onset Alzheimer's disease, and diabetes. Individuals with DS also display an increased incidence of wound healing complications and resistance to solid tumor development. Due to this unique phenotype and the involvement of eicosanoids in key comorbidities like poor healing and tumor development, we hypothesized that cells from DS individuals would display altered eicosanoid production. Using age- and sex-matched dermal fibroblasts we interrogated this hypothesis. Briefly, assessment of over 90 metabolites derived from cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome p450 systems revealed a possible deficiency in the COX system. Basal gene expression and Western blotting experiments showed significantly decreased gene expression of COX1 and 2, and COX2 protein abundance in DS fibroblasts compared to euploid controls. Further, using two different stressors, scratch wound or LPS, we found that DS fibroblasts could not upregulate COX2 abundance and prostaglandin E2 production. Together, these findings show that dermal fibroblasts from DS individuals have a deficient COX2 response, which may contribute to wound healing complications and tumor resistance in DS.
Collapse
Affiliation(s)
- John O Marentette
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, USA; Linda Crnic Institute for Down Syndrome, Aurora, Colorado, USA
| | - Colin C Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, USA; Linda Crnic Institute for Down Syndrome, Aurora, Colorado, USA
| | - Kendra M Prutton
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, USA; Linda Crnic Institute for Down Syndrome, Aurora, Colorado, USA
| | - Erin Q Jennings
- Skaggs School of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Abhishek K Rauniyar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, USA; Linda Crnic Institute for Down Syndrome, Aurora, Colorado, USA
| | - James J Galligan
- Skaggs School of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, USA; Linda Crnic Institute for Down Syndrome, Aurora, Colorado, USA.
| |
Collapse
|
42
|
Roppongi T, Mizuno N, Miyagawa Y, Kobayashi T, Nakagawa K, Adachi S. Solubility and mass transfer coefficient of oxygen through gas- and water-lipid interfaces. J Food Sci 2021; 86:867-873. [PMID: 33580513 DOI: 10.1111/1750-3841.15641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/27/2022]
Abstract
The solubility of oxygen and its transfer rate to the lipid phase play important roles in lipid oxidation, which affects the taste and safety of lipid-containing foods. In this study, we measured the Henry's constants (solubility) of oxygen for fatty acids, fatty acid esters, and triacylglycerols (TAGs; vegetable oils), as well as the mass transfer coefficients of oxygen at the gas- and water-lipid interfaces. The constants and coefficients were estimated by analyzing the change over time in the oxygen partial pressure or concentration in the closed container based on the mass balance equations of oxygen in the gas and liquid phases. The constant for water obtained by the method used in this study was in agreement with the previously reported value to confirm the validity of the method. The constants for lipids depended on the lipid type, and were higher in the order of fatty acid ester, fatty acid, and TAG. That is, the solubility of oxygen decreased in this order. For all lipids, the constant increased as the number of carbon atoms in the fatty acid chain increased. The constants for fatty acids and their esters were linearly correlated with the enthalpies of evaporation of the lipids. The mass transfer coefficients of oxygen at the gas-liquid interface were on the order of 10-5 m/s for water and methyl dodecanoate and of 10-6 m/s for TAG (rapeseed oil). The coefficient at the water-lipid interface was on the order of 10-6 m/s. PRACTICAL APPLICATION: The Henry's constants (solubility) and transfer rate of oxygen to the lipid phase, fatty acids, fatty acid esters, and triacylglycerols (TAG) were measured. The lipids solubilized three to five times more oxygen than water, and mass transfer rate of oxygen at gas- and water-lipid interfaces were almost same. The constants for fatty acids and fatty acid esters were linearly correlated to their enthalpies of evaporation, and this correlation is expected to be useful for estimating the Henry's constants for other fatty acids and their esters.
Collapse
Affiliation(s)
- Takao Roppongi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Naho Mizuno
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yayoi Miyagawa
- Faculty of Bio-environmental Science, Kyoto University of Advanced Science, Kameoka, Kyoto, 621-8555, Japan
| | - Takashi Kobayashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kyuya Nakagawa
- Division of Chemical Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shuji Adachi
- Faculty of Bio-environmental Science, Kyoto University of Advanced Science, Kameoka, Kyoto, 621-8555, Japan
| |
Collapse
|
43
|
Biandolino F, Parlapiano I, Denti G, Di Nardo V, Prato E. Effect of Different Cooking Methods on Lipid Content and Fatty Acid Profiles of Mytilus galloprovincialis. Foods 2021; 10:416. [PMID: 33668614 PMCID: PMC7918191 DOI: 10.3390/foods10020416] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
The effect of cooking (barbecue-grilling, boiling, microwaving, oven cooking and frying) on lipids, fatty acids (FAs) and lipid quality indices of the mussel Mytilus galloprovincialis was investigated. In general, all processing methods significantly (p < 0.05) modified the fatty acid profiles of mussels, although with major changes in fried samples, which exhibited the lowest saturated fatty acids and n-3 and highest polyunsaturated (PUFA) and n-6 FAs content. A significant decrease in the n-3 PUFA from the raw sample to five cooking methods was observed. The n-3/n-6 ratio decreased from raw (6.01) to cooked mussels, exhibiting the lowest value in fried ones (0.15). C20:5 n-3 and C22:6 n-3 significantly decreased during all cooking processes, and overall in fried mussels. It can be concluded that cooking does not compromise the nutritional quality of mussels except with frying, although it resulted in a decrease of the atherogenic and thrombogenic indices.
Collapse
Affiliation(s)
- Francesca Biandolino
- National Research Council, Water Research Institute (CNR-IRSA), Via Roma, 3, 74123 Taranto, Italy; (I.P.); (G.D.); (E.P.)
| | - Isabella Parlapiano
- National Research Council, Water Research Institute (CNR-IRSA), Via Roma, 3, 74123 Taranto, Italy; (I.P.); (G.D.); (E.P.)
| | - Giuseppe Denti
- National Research Council, Water Research Institute (CNR-IRSA), Via Roma, 3, 74123 Taranto, Italy; (I.P.); (G.D.); (E.P.)
| | - Veronica Di Nardo
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo” Via Donato Bramante, 28, 61029 Urbino, Italy;
| | - Ermelinda Prato
- National Research Council, Water Research Institute (CNR-IRSA), Via Roma, 3, 74123 Taranto, Italy; (I.P.); (G.D.); (E.P.)
| |
Collapse
|
44
|
Camacho M, Garza D, Gutiérrez-Zamora B, Rodríguez-Ramírez H, Méndez-Zamora G, Kawas JR. Superovulatory response and embryo quality in Boer does following dietary supplementation with different sources of omega-3 and omega-6 fatty acids during the breeding season. Anim Reprod Sci 2021; 227:106718. [PMID: 33631623 DOI: 10.1016/j.anireprosci.2021.106718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to determine effects of various sources of omega-3 and omega-6 fatty acids on ovarian response and embryo quality in Boer does when there was a superovulation treatment regimen imposed. Pluriparous does were randomly assigned to be treated with 300 g of one of four experimental supplements containing linseed oil (LO), soybean oil (SO), palm oil (PO), or a control supplement without fatty acids (CO), for 15 days. Does were fitted with a controlled internal drug release (CIDR) device containing 0.3 g progesterone for 7 days. At 48 h before CIDR withdrawal, does were treated with 80 mg follicle-stimulating hormone (FSH) administered at 12 h intervals. Embryos were collected 7 days after the last natural mating. Estrous response and interval between CIDR withdrawals to estrous onset were similar between treatments (P > 0.05). Number of ovulations was similar for does in the different groups (10.0, 9.2, 7.0, and 7.0, in LO, SO, PO, and CO, respectively; P > 0.05). There was premature luteal regression in does of the SO, PO, and CO groups, except in LO group. The LO-treated does had a larger (P < 0.05) mean number of ova/embryos recovered than does of SO, PO, and CO groups (7.2, 2.0, 0.2, 0.2, respectively) and transferable embryos (5.1, 1.4, 0.2, 0.2, respectively). These results indicate that including LO in supplements may be a feasible strategy for preventing premature luteal regression and improving embryo quality in goats treated to induce follicular super-stimulation for induction of superovulation.
Collapse
Affiliation(s)
- Miguel Camacho
- MNA de México, Avenida Acapulco 770, Colonia La Fe, San Nicolás de los Garza, Nuevo León, 66477, Mexico
| | - Denisse Garza
- Universidad Autónoma de Nuevo León, Posgrado Conjunto Agronomía-Veterinaria, Avenida Francisco Villa S/N, Colonia Ex-hacienda El Canadá, Escobedo, Nuevo León, CP 66050, Mexico
| | - Brandon Gutiérrez-Zamora
- MNA de México, Avenida Acapulco 770, Colonia La Fe, San Nicolás de los Garza, Nuevo León, 66477, Mexico
| | - Heidi Rodríguez-Ramírez
- Universidad Autónoma de Nuevo León, Posgrado Conjunto Agronomía-Veterinaria, Avenida Francisco Villa S/N, Colonia Ex-hacienda El Canadá, Escobedo, Nuevo León, CP 66050, Mexico
| | - Gerardo Méndez-Zamora
- Universidad Autónoma de Nuevo León, Posgrado Conjunto Agronomía-Veterinaria, Avenida Francisco Villa S/N, Colonia Ex-hacienda El Canadá, Escobedo, Nuevo León, CP 66050, Mexico
| | - Jorge R Kawas
- Universidad Autónoma de Nuevo León, Posgrado Conjunto Agronomía-Veterinaria, Avenida Francisco Villa S/N, Colonia Ex-hacienda El Canadá, Escobedo, Nuevo León, CP 66050, Mexico.
| |
Collapse
|
45
|
Maternal vitamin D deficiency influences long-chain polyunsaturated fatty acids and pregnancy outcome in association with alterations in one-carbon metabolism. Nutr Res 2021; 86:37-49. [PMID: 33482597 DOI: 10.1016/j.nutres.2020.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 11/10/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023]
Abstract
Preeclampsia is a pregnancy-specific disorder, leading to maternal and infant morbidity and mortality. Abnormal placentation has been reported in preeclampsia. Nutrients like vitamin D and long-chain polyunsaturated fatty acids (LCPUFA) are known to play a role in placental development. In an animal model, we have previously demonstrated that maternal vitamin D deficiency increases the thromboxane/prostacyclin ratio and contributes to inflammation and vasoconstriction. We hypothesize that maternal vitamin D status influences placental LCPUFA metabolism through alterations in one carbon metabolism in women with preeclampsia. To test this hypothesis, we recruited 69 normotensive control (NC) women and 50 women with preeclampsia. Women with preeclampsia had lower placental protein and mRNA levels of cystathionine-β-synthase (CBS), higher plasma malondialdehyde (MDA) levels and higher levels of arachidonic acid (AA) and total omega-6 fatty acids in the placenta. Women with preeclampsia also demonstrated higher placental mRNA levels of cyclooxygenase-2 (COX-2) as compared to NC women. Maternal 25(OH)D levels were negatively associated with maternal plasma MDA levels. Placental vitamin D receptor (VDR) levels were positively associated with CBS while maternal MDA levels were positively associated with serum levels of thromboxane-B2 (TXB2) levels. Our findings indicate that vitamin D deficiency increases oxidative stress through alterations in one carbon metabolism to influence pro-inflammatory omega-6 metabolic pathway in the placenta. This study demonstrates a possible mechanism through which vitamin D deficiency can result in an imbalance in the LCPUFA metabolites and contribute to placental inflammation and endothelial dysfunction in preeclampsia.
Collapse
|
46
|
Abstract
Seaweed-based cosmetics are being gradually used by consumers as a substitute of synthetic equivalent products. These seaweed-based products normally contain purified compounds or extracts with several compounds. Several seaweeds’ molecules already demonstrated a high potential as a cosmetic active ingredient (such as, mycosporine-like amino acids, fucoidan, pigments, phenolic compounds) or as a key element for the products consistency (agar, alginate, carrageenan). Moreover, seaweeds’ compounds present important qualities for cosmetic application, such as low cytotoxicity and low allergens content. However, seaweeds’ biochemical profile can be variable, and the extraction methods can cause the loss of some of the biomolecules. This review gives a general look at the seaweed cosmetics benefits and its current application in the cosmetic industry. Moreover, it focuses on the ecological and sustainable scope of seaweed exploitation to guarantee a safe source of ingredients for the cosmetic industry and consumers.
Collapse
|
47
|
Julvez J, Gignac F, Fernández-Barrés S, Romaguera D, Sala-Vila A, Ranzani OT, Persavento C, Delgado A, Carol A, Torrent J, Gonzalez J, Roso E, Barrera-Gómez J, López-Vicente M, Garcia-Esteban R, Boucher O, Forns J, Burgaleta M, Sebastián N, Canals J, Arija V, Basagaña X, Ros E, Vendrell J, Salas-Salvadó J, Sunyer J. Walnuts, Long-Chain Polyunsaturated Fatty Acids, and Adolescent Brain Development: Protocol for the Walnuts Smart Snack Dietary Intervention Trial. Front Pediatr 2021; 9:593847. [PMID: 34169045 PMCID: PMC8217431 DOI: 10.3389/fped.2021.593847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Adolescence, when the most complex behaviors are refined to adult sophistication, represents a major window of opportunity and vulnerability for neuropsychological development. To support and protect this complex and active brain growth, different nutritional components considered essential need to be acquired from the diet. For instance, omega-3 fatty acids are mainly obtained from seafood, seeds, and walnuts. Known for their rich lipid profile, walnuts contain sizable amounts of an essential fatty acid, alpha-linolenic acid (ALA), the vegetable omega-3 fatty acid that is the precursor of two longer-chain omega-3 polyunsaturated fatty acids (omega-3 PUFA): docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids. While there is growing evidence of neuropsychological improvements in the young developing brain associated with omega-3 PUFA intake, few studies have examined whether consuming walnuts during adolescence entails similar beneficial effects. There is a need to further explore the ways in which walnuts influence youthful brain function, particularly for the long-term. Thus, we designed the WALNUTs study (WSS), a population-based randomized controlled trial conducted in adolescents in Barcelona, Spain. We hypothesize that walnut intake will increase omega-3 PUFA tissue availability (particularly ALA) to a level that enhances the neuropsychological development during adolescence. Methodology/Design: We conducted a 6-month population-based randomized controlled trial in teenagers (n = 800) and we aimed to determine the effectiveness of the intervention (four walnuts per day, or 30 kernel g, ~1.5g of ALA) in enhancing brain neuropsychological and socio-emotional development compared to a control group with no walnut intervention. Before randomization, different neuropsychological tests were recorded for all participants, and blood samples (in a subsample of participants) were collected to measure omega-3 PUFA levels at baseline, and all again, after randomization and the intervention. The data is now collected and we will conduct linear regression models to assess the effect of the intervention. Discussion: The WALNUTs (WSS) study results will allow us to better understand the role of plant-based omega-3 PUFA intake from regular walnut consumption on neuropsychological development during adolescence. Results could be translated into nutritional public health recommendations targeting teenagers. Trial Registration: ClinicalTrials.gov, U.S. National Library of Medicine, National Institutes of Health # NCT02590848. Retrospectively registered 29/10/2015.
Collapse
Affiliation(s)
- Jordi Julvez
- Institut d'Investigació Sanitària Pere Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain.,ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain.,CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Florence Gignac
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Silvia Fernández-Barrés
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain.,CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Dora Romaguera
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain.,Instituto de Investigación Sanitaria Illes Balears, Hospital Universitari Son Espases, Palma, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Aleix Sala-Vila
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Otavio T Ranzani
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Cecilia Persavento
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Anna Delgado
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Albert Carol
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Jaume Torrent
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Judith Gonzalez
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Eduard Roso
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Jose Barrera-Gómez
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Mónica López-Vicente
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Raquel Garcia-Esteban
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Olivier Boucher
- Centre de Recherche du Centre Hospitalier de l'Université de Montreal, Montreal, QC, Canada
| | - Joan Forns
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | | | | | - Josefina Canals
- Nutrition and Public Health Unit, Research Group on Nutrition and Mental Health, (NUTRISAM), Faculty of Medicine and Health Science, Universitat Rovira i Virgili, Reus, Spain
| | - Victoria Arija
- Nutrition and Public Health Unit, Research Group on Nutrition and Mental Health, (NUTRISAM), Faculty of Medicine and Health Science, Universitat Rovira i Virgili, Reus, Spain
| | - Xavier Basagaña
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Emilio Ros
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joan Vendrell
- Institut d'Investigació Sanitària Pere Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Salas-Salvadó
- Institut d'Investigació Sanitària Pere Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Human Nutrition Unit, Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Reus, Spain
| | - Jordi Sunyer
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain.,CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
48
|
Katan T, Xue X, Caballero-Solares A, Taylor RG, Rise ML, Parrish CC. Influence of Dietary Long-Chain Polyunsaturated Fatty Acids and ω6 to ω3 Ratios on Head Kidney Lipid Composition and Expression of Fatty Acid and Eicosanoid Metabolism Genes in Atlantic Salmon ( Salmo salar). Front Mol Biosci 2020; 7:602587. [PMID: 33381522 PMCID: PMC7767880 DOI: 10.3389/fmolb.2020.602587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
The interaction of dietary eicosapentaenoic acid and docosahexaenoic acid (EPA+DHA) levels with omega-6 to omega-3 ratios (ω6:ω3), and their impact on head kidney lipid metabolism in farmed fish, are not fully elucidated. We investigated the influence of five plant-based diets (12-week exposure) with varying EPA+DHA levels (0.3, 1.0, or 1.4%) and ω6:ω3 (high ω6, high ω3, or balanced) on tissue lipid composition, and transcript expression of genes involved in fatty acid and eicosanoid metabolism in Atlantic salmon head kidney. Tissue fatty acid composition was reflective of the diet with respect to C18 PUFA and MUFA levels (% of total FA), and ω6:ω3 (0.5–1.5). Fish fed 0.3% EPA+DHA with high ω6 (0.3% EPA+DHA↑ω6) had the highest increase in proportions (1.7–2.3-fold) and in concentrations (1.4-1.8-fold) of arachidonic acid (ARA). EPA showed the greatest decrease in proportion and in concentration (by ~½) in the 0.3% EPA+DHA↑ω6 fed fish compared to the other treatments. However, no differences were observed in EPA proportions among salmon fed the high ω3 (0.3 and 1.0% EPA+DHA) and balanced (1.4% EPA+DHA) diets, and DHA proportions were similar among all treatments. Further, the transcript expression of elovl5a was lowest in the 0.3% EPA+DHA↑ω6 fed fish, and correlated positively with 20:3ω3, 20:4ω3 and EPA:ARA in the head kidney. This indicates that high dietary 18:3ω3 promoted the synthesis of ω3 LC-PUFA. Dietary EPA+DHA levels had a positive impact on elovl5a, fadsd5 and srebp1 expression, and these transcripts positively correlated with tissue ΣMUFA. This supported the hypothesis that LC-PUFA synthesis is positively influenced by tissue MUFA levels in Atlantic salmon. The expression of pparaa was higher in the 0.3% EPA+DHA↑ω6 compared to the 0.3% EPA+DHA↑ω3 fed fish. Finally, significant correlations between head kidney fatty acid composition and the expression of eicosanoid synthesis-related transcripts (i.e., 5loxa, 5loxb, cox1, cox2, ptges2, ptges3, and pgds) illustrated the constitutive relationships among fatty acids and eicosanoid metabolism in salmon.
Collapse
Affiliation(s)
- Tomer Katan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
49
|
Lee GI, Shin WS, MoonGeun Jung S, Kim W, Lee C, Kwon JH. Effects of soybean curd wastewater on growth and DHA production in Aurantiochytrium sp. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Zhang T, Han X, Zhang X, Chen Z, Mi Y, Gou X. Dietary Fatty Acid Factors in Alzheimer's Disease: A Review. J Alzheimers Dis 2020; 78:887-904. [PMID: 33074226 DOI: 10.3233/jad-200558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease characterized by brain function disorder and chronic cognitive function impairment. The onset of AD is complex and is mostly attributed to interactions between genetic factors and environmental factors. Lifestyle, dietary habits, and food consumption are likely to play indispensable functions in aged-related neurodegenerative diseases in elderly people. An increasing number of epidemiological studies have linked dietary fatty acid factors to AD, raising the point of view that fatty acid metabolism plays an important role in AD initiation and progression as well as in other central nervous system disorders. In this paper, we review the effects of the consumption of various dietary fatty acids on AD onset and progression and discuss the detrimental and beneficial effects of some typical fatty acids derived from dietary patterns on the pathology of AD. We outline these recent advances, and we recommend that healthy dietary lifestyles may contribute to preventing the occurrence and decreasing the pathology of AD.
Collapse
Affiliation(s)
- Tianying Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, PR China
| | - Xiaojuan Han
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, PR China
| | - Xiaohua Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, PR China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Yajing Mi
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, PR China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, PR China
| |
Collapse
|