1
|
Jamalvandi M, Khayyatzadeh SS, Hayati MJ, Gheibihayat SM. The role of fat-soluble vitamins in efferocytosis. Cell Biochem Funct 2024; 42:e3972. [PMID: 38500392 DOI: 10.1002/cbf.3972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Cell death and the efficient removal of dead cells are two basic mechanisms that maintain homeostasis in multicellular organisms. efferocytosis, which includes four steps recruitment, recognition, binding and signaling, and engulfment. Effectively and quickly removes apoptotic cells from the body. Any alteration in efferocytosis can lead to several diseases, including autoimmune and inflammatory conditions, atherosclerosis, and cancer. A wide range of dietary components affects apoptosis and, subsequently, efferocytosis. Some vitamins, including fat-soluble vitamins, affect different stages of efferocytosis. Among other things, by affecting macrophages, they are effective in the apoptotic cleansing of cells. Also, polyphenols indirectly intervene in efferocytosis through their effect on apoptosis. Considering that there are limited articles on the effect of nutrition on efferocytosis, in this article we will examine the effect of some dietary components on efferocytosis.
Collapse
Affiliation(s)
- Mona Jamalvandi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sayyed Saeid Khayyatzadeh
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Rezig L, Ghzaiel I, Ksila M, Yammine A, Nury T, Zarrouk A, Samadi M, Chouaibi M, Vejux A, Lizard G. Cytoprotective activities of representative nutrients from the Mediterranean diet and of Mediterranean oils against 7-ketocholesterol- and 7β-hydroxycholesterol-induced cytotoxicity: Application to age-related diseases and civilization diseases. Steroids 2022; 187:109093. [PMID: 36029811 DOI: 10.1016/j.steroids.2022.109093] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022]
Abstract
7-ketocholesterol and 7β-hydroxycholesterol are two oxysterols mainly formed by the autoxidation of cholesterol. These two molecules are interconvertible via specific enzymes. These two oxysterols are often observed at increased amounts in biological fluids as well as tissues and organs affected during age-related diseases and in diseases of civilization such as cardiovascular, neurodegenerative, and ocular diseases as well as type 2 diabetes and metabolic syndrome. Noteworthy, 7-ketocholesterol and 7β-hydroxycholesterol induce oxidative stress and inflammation, which are frequently observed in patients with age-related and civilization diseases. For this reason, the involvement of these two oxysterols in the pathophysiology of these diseases is widely suspected. In addition, the toxicity of these oxysterols can lead to death by oxiapoptophagy characterized by oxidative stress, apoptosis induction and autophagy criteria. To prevent, or even treat, certain age-related or civilization diseases associated with increased levels of 7-ketocholesterol and 7β-hydroxycholesterol, the identification of molecules or mixtures of molecules attenuating or inhibiting the toxic effects of these oxysterols allows to consider new treatments. In this context, many nutrients present in significant amounts in the Mediterranean diet, especially tocopherols, fatty acids, and polyphenols, have shown cytoprotective activities as well as several Mediterranean oils (argan and olive oils, milk thistle seed oil, and pistacia lentiscus seed oil). Consequently, a nutraceutical approach, rich in nutrients present in the Mediterranean diet, could thus make it possible to counteract certain age-related and civilization diseases associated with increased levels of 7-ketocholesterol and 7β-hydroxycholesterol.
Collapse
Affiliation(s)
- Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES26, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis 1080, Tunisia; University of Carthage, High Institute of Food Industries, 58 Alain Savary Street, El Khadra City, Tunis 1003, Tunisia.
| | - Imen Ghzaiel
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France; University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir 5000, Tunisia; University Tunis-El Manar, Faculty of Sciences of Tunis, Tunis 2092, Tunisia
| | - Mohamed Ksila
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France; Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia
| | - Aline Yammine
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France; Institut Européen des Antioxydants (IEA), 1B, rue Victor de Lespinats, Neuves-Maisons 54230, France
| | - Thomas Nury
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France
| | - Amira Zarrouk
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir 5000, Tunisia; Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Department of Chemistry, University Lorraine, Metz Technopôle, Metz 57070, France
| | - Moncef Chouaibi
- University of Carthage, High Institute of Food Industries, 58 Alain Savary Street, El Khadra City, Tunis 1003, Tunisia; University of Carthage, Bio-preservation and Valorization of Agricultural Products UR13-AGR 02, High Institute of Food Industries, 58 Alain Savary Street, El Khadra City, Tunis 1003, Tunisia
| | - Anne Vejux
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France
| | - Gérard Lizard
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France.
| |
Collapse
|
3
|
Feng R, Qin X, Li Q, Olugbenga Adeniran S, Huang F, Li Y, Zhao Q, Zheng P. Progesterone regulates inflammation and receptivity of cells via the NF-κB and LIF/STAT3 pathways. Theriogenology 2022; 186:50-59. [DOI: 10.1016/j.theriogenology.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/06/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
4
|
Liu Y, Yang X, Xiao F, Jie F, Zhang Q, Liu Y, Xiao H, Lu B. Dietary cholesterol oxidation products: Perspectives linking food processing and storage with health implications. Compr Rev Food Sci Food Saf 2021; 21:738-779. [PMID: 34953101 DOI: 10.1111/1541-4337.12880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
Dietary cholesterol oxidation products (COPs) are heterogeneous compounds formed during the processing and storage of cholesterol-rich foods, such as seafood, meat, eggs, and dairy products. With the increased intake of COPs-rich foods, the concern about health implications of dietary COPs is rising. Dietary COPs may exert deleterious effects on human health to induce several inflammatory diseases including atherosclerosis, neurodegenerative diseases, and inflammatory bowel diseases. Thus, knowledge regarding the effects of processing and storage conditions leading to formation of COPs is needed to reduce the levels of COPs in foods. Efficient methodologies to determine COPs in foods are also essential. More importantly, the biological roles of dietary COPs in human health and effects of phytochemicals on dietary COPs-induced diseases need to be established. This review summarizes the recent information on dietary COPs including their formation in foods during their processing and storage, analytical methods of determination of COPs, metabolic fate, implications for human health, and beneficial interventions by phytochemicals. The formation of COPs is largely dependent on the heating temperature, storage time, and food matrices. Alteration of food processing and storage conditions is one of the potent strategies to restrict hazardous dietary COPs from forming, including maintaining relatively low temperatures, shorter processing or storage time, and the appropriate addition of antioxidants. Once absorbed into the circulation, dietary COPs can contribute to the progression of several inflammatory diseases, where the absorbed dietary COPs may induce inflammation, apoptosis, and autophagy in cells in the target organs or tissues. Improved intake of phytochemicals may be an effective strategy to reduce the hazardous effects of dietary COPs.
Collapse
Affiliation(s)
- Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yuqi Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
5
|
Ravi S, Duraisamy P, Krishnan M, Martin LC, Manikandan B, Raman T, Sundaram J, Arumugam M, Ramar M. An insight on 7- ketocholesterol mediated inflammation in atherosclerosis and potential therapeutics. Steroids 2021; 172:108854. [PMID: 33930389 DOI: 10.1016/j.steroids.2021.108854] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022]
Abstract
7-ketocholesterol, a toxic oxidative product of oxysterol is a causative agent of several diseases and disabilities concomitant to aging including cardiovascular diseases like atherosclerosis. Auto-oxidation of cholesterol esters present in low-density lipoprotein (LDL) deposits lead to the formation of oxidized LDL (Ox-LDL) along with its byproducts, namely 7KCh. It is predominantly found in atherosclerotic plaque and also found to be more atherogenic than cholesterol by being cytotoxic, interfering with cellular homeostasis. This makes it a serious threat by being the foremost cause of morbidity and mortality worldwide and is likely to become more serious during forth coming years. It involves in mediating inflammatory mechanisms characterized by the advancement of fibroatheroma plaques. The atherosclerotic lesion is composed of Ox-LDL along with fibrotic mass consisting of immune cells and molecules. Macrophages being the specialized phagocytic cells, contribute to removal of detrimental contents of the lesion along with accumulated lipids leading to alteration of its biology and functionality due to its plasticity. Here, we have explored the known as well as proposed mechanisms involved with 7KCh associated atherogenesis along with potential therapeutic strategies for targeting 7KCh as a diagnostic and target in medicine.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Livya C Martin
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilakanni's College for Women, Chennai 600015, India
| | - Thiagarajan Raman
- Department of Advanced Zoology and Biotechnology, Ramakrishna Mission Vivekananda College, Mylapore, Chennai 600004, India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Munusamy Arumugam
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
6
|
Nury T, Yammine A, Ghzaiel I, Sassi K, Zarrouk A, Brahmi F, Samadi M, Rup-Jacques S, Vervandier-Fasseur D, Pais de Barros J, Bergas V, Ghosh S, Majeed M, Pande A, Atanasov A, Hammami S, Hammami M, Mackrill J, Nasser B, Andreoletti P, Cherkaoui-Malki M, Vejux A, Lizard G. Attenuation of 7-ketocholesterol- and 7β-hydroxycholesterol-induced oxiapoptophagy by nutrients, synthetic molecules and oils: Potential for the prevention of age-related diseases. Ageing Res Rev 2021; 68:101324. [PMID: 33774195 DOI: 10.1016/j.arr.2021.101324] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Age-related diseases for which there are no effective treatments include cardiovascular diseases; neurodegenerative diseases such as Alzheimer's disease; eye disorders such as cataract and age-related macular degeneration; and, more recently, Severe Acute Respiratory Syndrome (SARS-CoV-2). These diseases are associated with plasma and/or tissue increases in cholesterol derivatives mainly formed by auto-oxidation: 7-ketocholesterol, also known as 7-oxo-cholesterol, and 7β-hydroxycholesterol. The formation of these oxysterols can be considered as a consequence of mitochondrial and peroxisomal dysfunction, leading to increased in oxidative stress, which is accentuated with age. 7-ketocholesterol and 7β-hydroxycholesterol cause a specific form of cytotoxic activity defined as oxiapoptophagy, including oxidative stress and induction of death by apoptosis associated with autophagic criteria. Oxiaptophagy is associated with organelle dysfunction and in particular with mitochondrial and peroxisomal alterations involved in the induction of cell death and in the rupture of redox balance. As the criteria characterizing 7-ketocholesterol- and 7β-hydroxycholesterol-induced cytotoxicity are often simultaneously observed in major age-related diseases (cardiovascular diseases, age-related macular degeneration, Alzheimer's disease) the involvement of these oxysterols in the pathophysiology of the latter seems increasingly likely. It is therefore important to better understand the signalling pathways associated with the toxicity of 7-ketocholesterol and 7β-hydroxycholesterol in order to identify pharmacological targets, nutrients and synthetic molecules attenuating or inhibiting the cytotoxic activities of these oxysterols. Numerous natural cytoprotective compounds have been identified: vitamins, fatty acids, polyphenols, terpenes, vegetal pigments, antioxidants, mixtures of compounds (oils, plant extracts) and bacterial enzymes. However, few synthetic molecules are able to prevent 7-ketocholesterol- and/or 7β-hydroxycholesterol-induced cytotoxicity: dimethyl fumarate, monomethyl fumarate, the tyrosine kinase inhibitor AG126, memantine, simvastatine, Trolox, dimethylsufoxide, mangafodipir and mitochondrial permeability transition pore (MPTP) inhibitors. The effectiveness of these compounds, several of which are already in use in humans, makes it possible to consider using them for the treatment of certain age-related diseases associated with increased plasma and/or tissue levels of 7-ketocholesterol and/or 7β-hydroxycholesterol.
Collapse
|
7
|
Du P, Song J, Qiu H, Liu H, Zhang L, Zhou J, Jiang S, Liu J, Zheng Y, Wang M. Polyphenols Extracted from Shanxi-Aged Vinegar Inhibit Inflammation in LPS-Induced RAW264.7 Macrophages and ICR Mice via the Suppression of MAPK/NF-κB Pathway Activation. Molecules 2021; 26:molecules26092745. [PMID: 34067016 PMCID: PMC8124351 DOI: 10.3390/molecules26092745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022] Open
Abstract
Shanxi-aged vinegar, a traditional Chinese grain-fermented food that is rich in polyphenols, has been shown to have therapeutic effects on a variety of diseases. However, there has been no comprehensive evaluation of the anti-inflammatory activity of polyphenols extracted from Shanxi-aged vinegar (SAVEP) to date. The anti-inflammatory activities of SAVEP, both in RAW 264.7 macrophages and mice, were extensively investigated for the potential application of SAVEP as a novel anti-inflammatory agent. In order to confirm the notion that polyphenols could improve inflammatory symptoms, SAVEP was firstly detected by gas chromatography mass spectrometry (GC-MS). In total, 19 polyphenols were detected, including 12 phenolic acids. The study further investigated the protective effect of SAVEP on lipopolysaccharide-induced inflammation in RAW264.7 macrophages and ICR mice. The results showed that compared with those of the model group, SAVEP could remarkably recover the inflammation of macrophage RAW264.7 and ICR mice. SAVEP can normalise the expression of related proteins via the suppression of MAPK/NF-κB pathway activation, inhibiting the expression of iNOS and COX-2 proteins, and consequently the production of inflammatory factors, thus alleviating inflammatory stress. These results suggest that SAVEP may have a potential function against inflammation.
Collapse
Affiliation(s)
- Peng Du
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jia Song
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Correspondence: (J.S.); (Y.Z.); (M.W.); Tel.: +86-022-60601256 (J.S.); +86-022-60601256 (Y.Z.); +86-022-60600045 (M.W.)
| | - Huirui Qiu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haorui Liu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
| | - Li Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
| | - Junhan Zhou
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
| | - Shengping Jiang
- Research Center for Modern Analysis Techniques, Tianjin University of Science & Technology, Tianjin 300457, China; (S.J.); (J.L.)
| | - Jinyu Liu
- Research Center for Modern Analysis Techniques, Tianjin University of Science & Technology, Tianjin 300457, China; (S.J.); (J.L.)
| | - Yu Zheng
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Correspondence: (J.S.); (Y.Z.); (M.W.); Tel.: +86-022-60601256 (J.S.); +86-022-60601256 (Y.Z.); +86-022-60600045 (M.W.)
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Correspondence: (J.S.); (Y.Z.); (M.W.); Tel.: +86-022-60601256 (J.S.); +86-022-60601256 (Y.Z.); +86-022-60600045 (M.W.)
| |
Collapse
|
8
|
Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:49-98. [PMID: 32640910 DOI: 10.1089/ars.2019.7955] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Atherosclerotic cardiovascular diseases (ACVDs) continue to be a primary cause of mortality worldwide in adults aged 35-70 years, occurring more often in countries with lower economic development, and they constitute an ever-growing global burden that has a considerable socioeconomic impact on society. The ACVDs encompass diverse pathologies such as coronary artery disease and heart failure (HF), among others. Recent Advances: It is known that oxidative stress plays a relevant role in ACVDs and some of its effects are mediated by lipid oxidation. In particular, lipid peroxidation (LPO) is a process under which oxidants such as reactive oxygen species attack unsaturated lipids, generating a wide array of oxidation products. These molecules can interact with circulating lipoproteins, to diffuse inside the cell and even to cross biological membranes, modifying target nucleophilic sites within biomolecules such as DNA, lipids, and proteins, and resulting in a plethora of biological effects. Critical Issues: This review summarizes the evidence of the effect of LPO in the development and progression of atherosclerosis-based diseases, HF, and other cardiovascular diseases, highlighting the role of protein adduct formation. Moreover, potential therapeutic strategies targeted at lipoxidation in ACVDs are also discussed. Future Directions: The identification of valid biomarkers for the detection of lipoxidation products and adducts may provide insights into the improvement of the cardiovascular risk stratification of patients and the development of therapeutic strategies against the oxidative effects that can then be applied within a clinical setting.
Collapse
Affiliation(s)
- Erica Gianazza
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | - Maura Brioschi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| |
Collapse
|
9
|
5 α,6 α-Epoxyphytosterols and 5 α,6 α-Epoxycholesterol Increase Oxidative Stress in Rats on Low-Cholesterol Diet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1983975. [PMID: 31827670 PMCID: PMC6881747 DOI: 10.1155/2019/1983975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022]
Abstract
Objective Cholesterol oxidation products have an established proatherogenic and cytotoxic effect. An increased exposure to these substances may be associated with the development of atherosclerosis and cancers. Relatively little, though, is known about the effect of phytosterol oxidation products, although phytosterols are present in commonly available and industrial food products. Thus, the aim of the research was to assess the effect of 5α,6α-epoxyphytosterols, which are important phytosterol oxidation products, on redox state in rats. Material and Methods The animals were divided into 3 groups and exposed to nutritional sterols by receiving feed containing 5α,6α-epoxyphytosterols (ES group) and 5α,6α-epoxycholesterol (Ech group) or sterol-free feed (C group). The levels of malondialdehyde (MDA), conjugated dienes (CD), and ferric reducing antioxidant potential (FRAP) were assayed in the plasma; anti-7-ketocholesterol antibodies and activity of paraoxonase-1 (PON1) were determined in serum, whereas the activity of catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), S-glutathione transferase (GST), and superoxide dismutase (SOD) were assayed in RBCs. Results During the experiment, the levels of lipid peroxidation products increased, such as CD and anti-7-ketocholesterol antibodies. At the same time, the plasma levels of FRAP and serum activity of PON1 decreased alongside the reduced activity of GPx, GR, and SOD in RBCs. There was no effect of the studied compounds on the plasma MDA levels or on the activity of CAT and GST in RBCs. Conclusions Both 5α,6α-epoxyphytosterols and 5α,6α-epoxycholesterols similarly dysregulate the redox state in experimental animal model and may significantly impact atherogenesis.
Collapse
|
10
|
Evaluation of Antioxidant, Anti-Inflammatory and Cytoprotective Properties of Ethanolic Mint Extracts from Algeria on 7-Ketocholesterol-Treated Murine RAW 264.7 Macrophages. Antioxidants (Basel) 2018; 7:antiox7120184. [PMID: 30563252 PMCID: PMC6315783 DOI: 10.3390/antiox7120184] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/21/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
The present study consisted in evaluating the antioxidant, anti-inflammatory and cytoprotective properties of ethanolic extracts from three mint species (Mentha spicata L. (MS), Mentha pulegium L. (MP) and Mentha rotundifolia (L.) Huds (MR)) with biochemical methods on murine RAW 264.7 macrophages (a transformed macrophage cell line isolated from ascites of BALB/c mice infected by the Abelson leukemia virus). The total phenolic, flavonoid and carotenoid contents were determined with spectrophotometric methods. The antioxidant activities were quantified with the Kit Radicaux Libres (KRLTM), the ferric reducing antioxidant power (FRAP) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. The MS extract showed the highest total phenolic content, and the highest antioxidant capacity, while the MR extract showed the lowest total phenolic content and the lowest antioxidant capacity. The cytoprotective and anti-inflammatory activities of the extracts were quantified on murine RAW 264.7 macrophages treated with 7-ketocholesterol (7KC; 20 µg/mL: 50 µM) associated or not for 24 h and 48 h with ethanolic mint extracts used at different concentrations (25, 50, 100, 200 and 400 µg/mL). Under treatment with 7KC, an important inhibition of cell growth was revealed with the crystal violet test. This side effect was strongly attenuated in a dose dependent manner with the different ethanolic mint extracts, mainly at 48 h. The most important cytoprotective effect was observed with the MS extract. In addition, the effects of ethanolic mint extracts on cytokine secretion (Interleukin (IL)-6, IL-10, Monocyte Chemoattractant Protein (MCP)-1, Interferon (IFN)-ϒ, Tumor necrosis factor (TNF)-α) were determined at 24 h on lipopolysaccharide (LPS, 0.2 µg/mL)-, 7KC (20 µg/mL)- and (7KC + LPS)-treated RAW 264.7 cells. Complex effects of mint extracts were observed on cytokine secretion. However, comparatively to LPS-treated cells, all the extracts strongly reduce IL-6 secretion and two of them (MP and MR) also decrease MCP-1 and TNF-α secretion. However, no anti-inflammatory effects were observed on 7KC- and (7KC + LPS)-treated cells. Altogether, these data bring new evidences on the potential benefits (especially antioxidant and cytoprotective properties) of Algerian mint on human health.
Collapse
|
11
|
Brahmi F, Vejux A, Sghaier R, Zarrouk A, Nury T, Meddeb W, Rezig L, Namsi A, Sassi K, Yammine A, Badreddine I, Vervandier-Fasseur D, Madani K, Boulekbache-Makhlouf L, Nasser B, Lizard G. Prevention of 7-ketocholesterol-induced side effects by natural compounds. Crit Rev Food Sci Nutr 2018; 59:3179-3198. [DOI: 10.1080/10408398.2018.1491828] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fatiha Brahmi
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab. Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Anne Vejux
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
| | - Randa Sghaier
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab-NAFS ‘Nutrition - Functional Food & Vascular Health’, LR12ES05, Université de Monastir, Monastir, Tunisia
- Faculty of Medicine, Lab. Biochemistry, Sousse, Tunisia
| | - Amira Zarrouk
- Lab-NAFS ‘Nutrition - Functional Food & Vascular Health’, LR12ES05, Université de Monastir, Monastir, Tunisia
- Faculty of Medicine, Lab. Biochemistry, Sousse, Tunisia
| | - Thomas Nury
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
| | - Wiem Meddeb
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- LMMA/IPEST, Faculty of Science, University of Carthage, Bizerte, Tunisia
| | - Leila Rezig
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- ESIAT, Lab. Conservation et Valorisation des Aliments, Tunis, Tunisia
| | - Amira Namsi
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- University Tunis El Manar, Faculty of Science of Tunis, Laboratory of Functional Neurophysiology and Pathology, Tunis, Tunisia
| | - Khouloud Sassi
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab. Onco-Hematology, Faculty de Medicine of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Aline Yammine
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Bioactive Molecules Research Lab, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Iham Badreddine
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab. ‘Valorisation des Ressources Naturelles et Environnement’, Université Ibn Zohr, Taroudant, Morocco
| | | | - Khodir Madani
- Lab. Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Lila Boulekbache-Makhlouf
- Lab. Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Boubker Nasser
- Lab. Neuroscience and Biochemistry, Université Hassan 1er, Settat, Morocco
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
12
|
Maldonado-Pereira L, Schweiss M, Barnaba C, Medina-Meza IG. The role of cholesterol oxidation products in food toxicity. Food Chem Toxicol 2018; 118:908-939. [DOI: 10.1016/j.fct.2018.05.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 01/10/2023]
|
13
|
Nury T, Sghaier R, Zarrouk A, Ménétrier F, Uzun T, Leoni V, Caccia C, Meddeb W, Namsi A, Sassi K, Mihoubi W, Riedinger JM, Cherkaoui-Malki M, Moreau T, Vejux A, Lizard G. Induction of peroxisomal changes in oligodendrocytes treated with 7-ketocholesterol: Attenuation by α-tocopherol. Biochimie 2018; 153:181-202. [PMID: 30031877 DOI: 10.1016/j.biochi.2018.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/17/2018] [Indexed: 02/08/2023]
Abstract
The involvement of organelles in cell death is well established especially for endoplasmic reticulum, lysosomes and mitochondria. However, the role of the peroxisome is not well known, though peroxisomal dysfunction favors a rupture of redox equilibrium. To study the role of peroxisomes in cell death, 158 N murine oligodendrocytes were treated with 7-ketocholesterol (7 KC: 25-50 μM, 24 h). The highest concentration is known to induce oxiapoptophagy (OXIdative stress + APOPTOsis + autoPHAGY), whereas the lowest concentration does not induce cell death. In those conditions (with 7 KC: 50 μM) morphological, topographical and functional peroxisome alterations associated with modifications of the cytoplasmic distribution of mitochondria, with mitochondrial dysfunction (loss of transmembrane mitochondrial potential, decreased level of cardiolipins) and oxidative stress were observed: presence of peroxisomes with abnormal sizes and shapes similar to those observed in Zellweger fibroblasts, lower cellular level of ABCD3, used as a marker of peroxisomal mass, measured by flow cytometry, lower mRNA and protein levels (measured by RT-qPCR and western blotting) of ABCD1 and ABCD3 (two ATP-dependent peroxisomal transporters), and of ACOX1 and MFP2 enzymes, and lower mRNA level of DHAPAT, involved in peroxisomal β-oxidation and plasmalogen synthesis, respectively, and increased levels of very long chain fatty acids (VLCFA: C24:0, C24:1, C26:0 and C26:1, quantified by gas chromatography coupled with mass spectrometry) metabolized by peroxisomal β-oxidation. In the presence of 7 KC (25 μM), slight mitochondrial dysfunction and oxidative stress were found, and no induction of apoptosis was detected; however, modifications of the cytoplasmic distribution of mitochondria and clusters of mitochondria were detected. The peroxisomal alterations observed with 7 KC (25 μM) were similar to those with 7 KC (50 μM). In addition, data obtained by transmission electron microcopy and immunofluorescence microscopy by dual staining with antibodies raised against p62, involved in autophagy, and ABCD3, support that 7 KC (25-50 μM) induces pexophagy. 7 KC (25-50 μM)-induced side effects were attenuated by α-tocopherol but not by α-tocotrienol, whereas the anti-oxidant properties of these molecules determined with the FRAP assay were in the same range. These data provide evidences that 7 KC, at concentrations inducing or not cell death, triggers morphological, topographical and functional peroxisomal alterations associated with minor or major mitochondrial changes.
Collapse
Affiliation(s)
- Thomas Nury
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France
| | - Randa Sghaier
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France; Univ. Monastir, Lab. Biotechnology, Monastir, Tunisia
| | - Amira Zarrouk
- Univ. Monastir, Lab-NAFS 'Nutrition - Functional Food & Vascular Diseases' LR12-ES-05, Monastir, Tunisia; Faculty of Medicine, Sousse, Tunisia
| | | | - Tugba Uzun
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France
| | - Valerio Leoni
- Lab. Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy
| | - Claudio Caccia
- Unit of Medical Genetics and Neurogenetics, IRCCS Carlo Besta, Milano, Italy
| | - Wiem Meddeb
- Univ. Carthage, LMMA, IPEST, Tunis, and Fac. of Science of Bizerte, Bizerte, Tunisia
| | - Amira Namsi
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France; Univ. Tunis El Manar, Lab. Neurophysiologie Fonctionnelle et Pathologie-UR11ES/09, Tunis, Tunisia
| | - Khouloud Sassi
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France; Univ. Tunis El Manar, Fac. of Medicine, Lab of Onco-Hematology, Tunis, Tunisia
| | - Wafa Mihoubi
- Centre de Biotechnologie de Sfax, Lab. Biotechnologie Moléculaire des Eucaryotes, Sfax, Tunisia
| | - Jean-Marc Riedinger
- Centre de Lutte Contre le Cancer GF Leclerc, Laboratoire de Biologie Médicale, Dijon, France
| | - Mustapha Cherkaoui-Malki
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France
| | - Thibault Moreau
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France; Dept. of Neurology, Univ. Hospital of Dijon, France
| | - Anne Vejux
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France
| | - Gérard Lizard
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France.
| |
Collapse
|
14
|
Vurusaner B, Gargiulo S, Testa G, Gamba P, Leonarduzzi G, Poli G, Basaga H. The role of autophagy in survival response induced by 27-hydroxycholesterol in human promonocytic cells. Redox Biol 2018; 17:400-410. [PMID: 29879549 PMCID: PMC5986166 DOI: 10.1016/j.redox.2018.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 11/25/2022] Open
Abstract
Autophagy has been shown to be stimulated in advanced atherosclerotic plaques by metabolic stress, inflammation and oxidized lipids. The lack of published studies addressing the potential stimulation of pro-survival autophagy by oxysterols, a family of cholesterol oxidation products, has prompted our study. Thus, the goal of the current study is to elucidate the molecular mechanism of the autophagy induced by 27-hydroxycholesterol (27-OH), that is one of the most abundant oxysterols in advanced atherosclerotic lesions, and to assess whether the pro-oxidant effect of the oxysterol is involved in the given response. Here we showed that 27-OH, in a low micromolar range, activates a pro-survival autophagic response in terms of increased LC3 II/LC3 I ratio and Beclin 1, that depends on the up-regulation of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways as a potential result of an intracellular reactive oxygen species increase provoked by the oxysterol in human promonocytic U937 cells. Moreover, 27-OH induced autophagy is dependent on the relation between nuclear factor erythroid 2 p45-related factor 2 (Nrf2)-dependent antioxidant response and p62. The data obtained highlight the involvement of cholesterol oxidation products in the pathogenesis of oxidative stress related chronic diseases like atherosclerosis. Therefore, deeply understanding the complex mechanism and generating synthetic or natural molecules targeting this survival mechanism might be very promising tools in the prevention of such diseases.
Collapse
Affiliation(s)
- Beyza Vurusaner
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey.
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Huveyda Basaga
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey.
| |
Collapse
|
15
|
Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Lipids Health Dis 2017; 16:188. [PMID: 28969682 PMCID: PMC5625595 DOI: 10.1186/s12944-017-0579-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/22/2017] [Indexed: 01/22/2023] Open
Abstract
Due to the fact that one of the main causes of worldwide deaths are directly related to atherosclerosis, scientists are constantly looking for atherosclerotic factors, in an attempt to reduce prevalence of this disease. The most important known pro-atherosclerotic factors include: elevated levels of LDL, low HDL levels, obesity and overweight, diabetes, family history of coronary heart disease and cigarette smoking. Since finding oxidized forms of cholesterol – oxysterols – in lesion in the arteries, it has also been presumed they possess pro-atherosclerotic properties. The formation of oxysterols in the atherosclerosis lesions, as a result of LDL oxidation due to the inflammatory response of cells to mechanical stress, is confirmed. However, it is still unknown, what exactly oxysterols cause in connection with atherosclerosis, after gaining entry to the human body e.g., with food containing high amounts of cholesterol, after being heated. The in vivo studies should provide data to finally prove or disprove the thesis regarding the pro-atherosclerotic prosperities of oxysterols, yet despite dozens of available in vivo research some studies confirm such properties, other disprove them. In this article we present the current knowledge about the mechanism of formation of atherosclerotic lesions and we summarize available data on in vivo studies, which investigated whether oxysterols have properties to cause the formation and accelerate the progress of the disease. Additionally we will try to discuss why such different results were obtained in all in vivo studies.
Collapse
|
16
|
Gargiulo S, Testa G, Gamba P, Staurenghi E, Poli G, Leonarduzzi G. Oxysterols and 4-hydroxy-2-nonenal contribute to atherosclerotic plaque destabilization. Free Radic Biol Med 2017; 111:140-150. [PMID: 28057601 DOI: 10.1016/j.freeradbiomed.2016.12.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 12/31/2022]
Abstract
A growing bulk of evidence suggests that cholesterol oxidation products, known as oxysterols, and 4-hydroxy-2-nonenal (HNE), the major proatherogenic components of oxidized low density lipoproteins (oxLDLs), significantly contribute to atherosclerotic plaque progression and destabilization, with eventual plaque rupture. These oxidized lipids are involved in various key steps of this complex process, mainly thanks to their ability to induce inflammation, oxidative stress, and apoptosis. This review summarizes the current knowledge of the effects induced by these compounds on vascular cells, after their accumulation in the arterial wall and in the atherosclerotic plaque.
Collapse
Affiliation(s)
- Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
17
|
Cilla A, Alegría A, Attanzio A, Garcia-Llatas G, Tesoriere L, Livrea MA. Dietary phytochemicals in the protection against oxysterol-induced damage. Chem Phys Lipids 2017; 207:192-205. [PMID: 28267434 DOI: 10.1016/j.chemphyslip.2017.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/02/2017] [Indexed: 02/06/2023]
Abstract
The intake of fruits and vegetables is associated with reduced incidence of many chronic diseases. These foods contain phytochemicals that often possess antioxidant and free radical scavenging capacity and show anti-inflammatory action, which are also the basis of other bioactivities and health benefits, such as anticancer, anti-aging, and protective action for cardiovascular diseases, diabetes mellitus, obesity and neurodegenerative disorders. Many factors can be included in the etiopathogenesis of all of these multifactorial diseases that involve oxidative stress, inflammation and/or cell death processes, oxysterols, i.e. cholesterol oxidation products (COPs) as well as phytosterol oxidation products (POPs), among others. These oxidized lipids result from either spontaneous and/or enzymatic oxidation of cholesterol/phytosterols on the steroid nucleus or on the side chain and their critical roles in the pathophysiology of the abovementioned diseases has become increasingly evident. In this context, many studies investigated the potential of dietary phytochemicals (polyphenols, carotenoids and vitamins C and E, among others) to protect against oxysterol toxicity in various cell models mimicking pathophysiological conditions. This review, summarizing the mechanisms involved in the chemopreventive effect of phytochemicals against the injury by oxysterols may constitute a step forward to consider the importance of preventive strategies on a nutritional point of view to decrease the burden of many age-related chronic diseases.
Collapse
Affiliation(s)
- Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Alessandro Attanzio
- Dipartimento Scienze e Technologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Luisa Tesoriere
- Dipartimento Scienze e Technologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Maria A Livrea
- Dipartimento Scienze e Technologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy.
| |
Collapse
|
18
|
O'sullivan AJ, O'callaghan YC, O'brien NM. Differential Effects of Mixtures of Cholesterol Oxidation Products on Bovine Aortic Endothelial Cells and Human Monocytic U937 Cells. Int J Toxicol 2016; 24:173-9. [PMID: 16040570 DOI: 10.1080/10915810590952951] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cholesterol oxidation products or oxysterols are of interest due to their hypothesized role in the development of atherosclerosis. The objective of the present study was to assess the cytotoxic effects of mixtures of oxysterols: 25-hydroxycholesterol (25-OHC), 7 β-hydroxycholesterol (7 β-OHC), and cholesterol-5 β,6 β-epoxide ( β-epox) on two cell types associated with the atherosclerotic process, bovine aortic endothelial (BAE) cells and human monocytic U937 cells. Cells were exposed to 25-OHC, 7 β-OHC, or β-epox, or equimolar mixtures (30 μM) of 25-OHC and 7 β-OHC, 25-OHC and β-epox, or 7 β-OHC and β-epox for 48 h. Cell viability was assessed using the fluorescein diacetate/ethidium bromide (FDA/ EtBr) assay and nuclear morphology following staining with Hoechst 33342. 25-OHC was the least toxic of the oxysterols and did not induce apoptosis in either cell line. Both 7 β-OHC and β-epox treatments were cytotoxic and induced apoptosis in the cells. Cotreatment with 25-OHC did not alter the toxicity of 7 β-OHC and β-epox in U937 cells but did decrease the percentage apoptotic cell death. In contrast, in the BAE cells cotreatment with 25-OHC had a slight protective effect on 7 β-OHC and β-epox–induced toxicities and a marked decrease in apoptotic cell death. The 7 β-OHC and β-epox mixture induced a significant increase in apoptotic cell death in U937 cells but decreased this mode of cell death in the BAE cells. The effects of oxysterols on glutathione levels also differed between the cells with changes noted in U937 and not in BAE cells. Results demonstrate interactive effects when oxysterols are studied as mixtures rather than single compounds in vitro.
Collapse
Affiliation(s)
- Aaron J O'sullivan
- Department of Food and Nutritional Sciences, University College Cork, Ireland
| | | | | |
Collapse
|
19
|
Ryan L, O'Callaghan YC, O'Brien NM. Involvement of Calcium in 7β-Hydroxycholesterol and Cholesterol-5β,6β-Epoxide-Induced Apoptosis. Int J Toxicol 2016; 25:35-9. [PMID: 16510355 DOI: 10.1080/10915810500488387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxidized low-density lipoprotein (oxLDL) is believed to play a central role in the development of atherosclerosis. The induction of apoptosis in cells of the arterial wall is a critical event in the development of atheroma. 7β-Hydroxycholesterol (7 β-OH) and cholesterol-5 β,6 β-epoxide ( β-epoxide) are components of oxLDL and have previously been shown to be potent inducers of apoptosis. The exact mechanism through which these oxysterols induce apoptosis remains to be fully elucidated. A perturbation of intra-cellular calcium homeostasis has been found to trigger apoptosis in many experimental systems. The aim of the present study was to determine the involvement of calcium signaling in 7 β-OH and β-epoxide–induced apoptosis. To this end, the authors employed the calcium channel blockers verapamil and nifedipine and inhibitors of calpain activation, ALLM and ALLN. Verapamil protected against the decrease in viability induced by 7 β-OH whereas nifedipine had a protective effect in both 7 β-OH and β-epoxide–treated cells, though these compounds did not restore viability to control levels. Verapamil, nifedipine, and ALLM prevented apoptosis induced by β-epoxide. None of the compounds employed in the current study protected against 7 β-OH–induced apoptosis. Our results implicate calcium signaling in the apoptotic pathway induced by β-epoxide and also highlight differences between apoptosis induced by 7 β-OH and β-epoxide.
Collapse
Affiliation(s)
- L Ryan
- Department of Food and Nutritional Sciences, University College Cork, Ireland
| | | | | |
Collapse
|
20
|
Protective Effects of α-Tocopherol, γ-Tocopherol and Oleic Acid, Three Compounds of Olive Oils, and No Effect of Trolox, on 7-Ketocholesterol-Induced Mitochondrial and Peroxisomal Dysfunction in Microglial BV-2 Cells. Int J Mol Sci 2016; 17:ijms17121973. [PMID: 27897980 PMCID: PMC5187773 DOI: 10.3390/ijms17121973] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 01/18/2023] Open
Abstract
Lipid peroxidation products, such as 7-ketocholesterol (7KC), may be increased in the body fluids and tissues of patients with neurodegenerative diseases and trigger microglial dysfunction involved in neurodegeneration. It is therefore important to identify synthetic and natural molecules able to impair the toxic effects of 7KC. We determined the impact of 7KC on murine microglial BV-2 cells, especially its ability to trigger mitochondrial and peroxisomal dysfunction, and evaluated the protective effects of α- and γ-tocopherol, Trolox, and oleic acid (OA). Multiple complementary chemical assays, flow cytometric and biochemical methods were used to evaluate the antioxidant and cytoprotective properties of these molecules. According to various complementary assays to estimate antioxidant activity, only α-, and γ-tocopherol, and Trolox had antioxidant properties. However, only α-tocopherol, γ-tocopherol and OA were able to impair 7KC-induced loss of mitochondrial transmembrane potential, which is associated with increased permeability to propidium iodide, an indicator of cell death. In addition, α-and γ-tocopherol, and OA were able to prevent the decrease in Abcd3 protein levels, which allows the measurement of peroxisomal mass, and in mRNA levels of Abcd1 and Abcd2, which encode for two transporters involved in peroxisomal β-oxidation. Thus, 7KC-induced side effects are associated with mitochondrial and peroxisomal dysfunction which can be inversed by natural compounds, thus supporting the hypothesis that the composition of the diet can act on the function of organelles involved in neurodegenerative diseases.
Collapse
|
21
|
Kulig W, Cwiklik L, Jurkiewicz P, Rog T, Vattulainen I. Cholesterol oxidation products and their biological importance. Chem Phys Lipids 2016; 199:144-160. [DOI: 10.1016/j.chemphyslip.2016.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/14/2022]
|
22
|
Pfeffer BA, Xu L, Porter NA, Rao SR, Fliesler SJ. Differential cytotoxic effects of 7-dehydrocholesterol-derived oxysterols on cultured retina-derived cells: Dependence on sterol structure, cell type, and density. Exp Eye Res 2016; 145:297-316. [PMID: 26854824 PMCID: PMC5024725 DOI: 10.1016/j.exer.2016.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/21/2015] [Accepted: 01/26/2016] [Indexed: 01/18/2023]
Abstract
Tissue accumulation of 7-dehydrocholesterol (7DHC) is a hallmark of Smith-Lemli-Opitz Syndrome (SLOS), a human inborn error of the cholesterol (CHOL) synthesis pathway. Retinal 7DHC-derived oxysterol formation occurs in the AY9944-induced rat model of SLOS, which exhibits a retinal degeneration characterized by selective loss of photoreceptors and associated functional deficits, Müller cell hypertrophy, and engorgement of the retinal pigment epithelium (RPE) with phagocytic inclusions. We evaluated the relative effects of four 7DHC-derived oxysterols on three retina-derived cell types in culture, with respect to changes in cellular morphology and viability. 661W (photoreceptor-derived) cells, rMC-1 (Müller glia-derived) cells, and normal diploid monkey RPE (mRPE) cells were incubated for 24 h with dose ranges of either 7-ketocholesterol (7kCHOL), 5,9-endoperoxy-cholest-7-en-3β,6α-diol (EPCD), 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), or 4β-hydroxy-7-dehydrocholesterol (4HDHC); CHOL served as a negative control (same dose range), along with appropriate vehicle controls, while staurosporine (Stsp) was used as a positive cytotoxic control. For 661W cells, the rank order of oxysterol potency was: EPCD > 7kCHOL >> DHCEO > 4HDHC ≈ CHOL. EC50 values were higher for confluent vs. subconfluent cultures. 661W cells exhibited much higher sensitivity to EPCD and 7kCHOL than either rMC-1 or mRPE cells, with the latter being the most robust when challenged, either at confluence or in sub-confluent cultures. When tested on rMC-1 and mRPE cells, EPCD was again an order of magnitude more potent than 7kCHOL in compromising cellular viability. Hence, 7DHC-derived oxysterols elicit differential cytotoxicity that is dose-, cell type-, and cell density-dependent. These results are consistent with the observed progressive, photoreceptor-specific retinal degeneration in the rat SLOS model, and support the hypothesis that 7DHC-derived oxysterols are causally linked to that retinal degeneration as well as to SLOS.
Collapse
Affiliation(s)
- Bruce A Pfeffer
- Research Service, VA Western New York Healthcare System, Buffalo, NY, USA; SUNY Eye Institute, Buffalo, NY, USA; Departments of Ophthalmology and Biochemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Sriganesh Ramachandra Rao
- Research Service, VA Western New York Healthcare System, Buffalo, NY, USA; SUNY Eye Institute, Buffalo, NY, USA; Departments of Ophthalmology and Biochemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Steven J Fliesler
- Research Service, VA Western New York Healthcare System, Buffalo, NY, USA; SUNY Eye Institute, Buffalo, NY, USA; Departments of Ophthalmology and Biochemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA.
| |
Collapse
|
23
|
Vurusaner B, Gamba P, Gargiulo S, Testa G, Staurenghi E, Leonarduzzi G, Poli G, Basaga H. Nrf2 antioxidant defense is involved in survival signaling elicited by 27-hydroxycholesterol in human promonocytic cells. Free Radic Biol Med 2016; 91:93-104. [PMID: 26689473 DOI: 10.1016/j.freeradbiomed.2015.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023]
Abstract
Cholesterol oxidation products such as oxysterols are considered critical factors in the atherosclerotic plaque formation since they induce oxidative stress, inflammation and apoptotic cell death. 27-hydroxycholesterol (27-OH) is one of the most represented oxysterols in atherosclerotic lesions. We recently showed that relatively low concentrations of 27-OH generated a strong survival signaling through an early and transient increase of cellular ROS level, that enhanced MEK-ERK/PI3K-Akt phosphorylation, in turn responsible of a sustained quenching of ROS production. It remains to identify the link between ERK/Akt up-regulation and the consequent quenching effect on ROS intracellular level that efficiently and markedly delay the pro-apoptotic effect of the oxysterol. Here we report on the potent activation of Nrf2 redox-sensitive transcription factor by low micromolar amount of 27-OH added to U937 promonocytic cells. The 27-OH-exerted induction of Nrf2 and subsequently of the target genes, HO-1 and NQO-1, was proved to be: (i) dependent upon the activation of ERK and Akt pathways, (ii) directly responsible for the quenching of intracellular oxidative stress and by this way (iii) ultimately responsible for the observed oxysterol-induced pro-survival response.
Collapse
Affiliation(s)
- Beyza Vurusaner
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey.
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Huveyda Basaga
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey.
| |
Collapse
|
24
|
Sudo R, Sato F, Azechi T, Wachi H. 7-Ketocholesterol-induced lysosomal dysfunction exacerbates vascular smooth muscle cell calcification via oxidative stress. Genes Cells 2015; 20:982-91. [PMID: 26419830 DOI: 10.1111/gtc.12301] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/20/2015] [Indexed: 11/29/2022]
Abstract
Vascular calcification is known to reduce the elasticity of aorta. Several studies have suggested that autophagy-lysosomal pathway (ALP) in vascular smooth muscle cells (VSMCs) is associated with vascular calcification. A major component of oxidized low-density lipoproteins, 7-ketocholesterol (7-KC), has been reported to promote inorganic phosphorus (Pi)-induced vascular calcification and induce ALP. The aim of this study was to unravel the relationship between ALP and the progression of calcification by 7-KC. Calcification of human VSMCs was induced by Pi stimulation in the presence or absence of 7-KC. FACS analysis showed that 7-KC-induced apoptosis at a high concentration (30 μM), but not at a low concentration (15 μM). Interestingly, 7-KC promoted calcification in VSMCs regardless of apoptosis. Immunoblotting and immunostaining showed that 7-KC inhibits not only the fusion of autophagosomes and lysosomes but also causes a swell of lysosomes with the reduction of cathepsin B and D. Moreover, lysosomal protease inhibitors exacerbated the apoptosis-independent calcification by 7-KC although inhibition of autophagosome formation by Atg5 siRNA did not. Finally, the 7-KC-induced progression of calcification was alleviated by the treatment with antioxidant. Taken together, our data showed that 7-KC promotes VSMC calcification through lysosomal-dysfunction-dependent oxidative stress.
Collapse
Affiliation(s)
- Ryo Sudo
- Department of Tissue Regeneration, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Fumiaki Sato
- Department of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Takuya Azechi
- Department of Tissue Regeneration, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Hiroshi Wachi
- Department of Tissue Regeneration, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| |
Collapse
|
25
|
Vurusaner B, Gamba P, Testa G, Gargiulo S, Biasi F, Zerbinati C, Iuliano L, Leonarduzzi G, Basaga H, Poli G. Survival signaling elicited by 27-hydroxycholesterol through the combined modulation of cellular redox state and ERK/Akt phosphorylation. Free Radic Biol Med 2014; 77:376-85. [PMID: 25110320 DOI: 10.1016/j.freeradbiomed.2014.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/08/2014] [Accepted: 07/21/2014] [Indexed: 01/16/2023]
Abstract
The oxysterol 27-hydroxycholesterol (27-OH) is increasingly considered to be involved in a variety of pathophysiological processes, having been shown to modulate cell proliferation and metabolism, and also to exert proinflammatory and proapoptotic effects. This study aimed to elucidate the molecular pathways whereby 27-OH may generate survival signals in cells of the macrophage lineage, and to clarify whether its known prooxidant effect is involved in that process. A net up-regulation of survival signaling, involving the extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt phosphorylation pathways, was observed in U937 promonocytic cells cultivated over time in the presence of a low micromolar concentration of the oxysterol. Interestingly, the up-regulation of both kinases was shown to be closely dependent on an early 27-OH-induced intracellular increase of reactive oxygen species (ROS). In turn, stimulation of ERK and PI3K/Akt both significantly quenched ROS steady state and markedly phosphorylated Bad, thereby determining a marked delay of the oxysterol׳s proapoptotic action. The 27-OH-induced survival pathways thus appear to be redox modulated and, if they occur within or nearby inflammatory cells during progression of chronic diseases such as cancer and atherosclerosis, they could significantly impact the growth and evolution of such diseases.
Collapse
Affiliation(s)
- Beyza Vurusaner
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey.
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| | - Fiorella Biasi
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| | - Chiara Zerbinati
- Department of Medical-Surgical Sciences and Biotechnology, Vascular Biology and Mass Spectrometry Laboratory, Sapienza University of Rome, Latina, Italy.
| | - Luigi Iuliano
- Department of Medical-Surgical Sciences and Biotechnology, Vascular Biology and Mass Spectrometry Laboratory, Sapienza University of Rome, Latina, Italy.
| | | | - Huveyda Basaga
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey.
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
26
|
Serviddio G, Blonda M, Bellanti F, Villani R, Iuliano L, Vendemiale G. Oxysterols and redox signaling in the pathogenesis of non-alcoholic fatty liver disease. Free Radic Res 2013; 47:881-93. [PMID: 24000796 DOI: 10.3109/10715762.2013.835048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxysterols are oxidized species of cholesterol coming from exogenous (e.g. dietary) and endogenous (in vivo) sources. They play critical roles in normal physiologic functions such as regulation of cellular cholesterol homeostasis. Most of biological effects are mediated by interaction with nuclear receptor LXRα, highly expressed in the liver as well as in many other tissues. Such interaction participates in the regulation of whole-body cholesterol metabolism, by acting as "lipid sensors". Moreover, it seems that oxysterols are also suspected to play key roles in several pathologies, including cardiovascular and inflammatory disease, cancer, and neurodegeneration. Growing evidence suggests that oxysterols may contribute to liver injury in non-alcoholic fatty liver disease. The present review focuses on the current status of knowledge on oxysterols' biological role, with an emphasis on LXR signaling and oxysterols' physiopathological relevance in NAFLD, suggesting new pharmacological development that needs to be addressed in the near future.
Collapse
Affiliation(s)
- G Serviddio
- C.U.R.E. Centre for Liver Diseases Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia , Italy
| | | | | | | | | | | |
Collapse
|
27
|
Song Y, Shen H, Du W, Goldstein DR. Inhibition of x-box binding protein 1 reduces tunicamycin-induced apoptosis in aged murine macrophages. Aging Cell 2013; 12:794-801. [PMID: 23711292 DOI: 10.1111/acel.12105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2013] [Indexed: 01/08/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is induced by the accumulation of unfolded and misfolded proteins in the ER. Although apoptosis induced by ER stress has been implicated in several aging-associated diseases, such as atherosclerosis, it is unclear how aging modifies ER stress response in macrophages. To decipher this relationship, we assessed apoptosis in macrophages isolated from young (1.5-2 months) and aged (16-18 months) mice and exposed the cells to the ER stress inducer tunicamycin. We found that aged macrophages exhibited more apoptosis than young macrophages, which was accompanied by reduced activation of phosphorylated inositol-requiring enzyme-1 (p-IRE1α), one of the three key ER stress signal transducers. Reduced gene expression of x-box binding protein 1 (XBP1), a downstream effector of IRE1α, enhanced p-IRE1α levels and reduced apoptosis in aged, but not young macrophages treated with tunicamycin. These findings delineate a novel, age-dependent interaction by which macrophages undergo apoptosis upon ER stress, and suggest an important protective role of IRE1α in aging-associated ER stress-induced apoptosis. This novel pathway may not only be important in our understanding of longevity, but may also have important implications for pathogenesis and potential treatment of aging-associated diseases in general.
Collapse
Affiliation(s)
- Yang Song
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | |
Collapse
|
28
|
Ragot K, Mackrill JJ, Zarrouk A, Nury T, Aires V, Jacquin A, Athias A, Barros JPPD, Véjux A, Riedinger JM, Delmas D, Lizard G. Absence of correlation between oxysterol accumulation in lipid raft microdomains, calcium increase, and apoptosis induction on 158N murine oligodendrocytes. Biochem Pharmacol 2013; 86:67-79. [DOI: 10.1016/j.bcp.2013.02.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
|
29
|
Phytochemical indicaxanthin suppresses 7-ketocholesterol-induced THP-1 cell apoptosis by preventing cytosolic Ca(2+) increase and oxidative stress. Br J Nutr 2012; 110:230-40. [PMID: 23228674 DOI: 10.1017/s000711451200493x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
7-Ketocholesterol (7-KC)-induced apoptosis of macrophages is considered a key event in the development of human atheromas. In the present study, the effect of indicaxanthin (Ind), a bioactive pigment from cactus pear fruit, on 7-KC-induced apoptosis of human monocyte/macrophage THP-1 cells was investigated. A pathophysiological condition was simulated by using amounts of 7-KC that can be reached in human atheromatous plaque. Ind was assayed within a micromolar concentration range, consistent with its plasma level after dietary supplementation with cactus pear fruit. Pro-apoptotic effects of 7-KC were assessed by cell cycle arrest, exposure of phosphatidylserine at the plasma membrane, variation of nuclear morphology, decrease of mitochondrial trans-membrane potential, activation of Bcl-2 antagonist of cell death and poly(ADP-ribose) polymerase-1 cleavage. Kinetic measurements within 24 h showed early formation of intracellular reactive oxygen species over basal levels, preceding NADPH oxidase-4 (NOX-4) over-expression and elevation of cytosolic Ca²⁺, with progressive depletion of total thiols. 7-KC-dependent activation of the redox-sensitive NF-κB was observed. Co-incubation of 2·5 μm of Ind completely prevented 7-KC-induced pro-apoptotic events. The effects of Ind may be ascribed to inhibition of NOX-4 basal activity and over-expression, inhibition of NF-κB activation, maintaining cell redox balance and Ca homeostasis, with prevention of mitochondrial damage and consequently apoptosis. The findings suggest that Ind, a highly bioavailable dietary phytochemical, may exert protective effects against atherogenetic toxicity of 7-KC at a concentration of nutritional interest.
Collapse
|
30
|
González MA, del Carmen Contini M, Millen N, Mahieu ST. Role of melatonin in the oxidative damage prevention at different times of hepatic regeneration. Cell Biochem Funct 2012; 30:701-8. [DOI: 10.1002/cbf.2855] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/20/2012] [Accepted: 05/28/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Marcela Aida González
- Facultad de Bioquímica y Ciencias Biológicas, Departamento de Ciencias Biológicas; Universidad Nacional del Litoral; Santa Fe; Argentina
| | - María del Carmen Contini
- Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Fisiología Humana; Universidad Nacional del Litoral; Santa Fe; Argentina
| | - Nestor Millen
- Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Fisiología Humana; Universidad Nacional del Litoral; Santa Fe; Argentina
| | - Stella Teresita Mahieu
- Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Fisiología Humana; Universidad Nacional del Litoral; Santa Fe; Argentina
| |
Collapse
|
31
|
Zhou HY, Hu GX, Lian QQ, Morris D, Ge RS. The metabolism of steroids, toxins and drugs by 11β-hydroxysteroid dehydrogenase 1. Toxicology 2012; 292:1-12. [DOI: 10.1016/j.tox.2011.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 11/25/2022]
|
32
|
7-Ketocholesterol is Not Cytotoxic to U937 Cells When Incorporated into Acetylated Low Density Lipoprotein. Lipids 2011; 47:239-47. [DOI: 10.1007/s11745-011-3634-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/07/2011] [Indexed: 01/17/2023]
|
33
|
Ragot K, Delmas D, Athias A, Nury T, Baarine M, Lizard G. α-Tocopherol impairs 7-ketocholesterol-induced caspase-3-dependent apoptosis involving GSK-3 activation and Mcl-1 degradation on 158N murine oligodendrocytes. Chem Phys Lipids 2011; 164:469-78. [PMID: 21575614 DOI: 10.1016/j.chemphyslip.2011.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/30/2022]
Abstract
In important and severe neurodegenerative pathologies, 7-ketocholesterol, mainly resulting from cholesterol autoxidation, may contribute to dys- or demyelination processes. On various cell types, 7-ketocholesterol has often been shown to induce a complex mode of cell death by apoptosis associated with phospholipidosis. On 158N murine oligodendrocytes treated with 7-ketocholesterol (20 μg/mL corresponding to 50 μM, 24-48 h), the induction of a mode of cell death by apoptosis characterised by the occurrence of cells with condensed and/or fragmented nuclei, caspase activation (including caspase-3) and internucleosomal DNA fragmentation was observed. It was associated with a loss of transmembrane mitochondrial potential (ΔΨm) measured with JC-1, with a dephosphorylation of Akt and GSK3 (especially GSK3β), and with degradation of Mcl-1. With α-tocopherol (400 μM), which was capable of counteracting 7-ketocholesterol-induced apoptosis, Akt and GSK3β dephosphorylation were inhibited as well as Mcl-1 degradation. These data underline that the potential protective effects of α-tocopherol against 7-ketocholesterol-induced apoptosis do not depend on the cell line considered, and that the cascade of events (Akt/GSK3β/Mcl-1) constitutes a link between 7-ketocholesterol-induced cytoplasmic membrane dysfunctions and mitochondrial depolarisation leading to apoptosis.
Collapse
Affiliation(s)
- Kévin Ragot
- Centre de Recherche INSERM 866 (Lipides, Nutrition, Cancer)-Equipe Biochimie Métabolique et Nutritionnelle, Université de Bourgogne, Dijon, France
| | | | | | | | | | | |
Collapse
|
34
|
Jusakul A, Yongvanit P, Loilome W, Namwat N, Kuver R. Mechanisms of oxysterol-induced carcinogenesis. Lipids Health Dis 2011; 10:44. [PMID: 21388551 PMCID: PMC3061933 DOI: 10.1186/1476-511x-10-44] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/09/2011] [Indexed: 12/28/2022] Open
Abstract
Oxysterols are oxidation products of cholesterol that are generated by enzymatic reactions mediated by cytochrome P450 family enzymes or by non-enzymatic reactions involving reactive oxygen and nitrogen species. Oxysterols play various regulatory roles in normal cellular processes such as cholesterol homeostasis by acting as intermediates in cholesterol catabolism. Pathological effects of oxysterols have also been described, and various reports have implicated oxysterols in several disease states, including atherosclerosis, neurological disease, and cancer. Numerous studies show that oxysterols are associated with various types of cancer, including cancers of the colon, lung, skin, breast and bile ducts. The molecular mechanisms whereby oxysterols contribute to the initiation and progression of cancer are an area of active investigation. This review focuses on the current state of knowledge regarding the role of oxysterols in carcinogenesis. Mutagenicity of oxysterols has been described in both nuclear and mitochondrial DNA. Certain oxysterols such as cholesterol-epoxide and cholestanetriol have been shown to be mutagenic and genotoxic. Oxysterols possess pro-oxidative and pro-inflammatory properties that can contribute to carcinogenesis. Oxysterols can induce the production of inflammatory cytokines such as interleukin-8 and interleukin-1β. Certain oxysterols are also involved in the induction of cyclo-oxygenase-2 expression. Inflammatory effects can also be mediated through the activation of liver-X-receptor, a nuclear receptor for oxysterols. Thus, several distinct molecular mechanisms have been described showing that oxysterols contribute to the initiation and progression of cancers arising in various organ systems.
Collapse
Affiliation(s)
- Apinya Jusakul
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Khaen, Thailand
| | | | | | | | | |
Collapse
|
35
|
Lemaire-Ewing S, Desrumaux C, Néel D, Lagrost L. Vitamin E transport, membrane incorporation and cell metabolism: Is alpha-tocopherol in lipid rafts an oar in the lifeboat? Mol Nutr Food Res 2010; 54:631-40. [PMID: 20166147 DOI: 10.1002/mnfr.200900445] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vitamin E is composed of closely related compounds, including tocopherols and tocotrienols. Studies of the last decade provide strong support for a specific role of alpha-tocopherol in cell signalling and the regulation of gene expression. It produces significant effects on inflammation, cell proliferation and apoptosis that are not shared by other vitamin E isomers with similar antioxidant properties. The different behaviours of vitamin E isomers might relate, at least in part, to the specific effects they exert at the plasma membrane. alpha-Tocopherol is not randomly distributed throughout the phospholipid bilayer of biological membranes, and as compared with other isomers, it shows a propensity to associate with lipid rafts. Distinct aspects of vitamin E transport and metabolism is discussed with emphasis on the interaction between alpha-tocopherol and lipid rafts and the consequences of these interactions on cell metabolism.
Collapse
|
36
|
The role of endogenous reactive oxygen species in oxymatrine-induced caspase-3-dependent apoptosis in human melanoma A375 cells. Anticancer Drugs 2010; 21:494-501. [DOI: 10.1097/cad.0b013e328336e927] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Effects of oxysterols on cell viability, inflammatory cytokines, VEGF, and reactive oxygen species production on human retinal cells: cytoprotective effects and prevention of VEGF secretion by resveratrol. Eur J Nutr 2010; 49:435-46. [PMID: 20339855 DOI: 10.1007/s00394-010-0102-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIMS Oxysterols are assumed to play important roles in age-related macular degeneration, a major cause of blindness. So we characterized the cytotoxic, oxidative, inflammatory, and angiogenic activities of oxysterols (7β-hydroxycholesterol (7β-OH), 7-ketocholesterol (7KC), 25-hydroxycholesterol (25-OH)) in human retinal ARPE-19 cells, and evaluated the protective effects of resveratrol (Rsv: 1 μM), a polyphenol from red wine. METHODS ARPE-19 cells were treated with 7β-OH, 7KC, or 25-OH (5-40 μg/mL; 24-48 h) without or with Rsv. Cell viability was determined using trypan blue and the MTT assay. Cell death was characterized by electron microscopy and in situ detection of activated caspases with fluorochrome-labeled inhibitors of caspases. Reactive oxygen species (ROS) production was measured with hydroethidine. ELISA methods and a cytometric bead assay were used to quantify cytokines involved in inflammation (IL-8, IL-1β, IL-6, IL-10, IL-12p70, TNF-α, MCP-1) and VEGF. RESULTS 7β-OH and 7KC triggered a caspase-independent cell death process associated with the presence of multilamellar cytoplasmic structures evocating phospholipidosis, increased ROS production, and IL-8 secretion. 7β-OH enhanced VEGF secretion. No cytotoxic effects were identified with 25-OH, which highly stimulated ROS production, MCP-1, and VEGF secretion. With oxysterols, no IL-10, TNF-α, and IL-12p70 secretion were detected. 25-OH induced IL-8 secretion through the MEK/ERK½ signaling pathway, and Rsv showed cytoprotective activities and inhibited VEGF secretion. CONCLUSION 7β-OH, 7KC, and 25-OH have cytotoxic, oxidative, inflammatory, and/or angiogenic activities on ARPE-19 cells. As Rsv has some protective effects against oxysterol-induced cell death and VEGF secretion it could be valuable in ARMD treatment.
Collapse
|
38
|
Ong WY, Kim JH, He X, Chen P, Farooqui AA, Jenner AM. Changes in brain cholesterol metabolome after excitotoxicity. Mol Neurobiol 2010; 41:299-313. [PMID: 20140539 DOI: 10.1007/s12035-010-8099-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 01/07/2010] [Indexed: 12/15/2022]
Abstract
Excitotoxicity due to excess stimulation of glutamate receptors in neurons is accompanied by increased Ca(2+) influx, stimulation of Ca(2+)-dependent enzymes, ATP depletion, increase in lipid peroxidation products, and loss of glutathione. These changes resemble neurochemical alterations in acute neuronal injury (stroke, spinal cord injury, and traumatic brain injury) and chronic neurodegenerative diseases such as Alzheimer's disease. Intracerebroventricular injection of the potent glutamate analog kainate in rats results in increased cholesterol concentration in the hippocampus at short to medium time intervals, i.e., 3 days-1 week post-injection, as detected by gas chromatography-mass spectrometry in the lesioned hippocampus. This is accompanied by an early increase in levels of cholesterol biosynthetic precursors and increases in both enzymatically derived oxysterols such as 24-hydroxycholesterol and cholesterol oxidation products (COPs) generated by reactive oxygen species, including cholesterol epoxides and 7-ketocholesterol. In contrast to COPs, no change in concentration of the neurosteroid pregnenolone was found after KA injury. Cholesterol and COPs significantly increase exocytosis in cultured PC12 cells and neurons, and both oxysterols and COPs are able to induce cytotoxic and apoptotic injuries in different cell types, including neurons. Together, the findings suggest that increased cholesterol and COPs after KA excitotoxicity could themselves lead to disturbed neuronal ion homeostasis, increased neurotransmitter release, and propagation of excitotoxicity.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore.
| | | | | | | | | | | |
Collapse
|
39
|
Garenc C, Julien P, Levy E. Oxysterols in biological systems: The gastrointestinal tract, liver, vascular wall and central nervous system. Free Radic Res 2009; 44:47-73. [DOI: 10.3109/10715760903321804] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Cholestane-3β,5α,6β-triol-induced reactive oxygen species production promotes mitochondrial dysfunction in isolated mice liver mitochondria. Chem Biol Interact 2009; 179:81-7. [DOI: 10.1016/j.cbi.2008.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 12/02/2008] [Accepted: 12/04/2008] [Indexed: 01/05/2023]
|
41
|
Vejux A, Guyot S, Montange T, Riedinger JM, Kahn E, Lizard G. Phospholipidosis and down-regulation of the PI3-K/PDK-1/Akt signalling pathway are vitamin E inhibitable events associated with 7-ketocholesterol-induced apoptosis. J Nutr Biochem 2009; 20:45-61. [DOI: 10.1016/j.jnutbio.2007.12.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/06/2007] [Accepted: 12/07/2007] [Indexed: 01/16/2023]
|
42
|
Effects of apigenin, lycopene and astaxanthin on 7β-hydroxycholesterol-induced apoptosis and Akt phosphorylation in U937 cells. Br J Nutr 2008; 100:287-96. [DOI: 10.1017/s0007114507898643] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxysterols arise from the enzymic or non-enzymic oxidation of cholesterol and have been shown to be cytotoxic to certain cell lines. In particular, apoptosis induced by the oxysterol 7β-hydroxycholesterol (7β-OH) has been associated with the generation of oxidative stress, cytochrome c release and caspase activation. Due to the fundamental importance of apoptosis in pathological processes, the identification of substances capable of modulating this form of cell death is now actively researched. The objective of the present study was to investigate if apigenin, lycopene and astaxanthin could inhibit 7β-OH-induced apoptosis in U937 cells. Pretreatment with 0·1 μm-astaxanthin protected against apoptosis, while lycopene did not oppose the adverse effects of 7β-OH. At low concentrations, apigenin did not protect against oxysterol-induced apoptosis; however, at higher concentrations it intensified cell death. Additionally, we investigated the effect of 7β-OH, apigenin and astaxanthin on the activation of the serine threonine kinase Akt (phosphorylated Akt:Akt ratio) to determine whether the effect on cell viability and growth was linked to the Akt signalling pathway. Akt activation was decreased in the oxysterol-treated cells compared with control cells; however, this did not attain significance. Interestingly, activation of Akt was significantly reduced compared with control cells following incubation with apigenin and astaxanthin both in the absence and in the presence of 7β-OH. Our data suggest that apigenin, lycopene and astaxanthin failed to protect against 7β-OH-induced apoptosis, and the decrease in cell viability and the increase in apoptotic nuclei induced by the antioxidants appear to be associated with down regulation of Akt activity.
Collapse
|
43
|
Vejux A, Malvitte L, Lizard G. Side effects of oxysterols: cytotoxicity, oxidation, inflammation, and phospholipidosis. Braz J Med Biol Res 2008; 41:545-56. [DOI: 10.1590/s0100-879x2008000700001] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 07/04/2008] [Indexed: 02/01/2023] Open
Affiliation(s)
- A. Vejux
- Université de Nice Sophia Antipolis, France
| | - L. Malvitte
- Hôpital Général, France; Faculté des Sciences Gabriel, France
| | - G. Lizard
- Faculté des Sciences Gabriel, France
| |
Collapse
|
44
|
Interactions between cell death induced by statins and 7-ketocholesterol in rabbit aorta smooth muscle cells. Br J Pharmacol 2008; 154:1236-46. [PMID: 18469840 DOI: 10.1038/bjp.2008.181] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE 7-Ketocholesterol, an oxysterol present in atherosclerotic lesions, induces smooth muscle cell (SMC) death, thereby destabilizing plaques. Statins protect patients from myocardial infarction, though they induce SMC apoptosis. We investigated whether statins and 7-ketocholesterol exerted additive cell death effects. EXPERIMENTAL APPROACH Cultured rabbit aorta SMCs (passage 2-6) were exposed to 7-ketocholesterol with or without fluvastatin, simvastatin or pravastatin. Uptake of neutral red (NR), monolayer protein, cleavage of the pan-caspase substrate Asp-Glu-Val-Asp-rhodamine110, cell morphology (light and electron microscopy) and processing of microtubule-associated protein 1 light chain 3 (LC3, immunoblot) were determined. KEY RESULTS NR uptake declined upon 18 h exposure to 25 microM 7-ketocholesterol (-41+/-3%, n=13), 100 microM fluvastatin (-59%) or 30-100 microM simvastatin (-28 to -74%). Oxysterol and high statin concentrations exerted additive effects, but lower concentrations (fluvastatin 10-30 microM, simvastatin 1-10 microM) partly reversed viability loss. 7-Ketocholesterol caused intense cytoplasmic vacuolization, processing of LC3-I to LC3-II, but little caspase activation (increase 29.5%). Fluvastatin (10-100 microM, 70-545% increase) and simvastatin (3-100 microM 43-322% increase) induced caspase activation without LC3 processing, but failed to activate caspases in 7-ketocholesterol-treated SMCs. Pravastatin up to 100 microM was always inactive. CONCLUSIONS AND IMPLICATIONS 7-Ketocholesterol caused SMC death, mainly via autophagic vesicle formation with LC3 processing, whereas lipophilic statins evoked SMC apoptosis. Cell death following 7-ketocholesterol and low statin concentrations were not additive, presumably because the autophagic process interfered with statin-induced caspase activation. This further illustrates that drug effects in normal SMCs are not necessarily predictive for activities in atherosclerotic settings.
Collapse
|
45
|
Luthra S, Dong J, Gramajo AL, Chwa M, Kim DW, Neekhra A, Kuppermann BD, Kenney MC. 7-Ketocholesterol activates caspases-3/7, -8, and -12 in human microvascular endothelial cells in vitro. Microvasc Res 2008; 75:343-50. [PMID: 18068200 DOI: 10.1016/j.mvr.2007.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 09/18/2007] [Accepted: 10/19/2007] [Indexed: 11/30/2022]
Abstract
7-Ketocholesterol (7kCh) is a major oxysterol found associated with vascular diseases. Human microvascular endothelial cells (HMVECs) were cultured with different concentrations of 7kCh with and without inhibitors. Cell viabilities and caspase activities were assessed. 7kCh caused loss of cell viability in a dose-dependent manner. Caspases-8, -12, and -3/7 but not caspase-9 were activated by 7kCh treatment. The 7kCh-induced caspase-8 activity was blocked partially by pre-treatment with z-VAD-fmk and z-IETD-fmk, a caspase-8 inhibitor. However, pre-treatment with z-ATAD-fmk, a caspase-12 inhibitor, followed by 7kCh exposure lead to significantly increased caspase-8 activity. This suggests that caspase-8 and caspase-12 pathways have unique inhibition patterns and that caspase-12 is likely not upstream and feeding into caspase-8 but the pathways may function in parallel to each other. Caspase-3/7 activation was inhibited partially by low density lipoprotein (LDL), high density lipoprotein (HDL), z-VAD-fmk (pan-caspase inhibitor), and low doses (0.01 and 0.001 microM) of the cholesterol lowering drug, simvastatin. However, only LDL partially protected against 7kCh-induced loss of cell viability suggesting that caspase-independent pathways also contributed to the cell loss and that protection from oxysterol damage may require inhibition of multiple pathways. Moreover, our data suggest that oxysterols such as 7kCh can damage HMVECs cells in part via caspase-dependent apoptosis and may play a role in vascular and retinal diseases.
Collapse
|
46
|
Comparison of biochemical effects of statins and fish oil in brain: the battle of the titans. ACTA ACUST UNITED AC 2007; 56:443-71. [PMID: 17959252 DOI: 10.1016/j.brainresrev.2007.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 09/16/2007] [Accepted: 09/17/2007] [Indexed: 11/20/2022]
Abstract
Neural membranes are composed of glycerophospholipids, sphingolipids, cholesterol and proteins. The distribution of these lipids within the neural membrane is not random but organized. Neural membranes contain lipid rafts or microdomains that are enriched in sphingolipids and cholesterol. These rafts act as platforms for the generation of glycerophospholipid-, sphingolipid-, and cholesterol-derived second messengers, lipid mediators that are necessary for normal cellular function. Glycerophospholipid-derived lipid mediators include eicosanoids, docosanoids, lipoxins, and platelet-activating factor. Sphingolipid-derived lipid mediators include ceramides, ceramide 1-phosphates, and sphingosine 1-phosphate. Cholesterol-derived lipid mediators include 24-hydroxycholesterol, 25-hydroxycholesterol, and 7-ketocholesterol. Abnormal signal transduction processes and enhanced production of lipid mediators cause oxidative stress and inflammation. These processes are closely associated with the pathogenesis of acute neural trauma (stroke, spinal cord injury, and head injury) and neurodegenerative diseases such as Alzheimer disease. Statins, the HMG-CoA reductase inhibitors, are effective lipid lowering agents that significantly reduce risk for cardiovascular and cerebrovascular diseases. Beneficial effects of statins in neurological diseases are due to their anti-excitotoxic, antioxidant, and anti-inflammatory properties. Fish oil omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid, have similar anti-excitotoxic, antioxidant and anti-inflammatory effects in brain tissue. Thus the lipid mediators, resolvins, protectins, and neuroprotectins, derived from eicosapentaenoic acid and docosahexaenoic acid retard neuroinflammation, oxidative stress, and apoptotic cell death in brain tissue. Like statins, ingredients of fish oil inhibit generation of beta-amyloid and provide protection from oxidative stress and inflammatory processes. Collective evidence suggests that antioxidant, anti-inflammatory, and anti-apoptotic properties of statins and fish oil contribute to the clinical efficacy of treating neurological disorders with statins and fish oil. We speculate that there is an overlap between neurochemical events associated with neural cell injury in stroke and neurodegenerative diseases. This commentary compares the neurochemical effects of statins with those of fish oil.
Collapse
|
47
|
Palozza P, Serini S, Verdecchia S, Ameruso M, Trombino S, Picci N, Monego G, Ranelletti FO. Redox regulation of 7-ketocholesterol-induced apoptosis by beta-carotene in human macrophages. Free Radic Biol Med 2007; 42:1579-90. [PMID: 17448905 DOI: 10.1016/j.freeradbiomed.2007.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 02/16/2007] [Accepted: 02/19/2007] [Indexed: 12/29/2022]
Abstract
The aim of this study was to verify the hypothesis that beta-carotene may prevent 7-ketocholesterol (7-KC)-induced apoptosis in human macrophages. Therefore, THP-1 macrophages were exposed to 7-KC (5-50 microM) alone and in combination with beta-carotene (0.25-1 microM). 7-KC inhibited the growth of macrophages in a dose- and a time-dependent manner by inducing an arrest of cell cycle progression in the G0/G1 phase and apoptosis. Concomitantly, p53, p21, and Bax expressions were increased by 7-KC, whereas the levels of AKT, Bcl-2, and Bcl-xL were decreased. beta-Carotene prevented the growth-inhibitory effects of 7-KC in a dose- and time-dependent manner as well as the effects of 7-KC on the expression of cell cycle- and apoptosis-related proteins. 7-KC also enhanced reactive oxygen species (ROS) production through an increased expression of NAD(P)H oxidase (NOX-4). The effects of 7-KC were counteracted by the addition of the NAD(P)H oxidase inhibitor DPI or by cotransfection of siNOX-4 mRNA. beta-Carotene prevented 7-KC-induced increase in ROS production and in NOX-4 expression, as well as the phosphorylation of p38, JNK, and ERK1/2 induced by 7-KC. These data suggest a possible antiatherogenic role of beta-carotene through the prevention of 7-KC toxicity in human macrophages.
Collapse
Affiliation(s)
- Paola Palozza
- Institute of General Pathology, Catholic University School of Medicine, L. Go F. Vito, 1 00168 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Huang RFS, Yaong HC, Chen SC, Lu YF. In vitrofolate supplementation alleviates oxidative stress, mitochondria-associated death signalling and apoptosis induced by 7-ketocholesterol. Br J Nutr 2007; 92:887-94. [PMID: 15613250 DOI: 10.1079/bjn20041259] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Folate has recently been proposed as a new antioxidant. Folate supplementation may have a protective effect in counteracting oxidant-induced apoptotic damage. The present studies were undertaken to examine whether there is a direct link between folate levels, antioxidant capability and reduced apoptotic damage. Using anin vitrocellular model of 7-ketocholesterol (KC)-induced apoptosis, U937 cells were pre-cultured with a folate-deficient medium supplemented with various levels of folate (2–1500μmol/l) before treatment with 7-KC. Apoptotic markers, mitochondria-associated death signals and levels of reactive oxygen species were assayed. After treatment with 7-KC for 30h, low and high levels of folate supplementation significantly (P<0.05) reduced nuclear DNA loss. Only high levels of folate supplementation (>1000μmol/l) were effective in counteracting 7-KC-promoted apoptotic membrane phosphatidylserine exposure and DNA laddering. The attenuation of 7-KC-induced apoptotic damage by high-dose folate supplementation coincided with a partial normalization of mitochondria membrane potential dissipation, a suppression of cytochromecrelease and an inhibition of procaspase 3 activation. The prevention of mitochondrial dysfunctions and apoptotic processes was associated with antioxidant actions of high-dose folate by a marked scavenging of intracellular superoxide. Collectively, our present results demonstrate thatin vitrofolate supplementation exerts differentially protective effects against 7-KC-induced damage. High-dose supplementation alleviates oxidative stress, mitochondria-associated death signalling and apoptosis induced by 7-KC. However, thein vivorelevance is not clear and requires further study.
Collapse
Affiliation(s)
- R-F S Huang
- Department of Nutrition and Food Sciences, Fu-Jen University, Hsin-Chuang, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
49
|
Ryan E, Chopra J, McCarthy F, Maguire AR, O'Brien NM. Qualitative and quantitative comparison of the cytotoxic and apoptotic potential of phytosterol oxidation products with their corresponding cholesterol oxidation products. Br J Nutr 2007; 94:443-51. [PMID: 16176617 DOI: 10.1079/bjn20051500] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phytosterols contain an unsaturated ring structure and therefore are susceptible to oxidation under certain conditions. Whilst the cytotoxicity of the analogous cholesterol oxidation products (COP) has been well documented, the biological effects of phytosterol oxidation products (POP)have not yet been fully ascertained. The objective of the present study was to examine the cytotoxicity of β-sitosterol oxides and their corresponding COP in a human monocytic cell line (U937), a colonic adenocarcinoma cell line (CaCo-2) and a hepatoma liver cell line (HepG2). 7β-Hydroxysitosterol, 7-ketositosterol, sitosterol-3β,5α,6β-triol and a sitosterol-5α,6α-epoxide–sitosterol-5β,6β-epoxide (6:1) mixture were found to be cytotoxic to all three cell lines employed; the mode of cell death was by apoptosis in the U937 cell line and necrosis in the CaCo-2 and HepG2 cells. 7β-Hydroxysitosterol was the only β-sitosterol oxide to cause depletion in glutathione, indicating that POP-induced apoptosis may not be dependent on the generation of an oxidative stress. A further objective of this study was to assess the ability of the antioxidants α-tocopherol, γ-tocopherol and β-carotene to modulate POP-induced cytotoxicity in U937 cells. Whilst α/γ-tocopherol protected against 7β-hydroxycholesterol-induced apoptosis, they did not confer protection against 7β-hydroxysitosterol-or 7-ketositosterol-induced toxicity, indicating that perhaps COP provoke different apoptotic pathways than POP. β-Carotene did not protect against COP- or POP-induced toxicity. In general, results indicate that POP have qualitatively similar toxic effects to COP. However, higher concentrations of POP are required to elicit comparable levels of toxicity.
Collapse
Affiliation(s)
- Eileen Ryan
- Department of Food and Nutritional Sciences, University College, Cork, Ireland
| | | | | | | | | |
Collapse
|
50
|
Ryan L, O'Callaghan YC, O'Brien NM. The role of the mitochondria in apoptosis induced by 7β-hydroxycholesterol and cholesterol-5β,6β-epoxide. Br J Nutr 2007; 94:519-25. [PMID: 16197575 DOI: 10.1079/bjn20051524] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oxysterols are oxygenated derivatives of cholesterol that may be formed endogenously or absorbed from the diet. Significant amounts of oxysterols have frequently been identified in foods of animal origin, in particular highly processed foods. To date, oxysterols have been shown to possess diverse biological activities; however, recent attention has focused on their potential role in the development of atherosclerosis. Oxysterols have been reported to induce apoptosis in cells of the arterial wall, a primary process in the development of atheroma. The aim of the present study was to identify the role of the mitochondria in the apoptotic pathways induced by the oxysterols 7β-hydroxycholesterol (7β-OH) and cholesterol-5β,6β-epoxide (β-epoxide) in U937 cells. To this end, we investigated the effects of these oxysterols on mitochondrial membrane potential, caspase-8 activity, the mitochondrial permeability transition pore and cytochromecrelease. 7β-OH-induced apoptosis was associated with a loss in mitochondrial membrane potential after 2 h, accompanied by cytochromecrelease from the mitochondria into the cytosol after 16 h. Pre-treatment with a range of inhibitors of the mitochondrial permeability transition pore protected against 7β-OH-induced cell death. In contrast, β-epoxide induced a slight increase in caspase-8 activity but had no effect on mitochondrial membrane potential or cytochromecrelease. The present results confirm that 7β-OH-induced apoptosis occurs via the mitochondrial pathway and highlights differences in the apoptotic pathways induced by 7β-OH and β-epoxide in U937 cells.
Collapse
Affiliation(s)
- Lisa Ryan
- Department of Food and Nutritional Sciences, University College Cork, Republic of Ireland
| | | | | |
Collapse
|