1
|
Zhang J, Yan H, Wang Y, Yue X, Wang M, Liu L, Qiao P, Zhu Y, Li Z. Emerging insights into pulmonary hypertension: the potential role of mitochondrial dysfunction and redox homeostasis. Mol Cell Biochem 2024:10.1007/s11010-024-05096-9. [PMID: 39254871 DOI: 10.1007/s11010-024-05096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Pulmonary hypertension (PH) is heterogeneous diseases that can lead to death due to progressive right heart failure. Emerging evidence suggests that, in addition to its role in ATP production, changes in mitochondrial play a central role in their pathogenesis, regulating integrated metabolic and signal transduction pathways. This review focuses on the basic principles of mitochondrial redox status in pulmonary vascular and right ventricular disorders, a series of dysfunctional processes including mitochondrial quality control (mitochondrial biogenesis, mitophagy, mitochondrial dynamics, mitochondrial unfolded protein response) and mitochondrial redox homeostasis. In addition, we will summarize how mitochondrial renewal and dynamic changes provide innovative insights for studying and evaluating PH. This will provide us with a clearer understanding of the initial signal transmission of mitochondria in PH, which would further improve our understanding of the pathogenesis of PH.
Collapse
Affiliation(s)
- Junming Zhang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Huimin Yan
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yan Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Xian Yue
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Meng Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Limin Liu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Pengfei Qiao
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yixuan Zhu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Zhichao Li
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China.
| |
Collapse
|
2
|
de Cavanagh EMV, Inserra F, Ferder L. Renin-angiotensin system inhibitors positively impact on multiple aging regulatory pathways: Could they be used to protect against human aging? Physiol Rep 2024; 12:e16094. [PMID: 38924381 PMCID: PMC11200104 DOI: 10.14814/phy2.16094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
The renin-angiotensin system (RAS)-a classical blood pressure regulator-largely contributes to healthy organ development and function. Besides, RAS activation promotes age-related changes and age-associated diseases, which are attenuated/abolished by RAS-blockade in several mammalian species. RAS-blockers also increase rodent lifespan. In previous work, we discussed how RAS-blockade downregulates mTOR and growth hormone/IGF-1 signaling, and stimulates AMPK activity (together with klotho, sirtuin, and vitamin D-receptor upregulation), and proposed that at least some of RAS-blockade's aging benefits are mediated through regulation of these intermediaries and their signaling to mitochondria. Here, we included RAS-blockade's impact on other aging regulatory pathways, that is, TGF-ß, NF-kB, PI3K, MAPK, PKC, Notch, and Wnt, all of which affect mitochondria. No direct evidence is available on RAS/RAS-blockade-aging regulatory pathway-mitochondria interactions. However, existing results allow to conjecture that RAS-blockers neutralize mitochondrial dysfunction by acting on the discussed pathways. The reviewed evidence led us to propose that the foundation is laid for conducting clinical trials aimed at testing whether angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB)-even at subclinical doses-offer the possibility to live longer and in better health. As ACEi and ARB are low cost and well-tolerated anti-hypertension therapies in use for over 35 years, investigating their administration to attenuate/prevent aging effects seems simple to implement.
Collapse
Affiliation(s)
| | - Felipe Inserra
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
- Master of Vascular Mechanics and Arterial Hypertension, Postgraduate DepartmentAustral UniversityPilarArgentina
| | - León Ferder
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
| |
Collapse
|
3
|
Wang Y, Wang Y, Yue G, Zhao Y. Energy metabolism disturbance in migraine: From a mitochondrial point of view. Front Physiol 2023; 14:1133528. [PMID: 37123270 PMCID: PMC10133718 DOI: 10.3389/fphys.2023.1133528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Migraine is a serious central nervous system disease with a high incidence rate. Its pathogenesis is very complex, which brings great difficulties for clinical treatment. Recently, many studies have revealed that mitochondrial dysfunction may play a key role in migraine, which affects the hyperosmotic of Ca2+, the excessive production of free radicals, the decrease of mitochondrial membrane potential, the imbalance of mPTP opening and closing, and the decrease of oxidative phosphorylation level, which leads to neuronal energy exhaustion and apoptosis, and finally lessens the pain threshold and migraine attack. This article mainly introduces cortical spreading depression, a pathogenesis of migraine, and then damages the related function of mitochondria, which leads to migraine. Oxidative phosphorylation and the tricarboxylic acid cycle are the main ways to provide energy for the body. 95 percent of the energy needed for cell survival is provided by the mitochondrial respiratory chain. At the same time, hypoxia can lead to cell death and migraine. The pathological opening of the mitochondrial permeability transition pore can promote the interaction between pro-apoptotic protein and mitochondrial, destroy the structure of mPTP, and further lead to cell death. The increase of mPTP permeability can promote the accumulation of reactive oxygen species, which leads to a series of changes in the expression of proteins related to energy metabolism. Both Nitric oxide and Calcitonin gene-related peptide are closely related to the attack of migraine. Recent studies have shown that changes in their contents can also affect the energy metabolism of the body, so this paper reviews the above mechanisms and discusses the mechanism of brain energy metabolism of migraine, to provide new strategies for the prevention and treatment of migraine and promote the development of individualized and accurate treatment of migraine.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yongli Wang
- Department of Neurology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Guangxin Yue
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yonglie Zhao
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yonglie Zhao,
| |
Collapse
|
4
|
Khudhur ZO, Othman G, Othman GO, Jafaar AM, Qadir MK, Awla HK, Qasim SS, Hadi SM, Khan SS, Noreen S, Smail SW. Lack of association between the eNOS rs1800779 (A/G) polymorphism and the myocardial infarction incidence among the Iraqi Kurdish population. J Taibah Univ Med Sci 2022; 18:162-169. [PMID: 36398012 PMCID: PMC9643558 DOI: 10.1016/j.jtumed.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives The genetic polymorphisms of the endothelial nitric oxide synthase (eNOS) gene are strongly associated with several cardiovascular diseases (CVDs) in various populations. The current study aimed to investigate the association of the eNOS rs1800779 (A/G) polymorphism with the progress of myocardial infarction (MI). Methods Eighty-five healthy subjects and 80 patients with MI admitted to the Erbil Cardiac Centre in the Kurdistan Region of Iraq were enrolled in the study. All participants were Kurdish from the same ethnic group. The amplification refractory mutation system polymerase chain reaction (ARMS-PCR) was used to determine the rs1800779 (A/G) polymorphism of eNOS, and the nitric oxide (NO) serum level was detected by spectrophotometer. Results The genotypic frequencies of the eNOS rs1800779 AA (wild type), AG, and GG were 58.75%, 33.75%, and 7.50%, respectively, in the MI patients, and 49.41%, 43.53%, and 7.06%, respectively, for the control group. The frequencies of the A and the G alleles were 75.6% and 24.4%, respectively, in the MI group, and 71.2% and 28.8%, respectively, in the control subjects. The results revealed a lack of association of the rs1800779 genotype distribution with the level of NO serum and increased risk of MI. Conclusion The study concluded that there is a lack of association between the genotypes and alleles of the rs1800779 eNOS and susceptibility to MI in the studied population.
Collapse
|
5
|
Keller TCS, Lechauve C, Keller AS, Brooks S, Weiss MJ, Columbus L, Ackerman H, Cortese-Krott MM, Isakson BE. The role of globins in cardiovascular physiology. Physiol Rev 2022; 102:859-892. [PMID: 34486392 PMCID: PMC8799389 DOI: 10.1152/physrev.00037.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Globin proteins exist in every cell type of the vasculature, from erythrocytes to endothelial cells, vascular smooth muscle cells, and peripheral nerve cells. Many globin subtypes are also expressed in muscle tissues (including cardiac and skeletal muscle), in other organ-specific cell types, and in cells of the central nervous system (CNS). The ability of each of these globins to interact with molecular oxygen (O2) and nitric oxide (NO) is preserved across these contexts. Endothelial α-globin is an example of extraerythrocytic globin expression. Other globins, including myoglobin, cytoglobin, and neuroglobin, are observed in other vascular tissues. Myoglobin is observed primarily in skeletal muscle and smooth muscle cells surrounding the aorta or other large arteries. Cytoglobin is found in vascular smooth muscle but can also be expressed in nonvascular cell types, especially in oxidative stress conditions after ischemic insult. Neuroglobin was first observed in neuronal cells, and its expression appears to be restricted mainly to the CNS and the peripheral nervous system. Brain and CNS neurons expressing neuroglobin are positioned close to many arteries within the brain parenchyma and can control smooth muscle contraction and thus tissue perfusion and vascular reactivity. Overall, reactions between NO and globin heme iron contribute to vascular homeostasis by regulating vasodilatory NO signals and scavenging reactive species in cells of the mammalian vascular system. Here, we discuss how globin proteins affect vascular physiology, with a focus on NO biology, and offer perspectives for future study of these functions.
Collapse
Affiliation(s)
- T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Christophe Lechauve
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexander S Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Steven Brooks
- Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Hans Ackerman
- Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
6
|
Facioli TDP, Buranello MC, Regueiro EMG, Basso-Vanelli RP, Durand MDT. Effect of Physical Training on Nitric Oxide Levels in Patients with Arterial Hypertension: An Integrative Review. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2021. [DOI: 10.36660/ijcs.20200244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
7
|
Morales PE, Arias-Durán C, Ávalos-Guajardo Y, Aedo G, Verdejo HE, Parra V, Lavandero S. Emerging role of mitophagy in cardiovascular physiology and pathology. Mol Aspects Med 2019; 71:100822. [PMID: 31587811 DOI: 10.1016/j.mam.2019.09.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 01/02/2023]
Abstract
Healthy mitochondrial function is imperative for most tissues, but especially those with a high energy demand. Robust evidence linking mitochondrial dysfunction with cardiovascular disease has demonstrated that mitochondrial activity is highly relevant to cardiac muscle performance. Mitochondrial homeostasis is maintained through coordination among the processes that comprise the so-called mitochondrial dynamics machinery. The most-studied elements of cardiac mitochondrial dynamics are mitochondrial fission and fusion, biogenesis and degradation. Selective autophagic removal of mitochondria (mitophagy) is essential for clearing away defective mitochondria but can lead to cell damage and death if not tightly controlled. In cardiovascular cells such as cardiomyocytes and cardiac fibroblasts, mitophagy is involved in metabolic activity, cell differentiation, apoptosis and other physiological processes related to major phenotypic changes. Modulation of mitophagy has detrimental and/or beneficial outcomes in various cardiovascular diseases, suggesting that a deeper understanding of the mechanisms underlying mitochondrial degradation in the heart could provide valuable clinical insights. Here, we discuss current evidence supporting the role of mitophagy in cardiac pathophysiology, with an emphasis on different research models and their interpretations; basic concepts related to this selective autophagy; and the most commonly used experimental approaches for studying this mechanism. Finally, we provide a comprehensive literature analysis on the role of mitophagy in heart failure, ischemia/reperfusion, diabetic cardiomyopathy and other cardiovascular diseases, as well as its potential biomedical applications.
Collapse
Affiliation(s)
- Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Carla Arias-Durán
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Universidad de Chile, Santiago, Chile
| | - Yáreni Ávalos-Guajardo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Geraldine Aedo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Universidad de Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile; Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile; Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Knockout of dihydrofolate reductase in mice induces hypertension and abdominal aortic aneurysm via mitochondrial dysfunction. Redox Biol 2019; 24:101185. [PMID: 30954686 PMCID: PMC6451172 DOI: 10.1016/j.redox.2019.101185] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Hypertension and abdominal aortic aneurysm (AAA) are severe cardiovascular diseases with incompletely defined molecular mechanisms. In the current study we generated dihydrofolate reductase (DHFR) knockout mice for the first time to examine its potential contribution to the development of hypertension and AAA, as well as the underlying molecular mechanisms. Whereas the homozygote knockout mice were embryonically lethal, the heterozygote knockout mice had global reduction in DHFR protein expression and activity. Angiotensin II infusion into these animals resulted in substantially exaggerated elevation in blood pressure and development of AAA, which was accompanied by excessive eNOS uncoupling activity (featured by significantly impaired tetrahydrobiopterin and nitric oxide bioavailability), vascular remodeling (MMP2 activation, medial elastin breakdown and adventitial fibrosis) and inflammation (macrophage infiltration). Importantly, scavenging of mitochondrial reactive oxygen species with Mito-Tempo in vivo completely abrogated development of hypertension and AAA in DHFR knockout mice, indicating a novel role of mitochondria in mediating hypertension and AAA downstream of DHFR deficiency-dependent eNOS uncoupling. These data for the first time demonstrate that targeting DHFR-deficiency driven mitochondrial dysfunction may represent an innovative therapeutic option for the treatment of AAA and hypertension.
Collapse
|
9
|
Akoumianakis I, Antoniades C. Impaired Vascular Redox Signaling in the Vascular Complications of Obesity and Diabetes Mellitus. Antioxid Redox Signal 2019; 30:333-353. [PMID: 29084432 DOI: 10.1089/ars.2017.7421] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Oxidative stress, a crucial regulator of vascular disease pathogenesis, may be involved in the vascular complications of obesity, systemic insulin resistance (IR), and diabetes mellitus (DM). Recent Advances: Excessive production of reactive oxygen species in the vascular wall has been linked with vascular disease pathogenesis. Recent evidence has revealed that vascular redox state is dysregulated in cases of obesity, systemic IR, and DM, potentially participating in the well-known vascular complications of these disease entities. Critical Issues: The detrimental effects of obesity and the metabolic syndrome on vascular biology have been extensively described at a clinical level. Further, vascular oxidative stress has often been associated with the presence of obesity and IR as well as with a variety of detrimental vascular phenotypes. However, the mechanisms of vascular redox state regulation under conditions of obesity and systemic IR, as well as their clinical relevance, are not adequately explored. In addition, the notion of vascular IR, and its relationship with systemic parameters of obesity and systemic IR, is not fully understood. In this review, we present all the important components of vascular redox state and the evidence linking oxidative stress with obesity and IR. Future Directions: Future studies are required to describe the cellular effects and the translational potential of vascular redox state in the context of vascular disease. In addition, further elucidation of the direct vascular effects of obesity and IR is required for better management of the vascular complications of DM.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, University of Oxford , Oxford, United Kingdom
| | | |
Collapse
|
10
|
Saini R, Singh S. Inducible nitric oxide synthase: An asset to neutrophils. J Leukoc Biol 2018; 105:49-61. [DOI: 10.1002/jlb.4ru0418-161r] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/25/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Rashmi Saini
- Department of ZoologyGargi CollegeUniversity of Delhi Delhi 11049 India
| | - Sarika Singh
- Toxicology & Experimental MedicineCSIR‐Central Drug Research Institute Lucknow 226031 India
| |
Collapse
|
11
|
Quercetin Prevents Diastolic Dysfunction Induced by a High-Cholesterol Diet: Role of Oxidative Stress and Bioenergetics in Hyperglycemic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7239123. [PMID: 29576853 PMCID: PMC5821945 DOI: 10.1155/2018/7239123] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
Abstract
Alterations in cardiac energy metabolism play a key role in the pathogenesis of diabetic cardiomyopathy. Hypercholesterolemia associated with bioenergetic impairment and oxidative stress has not been well characterized in the cardiac function under glycemic control deficiency conditions. This work aimed to determine the cardioprotective effects of quercetin (QUE) against the damage induced by a high-cholesterol (HC) diet in hyperglycemic rats, addressing intracellular antioxidant mechanisms and bioenergetics. Quercetin reduced HC-induced alterations in the lipid profile and glycemia in rats. In addition, QUE attenuated cardiac diastolic dysfunction (increased E:A ratio), prevented cardiac cholesterol accumulation, and reduced the increase in HC-induced myocyte density. Moreover, QUE reduced HC-induced oxidative stress by preventing the decrease in GSH/GSSG ratio, Nrf2 nuclear translocation, HO-1 expression, and antioxidant enzymatic activity. Quercetin also counteracted HC-induced bioenergetic impairment, preventing a reduction in ATP levels and alterations in PGC-1α, UCP2, and PPARγ expression. In conclusion, the mechanisms that support the cardioprotective effect of QUE in rats with HC might be mediated by the upregulation of antioxidant mechanisms and improved bioenergetics on the heart. Targeting bioenergetics with QUE can be used as a pharmacological approach to modulate structural and functional changes of the heart under hypercholesterolemic and hyperglycemic conditions.
Collapse
|
12
|
Vishwakarma VK, Upadhyay PK, Gupta JK, Yadav HN. Pathophysiologic role of ischemia reperfusion injury: A review. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.jicc.2017.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
13
|
Münzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC. Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series. J Am Coll Cardiol 2017; 70:212-229. [PMID: 28683969 DOI: 10.1016/j.jacc.2017.05.035] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023]
Abstract
Vascular disease and heart failure impart an enormous burden in terms of global morbidity and mortality. Although there are many different causes of cardiac and vascular disease, most causes share an important pathological mechanism: oxidative stress. In the failing heart, oxidative stress occurs in the myocardium and correlates with left ventricular dysfunction. Reactive oxygen species (ROS) negatively affect myocardial calcium handling, cause arrhythmia, and contribute to cardiac remodeling by inducing hypertrophic signaling, apoptosis, and necrosis. Similarly, oxidative balance in the vasculature is tightly regulated by a wealth of pro- and antioxidant systems that orchestrate region-specific ROS production and removal. Reactive oxygen species also regulate multiple vascular cell functions, including endothelial and smooth muscle cell growth, proliferation, and migration; angiogenesis; apoptosis; vascular tone; host defenses; and genomic stability. However, excessive levels of ROS promote vascular disease through direct and irreversible oxidative damage to macromolecules, as well as disruption of redox-dependent vascular wall signaling processes.
Collapse
Affiliation(s)
- Thomas Münzel
- Center for Cardiology Mainz, Cardiology I, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany.
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Nicole R Bonetti
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Valentin Fuster
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Icahn School of Medicine at Mount Sinai, New York, New York; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
14
|
Xu W, Comhair SAA, Janocha AJ, Lara A, Mavrakis LA, Bennett CD, Kalhan SC, Erzurum SC. Arginine metabolic endotypes related to asthma severity. PLoS One 2017; 12:e0183066. [PMID: 28797075 PMCID: PMC5552347 DOI: 10.1371/journal.pone.0183066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022] Open
Abstract
Aims Arginine metabolism via inducible nitric oxide synthase (iNOS) and arginase 2 (ARG2) is higher in asthmatics than in healthy individuals. We hypothesized that a sub-phenotype of asthma might be defined by the magnitude of arginine metabolism categorized on the basis of high and low fraction of exhaled nitric oxide (FENO). Methods To test this hypothesis, asthmatics (n = 52) were compared to healthy controls (n = 51) for levels of FENO, serum arginase activity, and airway epithelial expression of iNOS and ARG2 proteins, in relation to clinical parameters of asthma inflammation and airway reactivity. In parallel, bronchial epithelial cells were evaluated for metabolic effects of iNOS and ARG2 expression in vitro. Results Asthmatics with high FENO (≥ 35 ppb; 44% of asthmatics) had higher expression of iNOS (P = 0.04) and ARG2 (P = 0.05) in the airway, indicating FENO is a marker of the high arginine metabolic endotype. High FENO asthmatics had the lowest FEV1% (P < 0.001), FEV1/FVC (P = 0.0002) and PC20 (P < 0.001) as compared to low FENO asthmatics or healthy controls. Low FENO asthmatics had near normal iNOS and ARG2 expression (both P > 0.05), and significantly higher PC20 (P < 0.001) as compared to high FENO asthmatics. In vitro studies to evaluate metabolic effects showed that iNOS overexpression and iNOS+ARG2 co-expression in a human bronchial epithelial cell line led to greater reliance on glycolysis with higher rate of pyruvate going to lactate. Conclusions The high FENO phenotype represents a large portion of the asthma population, and is typified by greater arginine metabolism and more severe and reactive asthma.
Collapse
Affiliation(s)
- Weiling Xu
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| | - Suzy A. A. Comhair
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Allison J. Janocha
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Abigail Lara
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Lori A. Mavrakis
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Carole D. Bennett
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Satish C. Kalhan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Serpil C. Erzurum
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
15
|
The Role of NOX4 and TRX2 in Angiogenesis and Their Potential Cross-Talk. Antioxidants (Basel) 2017; 6:antiox6020042. [PMID: 28594389 PMCID: PMC5488022 DOI: 10.3390/antiox6020042] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022] Open
Abstract
The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) family is the major source of reactive oxygen species (ROS) in the vascular system. In this family, NOX4, a constitutive active form of NOXs, plays an important role in angiogenesis. Thioredoxin 2 (TRX2) is a key mitochondrial redox protein that maintains normal protein function and also provides electrons to peroxiredoxin 3 (PRX3) to scavenge H₂O₂ in mitochondria. Angiogenesis, a process of new blood vessel formation, is involved in a variety of physiological processes and pathological conditions. It seems to be paradoxical for ROS-producing NOX4 and ROS-scavenging TRX2 to have a similar role in promoting angiogenesis. In this review, we will focus on data supporting the role of NOX4 and TRX2 in angiogenesis and their cross-talks and discuss how ROS can positively or negatively regulate angiogenesis, depending on their species, levels and locations. NOX4 and TRX2-mediated ROS signaling could be promising targets for the treatment of angiogenesis-related diseases.
Collapse
|
16
|
Abstract
Ischaemic heart disease and stroke are vascular events with serious health consequences worldwide. Recent genetic and epigenetic techniques have revealed many genetic determinants of these vascular events and simplified the approaches to research focused on ischaemic heart disease and stroke. The pathogenetic mechanisms of ischaemic heart disease and stroke are complex, with mitochondrial involvement (partially or entirely) recently gaining substantial support. Not only can mitochondrial reactive oxygen species give rise to ischaemic heart disease and stroke by production of oxidised low-density lipoprotein and induction of apoptosis, but the impact on pericytes contributes directly to the pathogenesis. Over the past two decades, publications implicate the causative role of nuclear genes in the development of ischaemic heart disease and stroke, in contrast to the potential role of mitochondrial DNA (mtDNA) in the pathophysiology of the disorders, which is much less understood, although recent studies do demonstrate that the involvement of mitochondria and mtDNA in the development of ischaemic heart disease and stroke is likely to be larger than originally thought, with the novel discovery of links among mitochondria, mtDNA and vascular events. Here we explore the molecular events and mtDNA alterations in relation to the role of mitochondria in ischaemic heart disease and stroke.
Collapse
|
17
|
Guo M, Xiang HJ, Wang Y, Zhang QL, An L, Yang SP, Ma Y, Wang Y, Liu JG. Ruthenium nitrosyl functionalized graphene quantum dots as an efficient nanoplatform for NIR-light-controlled and mitochondria-targeted delivery of nitric oxide combined with photothermal therapy. Chem Commun (Camb) 2017; 53:3253-3256. [PMID: 28261712 DOI: 10.1039/c7cc00670e] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A mitochondria-targeting nanoplatform for near-infrared-light-controlled release of nitric oxide accompanied by photothermal therapy was developed, which consists of ruthenium nitrosyl functionalized N-doped graphene quantum dots and a triphenylphosphonium moiety. The nanoplatform demonstrated both in vitro and in vivo anti-tumor efficacy upon irradiation with 808 nm light.
Collapse
Affiliation(s)
- Min Guo
- Key Lab for Advanced Materials of MOE, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mechanistic Role of Thioredoxin 2 in Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:265-276. [DOI: 10.1007/978-3-319-55330-6_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Kim KS, Lee D, Song CG, Kang PM. Reactive oxygen species-activated nanomaterials as theranostic agents. Nanomedicine (Lond) 2015; 10:2709-23. [PMID: 26328770 PMCID: PMC4612518 DOI: 10.2217/nnm.15.108] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use.
Collapse
Affiliation(s)
- Kye S Kim
- Cardiovascular Institute, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA 02215, USA
| | - Dongwon Lee
- Department of Polymer Nano Science & Technology, Chonbuk National University, Jeonju, Chonbuk 561–756, South Korea
| | - Chul Gyu Song
- Department of Electronic Engineering, Chonbuk National University, Jeonju, Chonbuk 561–756, South Korea
| | - Peter M Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
20
|
Gu Q, Zhao L, Ma YP, Liu JD. Contribution of mitochondrial function to exercise-induced attenuation of renal dysfunction in spontaneously hypertensive rats. Mol Cell Biochem 2015; 406:217-25. [PMID: 25963667 DOI: 10.1007/s11010-015-2439-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/06/2015] [Indexed: 02/01/2023]
Abstract
It is well known that exercise training exhibits renal protective effects in animal models of hypertension and chronic renal failure. However, the mechanisms regulating these effects of exercise training remain unclear. This study aimed to investigate the role of mitochondrial function in exercise-induced attenuation of renal injury in spontaneously hypertensive rats (SHR). The adult male SHR and age-matched normotensive Wistar-Kyoto rats (WKY) were given moderate-intensity exercise for 12 weeks or treated with MitoQ10 for 8 weeks. In this work, exercise training in SHR reduced blood pressure, and effectively attenuated renal dysfunction, marked by reduced creatinine excretion, albuminuria, blood urea nitrogen, and glomerular sclerosis. Exercise training in SHR reduced MDA levels in plasma and kidneys and suppressed formation of 3-nitrotyrosine in kidneys. Exercise training suppressed mitochondrial ROS and [Formula: see text] formation, enhanced ATP formation, reduced mitochondrial swelling, and restored electron transport chain enzyme activity in kidneys of SHR. Furthermore, exercise training upregulated protein expression of uncoupling protein 2 and manganese superoxide dismutase in kidneys of SHR. In addition, treatment with mitochondria-targeted antioxidant MitoQ10 exhibited similar renal protective effects in SHR. In conclusion, chronic aerobic exercise training preserved mitochondrial function and abated oxidative stress in the kidneys of SHR, which may in part explain the protective effect of exercise on renal function and structure in hypertensive individuals.
Collapse
Affiliation(s)
- Qi Gu
- School of Physical Education, Xi'an Technological University, 4 Jinhua Road, Xi'an, 710032, Shaanxi Province, China,
| | | | | | | |
Collapse
|
21
|
de Cavanagh EMV, Inserra F, Ferder L. Angiotensin II blockade: how its molecular targets may signal to mitochondria and slow aging. Coincidences with calorie restriction and mTOR inhibition. Am J Physiol Heart Circ Physiol 2015; 309:H15-44. [PMID: 25934099 DOI: 10.1152/ajpheart.00459.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Caloric restriction (CR), renin angiotensin system blockade (RAS-bl), and rapamycin-mediated mechanistic target of rapamycin (mTOR) inhibition increase survival and retard aging across species. Previously, we have summarized CR and RAS-bl's converging effects, and the mitochondrial function changes associated with their physiological benefits. mTOR inhibition and enhanced sirtuin and KLOTHO signaling contribute to the benefits of CR in aging. mTORC1/mTORC2 complexes contribute to cell growth and metabolic regulation. Prolonged mTORC1 activation may lead to age-related disease progression; thus, rapamycin-mediated mTOR inhibition and CR may extend lifespan and retard aging through mTORC1 interference. Sirtuins by deacetylating histone and transcription-related proteins modulate signaling and survival pathways and mitochondrial functioning. CR regulates several mammalian sirtuins favoring their role in aging regulation. KLOTHO/fibroblast growth factor 23 (FGF23) contribute to control Ca(2+), phosphate, and vitamin D metabolism, and their dysregulation may participate in age-related disease. Here we review how mTOR inhibition extends lifespan, how KLOTHO functions as an aging suppressor, how sirtuins mediate longevity, how vitamin D loss may contribute to age-related disease, and how they relate to mitochondrial function. Also, we discuss how RAS-bl downregulates mTOR and upregulates KLOTHO, sirtuin, and vitamin D receptor expression, suggesting that at least some of RAS-bl benefits in aging are mediated through the modulation of mTOR, KLOTHO, and sirtuin expression and vitamin D signaling, paralleling CR actions in age retardation. Concluding, the available evidence endorses the idea that RAS-bl is among the interventions that may turn out to provide relief to the spreading issue of age-associated chronic disease.
Collapse
Affiliation(s)
- Elena M V de Cavanagh
- Center of Hypertension, Cardiology Department, Austral University Hospital, Derqui, Argentina; School of Biomedical Sciences, Austral University, Buenos Aires, Argentina; and
| | - Felipe Inserra
- Center of Hypertension, Cardiology Department, Austral University Hospital, Derqui, Argentina; School of Biomedical Sciences, Austral University, Buenos Aires, Argentina; and
| | - León Ferder
- Department of Physiology and Pharmacology, Ponce School of Medicine, Ponce, Puerto Rico
| |
Collapse
|
22
|
Kang PT, Chen CL, Chen YR. Increased mitochondrial prooxidant activity mediates up-regulation of Complex I S-glutathionylation via protein thiyl radical in the murine heart of eNOS(-/-). Free Radic Biol Med 2015; 79:56-68. [PMID: 25445401 PMCID: PMC4339473 DOI: 10.1016/j.freeradbiomed.2014.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/03/2014] [Accepted: 11/20/2014] [Indexed: 12/20/2022]
Abstract
In response to oxidative stress, mitochondrial Complex I is reversibly S-glutathionylated. We hypothesized that protein S-glutathionylation (PrSSG) of Complex I is mediated by a kinetic mechanism involving reactive protein thiyl radical (PrS(•)) and GSH in vivo. Previous studies have shown that in vitro S-glutathionylation of isolated Complex I at the 51 and 75-kDa subunits was detected under the conditions of (•)O2(-) production, and mass spectrometry confirmed that formation of Complex I PrS(•) mediates PrSSG. Exposure of myocytes to menadione resulted in enhanced Complex I PrSSG and PrS(•) (Kang et al., Free Radical Biol. Med.52:962-973; 2012). In this investigation, we tested our hypothesis in the murine heart of eNOS(-/-). The eNOS(-/-) mouse is known to be hypertensive and develops the pathological phenotype of progressive cardiac hypertrophy. The mitochondria isolated from the eNOS(-/-) myocardium exhibited a marked dysfunction with impaired state 3 respiration, a declining respiratory control index, and decreasing enzymatic activities of ETC components. Further biochemical analysis and EPR measurement indicated defective aconitase activity, a marked increase in (•)O2(-) generation activity, and a more oxidized physiological setting. These results suggest increasing prooxidant activity and subsequent oxidative stress in the mitochondria of the eNOS(-/-) murine heart. When Complex I from the mitochondria of the eNOS(-/-) murine heart was analyzed by immunospin trapping and probed with anti-GSH antibody, both PrS(•) and PrSSG of Complex I were significantly enhanced. Overexpression of SOD2 in the murine heart dramatically diminished the detected PrS(•), supporting the conclusion that mediation of Complex I PrSSG by oxidative stress-induced PrS(•) is a unique pathway for the redox regulation of mitochondrial function in vivo.
Collapse
Affiliation(s)
- Patrick T Kang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Chwen-Lih Chen
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Yeong-Renn Chen
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA.
| |
Collapse
|
23
|
Wang Y, Tabas I. Emerging roles of mitochondria ROS in atherosclerotic lesions: causation or association? J Atheroscler Thromb 2014; 21:381-90. [PMID: 24717761 DOI: 10.5551/jat.23929] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial-derived reactive oxygen species (mtROS) is one of the major sources of cellular ROS, and excessive mtROS is associated with atherosclerosis progression in both human and mouse models. This review aims to summarize the most recent studies showing the existence, the causes and pathological consequences of excessive mtROS in atherosclerosis. Despite numerous association and causation studies demonstrating the importance of mtROS in atherosclerosis progression, the failure of antioxidant therapy in human randomized clinical trials demands more definitive, cell-type specific investigations. Better mechanistic understanding of mtROS in atherosclerosis may lead to more effective therapeutic strategies.
Collapse
|
24
|
Bretón-Romero R, Lamas S. Hydrogen peroxide signaling in vascular endothelial cells. Redox Biol 2014; 2:529-34. [PMID: 24634835 PMCID: PMC3953958 DOI: 10.1016/j.redox.2014.02.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/20/2014] [Indexed: 12/27/2022] Open
Abstract
Redox signaling is implicated in different physiological and pathological events in the vasculature. Among the different reactive oxygen species, hydrogen peroxide (H2O2) is a very good candidate to perform functions as an intracellular messenger in the regulation of several biological events. In this review, we summarize the main physiological sources of H2O2 in the endothelium and the molecular mechanisms by which it is able to act as a signaling mediator in the vasculature.
Collapse
Affiliation(s)
- Rosa Bretón-Romero
- Centro de Biología Molecular 'Severo Ochoa' CSIC-UAM, Campus Universidad Autónoma, Nicolás Cabrera 1, Madrid E-28049, Spain
| | - Santiago Lamas
- Centro de Biología Molecular 'Severo Ochoa' CSIC-UAM, Campus Universidad Autónoma, Nicolás Cabrera 1, Madrid E-28049, Spain
| |
Collapse
|
25
|
Kemper MF, Stirone C, Krause DN, Duckles SP, Procaccio V. Genomic and non-genomic regulation of PGC1 isoforms by estrogen to increase cerebral vascular mitochondrial biogenesis and reactive oxygen species protection. Eur J Pharmacol 2013; 723:322-9. [PMID: 24275351 DOI: 10.1016/j.ejphar.2013.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/05/2013] [Accepted: 11/15/2013] [Indexed: 12/19/2022]
Abstract
We previously found that estrogen exerts a novel protective effect on mitochondria in brain vasculature. Here we demonstrate in rat cerebral blood vessels that 17β-estradiol (estrogen), both in vivo and ex vivo, affects key transcriptional coactivators responsible for mitochondrial regulation. Treatment of ovariectomized rats with estrogen in vivo lowered mRNA levels of peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α) but increased levels of the other PGC-1 isoforms: PGC-1β and PGC-1 related coactivator (PRC). In vessels ex vivo, estrogen decreased protein levels of PGC-1α via activation of phosphatidylinositol 3-kinase (PI3K). Estrogen treatment also increased phosphorylation of forkhead transcription factor, FoxO1, a known pathway for PGC-1α downregulation. In contrast to the decrease in PGC-1α, estrogen increased protein levels of nuclear respiratory factor 1, a known PGC target and mediator of mitochondrial biogenesis. The latter effect of estrogen was independent of PI3K, suggesting a separate mechanism consistent with increased expression of PGC-1β and PRC. We demonstrated increased mitochondrial biogenesis following estrogen treatment in vivo; cerebrovascular levels of mitochondrial transcription factor A and electron transport chain subunits as well as the mitochondrial/nuclear DNA ratio were increased. We examined a downstream target of PGC-1β, glutamate-cysteine ligase (GCL), the rate-limiting enzyme for glutathione synthesis. In vivo estrogen increased protein levels of both GCL subunits and total glutathione levels. Together these data show estrogen differentially regulates PGC-1 isoforms in brain vasculature, underscoring the importance of these coactivators in adapting mitochondria in specific tissues. By upregulating PGC-1β and/or PRC, estrogen appears to enhance mitochondrial biogenesis, function and reactive oxygen species protection.
Collapse
Affiliation(s)
- Martin F Kemper
- Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA 92697-4625 USA
| | - Chris Stirone
- Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA 92697-4625 USA
| | - Diana N Krause
- Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA 92697-4625 USA.
| | - Sue P Duckles
- Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA 92697-4625 USA
| | - Vincent Procaccio
- Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA 92697-4625 USA
| |
Collapse
|
26
|
Xu W, Erzurum SC. Endothelial cell energy metabolism, proliferation, and apoptosis in pulmonary hypertension. Compr Physiol 2013; 1:357-72. [PMID: 23737177 DOI: 10.1002/cphy.c090005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease characterized by impaired regulation of pulmonary hemodynamics and excessive growth and dysfunction of the endothelial cells that line the arteries in PAH lungs. Establishment of methods for culture of pulmonary artery endothelial cells from PAH lungs has provided the groundwork for mechanistic translational studies that confirm and extend findings from model systems and spontaneous pulmonary hypertension in animals. Endothelial cell hyperproliferation, survival, and alterations of biochemical-metabolic pathways are the unifying endothelial pathobiology of the disease. The hyperproliferative and apoptosis-resistant phenotype of PAH endothelial cells is dependent upon the activation of signal transducer and activator of transcription (STAT) 3, a fundamental regulator of cell survival and angiogenesis. Animal models of PAH, patients with PAH, and human PAH endothelial cells produce low nitric oxide (NO). In association with the low level of NO, endothelial cells have reduced mitochondrial numbers and cellular respiration, which is associated with more than a threefold increase in glycolysis for energy production. The shift to glycolysis is related to low levels of NO and likely to the pathologic expression of the prosurvival and proangiogenic signal transducer, hypoxia-inducible factor (HIF)-1, and the reduced mitochondrial antioxidant manganese superoxide dismutase (MnSOD). In this article, we review the phenotypic changes of the endothelium in PAH and the biochemical mechanisms accounting for the proliferative, glycolytic, and strongly proangiogenic phenotype of these dysfunctional cells, which consequently foster the panvascular progressive pulmonary remodeling in PAH.
Collapse
Affiliation(s)
- Weiling Xu
- Departments of Pathobiology, Lerner Research Institute, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA.
| | | |
Collapse
|
27
|
Blazevic T, Schwaiberger AV, Schreiner CE, Schachner D, Schaible AM, Grojer CS, Atanasov AG, Werz O, Dirsch VM, Heiss EH. 12/15-lipoxygenase contributes to platelet-derived growth factor-induced activation of signal transducer and activator of transcription 3. J Biol Chem 2013; 288:35592-603. [PMID: 24165129 PMCID: PMC3853304 DOI: 10.1074/jbc.m113.489013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We showed previously that the small molecule indirubin-3′-monoxime (I3MO) prevents vascular smooth muscle cell (VSMC) proliferation by selectively inhibiting signal transducer and activator of transcription 3 (STAT3). Looking for the underlying upstream molecular mechanism, we here reveal the important role of reactive oxygen species (ROS) for PDGF-induced STAT3 activation in VSMC. We show that neither NADPH-dependent oxidases (Noxes) nor mitochondria, but rather 12/15-lipoxygenase (12/15-LO) are pivotal ROS sources involved in the redox-regulated signal transduction from PDGFR to STAT3. Accordingly, pharmacological and genetic interference with 12/15-LO activity selectively inhibited PDGF-induced Src activation and STAT3 phosphorylation. I3MO is able to blunt PDGF-induced ROS and 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) production, indicating an inhibitory action of I3MO on 12/15-LO and consequently on STAT3. We identify 12/15-LO as a hitherto unrecognized signaling hub in PDGF-triggered STAT3 activation and show for the first time a negative impact of I3MO on 12/15-LO.
Collapse
Affiliation(s)
- Tina Blazevic
- From the Department for Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Fatty acids are the main substrates used by mitochondria to provide myocardial energy under normal conditions. During heart remodeling, however, the fuel preference switches to glucose. In the earlier stages of cardiac remodeling, changes in energy metabolism are considered crucial to protect the heart from irreversible damage. Furthermore, low fatty acid oxidation and the stimulus for glycolytic pathway lead to lipotoxicity, acidosis, and low adenosine triphosphate production. While myocardial function is directly associated with energy metabolism, the metabolic pathways could be potential targets for therapy in heart failure.
Collapse
|
29
|
Beyond retrograde and anterograde signalling: mitochondrial-nuclear interactions as a means for evolutionary adaptation and contemporary disease susceptibility. Biochem Soc Trans 2013; 41:111-7. [PMID: 23356268 DOI: 10.1042/bst20120227] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although there is general agreement that most forms of common disease develop as a consequence of a combination of factors, including genetic, environmental and behavioural contributors, the actual mechanistic basis of how these factors initiate or promote diabetes, cancer, neurodegenerative and cardiovascular diseases in some individuals but not in others with seemingly identical risk factor profiles, is not clearly understood. In this respect, consideration of the potential role for mitochondrial genetics, damage and function in influencing common disease susceptibility seems merited, given that the prehistoric challenges were the original factors that moulded cellular function, and these were based upon the mitochondrial-nuclear relationships that were established during evolutionary history. These interactions were probably refined during prehistoric environmental selection events that, at present, are largely absent. Contemporary risk factors such as diet, sedentary lifestyle and increased longevity, which influence our susceptibility to a variety of chronic diseases were not part of the dynamics that defined the processes of mitochondrial-nuclear interaction, and thus cell function. Consequently, the prehistoric challenges that contributed to cell functionality and evolution should be considered when interpreting and designing experimental data and strategies. Although several molecular epidemiological studies have generally supported this notion, studies that probe beyond these associations are required. Such investigation will mark the initial steps for mechanistically addressing the provocative concept that contemporary human disease susceptibility is the result of prehistoric selection events for mitochondrial-nuclear function, which increased the probability for survival and reproductive success during evolution.
Collapse
|
30
|
Kim JH, Kim HK, Ko JH, Bang H, Lee DC. The relationship between leukocyte mitochondrial DNA copy number and telomere length in community-dwelling elderly women. PLoS One 2013; 8:e67227. [PMID: 23785520 PMCID: PMC3681770 DOI: 10.1371/journal.pone.0067227] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/15/2013] [Indexed: 12/19/2022] Open
Abstract
Purpose Both telomere length and mitochondrial function are accepted as reflective indices of aging. Recent studies have shown that telomere dysfunction may influence impaired mitochondrial biogenesis and function. However, there has been no study regarding the possible association between telomere and mitochondrial function in humans. Therefore, the purpose of the study was to identify any relationships between mitochondrial and telomere function. Methods The present study included 129 community-dwelling, elderly women. The leukocyte mitochondrial DNA copy number and telomere length were measured using a quantitative real-time polymerase chain reaction method. Anthropometric measurement, biochemical blood testing, a depression screening questionnaire using a 15-question geriatric depression scale (GDS-15), and a cognitive function test using the Korean version of the mini mental state examination (K-MMSE) were performed. Results Leukocyte mtDNA copy number was positively associated with telomere length (r=0.39, p=<0.0001) and K-MMSE score (r=0.06, p=0.02). Additionally, leukocyte mtDNA copy number was negatively correlated with GDS-15 score (r=-0.17, p=0.04). Age (r=-0.15, p=0.09), waist circumference (r=-0.16, p=0.07), and serum ferritin level (r=-0.13, p=0.07) tended to be inversely correlated with leukocyte mtDNA copy number. With a stepwise multiple regression analysis, telomere length was found to be an independent factor associated with leukocyte mtDNA copy number after adjustment for confounding variables including age, body mass index, waist circumference, total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, hs-CRP, serum ferritin, HOMA-IR, K-MMSE, GDS-15, hypertension, diabetes, dyslipidemia, currently smoking, alcohol drinking, and regular exercise. Conclusions This study showed that leukocyte mtDNA copy number was positively correlated with leukocyte telomere length in community-dwelling elderly women. Our findings suggest that telomere function may influence mitochondrial function in humans.
Collapse
Affiliation(s)
- Jung-Ha Kim
- Department of Family Medicine, Chung-Ang University Healthcare System, Seoul, Korea
| | - Hye Kyung Kim
- Health Promotion Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyoweon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, Korea
- * E-mail: (D-CL); (HB)
| | - Duk-Chul Lee
- Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (D-CL); (HB)
| |
Collapse
|
31
|
Diers AR, Broniowska KA, Hogg N. Nitrosative stress and redox-cycling agents synergize to cause mitochondrial dysfunction and cell death in endothelial cells. Redox Biol 2013; 1:1-7. [PMID: 24024132 PMCID: PMC3757685 DOI: 10.1016/j.redox.2012.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide production by the endothelium is required for normal vascular homeostasis; however, in conditions of oxidative stress, interactions of nitric oxide with reactive oxygen species (ROS) are thought to underlie endothelial dysfunction. Beyond canonical nitric oxide signaling pathways, nitric oxide production results in the post-translational modification of protein thiols, termed S-nitrosation. The potential interplay between S-nitrosation and ROS remains poorly understood and is the focus of the current study. The effects of the S-nitrosating agent S-nitrosocysteine (CysNO) in combination with redox-cycling agents was examined in bovine aortic endothelial cells (BAEC). CysNO significantly impairs mitochondrial function and depletes the NADH/NAD+ pool; however, these changes do not result in cell death. When faced with the additional stressor of a redox-cycling agent used to generate ROS, further loss of NAD+ occurs, and cellular ATP pools are depleted. Cellular S-nitrosothiols also accumulate, and cell death is triggered. These data demonstrate that CysNO sensitizes endothelial cells to redox-cycling agent-dependent mitochondrial dysfunction and cell death and identify attenuated degradation of S-nitrosothiols as one potential mechanism for the enhanced cytotoxicity.
Collapse
Key Words
- BAEC, Bovine aortic endothelial cells
- BSO, Buthioninesulphoximine
- CysNO, S-nitrosocysteine
- DMNQ, 2,3-dimethoxy-1,4-naphthoquinone
- DMSO, Dimethyl sulfoxide
- DPBS, Dulbecco’s phosphate buffered saline
- DTPA, Diethylenetriaminepentaacetic acid
- DTT, Dithiothreitol
- GAPDH, Glyceraldehyde-3-phosphate dehydrogenase
- GSHee, Glutathione Ethyl Ester
- LDH, Lactate Dehydrogenase
- Mitochondria
- N.D., Not detectable
- NAC, N-acetyl cysteine
- NOS, Nitric oxide synthase
- Nitric oxide
- OCR, Oxygen consumption rate
- ROS, Reactive oxygen species
- Reactive oxygen species
- S-nitrosation
- S-nitrosylation
- SEM, Standard error of the mean.
- Thiol
- cGMP, Cyclic guanosine monophosphate
Collapse
Affiliation(s)
- Anne R Diers
- Department of Biophysics, Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | | | | |
Collapse
|
32
|
Choi J. Oxidative stress, endogenous antioxidants, alcohol, and hepatitis C: pathogenic interactions and therapeutic considerations. Free Radic Biol Med 2012; 52:1135-50. [PMID: 22306508 DOI: 10.1016/j.freeradbiomed.2012.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/04/2012] [Accepted: 01/12/2012] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is a blood-borne pathogen that was identified as an etiologic agent of non-A, non-B hepatitis in 1989. HCV is estimated to have infected at least 170 million people worldwide. The majority of patients infected with HCV do not clear the virus and become chronically infected, and chronic HCV infection increases the risk for hepatic steatosis, cirrhosis, and hepatocellular carcinoma. HCV induces oxidative/nitrosative stress from multiple sources, including inducible nitric oxide synthase, the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases, and inflammation, while decreasing glutathione. The cumulative oxidative burden is likely to promote both hepatic and extrahepatic conditions precipitated by HCV through a combination of local and more distal effects of reactive species, and clinical, animal, and in vitro studies strongly point to a role of oxidative/nitrosative stress in HCV-induced pathogenesis. Oxidative stress and hepatopathogenesis induced by HCV are exacerbated by even low doses of alcohol. Alcohol and reactive species may have other effects on hepatitis C patients such as modulation of the host immune system, viral replication, and positive selection of HCV sequence variants that contribute to antiviral resistance. This review summarizes the current understanding of redox interactions of HCV, outlining key experimental findings, directions for future research, and potential applications to therapy.
Collapse
Affiliation(s)
- Jinah Choi
- Department of Molecular Cell Biology, School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA.
| |
Collapse
|
33
|
Gladden JD, Zelickson BR, Wei CC, Ulasova E, Zheng J, Ahmed MI, Chen Y, Bamman M, Ballinger S, Darley-Usmar V, Dell’Italia LJ. Novel insights into interactions between mitochondria and xanthine oxidase in acute cardiac volume overload. Free Radic Biol Med 2011; 51:1975-84. [PMID: 21925594 PMCID: PMC3364106 DOI: 10.1016/j.freeradbiomed.2011.08.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 08/15/2011] [Accepted: 08/21/2011] [Indexed: 12/31/2022]
Abstract
Xanthine oxidoreductase (XOR) is increased in the left ventricle (LV) of humans with volume overload (VO), and mitochondrial inhibition of the respiratory chain occurs in animal models of VO. Because mitochondria are both a source and a target of reactive oxygen and nitrogen species, we hypothesized that activation of XOR and mitochondrial dysfunction are interdependent. To test this we used the aortocaval fistula (ACF) rat model of VO and a simulation of the stretch response in isolated adult cardiomyocytes with and without the inhibitor of XOR, allopurinol, or the mitochondrially targeted antioxidant MitoQ. Xanthine oxidase (XO) activity was increased in cardiomyocytes from ACF vs sham rats (24h) without an increase in XO protein. A twofold increase in LV end-diastolic pressure/wall stress and a decrease in LV systolic elastance with ACF were improved when allopurinol treatment (100mg/kg) was started at ACF induction. Subsarcolemmal State 3 mitochondrial respiration was significantly decreased in ACF and normalized by allopurinol. Cardiomyocytes subjected to 3h cyclical stretch resulted in an increase in XO activity and mitochondrial swelling, which was prevented by allopurinol or MitoQ pretreatment. These studies establish an early interplay between cardiomyocyte XO activation and bioenergetic dysfunction that may provide a new target that prevents progression to heart failure in VO.
Collapse
Affiliation(s)
- James D Gladden
- UAB Center for Heart Failure Research, University of Alabama at Birmingham
- Department of Physiology and Biophysics, University of Alabama at Birmingham
| | - Blake R Zelickson
- UAB Center for Heart Failure Research, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Center for Free Radical Biology, University of Alabama at Birmingham
| | - Chih-Chang Wei
- UAB Center for Heart Failure Research, University of Alabama at Birmingham
- Department of Medicine, University of Alabama at Birmingham
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Elena Ulasova
- UAB Center for Heart Failure Research, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Center for Free Radical Biology, University of Alabama at Birmingham
| | - Junying Zheng
- UAB Center for Heart Failure Research, University of Alabama at Birmingham
- Department of Medicine, University of Alabama at Birmingham
| | - Mustafa I. Ahmed
- UAB Center for Heart Failure Research, University of Alabama at Birmingham
- Department of Medicine, University of Alabama at Birmingham
| | - Yuanwen Chen
- UAB Center for Heart Failure Research, University of Alabama at Birmingham
- Department of Medicine, University of Alabama at Birmingham
| | - Marcas Bamman
- Department of Physiology and Biophysics, University of Alabama at Birmingham
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Scott Ballinger
- UAB Center for Heart Failure Research, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Center for Free Radical Biology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- UAB Center for Heart Failure Research, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Center for Free Radical Biology, University of Alabama at Birmingham
| | - Louis J Dell’Italia
- UAB Center for Heart Failure Research, University of Alabama at Birmingham
- Department of Medicine, University of Alabama at Birmingham
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
34
|
Dranka BP, Benavides GA, Diers AR, Giordano S, Zelickson BR, Reily C, Zou L, Chatham JC, Hill BG, Zhang J, Landar A, Darley-Usmar VM. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic Biol Med 2011; 51:1621-35. [PMID: 21872656 PMCID: PMC3548422 DOI: 10.1016/j.freeradbiomed.2011.08.005] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 12/22/2022]
Abstract
It is now clear that mitochondria are an important target for oxidative stress in a broad range of pathologies, including cardiovascular disease, diabetes, neurodegeneration, and cancer. Methods for assessing the impact of reactive species on isolated mitochondria are well established but constrained by the need for large amounts of material to prepare intact mitochondria for polarographic measurements. With the availability of high-resolution polarography and fluorescence techniques for the measurement of oxygen concentration in solution, measurements of mitochondrial function in intact cells can be made. Recently, the development of extracellular flux methods to monitor changes in oxygen concentration and pH in cultures of adherent cells in multiple-sample wells simultaneously has greatly enhanced the ability to measure bioenergetic function in response to oxidative stress. Here we describe these methods in detail using representative cell types from renal, cardiovascular, nervous, and tumorigenic model systems while illustrating the application of three protocols to analyze the bioenergetic response of cells to oxidative stress.
Collapse
Affiliation(s)
- Brian P. Dranka
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Gloria A. Benavides
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Anne R. Diers
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Samantha Giordano
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Blake R. Zelickson
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Colin Reily
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Luyun Zou
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - John C. Chatham
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Bradford G. Hill
- Department of Cardiovascular Medicine, University of Louisville, Louisville, KY 40202
| | - Jianhua Zhang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Aimee Landar
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
35
|
Abstract
Mechanisms of left ventricular (LV) dysfunction in isolated mitral regurgitation (MR) are not well understood. Vasodilator therapy in other forms of LV dysfunction reduces LV wall stress and improves LV function; however, studies in isolated MR show no beneficial effect on LV remodeling using vasodilator drugs or renin-angiotensin system blockade. Therefore, the search for new therapies that improve LV remodeling and function in isolated MR is clinically significant. Recent work in the authors' laboratory has demonstrated increased oxidants from a number of sources including the enzyme xanthine oxidase (XO) in the LV of patients with isolated MR. In addition to being a major source of reactive oxygen species, XO is linked to bioenergetic dysfunction because its substrates derive from adenosine triphosphate catabolism. Correspondingly, there was also evidence of aggregates of small mitochondria in cardiomyocytes, which is generally considered a response to bioenergetic deficit in cells. Future studies are required to determine whether XO and persistent oxidative stress are causative in maladaptive LV remodeling and offer potential therapeutic targets in ameliorating LV damage in patients with isolated MR.
Collapse
|
36
|
Ghouleh IA, Khoo NK, Knaus UG, Griendling KK, Touyz RM, Thannickal VJ, Barchowsky A, Nauseef WM, Kelley EE, Bauer PM, Darley-Usmar V, Shiva S, Cifuentes-Pagano E, Freeman BA, Gladwin MT, Pagano PJ. Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic Biol Med 2011; 51:1271-88. [PMID: 21722728 PMCID: PMC3205968 DOI: 10.1016/j.freeradbiomed.2011.06.011] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) are involved in numerous physiological and pathophysiological responses. Increasing evidence implicates ROS as signaling molecules involved in the propagation of cellular pathways. The NADPH oxidase (Nox) family of enzymes is a major source of ROS in the cell and has been related to the progression of many diseases and even environmental toxicity. The complexity of this family's effects on cellular processes stems from the fact that there are seven members, each with unique tissue distribution, cellular localization, and expression. Nox proteins also differ in activation mechanisms and the major ROS detected as their product. To add to this complexity, mounting evidence suggests that other cellular oxidases or their products may be involved in Nox regulation. The overall redox and metabolic status of the cell, specifically the mitochondria, also has implications on ROS signaling. Signaling of such molecules as electrophilic fatty acids has an impact on many redox-sensitive pathologies and thus, as anti-inflammatory molecules, contributes to the complexity of ROS regulation. This review is based on the proceedings of a recent international Oxidase Signaling Symposium at the University of Pittsburgh's Vascular Medicine Institute and Department of Pharmacology and Chemical Biology and encompasses further interaction and discussion among the presenters.
Collapse
Affiliation(s)
- Imad Al Ghouleh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Nicholas K.H. Khoo
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Ulla G. Knaus
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Kathy K. Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA
| | - Rhian M. Touyz
- Ottawa Hospital Research Institute, Univ of Ottawa, Ottawa, Ontario, Canada
| | - Victor J. Thannickal
- Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Aaron Barchowsky
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - William M. Nauseef
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
- Veterans Administration Medical Center, Iowa City, IA
| | - Eric E. Kelley
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA
| | - Phillip M. Bauer
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Bruce A. Freeman
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Mark T. Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
- Department of Pulmonary, Allergy & Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Patrick J. Pagano
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
37
|
Jin HS, Sõber S, Hong KW, Org E, Kim BY, Laan M, Oh B, Jeong SY. Age-dependent association of the polymorphisms in the mitochondria-shaping gene, OPA1, with blood pressure and hypertension in Korean population. Am J Hypertens 2011; 24:1127-35. [PMID: 21796221 DOI: 10.1038/ajh.2011.131] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Essential hypertension is associated with mitochondrial dysfunction. Because mitochondrial dynamics; mitochondrial morphological changes are closely linked with various mitochondrial functions, we aimed to examine whether the genetic variation of the mitochondria-shaping genes influenced the susceptibility to blood pressure (BP) and hypertension. METHODS The quantitative BP trait analysis and hypertension case-control analysis for the total 52 single-nucleotide polymorphisms (SNPs) in the five major mitochondria-shaping genes were performed in the Korean Association Resource (KARE) study cohort (8,512 subjects). RESULTS In the total subjects of the KARE study cohort, there were no statistically significant associations of the SNPs in the five mitochondria-shaping genes with BP or hypertension after adjusting for multiple tests. However, the age group analysis in the 40s, 50s, and 60s age subgroups revealed that 15 SNPs out of 26 SNPs genotyped in the OPA1 gene were significantly associated with BP and/or hypertension in the 60s age subgroup and their association P values satisfied the Bonferroni-corrected significance level (P < 0.00625). Noticeably, nine SNPs were consistently associated with all the three traits; systolic BP (SBP), diastolic BP (DBP), and hypertension. In silico lookup of the associated SNPs in the Southern German population did not reveal associations with BP traits. CONCLUSIONS Our results indicate that genetic variation of the mitochondrial fusion-regulating gene, OPA1, might be associated with BP and hypertension in an age-dependent and population-specific manner in the Korean study cohort, and suggest that altered mitochondrial dynamics, especially involved in the mitochondrial fusion event, may play an important role in the pathogenesis of hypertension.
Collapse
|
38
|
Jin HS, Hong KW, Kim BY, Kim J, Yoo YH, Oh B, Jeong SY. Replicated association between genetic variation in the PARK2 gene and blood pressure. Clin Chim Acta 2011; 412:1673-7. [DOI: 10.1016/j.cca.2011.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/04/2011] [Accepted: 05/18/2011] [Indexed: 01/11/2023]
|
39
|
Zhang A, Jia Z, Wang N, Tidwell TJ, Yang T. Relative contributions of mitochondria and NADPH oxidase to deoxycorticosterone acetate-salt hypertension in mice. Kidney Int 2011; 80:51-60. [PMID: 21368743 PMCID: PMC11164293 DOI: 10.1038/ki.2011.29] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We assessed the relative contribution of the mitochondrial respiratory chain and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase to deoxycorticosterone acetate (DOCA)-salt hypertension in mice. The daily mean arterial pressure was monitored by radiotelemetry in DOCA-salt-treated mice given vehicle or the mitochondrial respiratory chain complex I inhibitor rotenone. This treatment produced remarkable attenuation of DOCA-salt hypertension. Similar results were obtained with other inhibitors of mitochondrial function, including 5-hydroxydecanoate (specific for mitochondrial potassium-ATP channels), benzylguanidine (complexes I and III), and the cell-permeable manganese tetrakis (4-benzoic acid) porphyrin (a mimic of mitochondrial superoxide dismutase). In parallel with the blood pressure-lowering effect of rotenone, the DOCA-salt-induced increases in urinary 8-isoprostane excretion and in reactive oxygen species production of isolated kidney mitochondria were both significantly attenuated. Conversely, the DOCA-salt-induced reduction of urinary nitrate/nitrite excretion was significantly elevated. Following DOCA-salt treatment, mice deficient in NADPH oxidase subunits gp91(phox) or p47(phox) exhibited a partial attenuation of the hypertensive response at early but not later time points. Thus, the mitochondrial respiratory chain is a major source of oxidative stress in DOCA-salt hypertension, whereas NADPH oxidase may have a relatively minor role during the early stage of hypertension.
Collapse
Affiliation(s)
- Aihua Zhang
- Division of Nephrology, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Department of Nephrology, Nanjing Children’s Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Division of Nephrology, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Ningning Wang
- Division of Nephrology, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tyson J. Tidwell
- Division of Nephrology, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Division of Nephrology, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
40
|
Diers AR, Broniowska KA, Darley-Usmar VM, Hogg N. Differential regulation of metabolism by nitric oxide and S-nitrosothiols in endothelial cells. Am J Physiol Heart Circ Physiol 2011; 301:H803-12. [PMID: 21685262 DOI: 10.1152/ajpheart.00210.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S-nitrosation of thiols in key proteins in cell signaling pathways is thought to be an important contributor to nitric oxide (NO)-dependent control of vascular (patho)physiology. Multiple metabolic enzymes are targets of both NO and S-nitrosation, including those involved in glycolysis and oxidative phosphorylation. Thus it is important to understand how these metabolic pathways are integrated by NO-dependent mechanisms. Here, we compared the effects of NO and S-nitrosation on both glycolysis and oxidative phosphorylation in bovine aortic endothelial cells using extracellular flux technology to determine common and unique points of regulation. The compound S-nitroso-L-cysteine (L-CysNO) was used to initiate intracellular S-nitrosation since it is transported into cells and results in stable S-nitrosation in vitro. Its effects were compared with the NO donor DetaNONOate (DetaNO). DetaNO treatment caused only a decrease in the reserve respiratory capacity; however, L-CysNO impaired both this parameter and basal respiration in a concentration-dependent manner. In addition, DetaNO stimulated extracellular acidification rate (ECAR), a surrogate marker of glycolysis, whereas L-CysNO stimulated ECAR at low concentrations and inhibited it at higher concentrations. Moreover, a temporal relationship between NO- and S-nitrosation-mediated effects on metabolism was identified, whereby NO caused a rapid impairment in mitochondrial function, which was eventually overwhelmed by S-nitrosation-dependent processes. Taken together, these results suggest that severe pharmacological nitrosative stress may differentially regulate metabolic pathways through both intracellular S-nitrosation and NO-dependent mechanisms. Moreover, these data provide insight into the role of NO and related compounds in vascular (patho)physiology.
Collapse
Affiliation(s)
- Anne R Diers
- Department of Biophysics, Redox Biology Program, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
41
|
de Cavanagh EMV, Inserra F, Ferder L. Angiotensin II blockade: a strategy to slow ageing by protecting mitochondria? Cardiovasc Res 2010; 89:31-40. [PMID: 20819950 DOI: 10.1093/cvr/cvq285] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Protein and lipid oxidation-mainly by mitochondrial reactive oxygen species (mtROS)-was proposed as a crucial determinant of health and lifespan. Angiotensin II (Ang II) enhances ROS production by activating NAD(P)H oxidase and uncoupling endothelial nitric oxide synthase (NOS). Ang II also stimulates mtROS production, which depresses mitochondrial energy metabolism. In rodents, renin-angiotensin system blockade (RAS blockade) increases survival and prevents age-associated changes. RAS blockade reduces mtROS and enhances mitochondrial content and function. This suggests that Ang II contributes to the ageing process by prompting mitochondrial dysfunction. Since Ang II is a pleiotropic peptide, the age-protecting effects of RAS blockade are expected to involve a variety of other mechanisms. Caloric restriction (CR)-an age-retarding intervention in humans and animals-and RAS blockade display a number of converging effects, i.e. they delay the manifestations of hypertension, diabetes, nephropathy, cardiovascular disease, and cancer; increase body temperature; reduce body weight, plasma glucose, insulin, and insulin-like growth factor-1; ameliorate insulin sensitivity; lower protein, lipid, and DNA oxidation, and mitochondrial H(2)O(2) production; and increase uncoupling protein-2 and sirtuin expression. A number of these overlapping effects involve changes in mitochondrial function. In CR, peroxisome proliferator-activated receptors (PPARs) seem to contribute to age-retardation partly by regulating mitochondrial function. RAS inhibition up-regulates PPARs; therefore, it is feasible that PPAR modulation is pivotal for mitochondrial protection by RAS blockade during rodent ageing. Other potential mechanisms that may underlie RAS blockade's mitochondrial benefits are TGF-β down-regulation and up-regulation of Klotho and sirtuins. In conclusion, the available data suggest that RAS blockade deserves further research efforts to establish its role as a potential tool to mitigate the growing problem of age-associated chronic disease.
Collapse
Affiliation(s)
- Elena M V de Cavanagh
- Center of Hypertension, Cardiology Department, Austral University Hospital, Derqui, Argentina
| | | | | |
Collapse
|
42
|
Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch 2010; 459:923-39. [PMID: 20306272 DOI: 10.1007/s00424-010-0808-2] [Citation(s) in RCA: 514] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 02/16/2010] [Indexed: 02/07/2023]
Abstract
Endothelium-derived nitric oxide (NO) is a paracrine factor that controls vascular tone, inhibits platelet function, prevents adhesion of leukocytes, and reduces proliferation of the intima. An enhanced inactivation and/or reduced synthesis of NO is seen in conjunction with risk factors for cardiovascular disease. This condition, referred to as endothelial dysfunction, can promote vasospasm, thrombosis, vascular inflammation, and proliferation of vascular smooth muscle cells. Vascular oxidative stress with an increased production of reactive oxygen species (ROS) contributes to mechanisms of vascular dysfunction. Oxidative stress is mainly caused by an imbalance between the activity of endogenous pro-oxidative enzymes (such as NADPH oxidase, xanthine oxidase, or the mitochondrial respiratory chain) and anti-oxidative enzymes (such as superoxide dismutase, glutathione peroxidase, heme oxygenase, thioredoxin peroxidase/peroxiredoxin, catalase, and paraoxonase) in favor of the former. Also, small molecular weight antioxidants may play a role in the defense against oxidative stress. Increased ROS concentrations reduce the amount of bioactive NO by chemical inactivation to form toxic peroxynitrite. Peroxynitrite-in turn-can "uncouple" endothelial NO synthase to become a dysfunctional superoxide-generating enzyme that contributes to vascular oxidative stress. Oxidative stress and endothelial dysfunction can promote atherogenesis. Therapeutically, drugs in clinical use such as ACE inhibitors, AT(1) receptor blockers, and statins have pleiotropic actions that can improve endothelial function. Also, dietary polyphenolic antioxidants can reduce oxidative stress, whereas clinical trials with antioxidant vitamins C and E failed to show an improved cardiovascular outcome.
Collapse
Affiliation(s)
- Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Obere Zahlbacher Strasse 67, 55101, Mainz, Germany.
| |
Collapse
|
43
|
Dranka BP, Hill BG, Darley-Usmar VM. Mitochondrial reserve capacity in endothelial cells: The impact of nitric oxide and reactive oxygen species. Free Radic Biol Med 2010; 48:905-14. [PMID: 20093177 PMCID: PMC2860730 DOI: 10.1016/j.freeradbiomed.2010.01.015] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 12/10/2009] [Accepted: 01/06/2010] [Indexed: 12/13/2022]
Abstract
The endothelium is not considered to be a major energy-requiring organ, but nevertheless endothelial cells have an extensive mitochondrial network. This suggests that mitochondrial function may be important in response to stress and signaling in these cells. In this study, we used extracellular flux analysis to measure mitochondrial function in adherent bovine aortic endothelial cells (BAEC). Under basal conditions, BAEC use only approximately 35% of their maximal respiratory capacity. We calculate that this represents an intermediate respiratory state between States 3 and 4, which we define as State(apparent) equal to 3.64. Interestingly, the apparent respiratory control ratio (maximal mitochondrial oxygen consumption/non-ADP-linked respiration) in these cells is on the order of 23, which is substantially higher than that which is frequently obtained with isolated mitochondria. These results suggest that mitochondria in endothelial cells are highly coupled and possess a considerable bioenergetic reserve. Because endothelial cells are exposed to both reactive oxygen (ROS) and reactive nitrogen species in the course of vascular disease, we hypothesized that this reserve capacity is important in responding to oxidative stress. To test this, we exposed BAEC to NO or ROS alone or in combination. We found that exposure to nontoxic concentrations of NO or low levels of hydrogen peroxide generated from 2,3-dimethoxy-1,4-napthoquinone (DMNQ) had little impact on basal mitochondrial function but both treatments reversibly decreased mitochondrial reserve capacity. However, combined NO and DMNQ treatment resulted in an irreversible loss of reserve capacity and was associated with cell death. These data are consistent with a critical role for the mitochondrial reserve capacity in endothelial cells in responding to oxidative stress.
Collapse
Affiliation(s)
- Brian P Dranka
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
44
|
Abstract
Epidemiological studies have shown that advancing age is associated with an increased prevalence of cardiovascular disease (CVD). Vascular smooth muscle cells (VSMC) comprise the major arterial cell population, and changes in VSMC behavior, function, and redox status with age contribute to alterations in vascular remodeling and cell signaling. Over two decades of work on aged animal models provide support for age-related changes in VSMC and/or arterial tissues. Enhanced production of reactive oxygen species (ROS) and insufficient removal by scavenging systems are hallmarks of vascular aging. VSMC proliferation and migration are core processes in vascular remodeling and influenced by growth factors and signaling networks. The intrinsic link between gene regulation and aging often relates directly to transcription factors and their regulatory actions. Modulation of growth factor signaling leads to up- or downregulation of transcription factors that control expression of genes associated with VSMC proliferation, inflammation, and ROS production. Four major signaling pathways related to the transcription factors, AP-1, NF-kappaB, FoxO, and Nrf2, will be reviewed. Knowledge of age-related changes in signaling pathways in VSMC that lead to alterations in cell behavior and function consistent with disease progression may help in efforts to attenuate age-related CVD, such as atherosclerosis.
Collapse
Affiliation(s)
- Muyao Li
- Department of Medicine, University of Vermont College of Medicine, Burlington, 05405, USA
| | | |
Collapse
|
45
|
Tabit CE, Chung WB, Hamburg NM, Vita JA. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord 2010; 11:61-74. [PMID: 20186491 PMCID: PMC2882637 DOI: 10.1007/s11154-010-9134-4] [Citation(s) in RCA: 390] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease is a major complication of diabetes mellitus, and improved strategies for prevention and treatment are needed. Endothelial dysfunction contributes to the pathogenesis and clinical expression of atherosclerosis in diabetes mellitus. This article reviews the evidence linking endothelial dysfunction to human diabetes mellitus and experimental studies that investigated the responsible mechanisms. We then discuss the implications of these studies for current management and for new approaches for the prevention and treatment of cardiovascular disease in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Corey E. Tabit
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - William B. Chung
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Naomi M. Hamburg
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Joseph A. Vita
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
- Section of Cardiology, Boston Medical Center, 88 East Newton Street, Boston, MA 02118, USA,
| |
Collapse
|
46
|
Ha SJ, Kim W. Mechanism of Ischemia and Reperfusion Injury to the Heart: From the Viewpoint of Nitric Oxide and Mitochondria. Chonnam Med J 2010. [DOI: 10.4068/cmj.2010.46.3.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Sang-Jin Ha
- Cardiology Division, Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Weon Kim
- Cardiology Division, Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
| |
Collapse
|
47
|
Padmini E, Lavanya S, Uthra V. Preeclamptic placental stress and over expression of mitochondrial HSP70. Clin Chem Lab Med 2009; 47:1073-80. [PMID: 19728848 DOI: 10.1515/cclm.2009.247] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Evidence is accumulating that mitochondrial (Mt) oxidative stress plays a role in the pathogenesis of preeclampsia. The current study analyzes the stress levels, energy status and associated enzymatic alteration in placental mitochondria of preeclamptic (n=30) and normotensive (n=35) subjects. METHODS Total Mt stress was measured using dichlorofluorescin (DCFH) oxidant analysis, malondialdehyde (MDA) concentrations, protein carbonyl (PC) concentrations and measurement of nitrite (NO2(-)) and nitrate (NO3(-)). Activity of antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx) and the glutathione redox ratio (GRR) were measured. The ATP/ADP (adenosine triphosphate/adenosine diphosphate) concentrations and respiratory chain enzyme activities were also analyzed. The expression of heat shock protein 70 (HSP70) was measured in mitochondria. RESULTS The DCFH oxidants, MDA, PC concentrations, and concentrations of NO2(-) and NO3(-) were significantly higher in the preeclamptic group (p<0.01) compared with the control group. The activities of SOD, GPx, GRR [glutathione (GSH)/glutathione disulfate (GSSG)] (p<0.01, p<0.001), ATP/ADP and respiratory chain enzyme activities were reduced significantly (p<0.001) in preeclamptic conditions. The placental mitochondrial HSP70 (mtHSP70) showed significant over expression in the preeclamptic group (p<0.001) compared with the control group. CONCLUSIONS These results provide the first line of evidence for accumulated Mt stress demonstrated by increased stress markers, decreased antioxidants and enhanced mtHSP70. The study illustrates the probable protective mechanism of mtHSP70 against the generated stress. This is primarily to combat the enzymatic and free radical mediated damage produced in preeclampsia.
Collapse
Affiliation(s)
- Ekambaram Padmini
- P.G. Department of Biochemistry, Bharathi Women's College, Affiliated to University of Madras, Chennai, Tamilnadu, India.
| | | | | |
Collapse
|
48
|
Clement HW, Vazquez JF, Sommer O, Heiser P, Morawietz H, Hopt U, Schulz E, von Dobschütz E. Lipopolysaccharide-induced radical formation in the striatum is abolished in Nox2 gp91phox-deficient mice. J Neural Transm (Vienna) 2009; 117:13-22. [DOI: 10.1007/s00702-009-0327-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/20/2009] [Indexed: 11/24/2022]
|
49
|
Abstract
The endothelium is an important component of vascular homeostasis that is a target for injury in the setting of vascular disease. One means of promoting a maladaptive endothelial cell phenotype such as that seen in atherosclerosis is excess oxidative stress. Although this term once was almost exclusively used to describe low-density lipoprotein (LDL) and lipid oxidation in the vasculature, we now understand that the intracellular oxidant milieu is an important modulator of vascular cell function. Indeed, considerable data indicate that reactive oxygen species (ROS) are an important means of cellular signaling, although the precise mechanisms whereby ROS accomplish this are still under investigation. In this review, the data linking ROS to kinase activation and cell signaling in the endothelium is discussed, with a particular emphasis on the roles of protein thiol modification.
Collapse
Affiliation(s)
- Kai Chen
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
50
|
Seppet E, Gruno M, Peetsalu A, Gizatullina Z, Nguyen HP, Vielhaber S, Wussling MH, Trumbeckaite S, Arandarcikaite O, Jerzembeck D, Sonnabend M, Jegorov K, Zierz S, Striggow F, Gellerich FN. Mitochondria and energetic depression in cell pathophysiology. Int J Mol Sci 2009; 10:2252-2303. [PMID: 19564950 PMCID: PMC2695278 DOI: 10.3390/ijms10052252] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 04/25/2009] [Accepted: 05/14/2009] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction is a hallmark of almost all diseases. Acquired or inherited mutations of the mitochondrial genome DNA may give rise to mitochondrial diseases. Another class of disorders, in which mitochondrial impairments are initiated by extramitochondrial factors, includes neurodegenerative diseases and syndromes resulting from typical pathological processes, such as hypoxia/ischemia, inflammation, intoxications, and carcinogenesis. Both classes of diseases lead to cellular energetic depression (CED), which is characterized by decreased cytosolic phosphorylation potential that suppresses the cell's ability to do work and control the intracellular Ca(2+) homeostasis and its redox state. If progressing, CED leads to cell death, whose type is linked to the functional status of the mitochondria. In the case of limited deterioration, when some amounts of ATP can still be generated due to oxidative phosphorylation (OXPHOS), mitochondria launch the apoptotic cell death program by release of cytochrome c. Following pronounced CED, cytoplasmic ATP levels fall below the thresholds required for processing the ATP-dependent apoptotic cascade and the cell dies from necrosis. Both types of death can be grouped together as a mitochondrial cell death (MCD). However, there exist multiple adaptive reactions aimed at protecting cells against CED. In this context, a metabolic shift characterized by suppression of OXPHOS combined with activation of aerobic glycolysis as the main pathway for ATP synthesis (Warburg effect) is of central importance. Whereas this type of adaptation is sufficiently effective to avoid CED and to control the cellular redox state, thereby ensuring the cell survival, it also favors the avoidance of apoptotic cell death. This scenario may underlie uncontrolled cellular proliferation and growth, eventually resulting in carcinogenesis.
Collapse
Affiliation(s)
- Enn Seppet
- Department of Pathophysiology, University of Tartu, Tartu, Estonia; E-Mail:
(M.G.)
| | - Marju Gruno
- Department of Pathophysiology, University of Tartu, Tartu, Estonia; E-Mail:
(M.G.)
| | - Ants Peetsalu
- Department of Surgery, University of Tartu, Tartu, Estonia; E-Mail:
(A.P.)
| | - Zemfira Gizatullina
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| | - Huu Phuc Nguyen
- Department of Medical Genetics, University of Tübingen, Tübingen, Germany; E-Mail:
(H.P.N.)
| | - Stefan Vielhaber
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany; E-Mail:
(S.V.)
| | - Manfred H.P. Wussling
- Bernstein Institute for Physiology, Martin-Luther-University Halle-Wittenberg, Germany; E-Mail:
(M.H.P.W.)
| | - Sonata Trumbeckaite
- Institute for Biomedical Research, Kaunas University of Medicine, Kaunas, Lithuania; E-Mails:
(S.T.);
(O.A.)
| | - Odeta Arandarcikaite
- Institute for Biomedical Research, Kaunas University of Medicine, Kaunas, Lithuania; E-Mails:
(S.T.);
(O.A.)
| | - Doreen Jerzembeck
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| | - Maria Sonnabend
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| | - Katharina Jegorov
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| | - Stephan Zierz
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Germany; E-Mail:
(S.Z.)
| | - Frank Striggow
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| | - Frank N. Gellerich
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| |
Collapse
|