1
|
da Silva TC, da Silveira TL, Dos Santos LV, Arantes LP, Martins RP, Soares FAA, Dalla Corte CL. Exogenous Adenosine Modulates Behaviors and Stress Response in Caenorhabditis elegans. Neurochem Res 2023; 48:117-130. [PMID: 36018438 DOI: 10.1007/s11064-022-03727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 01/11/2023]
Abstract
Adenosine, a purine nucleoside with neuromodulatory actions, is part of the purinergic signaling system (PSS). Caenorhabditis elegans is a free-living nematode found in soil, used in biological research for its advantages as an alternative experimental model. Since there is a lack of evidence of adenosine's direct actions and the PSS's participation in this animal, such an investigation is necessary. In this research, we aimed to test the effects of acute and chronic adenosine at 1, 5, and 10 mM on nematode's behaviors, morphology, survival after stress conditions, and on pathways related to the response to oxidative stress (DAF-16/FOXO and SKN-1) and genes products downstream these pathways (SOD-3, HSP-16.2, and GCS-1). Acute or chronic adenosine did not alter the worms' morphology analyzed by the worms' length, width, and area, nor interfered with reproductive behavior. On the other hand, acute and chronic adenosine modulated the defecation rate, pharyngeal pumping rate, and locomotion, in addition, to interacting with stress response pathways in C. elegans. Adenosine interfered in the speed and mobility of the worms analyzed. In addition, both acute and chronic adenosine presented modulatory effects on oxidative stress response signaling. Acute adenosine prevented the heat-induced-increase of DAF-16 activation and SOD-3 levels, while chronic adenosine per se induced DAF-16 activation and prevented heat-induced-increase of HSP-16.2 and SKN-1 levels. Together, these results indicate that exogenous adenosine has physiological and biochemical effects on C. elegans and describes possible purinergic signaling in worms.
Collapse
Affiliation(s)
- Thayanara Cruz da Silva
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Tássia Limana da Silveira
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Luiza Venturini Dos Santos
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Leticia Priscila Arantes
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Paraná, 85866-000, Brazil
| | - Rodrigo Pereira Martins
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Félix Alexandre Antunes Soares
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Cristiane Lenz Dalla Corte
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
2
|
Marchand A, Van Bree JWM, Taki AC, Moyat M, Turcatti G, Chambon M, Smith AAT, Doolan R, Gasser RB, Harris NL, Bouchery T. Novel High-Throughput Fluorescence-Based Assay for the Identification of Nematocidal Compounds That Target the Blood-Feeding Pathway. Pharmaceuticals (Basel) 2022; 15:ph15060669. [PMID: 35745589 PMCID: PMC9231213 DOI: 10.3390/ph15060669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
Hookworm infections cause a neglected tropical disease (NTD) affecting ~740 million people worldwide, principally those living in disadvantaged communities. Infections can cause high morbidity due to their impact on nutrient uptake and their need to feed on host blood, resulting in a loss of iron and protein, which can lead to severe anaemia and impaired cognitive development in children. Currently, only one drug, albendazole is efficient to treat hookworm infection and the scientific community fears the rise of resistant strains. As part of on-going efforts to control hookworm infections and its associated morbidities, new drugs are urgently needed. We focused on targeting the blood-feeding pathway, which is essential to the parasite survival and reproduction, using the laboratory hookworm model Nippostrongylus brasiliensis (a nematode of rodents with a similar life cycle to hookworms). We established an in vitro-drug screening assay based on a fluorescent-based measurement of parasite viability during blood-feeding to identify novel therapeutic targets. A first screen of a library of 2654 natural compounds identified four that caused decreased worm viability in a blood-feeding-dependent manner. This new screening assay has significant potential to accelerate the discovery of new drugs against hookworms.
Collapse
Affiliation(s)
- Anthony Marchand
- Laboratory of Intestinal Immunology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (A.M.); (M.M.); (N.L.H.)
| | - Joyce W. M. Van Bree
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct (AMREP), Monash University, Melbourne, VIC 3004, Australia;
| | - Aya C. Taki
- Melbourne Veterinary School, The University of Melbourne, Melbourne, VIC 3052, Australia; (A.C.T.); (R.B.G.)
| | - Mati Moyat
- Laboratory of Intestinal Immunology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (A.M.); (M.M.); (N.L.H.)
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct (AMREP), Monash University, Melbourne, VIC 3004, Australia;
| | - Gerardo Turcatti
- Biomolecular Screening Facility, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (G.T.); (M.C.)
| | - Marc Chambon
- Biomolecular Screening Facility, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (G.T.); (M.C.)
| | | | - Rory Doolan
- Hookworm Immuno-Biology Laboratory, Swiss Tropical and Public Health Institute, 4123 Allschwill, Switzerland;
- Basel University, 4001 Basel, Switzerland
| | - Robin B. Gasser
- Melbourne Veterinary School, The University of Melbourne, Melbourne, VIC 3052, Australia; (A.C.T.); (R.B.G.)
| | - Nicola Laraine Harris
- Laboratory of Intestinal Immunology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (A.M.); (M.M.); (N.L.H.)
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct (AMREP), Monash University, Melbourne, VIC 3004, Australia;
| | - Tiffany Bouchery
- Laboratory of Intestinal Immunology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (A.M.); (M.M.); (N.L.H.)
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct (AMREP), Monash University, Melbourne, VIC 3004, Australia;
- Hookworm Immuno-Biology Laboratory, Swiss Tropical and Public Health Institute, 4123 Allschwill, Switzerland;
- Basel University, 4001 Basel, Switzerland
- Correspondence:
| |
Collapse
|
3
|
Engelsöy U, Svensson MA, Demirel I. Estradiol Alters the Virulence Traits of Uropathogenic Escherichia coli. Front Microbiol 2021; 12:682626. [PMID: 34354683 PMCID: PMC8329245 DOI: 10.3389/fmicb.2021.682626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the most common bacteria to cause urinary tract infection (UTI). Postmenopausal women have an increased risk of recurrent UTI. This is partly explained by estrogenic effects on host defenses against UTI. Current research is mostly focused on how UPEC affects host factors, but not so much is known about how host factors like hormones affect UPEC virulence. The aim of the present study was to investigate the impact of estradiol exposure on the virulence of UPEC. We found that a postmenopausal concentration of estradiol increased CFT073 growth and biofilm formation, but not the premenopausal concentrations. Real-time qPCR showed that estradiol altered the expression of genes associated with the iron acquisition system and metabolic pathways in CFT073. We also found that estradiol in a dose-dependent manner increased the expression of fimH and papC adhesins and increased colonization and invasion of bladder epithelial cells. The premenopausal concentration of estradiol also suppressed cytokine release from bladder epithelial cells. Additionally, we also showed using a Caenorhabditis elegans killing assay that estradiol increased the survival of CFT073-infected C. elegans worms. Taken together, our findings show that estradiol has the ability to alter the virulence traits of UPEC.
Collapse
Affiliation(s)
- Ulrik Engelsöy
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Maria A Svensson
- School of Medical Sciences, Örebro University, Örebro, Sweden.,Department of Research and Education, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, Örebro, Sweden.,Faculty of Medicine and Health, iRiSC-Inflammatory Response and Infection Susceptibility Centre, Örebro University, Örebro, Sweden
| |
Collapse
|
4
|
Small flexible automated system for monitoring Caenorhabditis elegans lifespan based on active vision and image processing techniques. Sci Rep 2021; 11:12289. [PMID: 34112931 PMCID: PMC8192789 DOI: 10.1038/s41598-021-91898-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/02/2021] [Indexed: 11/29/2022] Open
Abstract
Traditionally Caenorhabditis elegans lifespan assays are performed by manually inspecting nematodes with a dissection microscope, which involves daily counting of live/dead worms cultured in Petri plates for 21–25 days. This manual inspection requires the screening of hundreds of worms to ensure statistical robustness, and is therefore a time-consuming approach. In recent years, various automated artificial vision systems have been reported to increase the throughput, however they usually provide less accurate results than manual assays. The main problems identified when using these vision systems are the false positives and false negatives, which occur due to culture media changes, occluded zones, dirtiness or condensation of the Petri plates. In this work, we developed and described a new C. elegans monitoring machine, SiViS, which consists of a flexible and compact platform design to analyse C. elegans cultures using the standard Petri plates seeded with E. coli. Our system uses an active vision illumination technique and different image-processing pipelines for motion detection, both previously reported, providing a fully automated image processing pipeline. In addition, this study validated both these methods and the feasibility of the SiViS machine for lifespan experiments by comparing them with manual lifespan assays. Results demonstrated that the automated system yields consistent replicates (p-value log rank test 0.699), and there are no significant differences between automated system assays and traditionally manual assays (p-value 0.637). Finally, although we have focused on the use of SiViS in longevity assays, the system configuration is flexible and can, thus, be adapted to other C. elegans studies such as toxicity, mobility and behaviour.
Collapse
|
5
|
Iqbal M, Broberg M, Haarith D, Broberg A, Bushley KE, Brandström Durling M, Viketoft M, Funck Jensen D, Dubey M, Karlsson M. Natural variation of root lesion nematode antagonism in the biocontrol fungus Clonostachys rosea and identification of biocontrol factors through genome-wide association mapping. Evol Appl 2020; 13:2264-2283. [PMID: 33005223 PMCID: PMC7513725 DOI: 10.1111/eva.13001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 01/28/2023] Open
Abstract
Biological control is a promising approach to reduce plant diseases caused by nematodes to ensure high productivity in agricultural production. Large-scale analyses of genetic variation in fungal species used for biocontrol can generate knowledge regarding interaction mechanisms that can improve efficacy of biocontrol applications. In this study, we performed a genome-wide association study (GWAS) for in vitro antagonism against the root lesion nematode Pratylenchus penetrans in 53 previously genome re-sequenced strains of the biocontrol fungus Clonostachys rosea. Nematode mortality in C. rosea potato dextrose broth (PDB) culture filtrates was highly variable and showed continuous variation (p < .001) between strains, indicating a polygenic inheritance. Twenty-one strains produced culture filtrates with higher (p ≤ .05) nematode mortality compared with the PDB control treatment, while ten strains lowered (p ≤ .05) the mortality. The difference in in vitro antagonism against P. penetrans correlated with antagonism against the soybean cyst nematode Heterodera glycines, indicating lack of host specificity in C. rosea. An empirical Bayesian multiple hypothesis testing approach identified 279 single nucleotide polymorphism markers significantly (local false sign rate < 10-10) associated with the trait. Genes present in the genomic regions associated with nematicidal activity included several membrane transporters, a chitinase and genes encoding proteins predicted to biosynthesize secondary metabolites. Gene deletion strains of the predicted nonribosomal peptide synthetase genes nps4 and nps5 were generated and showed increased (p ≤ .001) fungal growth and conidiation rates compared to the wild type. Deletion strains also exhibited reduced (p < .001) nematicidal activity and reduced (p ≤ .05) biocontrol efficacy against nematode root disease and against fusarium foot rot on wheat. In summary, we show that the GWAS approach can be used to identify biocontrol factors in C. rosea, specifically the putative nonribosomal peptide synthetases NPS4 and NPS5.
Collapse
Affiliation(s)
- Mudassir Iqbal
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Martin Broberg
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Deepak Haarith
- Department of Plant and Microbial Biology University of Minnesota St. Paul MN USA
| | - Anders Broberg
- Department of Molecular Sciences Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Kathryn E Bushley
- Department of Plant and Microbial Biology University of Minnesota St. Paul MN USA
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Maria Viketoft
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
6
|
Helal MA, Abdel-Gawad AM, Kandil OM, Khalifa MME, Cave GWV, Morrison AA, Bartley DJ, Elsheikha HM. Nematocidal Effects of a Coriander Essential Oil and Five Pure Principles on the Infective Larvae of Major Ovine Gastrointestinal Nematodes In Vitro. Pathogens 2020; 9:E740. [PMID: 32916863 PMCID: PMC7558654 DOI: 10.3390/pathogens9090740] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
The anthelmintic effects of extracted coriander oil and five pure essential oil constituents (geraniol, geranyl acetate, eugenol, methyl iso-eugenol, and linalool) were tested, using larval motility assay, on the third-stage larvae (L3s) of Haemonchus contortus, Trichostrongylus axei, Teladorsagia circumcincta, Trichostrongylus colubriformis, Trichostrongylus vitrinus and Cooperia oncophora. Coriander oil and linalool, a major component of tested coriander oil, showed a strong inhibitory efficacy against all species, except C. oncophora with a half maximal inhibitory concentration (IC50) that ranged from 0.56 to 1.41% for the coriander oil and 0.51 to 1.76% for linalool. The coriander oil and linalool combinations conferred a synergistic anthelmintic effect (combination index [CI] <1) on larval motility comparable to positive control (20 mg/mL levamisole) within 24 h (p < 0.05), reduced IC50 values to 0.11-0.49% and induced a considerable structural damage to L3s. Results of the combined treatment were validated by quantitative fluorometric microplate-based assays using Sytox green, propidium iodide and C12-resazurin, which successfully discriminated live/dead larvae. Only Sytox green staining achieved IC50 values comparable to that of the larval motility assay. The cytotoxicity of the combined coriander oil and linalool on Madin-Darby Canine Kidney cells was evaluated using sulforhodamine-B (SRB) assay and showed no significant cytotoxic effect at concentrations < 1%. These results indicate that testing essential oils and their main components may help to find new potential anthelmintic compounds, while at the same time reducing the reliance on synthetic anthelmintics.
Collapse
Affiliation(s)
- Mohamed A. Helal
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire LE12 5RD, UK;
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Giza 12622, Egypt;
| | - Ahmed M. Abdel-Gawad
- Parasitology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (A.M.A.-G.); (M.M.E.K.)
| | - Omnia M. Kandil
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Giza 12622, Egypt;
| | - Marwa M. E. Khalifa
- Parasitology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (A.M.A.-G.); (M.M.E.K.)
| | - Gareth W. V. Cave
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Alison A. Morrison
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, Edinburgh, UK; (A.A.M.); (D.J.B.)
| | - David J. Bartley
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, Edinburgh, UK; (A.A.M.); (D.J.B.)
| | - Hany M. Elsheikha
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire LE12 5RD, UK;
| |
Collapse
|
7
|
Bulterijs S, Braeckman BP. Phenotypic Screening in C. elegans as a Tool for the Discovery of New Geroprotective Drugs. Pharmaceuticals (Basel) 2020; 13:E164. [PMID: 32722365 PMCID: PMC7463874 DOI: 10.3390/ph13080164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023] Open
Abstract
Population aging is one of the largest challenges of the 21st century. As more people live to advanced ages, the prevalence of age-related diseases and disabilities will increase placing an ever larger burden on our healthcare system. A potential solution to this conundrum is to develop treatments that prevent, delay or reduce the severity of age-related diseases by decreasing the rate of the aging process. This ambition has been accomplished in model organisms through dietary, genetic and pharmacological interventions. The pharmacological approaches hold the greatest opportunity for successful translation to the clinic. The discovery of such pharmacological interventions in aging requires high-throughput screening strategies. However, the majority of screens performed for geroprotective drugs in C. elegans so far are rather low throughput. Therefore, the development of high-throughput screening strategies is of utmost importance.
Collapse
Affiliation(s)
- Sven Bulterijs
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Egge N, Arneaud SLB, Wales P, Mihelakis M, McClendon J, Fonseca RS, Savelle C, Gonzalez I, Ghorashi A, Yadavalli S, Lehman WJ, Mirzaei H, Douglas PM. Age-Onset Phosphorylation of a Minor Actin Variant Promotes Intestinal Barrier Dysfunction. Dev Cell 2020; 51:587-601.e7. [PMID: 31794717 DOI: 10.1016/j.devcel.2019.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/17/2019] [Accepted: 11/03/2019] [Indexed: 12/28/2022]
Abstract
Age-associated decay of intercellular interactions impairs the cells' capacity to tightly associate within tissues and form a functional barrier. This barrier dysfunction compromises organ physiology and contributes to systemic failure. The actin cytoskeleton represents a key determinant in maintaining tissue architecture. Yet, it is unclear how age disrupts the actin cytoskeleton and how this, in turn, promotes mortality. Here, we show that an uncharacterized phosphorylation of a low-abundant actin variant, ACT-5, compromises integrity of the C. elegans intestinal barrier and accelerates pathogenesis. Age-related loss of the heat-shock transcription factor, HSF-1, disrupts the JUN kinase and protein phosphatase I equilibrium which increases ACT-5 phosphorylation within its troponin binding site. Phosphorylated ACT-5 accelerates decay of the intestinal subapical terminal web and impairs its interactions with cell junctions. This compromises barrier integrity, promotes pathogenesis, and drives mortality. Thus, we provide the molecular mechanism by which age-associated loss of specialized actin networks impacts tissue integrity.
Collapse
Affiliation(s)
- Nathan Egge
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Medical Scientist Training Program, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sonja L B Arneaud
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pauline Wales
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Melina Mihelakis
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jacob McClendon
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rene Solano Fonseca
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Charles Savelle
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ian Gonzalez
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Atossa Ghorashi
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - William J Lehman
- Department of Structural Biology, Boston University, Boston, MA 02118, USA
| | - Hamid Mirzaei
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter M Douglas
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
9
|
Samhadaneh DM, Mandl GA, Han Z, Mahjoob M, Weber SC, Tuznik M, Rudko DA, Capobianco JA, Stochaj U. Evaluation of Lanthanide-Doped Upconverting Nanoparticles for in Vitro and in Vivo Applications. ACS APPLIED BIO MATERIALS 2020; 3:4358-4369. [DOI: 10.1021/acsabm.0c00381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Dana M. Samhadaneh
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Gabrielle A. Mandl
- Department of Chemistry & Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Zhao Han
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Maryam Mahjoob
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Stephanie C. Weber
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Marius Tuznik
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - David A. Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - John A. Capobianco
- Department of Chemistry & Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
10
|
Sepúlveda-Crespo D, Reguera RM, Rojo-Vázquez F, Balaña-Fouce R, Martínez-Valladares M. Drug discovery technologies: Caenorhabditis elegans as a model for anthelmintic therapeutics. Med Res Rev 2020; 40:1715-1753. [PMID: 32166776 DOI: 10.1002/med.21668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/10/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
Abstract
Helminthiasis is one of the gravest problems worldwide. There is a growing concern on less available anthelmintics and the emergence of resistance creating a major threat to human and livestock health resources. Novel and broad-spectrum anthelmintics are urgently needed. The free-living nematode Caenorhabditis elegans could address this issue through automated high-throughput technologies for the screening of large chemical libraries. This review discusses the strong advantages and limitations for using C elegans as a screening method for anthelmintic drug discovery. C elegans is the best model available for the validation of novel effective drugs in treating most, if not all, helminth infections, and for the elucidation the mode of action of anthelmintic candidates. This review also focuses on available technologies in the discovery of anthelmintics published over the last 15 years with particular attention to high-throughput technologies over conventional screens. On the other hand, this review highlights how combinatorial and nanomedicine strategies could prolong the use of anthelmintics and control resistance problems.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Francisco Rojo-Vázquez
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
11
|
Sandner G, Mueller AS, Zhou X, Stadlbauer V, Schwarzinger B, Schwarzinger C, Wenzel U, Maenner K, van der Klis JD, Hirtenlehner S, Aumiller T, Weghuber J. Ginseng Extract Ameliorates the Negative Physiological Effects of Heat Stress by Supporting Heat Shock Response and Improving Intestinal Barrier Integrity: Evidence from Studies with Heat-Stressed Caco-2 Cells, C. elegans and Growing Broilers. Molecules 2020; 25:E835. [PMID: 32075045 PMCID: PMC7070719 DOI: 10.3390/molecules25040835] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
Climatic changes and heat stress have become a great challenge in the livestock industry, negatively affecting, in particular, poultry feed intake and intestinal barrier malfunction. Recently, phytogenic feed additives were applied to reduce heat stress effects on animal farming. Here, we investigated the effects of ginseng extract using various in vitro and in vivo experiments. Quantitative real-time PCR, transepithelial electrical resistance measurements and survival assays under heat stress conditions were carried out in various model systems, including Caco-2 cells, Caenorhabditis elegans and jejunum samples of broilers. Under heat stress conditions, ginseng treatment lowered the expression of HSPA1A (Caco-2) and the heat shock protein genes hsp-1 and hsp-16.2 (both in C. elegans), while all three of the tested genes encoding tight junction proteins, CLDN3, OCLN and CLDN1 (Caco-2), were upregulated. In addition, we observed prolonged survival under heat stress in Caenorhabditis elegans, and a better performance of growing ginseng-fed broilers by the increased gene expression of selected heat shock and tight junction proteins. The presence of ginseng extract resulted in a reduced decrease in transepithelial resistance under heat shock conditions. Finally, LC-MS analysis was performed to quantitate the most prominent ginsenosides in the extract used for this study, being Re, Rg1, Rc, Rb2 and Rd. In conclusion, ginseng extract was found to be a suitable feed additive in animal nutrition to reduce the negative physiological effects caused by heat stress.
Collapse
Affiliation(s)
- Georg Sandner
- School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels 4600, Austria; (G.S.); (V.S.); (B.S.)
| | - Andreas S. Mueller
- Delacon Biotechnik GmbH, Weissenwolffstraße 14, Steyregg 4221, Austria; (X.Z.); (J.D.v.d.K.); (S.H.); (T.A.)
| | - Xiaodan Zhou
- Delacon Biotechnik GmbH, Weissenwolffstraße 14, Steyregg 4221, Austria; (X.Z.); (J.D.v.d.K.); (S.H.); (T.A.)
| | - Verena Stadlbauer
- School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels 4600, Austria; (G.S.); (V.S.); (B.S.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln 3430, Austria
| | - Bettina Schwarzinger
- School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels 4600, Austria; (G.S.); (V.S.); (B.S.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln 3430, Austria
- Johannes Kepler University, Institute for Chemical Technology of Organic Materials, Linz, Austria 4040;
| | - Clemens Schwarzinger
- Johannes Kepler University, Institute for Chemical Technology of Organic Materials, Linz, Austria 4040;
| | - Uwe Wenzel
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
| | - Klaus Maenner
- Institute of Animal Nutrition of Free University Berlin, Königin-Luise-Str.49, 14195 Berlin, Germany;
| | - Jan Dirk van der Klis
- Delacon Biotechnik GmbH, Weissenwolffstraße 14, Steyregg 4221, Austria; (X.Z.); (J.D.v.d.K.); (S.H.); (T.A.)
| | - Stefan Hirtenlehner
- Delacon Biotechnik GmbH, Weissenwolffstraße 14, Steyregg 4221, Austria; (X.Z.); (J.D.v.d.K.); (S.H.); (T.A.)
| | - Tobias Aumiller
- Delacon Biotechnik GmbH, Weissenwolffstraße 14, Steyregg 4221, Austria; (X.Z.); (J.D.v.d.K.); (S.H.); (T.A.)
| | - Julian Weghuber
- School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels 4600, Austria; (G.S.); (V.S.); (B.S.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln 3430, Austria
| |
Collapse
|
12
|
Zhang S, Li F, Zhou T, Wang G, Li Z. Caenorhabditis elegans as a Useful Model for Studying Aging Mutations. Front Endocrinol (Lausanne) 2020; 11:554994. [PMID: 33123086 PMCID: PMC7570440 DOI: 10.3389/fendo.2020.554994] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
The Caenorhabditis elegans genome possesses homologs of about two-thirds of all human disease genes. Based on its physiological aging characteristics and superiority, the use of C. elegans as a model system for studies on aging, age-related diseases, mechanisms of longevity, and drug screening has been widely acknowledged in recent decades. Lifespan increasing mutations in C. elegans were found to delay aging by impinging several signaling pathways and related epigenetic modifications, including the insulin/IGF-1 signaling (IIS), AMP-activated protein kinase (AMPK), and mechanistic target of rapamycin (mTOR) pathways. Interestingly, dietary restriction (DR) has been shown to increase the lifespan of numerous metazoans and protect them from multiple age-related pathologies. However, the underlying molecular mechanisms are unclear. In recent decades, C. elegans has been used as a unique model system for high-throughput drug screening. Here, we review C. elegans mutants exhibiting increased in lifespan and age-dependent changes under DR, as well as the utility of C. elegans for drug screening. Thus, we provide evidence for the use of this model organism in research on the prevention of aging.
Collapse
|
13
|
WormBot, an open-source robotics platform for survival and behavior analysis in C. elegans. GeroScience 2019; 41:961-973. [PMID: 31728898 PMCID: PMC6925079 DOI: 10.1007/s11357-019-00124-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 02/01/2023] Open
Abstract
Caenorhabditis elegans is a popular organism for aging research owing to its highly conserved molecular pathways, short lifespan, small size, and extensive genetic and reverse genetic resources. Here we describe the WormBot, an open-source robotic image capture platform capable of conducting 144 parallel C. elegans survival and behavioral phenotyping experiments. The WormBot uses standard 12-well tissue culture plates suitable for solid agar media and is built from commercially available robotics hardware. The WormBot is controlled by a web-based interface allowing control and monitoring of experiments from any internet connected device. The standard WormBot hardware features the ability to take both time-lapse bright field images and real-time video micrographs, allowing investigators to measure lifespan, as well as heathspan metrics as worms age. The open-source nature of the hardware and software will allow for users to extend the platform and implement new software and hardware features. This extensibility, coupled with the low cost and simplicity of the system, allows the automation of C. elegans survival analysis even in small laboratory settings with modest budgets.
Collapse
|
14
|
Benedetto A, Bambade T, Au C, Tullet JM, Monkhouse J, Dang H, Cetnar K, Chan B, Cabreiro F, Gems D. New label-free automated survival assays reveal unexpected stress resistance patterns during C. elegans aging. Aging Cell 2019; 18:e12998. [PMID: 31309734 PMCID: PMC6718543 DOI: 10.1111/acel.12998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
Caenorhabditis elegans is an excellent model for high‐throughput experimental approaches but lacks an automated means to pinpoint time of death during survival assays over a short time frame, that is, easy to implement, highly scalable, robust, and versatile. Here, we describe an automated, label‐free, high‐throughput method using death‐associated fluorescence to monitor nematode population survival (dubbed LFASS for label‐free automated survival scoring), which we apply to severe stress and infection resistance assays. We demonstrate its use to define correlations between age, longevity, and severe stress resistance, and its applicability to parasitic nematodes. The use of LFASS to assess the effects of aging on susceptibility to severe stress revealed an unexpected increase in stress resistance with advancing age, which was largely autophagy‐dependent. Correlation analysis further revealed that while severe thermal stress resistance positively correlates with lifespan, severe oxidative stress resistance does not. This supports the view that temperature‐sensitive protein‐handling processes more than redox homeostasis underpin aging in C. elegans. That the ages of peak resistance to infection, severe oxidative stress, heat shock, and milder stressors differ markedly suggests that stress resistance and health span do not show a simple correspondence in C. elegans.
Collapse
Affiliation(s)
- Alexandre Benedetto
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
- Division of Biomedical and Life Sciences Lancaster University Lancaster UK
| | - Timothée Bambade
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
| | - Catherine Au
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
- Division of Biomedical and Life Sciences Lancaster University Lancaster UK
| | - Jennifer M.A. Tullet
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
- School of Biosciences University of Kent Canterbury UK
| | - Jennifer Monkhouse
- Division of Biomedical and Life Sciences Lancaster University Lancaster UK
| | - Hairuo Dang
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
| | - Kalina Cetnar
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
| | - Brian Chan
- Division of Infection, Immunity & Respiratory Medicine University of Manchester Manchester UK
| | - Filipe Cabreiro
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
- MRC London Institute of Medical Sciences, Imperial College London London UK
| | - David Gems
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
| |
Collapse
|
15
|
Iqbal M, Dubey M, Broberg A, Viketoft M, Jensen DF, Karlsson M. Deletion of the Nonribosomal Peptide Synthetase Gene nps1 in the Fungus Clonostachys rosea Attenuates Antagonism and Biocontrol of Plant Pathogenic Fusarium and Nematodes. PHYTOPATHOLOGY 2019; 109:1698-1709. [PMID: 31120795 DOI: 10.1094/phyto-02-19-0042-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Secondary metabolites produced by biological control agents may influence the outcome of their interactions with plant pathogenic microorganisms and plants. In the present study, we investigated the role of the nonribosomal peptide synthetase gene nps1 expressed by the biocontrol fungus Clonostachys rosea. A gene expression analysis showed that nps1 was induced during confrontations with the plant pathogenic fungus Botrytis cinerea. Gene deletion strains of nps1 displayed increased growth rates and conidiation. However, the nematicidal activity of culture filtrates from C. rosea Δnps1 strains was significantly weaker than that from wild-type filtrates (P ≤ 0.001); after 24 h of incubation with culture filtrates from nps1 deletion strains, only 13 to 33% of a mixed community of nematodes were dead compared with 42% of nematodes incubated with wild-type culture filtrates. The Δnps1 strains also showed reduced biocontrol efficacy during pot experiments, thus failing to protect wheat seedlings from foot rot disease caused by the plant pathogenic fungus Fusarium graminearum. Furthermore, C. rosea Δnps1 strains were not able to reduce populations of plant-parasitic nematodes in soil or in roots of wheat as efficiently as the wild-type strain. Both C. rosea wild-type and Δnps1 strains increased the dry shoot weight and shoot length of wheat by 20 and 13%, respectively. We showed that NPS1, a putative nonribosomal peptide synthetase encoded by nps1, is a biocontrol factor, presumably by producing a hitherto unknown nonribosomal peptide compound with antifungal and nematicidal properties that contributes to the biocontrol properties of C. rosea.
Collapse
Affiliation(s)
- Mudassir Iqbal
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Anders Broberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria Viketoft
- Department of Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| |
Collapse
|
16
|
White PS, Penley MJ, Tierney ARP, Soper DM, Morran LT. Dauer life stage of Caenorhabditis elegans induces elevated levels of defense against the parasite Serratia marcescens. Sci Rep 2019; 9:11575. [PMID: 31399616 PMCID: PMC6688991 DOI: 10.1038/s41598-019-47969-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/23/2019] [Indexed: 01/17/2023] Open
Abstract
Host-parasite research often focuses on a single host life stage, yet different life stages may exhibit different defenses. The nematode Caenorhabditis elegans has an alternate dispersal life stage, dauer. Despite dauer's importance in nature, we know little of how it responds to parasites. Previous research indicates that non-dauer C. elegans prefer to consume the virulent bacterial parasite, Serratia marcescens, when given a choice between the parasite and benign Escherichia coli. Here, we compared the preferences of dauer individuals from six strains of C. elegans to the preferences of other life stages. We found that dauer individuals exhibited reduced preference for S. marcescens, and dauers from some strains preferred E. coli to S. marcescens. In addition to testing food preference, a mechanism of parasite avoidance, we also measured host mortality rates after direct parasite exposure to determine if life stage also altered host survival. Overall, dauer individuals exhibited reduced mortality rates. However, dauer versus non-dauer larvae mortality rates also varied significantly by host strain. Collectively, we found evidence of dauer-induced parasite avoidance and reduced mortality in the presence of a parasite, but these effects were strain-specific. These results demonstrate the importance of host life stage and genotype when assessing infection dynamics.
Collapse
Affiliation(s)
- P Signe White
- Population Biology, Ecology, and Evolution Graduate Program, Emory University, Atlanta, GA, 30322, USA.
- Department of Biology, Emory University, Atlanta, GA, 30322, USA.
| | - McKenna J Penley
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Aimee R Paulk Tierney
- Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, GA, 30322, USA
| | - Deanna M Soper
- Biology Department, University of Dallas, Irving, TX, 75062, USA
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
17
|
Cintra GAS, Neto BAD, Carvalho PHPR, Moraes CB, Freitas-Junior LH. Expanding the Biological Application of Fluorescent Benzothiadiazole Derivatives: A Phenotypic Screening Strategy for Anthelmintic Drug Discovery Using Caenorhabditis elegans. SLAS DISCOVERY 2019; 24:755-765. [PMID: 31180789 DOI: 10.1177/2472555219851130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current methodologies used to identify promising new anthelmintic compounds rely on subjective microscopic examination of worm motility or involve genetic modified organisms. We describe a new methodology to detect worm viability that takes advantage of the differential incorporation of the fluorescent molecular marker propidium iodide and the 2,1,3-benzothiadiazole core, which has been widely applied in light technology. The new assay developed could be validated using the "Pathogen Box" library. By use of this bioassay, it was possible to identify three molecules with activity against Caenorhabditis elegans that were previously described as effective in in vitro assays against other pathogens, such as Schistosoma mansoni, Mycobacterium tuberculosis, and Plasmodium falciparum, accelerating the identification of molecules with anthelmintic potential. The current fluorescence-based bioassay may be used for assessing C. elegans viability. The described methodology replaces the subjectivity of previous assays and provides an enabling technology that is useful for rapid in vitro screens of both natural and synthetic compound libraries. It is expected that the results obtained from these robust in vitro screens would select the most effective compounds for follow-up in vivo experimentation with pathogenic helminths.
Collapse
Affiliation(s)
- Giovana A S Cintra
- 1 Departamento de Microbiologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo, São Paulo, SP, Brazil.,2 Instituto Butantan, São Paulo, SP, Brazil.,3 Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
| | - Brenno A D Neto
- 4 Laboratory of Medicinal and Technological Chemistry, University of Brasília (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Pedro H P R Carvalho
- 4 Laboratory of Medicinal and Technological Chemistry, University of Brasília (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Carolina B Moraes
- 1 Departamento de Microbiologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo, São Paulo, SP, Brazil.,2 Instituto Butantan, São Paulo, SP, Brazil.,3 Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
| | - Lucio H Freitas-Junior
- 1 Departamento de Microbiologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo, São Paulo, SP, Brazil.,2 Instituto Butantan, São Paulo, SP, Brazil.,3 Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
| |
Collapse
|
18
|
Engelsöy U, Rangel I, Demirel I. Impact of Proinflammatory Cytokines on the Virulence of Uropathogenic Escherichia coli. Front Microbiol 2019; 10:1051. [PMID: 31143172 PMCID: PMC6520761 DOI: 10.3389/fmicb.2019.01051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
The effect of a urinary tract infection on the host is a well-studied research field. However, how the host immune response affects uropathogenic Escherichia coli (CFT073) virulence is less studied. The aim of the present study was to investigate the impact of proinflammatory cytokine exposure on the virulence of uropathogenic Escherichia coli. We found that all tested proinflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8 and IFN-γ) induced an increased CFT073 growth. We also found that biofilm formation and hemolytic activity was reduced in the presence of all proinflammatory cytokines. However, a reduction in siderophore release was only observed in the presence of IL-1β, IL-6 and IL-8. Real time-qPCR showed that all proinflammatory cytokines except TNF-α significantly increased genes associated with the iron acquisition system in CFT073. We also found that the proinflammatory cytokines induced significant changes in type-1 fimbriae, P-fimbriae and gluconeogenetic genes. Furthermore, we also showed, using a Caenorhabditis elegans (C. elegans) killing assay that all cytokines decreased the survival of C. elegans worms significantly. Taken together, our findings show that proinflammatory cytokines have the ability to alter the virulence traits of UPEC.
Collapse
Affiliation(s)
- Ulrik Engelsöy
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ignacio Rangel
- School of Medical Sciences, Örebro University, Örebro, Sweden.,Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, Örebro, Sweden.,iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
19
|
Drobny A, Meloh H, Wächtershäuser E, Hellmann B, Mueller AS, van der Klis JD, Fitzenberger E, Wenzel U. Betaine-rich sugar beet molasses protects from homocysteine-induced reduction of survival in Caenorhabditis elegans. Eur J Nutr 2019; 59:779-786. [PMID: 30863895 DOI: 10.1007/s00394-019-01944-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/06/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE Homocysteine (Hcy) in humans represents a blood-borne biomarker which predicts the risk of age-related diseases and mortality. Using the nematode Caenorhabditis elegans, we tested whether feeding betaine-rich sugar beet molasses affects the survival under heat stress in the presence of Hcy, in spite of a gene loss in betaine-homocysteine methyltransferase. METHODS Knockdown of the genes relevant for remethylation or transsulfuration of Hcy was achieved by RNA interference (RNAi). Survival assay was conducted under heat stress at 37 °C and Hcy levels were determined by enzyme-linked immunosorbent assay. RESULTS Addition of 500 mg/l betaine-rich sugar beet molasses (SBM) prevented the survival reduction that was caused by exposure to Hcy at 37 °C. Although SBM was no longer capable of reducing Hcy levels under RNAi versus homologues for 5, 10-methylenetetrahydrofolate reductase or cystathionine-β-synthase, it still enabled the survival extension by SBM under exposure to Hcy. In contrast, RNAi for the small heat shock protein hsp-16.2 or the foxo transcription factor daf-16 both prevented the extension of survival by betaine-rich molasses in the presence of Hcy. CONCLUSIONS Our studies demonstrate that betaine-rich SBM is able to prevent survival reduction caused by Hcy in C. elegans in dependence on hsp-16.2 and daf-16 but independent of the remethylation pathway.
Collapse
Affiliation(s)
- Alice Drobny
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Hedda Meloh
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Eike Wächtershäuser
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Bernhard Hellmann
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Andreas S Mueller
- Delacon Biotechnik GmbH, Weissenwolffstraße 14, 4221, Steyregg, Austria
| | | | - Elena Fitzenberger
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Uwe Wenzel
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
20
|
Civelek M, Flory S, Meloh H, Fitzenberger E, Wenzel U. The polyphenol quercetin protects from glucotoxicity depending on the aggresome in Caenorhabditis elegans. Eur J Nutr 2019; 59:485-491. [PMID: 30706126 DOI: 10.1007/s00394-019-01917-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/25/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE Impaired proteostasis, i.e., protein homeostasis, is considered as a consequence of high-glucose exposure and is associated with reduced survival. The previous studies demonstrated that the polyphenol quercetin can protect from glucotoxicity. The aim of the present study was to unravel the contribution of the aggresome, sequestering potentially cytotoxic aggregates and also acting as a staging center for eventual autophagic clearance from the cell. METHODS Knockdown of the aggresome-relevant genes dnc-1 and ubql-1 was achieved in stress-sensitive mev-1 mutants of the nematode Caenorhabditis elegans by RNA interference (RNAi). Survival assay was conducted under heat stress at 37 °C, protein aggregation using ProteoStat® and chymotrypsin-like proteasomal activity according to the cleavage of a fluorogenic peptide substrate. RESULTS Survival was reduced by knockdown of ubql-1 and even more by knockdown of dnc-1 which both were not further reduced by addition of glucose. The rescue of survival due to quercetin in glucose-exposed nematodes was completely prevented under RNAi versus ubql-1 or dnc-1. Both knockdowns caused an increase of aggregated protein and prevented the reduction of aggregated protein caused by quercetin in glucose-exposed animals. Finally, the knockdown of ubql-1 and dnc-1 blocked the increase of proteasomal activity achieved by quercetin in glucose-treated nematodes. CONCLUSIONS The study provides evidence that quercetin protects C. elegans from glucotoxicity through the activation of the aggresome, thereby, quercetin prevents the aggregation and functional loss of proteins, which is typically caused by enhanced glucose concentrations.
Collapse
Affiliation(s)
- Mehtap Civelek
- Interdisciplinary Research Center, Justus-Liebig-University of Giessen, 35392, Giessen, Germany
| | - Sandra Flory
- Interdisciplinary Research Center, Justus-Liebig-University of Giessen, 35392, Giessen, Germany
| | - Hedda Meloh
- Interdisciplinary Research Center, Justus-Liebig-University of Giessen, 35392, Giessen, Germany
| | - Elena Fitzenberger
- Interdisciplinary Research Center, Justus-Liebig-University of Giessen, 35392, Giessen, Germany
| | - Uwe Wenzel
- Interdisciplinary Research Center, Justus-Liebig-University of Giessen, 35392, Giessen, Germany.
| |
Collapse
|
21
|
Dryzer MH, Niven C, Wolter SD, Arena CB, Ngaboyamahina E, Parker CB, Stoner BR. Electropermeabilization of nematode eggs for parasite deactivation. JOURNAL OF WATER, SANITATION, AND HYGIENE FOR DEVELOPMENT : A JOURNAL OF THE INTERNATIONAL WATER ASSOCIATION 2019; 9:49-55. [PMID: 33384870 PMCID: PMC7734379 DOI: 10.2166/washdev.2019.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/18/2018] [Indexed: 06/12/2023]
Abstract
The eggs of parasitic helminth worms are incredibly resilient - possessing the ability to survive changing environmental factors and exposure to chemical treatments - which has restricted the efficacy of wastewater sanitation. This research reports on the effectiveness of electroporation to permeabilize ova of Caenorhabditis elegans (C. elegans), a helminth surrogate, for parasite deactivation. This technique utilizes electric pulses to increase cell membrane permeability in its conventional application, but herein is used to open pores in nonparasitic nematode eggshells - the first report of such an application to the best knowledge of the authors. A parametric evaluation of electric field strength and total electroporation duration of eggs and worms in phosphate-buffered saline was performed using a 1 Hz pulse train of 0.01% duty cycle. The extent of pore formation was determined using a fluorescent label, propidium iodide, targeting C. elegans embryonic DNA. The results of this research demonstrate that electroporation increases eggshell permeability. This treatment, coupled with existing methods of electrochemical disinfection, could improve upon current attempts at the deactivation of helminth eggs. We discuss electroporation treatment conditions and likely modification of the lipid-rich permeability barrier within the eggshell strata.
Collapse
Affiliation(s)
- M H Dryzer
- (corresponding author) Department of Physics, Elon University, Elon, NC 27244, USA
| | - C Niven
- (corresponding author) Department of Physics, Elon University, Elon, NC 27244, USA
| | - S D Wolter
- (corresponding author) Department of Physics, Elon University, Elon, NC 27244, USA
| | - C B Arena
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - E Ngaboyamahina
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA and Center for WaSH-AID, Duke University, Durham, NC 27708, USA
| | - C B Parker
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA and Center for WaSH-AID, Duke University, Durham, NC 27708, USA
| | - B R Stoner
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA and Center for WaSH-AID, Duke University, Durham, NC 27708, USA
| |
Collapse
|
22
|
Agrimonia procera Wallr. Extract Increases Stress Resistance and Prolongs Life Span in Caenorhabditis elegans via Transcription Factor DAF-16 (FoxO Orthologue). Antioxidants (Basel) 2018; 7:antiox7120192. [PMID: 30558122 PMCID: PMC6315603 DOI: 10.3390/antiox7120192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 02/02/2023] Open
Abstract
Agrimonia procera is a pharmacologically interesting plant which is proposed to protect against various diseases due to its high amount of phytochemicals, e.g., polyphenols. However, in spite of the amount of postulated health benefits, studies concerning the mechanistic effects of Agrimonia procera are limited. Using the nematode Caenorhabditis elegans, we were able to show that an ethanol extract of Agrimonia procera herba (eAE) mediates strong antioxidative effects in the nematode: Beside a strong radical-scavenging activity, eAE reduces accumulation of reactive oxygen species (ROS) accumulation and protects against paraquat-induced oxidative stress. The extract does not protect against amyloid-β-mediated toxicity, but efficiently increases the life span (up to 12.7%), as well as the resistance to thermal stress (prolongation of survival up to 22%), of this model organism. Using nematodes deficient in the forkhead box O (FoxO)-orthologue DAF-16, we were able to demonstrate that beneficial effects of eAE on stress resistance and life span were mediated via this transcription factor. We showed antioxidative, stress-reducing, and life-prolonging effects of eAE in vivo and were able to demonstrate a molecular mechanism of this extract. These results may be important for identifying further molecular targets of eAE in humans.
Collapse
|
23
|
Tikiyani V, Li L, Sharma P, Liu H, Hu Z, Babu K. Wnt Secretion Is Regulated by the Tetraspan Protein HIC-1 through Its Interaction with Neurabin/NAB-1. Cell Rep 2018; 25:1856-1871.e6. [PMID: 30428353 PMCID: PMC6258899 DOI: 10.1016/j.celrep.2018.10.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/25/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
The aberrant regulation of Wnt secretion is implicated in various neurological diseases. However, the mechanisms of Wnt release are still largely unknown. Here we describe the role of a C. elegans tetraspan protein, HIC-1, in maintaining normal Wnt release. We show that HIC-1 is expressed in cholinergic synapses and that mutants in hic-1 show increased levels of the acetylcholine receptor AChR/ACR-16. Our results suggest that HIC-1 maintains normal AChR/ACR-16 levels by regulating normal Wnt release from presynaptic neurons, as hic-1 mutants show an increase in secreted Wnt from cholinergic neurons. We further show that HIC-1 affects Wnt secretion by modulating the actin cytoskeleton through its interaction with the actin-binding protein NAB-1. In summary, we describe a protein, HIC-1, that functions as a neuromodulator by affecting postsynaptic AChR/ACR-16 levels by regulating presynaptic Wnt release from cholinergic motor neurons.
Collapse
Affiliation(s)
- Vina Tikiyani
- Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India
| | - Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), University of Queensland, Upland Road 79, St. Lucia, QLD 4072, Australia
| | - Pallavi Sharma
- Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India
| | - Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), University of Queensland, Upland Road 79, St. Lucia, QLD 4072, Australia
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), University of Queensland, Upland Road 79, St. Lucia, QLD 4072, Australia
| | - Kavita Babu
- Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India.
| |
Collapse
|
24
|
Inhibition of mitophagy decreases survival of Caenorhabditis elegans by increasing protein aggregation. Mol Cell Biochem 2018; 452:123-131. [DOI: 10.1007/s11010-018-3418-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/28/2018] [Indexed: 02/01/2023]
|
25
|
Shen P, Yue Y, Zheng J, Park Y. Caenorhabditis elegans: A Convenient In Vivo Model for Assessing the Impact of Food Bioactive Compounds on Obesity, Aging, and Alzheimer's Disease. Annu Rev Food Sci Technol 2018; 9:1-22. [DOI: 10.1146/annurev-food-030117-012709] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peiyi Shen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
26
|
Iqbal M, Dubey M, McEwan K, Menzel U, Franko MA, Viketoft M, Jensen DF, Karlsson M. Evaluation of Clonostachys rosea for Control of Plant-Parasitic Nematodes in Soil and in Roots of Carrot and Wheat. PHYTOPATHOLOGY 2018; 108:52-59. [PMID: 28945522 DOI: 10.1094/phyto-03-17-0091-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biological control is a promising approach to reduce plant diseases caused by nematodes. We tested the effect of the fungus Clonostachys rosea strain IK726 inoculation on nematode community composition in a naturally nematode infested soil in a pot experiment, and the effect of C. rosea on plant health. The numbers of plant-parasitic nematode genera extracted from soil and plant roots decreased by 40 to 73% when C. rosea was applied, while genera of nonparasitic nematodes were not affected. Soil inoculation of C. rosea increased fresh shoot weight and shoot length of wheat plants by 20 and 24%, respectively, while only shoot dry weight increased by 48% in carrots. Light microscopy of in vitro C. rosea-nematode interactions did not reveal evidence of direct parasitism. However, culture filtrates of C. rosea growing in potato dextrose broth, malt extract broth and synthetic nutrient broth exhibited toxicity toward nematodes and immobilized 57, 62, and 100% of the nematodes, respectively, within 48 h. This study demonstrates that C. rosea can control plant-parasitic nematodes and thereby improve plant growth. The most likely mechanism responsible for the antagonism is antibiosis through production of nematicidal compounds, rather than direct parasitism.
Collapse
Affiliation(s)
- Mudassir Iqbal
- First, second, fourth, seventh, and eighth authors: Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; third and fifth authors: Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; and sixth author: Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| | - Mukesh Dubey
- First, second, fourth, seventh, and eighth authors: Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; third and fifth authors: Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; and sixth author: Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| | - Kerstin McEwan
- First, second, fourth, seventh, and eighth authors: Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; third and fifth authors: Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; and sixth author: Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| | - Uwe Menzel
- First, second, fourth, seventh, and eighth authors: Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; third and fifth authors: Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; and sixth author: Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| | - Mikael Andersson Franko
- First, second, fourth, seventh, and eighth authors: Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; third and fifth authors: Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; and sixth author: Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| | - Maria Viketoft
- First, second, fourth, seventh, and eighth authors: Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; third and fifth authors: Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; and sixth author: Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| | - Dan Funck Jensen
- First, second, fourth, seventh, and eighth authors: Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; third and fifth authors: Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; and sixth author: Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| | - Magnus Karlsson
- First, second, fourth, seventh, and eighth authors: Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; third and fifth authors: Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; and sixth author: Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| |
Collapse
|
27
|
Shen P, Yue Y, Park Y. A living model for obesity and aging research:Caenorhabditis elegans. Crit Rev Food Sci Nutr 2017; 58:741-754. [DOI: 10.1080/10408398.2016.1220914] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peiyi Shen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
28
|
Eisermann DJ, Wenzel U, Fitzenberger E. Inhibition of chaperone-mediated autophagy prevents glucotoxicity in the Caenorhabditis elegans mev-1 mutant by activation of the proteasome. Biochem Biophys Res Commun 2017; 484:171-175. [DOI: 10.1016/j.bbrc.2017.01.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 12/26/2022]
|
29
|
Abstract
Caenorhabditis elegans is an important model organism with many useful features, including rapid development and aging, easy cultivation, and genetic tractability. Survival assays using C. elegans are powerful methods for studying physiological processes. In this review, we describe diverse types of C. elegans survival assays and discuss the aims, uses, and advantages of specific assays. C. elegans survival assays have played key roles in identifying novel genetic factors that regulate many aspects of animal physiology, such as aging and lifespan, stress response, and immunity against pathogens. Because many genetic factors discovered using C. elegans are evolutionarily conserved, survival assays can provide insights into mechanisms underlying physiological processes in mammals, including humans.
Collapse
Affiliation(s)
- Hae-Eun H. Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Yoonji Jung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Seung-Jae V. Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673,
Korea
| |
Collapse
|
30
|
Fischer N, Büchter C, Koch K, Albert S, Csuk R, Wätjen W. The resveratrol derivatives trans-3,5-dimethoxy-4-fluoro-4'-hydroxystilbene and trans-2,4',5-trihydroxystilbene decrease oxidative stress and prolong lifespan in Caenorhabditis elegans. ACTA ACUST UNITED AC 2016; 69:73-81. [PMID: 27882602 DOI: 10.1111/jphp.12657] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/18/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Resveratrol (trans-3,4',5-trihydroxystilbene (1)) was previously shown to extend the lifespan of different model organisms. However, its pharmacological efficiency is controversially discussed. Therefore, the bioactivity of four newly synthesized stilbenes (trans-3,5-dimethoxy-4-fluoro-4'-hydroxystilbene (3), trans-4'-hydroxy-3,4,5-trifluorostilbene (4), trans-2,5-dimethoxy-4'-hydroxystilbene (5), trans-2,4',5-trihydroxystilbene (6)) was compared to (1) and pterostilbene (trans-3,5-dimethoxy-4'-hydroxystilbene (2)) in the established model organism Caenorhabditis elegans. METHODS Trolox equivalent antioxidant capacity (TEAC), 2',7'-dichlorofluorescein (DCF), thermotolerance assays, C. elegans lifespan analyses. KEY FINDINGS All compounds exert a strong in-vitro radical scavenging activity (6 > 1 > 5 > 2 = 3 = 4), but in vivo, only (3) and (6) reduce reactive oxygen species (ROS) accumulation. Furthermore, (3) and (6) increased the mobility of aged nematodes and prolonged their mean lifespans, while these compounds decreased the thermal stress resistance. Using daf-16 (FoxO), skn-1 (Nrf2) and sir-2.1 (sirtuin) loss-of-function mutant strains, the in vivo antioxidant effects of compounds (3) and (6) were abolished, showing the necessity of these evolutionary highly conserved factors. However, short-time treatment with stilbenes (3) and (6) did not modulate the cellular localization of the transcription factors DAF-16 and SKN-1. CONCLUSION In contrast to resveratrol, the synthetic stilbene derivatives (3) and (6) increase the lifespan of C. elegans, rendering them promising candidates for pharmacological anti-ageing purposes.
Collapse
Affiliation(s)
- Nadine Fischer
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Christian Büchter
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Karoline Koch
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Sabrina Albert
- Institute of Chemistry, Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - René Csuk
- Institute of Chemistry, Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Wim Wätjen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
31
|
Sasaki T, Lian S, Khan A, Llop JR, Samuelson AV, Chen W, Klionsky DJ, Kishi S. Autolysosome biogenesis and developmental senescence are regulated by both Spns1 and v-ATPase. Autophagy 2016; 13:386-403. [PMID: 27875093 DOI: 10.1080/15548627.2016.1256934] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Spns1 (Spinster homolog 1 [Drosophila]) in vertebrates, as well as Spin (Spinster) in Drosophila, is a hypothetical lysosomal H+-carbohydrate transporter, which functions at a late stage of macroautophagy (hereafter autophagy). The Spin/Spns1 defect induces aberrant autolysosome formation that leads to developmental senescence in the embryonic stage and premature aging symptoms in adulthood. However, the molecular mechanism by which loss of Spin/Spns1 leads to the specific pathogenesis remains to be elucidated. Using chemical, genetic and CRISPR/Cas9-mediated genome-editing approaches in zebrafish, we investigated and determined a mechanism that suppresses embryonic senescence as well as autolysosomal impairment mediated by Spns1 deficiency. Unexpectedly, we found that a concurrent disruption of the vacuolar-type H+-ATPase (v-ATPase) subunit gene, atp6v0ca (ATPase, H+ transporting, lysosomal, V0 subunit ca) led to suppression of the senescence induced by the Spns1 defect, whereas the sole loss of Atp6v0ca led to senescent embryos similar to the single spns1 mutation. Moreover, we discovered that the combined stable defect seen in the presence of both the spns1 and atp6v0ca mutant genes still subsequently induced premature autophagosome-lysosome fusion marked by insufficient acidity, while extending developmental life span, compared with the solely mutated spns1 defect. Our data suggest that Spns1 and the v-ATPase orchestrate proper autolysosomal biogenesis with optimal acidification that is critically linked to developmental senescence and survival.
Collapse
Affiliation(s)
- Tomoyuki Sasaki
- a Department of Metabolism & Aging , The Scripps Research Institute , Jupiter , FL , USA
| | - Shanshan Lian
- a Department of Metabolism & Aging , The Scripps Research Institute , Jupiter , FL , USA
| | - Alam Khan
- a Department of Metabolism & Aging , The Scripps Research Institute , Jupiter , FL , USA.,b Department of Pharmacy , University of Rajshahi , Rajshahi , Bangladesh
| | - Jesse R Llop
- c Department of Biomedical Genetics , University of Rochester Medical Center , Rochester , NY , USA
| | - Andrew V Samuelson
- c Department of Biomedical Genetics , University of Rochester Medical Center , Rochester , NY , USA
| | - Wenbiao Chen
- d Department of Molecular Physiology and Biophysics , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Daniel J Klionsky
- e Life Sciences Institute, Department of Molecular, Cellular, and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Shuji Kishi
- a Department of Metabolism & Aging , The Scripps Research Institute , Jupiter , FL , USA
| |
Collapse
|
32
|
Zhang WB, Sinha DB, Pittman WE, Hvatum E, Stroustrup N, Pincus Z. Extended Twilight among Isogenic C. elegans Causes a Disproportionate Scaling between Lifespan and Health. Cell Syst 2016; 3:333-345.e4. [PMID: 27720632 PMCID: PMC5111811 DOI: 10.1016/j.cels.2016.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/30/2016] [Accepted: 09/08/2016] [Indexed: 12/21/2022]
Abstract
Although many genetic factors and lifestyle interventions are known to affect the mean lifespan of animal populations, the physiological variation displayed by individuals across their lifespans remains largely uncharacterized. Here, we use a custom culture apparatus to continuously monitor five aspects of aging physiology across hundreds of isolated Caenorhabditis elegans individuals kept in a constant environment from hatching until death. Aggregating these measurements into an overall estimate of senescence, we find two chief differences between longer- and shorter-lived individuals. First, though long- and short-lived individuals are physiologically equivalent in early adulthood, longer-lived individuals experience a lower rate of physiological decline throughout life. Second, and counter-intuitively, long-lived individuals have a disproportionately extended "twilight" period of low physiological function. While longer-lived individuals experience more overall days of good health, their proportion of good to bad health, and thus their average quality of life, is systematically lower than that of shorter-lived individuals. We conclude that, within a homogeneous population reared under constant conditions, the period of early-life good health is comparatively uniform, and the most plastic period in the aging process is end-of-life senescence.
Collapse
Affiliation(s)
- William B Zhang
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Drew B Sinha
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - William E Pittman
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Erik Hvatum
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nicholas Stroustrup
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary Pincus
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
33
|
C. elegans screening strategies to identify pro-longevity interventions. Mech Ageing Dev 2016; 157:60-9. [PMID: 27473404 DOI: 10.1016/j.mad.2016.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023]
Abstract
Drugs screenings in search of enhancers or suppressors of selected readout(s) are nowadays mainly carried out in single cells systems. These approaches are however limited when searching for compounds with effects at the organismal level. To overcome this drawback the use of different model organisms to carry out modifier screenings has exponentially grown in the past decade. Unique characteristics such as easy manageability, low cost, fast reproductive cycle, short lifespan, simple anatomy and genetic amenability, make the nematode Caenorhabditis elegans especially suitable for this purpose. Here we briefly review the different high-throughput and high-content screenings which exploited the nematode to identify new compounds extending healthy lifespan. In this context, we describe our recently developed screening strategy to search for pro-longevity interventions taking advantage of the very reproducible phenotypes observed in C. elegans upon different degrees of mitochondrial stress. Indeed, in Mitochondrial mutants, the processes induced to cope with mild mitochondrial alterations during development, and ultimately extending animal lifespan, lead to reduced size and induction of specific stress responses. Instead, upon strong mitochondrial dysfunction, worms arrest their development. Exploiting these automatically quantifiable phenotypic readouts, we developed a new screening approach using the Cellomics ArrayScanVTI-HCS Reader and identified a new pro-longevity drug.
Collapse
|
34
|
TSG (2,3,5,4'-Tetrahydroxystilbene-2-O- β -D-glucoside) from the Chinese Herb Polygonum multiflorum Increases Life Span and Stress Resistance of Caenorhabditis elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:124357. [PMID: 26075030 PMCID: PMC4436517 DOI: 10.1155/2015/124357] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/23/2014] [Indexed: 01/29/2023]
Abstract
2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) was isolated from Polygonum multiflorum, a plant which is traditionally used as an anti-ageing drug. We have analysed ageing-related effects of TSG in the model organism C. elegans in comparison to resveratrol. TSG exerted a high antioxidative capacity both in a cell-free assay and in the nematode. The antioxidative capacity was even higher compared to resveratrol. Presumably due to its antioxidative effects, treatment with TSG decreased the juglone-mediated induction of the antioxidative enzyme SOD-3; the induction of the GST-4 by juglone was diminished slightly. TSG increased the resistance of C. elegans against lethal thermal stress more prominently than resveratrol (50 μM TSG increased mean survival by 22.2%). The level of the ageing pigment lipofuscin was decreased after incubation with the compound. TSG prolongs the mean, median, and maximum adult life span of C. elegans by 23.5%, 29.4%, and 7.2%, respectively, comparable to the effects of resveratrol. TSG-mediated extension of life span was not abolished in a DAF-16 loss-of-function mutant strain showing that this ageing-related transcription factor is not involved in the effects of TSG. Our data show that TSG possesses a potent antioxidative capacity, enhances the stress resistance, and increases the life span of the nematode C. elegans.
Collapse
|
35
|
A catechin-enriched green tea extract prevents glucose-induced survival reduction in Caenorhabditis elegans through sir-2.1 and uba-1 dependent hormesis. Fitoterapia 2015; 102:163-70. [DOI: 10.1016/j.fitote.2015.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 11/22/2022]
|
36
|
Koch K, Büchter C, Havermann S, Wätjen W. The Lignan Pinoresinol Induces Nuclear Translocation of DAF-16 in Caenorhabditis elegans but has No Effect on Life Span. Phytother Res 2015; 29:894-901. [PMID: 25826281 DOI: 10.1002/ptr.5330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 01/30/2023]
Abstract
The lignan pinoresinol is a constituent of flaxseed, sesame seeds and olive oil. Because of different molecular effects reported for this compound, e.g. antioxidative activity, pinoresinol is suggested to cause positive effects on humans. Because experimental data are limited, we have analysed the effects of the lignan on the nematode Caenorhabditis elegans: in spite of a strong antioxidative capacity detected in an in vitro assay, no antioxidative effects were detectable in vivo. In analogy to this result, no modulation of the sensitivity against thermal stress was detectable. However, incubation with pinoresinol caused an enhanced nuclear accumulation of the transcription factor DAF-16 (insulin/IGF-like signalling pathway). Using a strain with an enhanced oxidative stress level (mev-1 mutant), we clearly see an increase in stress resistance caused by this lignan, but no change in reactive oxygen species. Furthermore, we investigated the effects of pinoresinol on the life span of the nematode, but no modulation was found, neither in wild-type nor in mev-1 mutant nematodes. These results suggest that pinoresinol may exert pharmacologically interesting effects via modulation of the insulin-like signalling pathway in C. elegans as well as in other species like mammals due to the evolutionary conservation of this signalling pathway.
Collapse
Affiliation(s)
- Karoline Koch
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Biofunctionality of Secondary Plant Compounds, Weinbergweg 22 (Biozentrum), 06120, Halle/Saale, Germany
| | - Christian Büchter
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Biofunctionality of Secondary Plant Compounds, Weinbergweg 22 (Biozentrum), 06120, Halle/Saale, Germany
| | - Susannah Havermann
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Biofunctionality of Secondary Plant Compounds, Weinbergweg 22 (Biozentrum), 06120, Halle/Saale, Germany
| | - Wim Wätjen
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Biofunctionality of Secondary Plant Compounds, Weinbergweg 22 (Biozentrum), 06120, Halle/Saale, Germany
| |
Collapse
|
37
|
Deusing DJ, Beyrer M, Fitzenberger E, Wenzel U. Carnitine protects the nematode Caenorhabditis elegans from glucose-induced reduction of survival depending on the nuclear hormone receptor DAF-12. Biochem Biophys Res Commun 2015; 460:747-52. [PMID: 25817784 DOI: 10.1016/j.bbrc.2015.03.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/18/2015] [Indexed: 11/17/2022]
Abstract
Besides its function in transport of fatty acids into mitochondria in order to provide substrates for β-oxidation, carnitine has been shown to affect also glucose metabolism and to inhibit several mechanisms associated with diabetic complications. In the present study we used the mev-1 mutant of the nematode Caenorhabditis elegans fed on a high glucose concentration in liquid media as a diabetes model and tested the effects of carnitine supplementation on their survival under heat-stress. Carnitine at 100 μM completely prevented the survival reduction that was caused by the application of 10 mM glucose. RNA-interference for sir-2.1, a candidate genes mediating the effects of carnitine revealed no contribution of the sirtuin for the rescue of survival. Under daf-12 RNAi rescue of survival by carnitine was abolished. RNA-interference for γ-butyrobetaine hydroxylase 2, encoding the key enzyme for carnitine biosynthesis did neither increase glucose toxicity nor prevent the rescue of survival by carnitine, suggesting that the effects of carnitine supplementation on carnitine levels were significant. Finally, it was demonstrated that neither the amount of lysosomes nor the proteasomal activity were increased by carnitine, excluding that protein degradation pathways, such as autophagy or proteasomal degradation, are involved in the protective carnitine effects. In conclusion, carnitine supplementation prevents the reduction of survival caused by glucose in C. elegans in dependence on a nuclear hormone receptor which displays high homologies to the vertebrate peroxisomal proliferator activated receptors.
Collapse
Affiliation(s)
- Dorothé Jenni Deusing
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | - Melanie Beyrer
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | - Elena Fitzenberger
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | - Uwe Wenzel
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| |
Collapse
|
38
|
A new methodology for evaluation of nematode viability. BIOMED RESEARCH INTERNATIONAL 2015; 2015:879263. [PMID: 25866820 PMCID: PMC4383492 DOI: 10.1155/2015/879263] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/19/2015] [Indexed: 01/19/2023]
Abstract
Nematodes infections are responsible for debilitating conditions and economic losses in domestic animals as well as livestock and are considered an important public health problem due to the high prevalence in humans. The nematode resistance for drugs has been reported for livestock, highlighting the importance for development of new anthelmintic compounds. The aim of the current study was to apply and compare fluorimetric techniques using Sytox and propidium iodide for evaluating the viability of C. elegans larvae after treatment with anthelmintic drugs. These fluorescent markers were efficient to stain larvae treated with ivermectin and albendazole sulfoxide. We observed that densitometric values were proportional to the concentration of dead larvae stained with both markers. Furthermore, data on motility test presented an inverse correlation with fluorimetric data when ivermectin was used. Our results showed that lower concentrations of drugs were effective to interfere in the processes of cellular transport while higher drugs concentrations were necessary in order to result in any damage to cell integrity. The methodology described in this work might be useful for studies that aim to evaluate the viability of nematodes, particularly for testing of new anthelminthic compounds using an easy, economic, reproducible, and no time-consuming technique.
Collapse
|
39
|
Nematicidal activity of Annona crassiflora leaf extract on Caenorhabditis elegans. Parasit Vectors 2015; 8:113. [PMID: 25885032 PMCID: PMC4336742 DOI: 10.1186/s13071-015-0708-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/31/2015] [Indexed: 12/24/2022] Open
Abstract
Background The aim of this work was to investigate the potential nematicidal activity of Annona crassiflora leaf extract against Caenorhabditis elegans. Methods The hydroalcoholic leaf extract and its fractions (dichloromethane, ethyl acetate, methanol and water) were submitted to mobility assay against the roundworm Caenorhabditis elegans. GC-MS and NMR analysis were performed in order to identify metabolites. Results The dichloromethane and ethyl acetate fractions showed to be the most active among the hydroalcoholic leaf extracts and its four fractions. The percentages of C. elegans larvae immobility were 98.13 and 89.66%, respectively, at a concentration of 1000 μg.mL−1. Besides some amino acids, palmitic acid methyl ester, 2-isopropyl-5-methylcyclohexanol, oleic acid methyl esther, stearic acid methyl ester, quercetin and kaempferol were also identified in these fractions. Conclusion The results indicated that of A. crassiflora leaf ethanolic extract has a good potential as a source for natural nematicide.
Collapse
|
40
|
Isoxanthohumol, a constituent of hop (Humulus lupulus L.), increases stress resistance in Caenorhabditis elegans dependent on the transcription factor DAF-16. Eur J Nutr 2015; 55:257-65. [PMID: 25644181 DOI: 10.1007/s00394-015-0843-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/25/2015] [Indexed: 01/27/2023]
Abstract
PURPOSE The flavanone isoxanthohumol (IX) has gained attention as antioxidative and chemopreventive agent, but the molecular mechanism of action remains unclear. We investigated effects of this secondary plant compound in vivo using the model organism Caenorhabditis elegans. METHODS Adult C. elegans nematodes were incubated with IX, and then, the stress resistance was analysed in the SYTOX assay; lifespan was monitored by touch-provoked movement method, the amount of reactive oxygen species (ROS) was measured in the DCF assay, and the nuclear localisation of the transcription factor DAF-16 was analysed by using a transgenic strain. By the use of a DAF-16 loss-of-function strain, we analysed whether the effects are dependent on DAF-16. RESULTS IX increases the resistance of the nematode against thermal stress. Additionally, a reduction in ROS in vivo was caused by IX. Since the flavanone only has a marginal radical-scavenging capacity (TEAC assay), we suggest that IX mediates its antioxidative effects indirectly via activation of DAF-16 (homologue to mammalian FOXO proteins). The nuclear translocation of this transcription factor is increased by IX. In the DAF-16-mutated strain, the IX-mediated increase in stress resistance was completely abolished; furthermore, an increased formation of ROS and a reduced lifespan was mediated by IX. CONCLUSION IX or a bacterial metabolite of IX causes antioxidative effects as well as an increased stress resistance in C. elegans via activation of DAF-16. The homologous pathway may have implications in the molecular mechanism of IX in mammals.
Collapse
|
41
|
Büchter C, Ackermann D, Honnen S, Arnold N, Havermann S, Koch K, Wätjen W. Methylated derivatives of myricetin enhance life span in Caenorhabditis elegans dependent on the transcription factor DAF-16. Food Funct 2015; 6:3383-92. [DOI: 10.1039/c5fo00463b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methylated derivatives of myricetin enhance the life span of the nematodeCaenorhabditis eleganscomparable to the non-methylated flavonoid myricetin. The life-prolonging effects are dependent on the transcription factor DAF-16.
Collapse
Affiliation(s)
- C. Büchter
- Martin-Luther-Universität Halle-Wittenberg
- Institute of Agricultural and Nutritional Sciences
- D-06120 Halle/Saale
- Germany
- Institute of Toxicology
| | - D. Ackermann
- Institute of Toxicology
- Heinrich Heine University Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - S. Honnen
- Institute of Toxicology
- Heinrich Heine University Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - N. Arnold
- Department of Bioorganic Chemistry
- Leibniz Institute of Plant Biochemistry
- D-06120 Halle/Saale
- Germany
| | - S. Havermann
- Martin-Luther-Universität Halle-Wittenberg
- Institute of Agricultural and Nutritional Sciences
- D-06120 Halle/Saale
- Germany
- Institute of Toxicology
| | - K. Koch
- Martin-Luther-Universität Halle-Wittenberg
- Institute of Agricultural and Nutritional Sciences
- D-06120 Halle/Saale
- Germany
| | - W. Wätjen
- Martin-Luther-Universität Halle-Wittenberg
- Institute of Agricultural and Nutritional Sciences
- D-06120 Halle/Saale
- Germany
- Institute of Toxicology
| |
Collapse
|
42
|
Fischer M, Fitzenberger E, Kull R, Boll M, Wenzel U. The zinc matrix metalloproteinase ZMP-2 increases survival of Caenorhabditis elegans through interference with lipoprotein absorption. GENES & NUTRITION 2014; 9:414. [PMID: 24957743 PMCID: PMC4169068 DOI: 10.1007/s12263-014-0414-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/17/2014] [Indexed: 12/27/2022]
Abstract
Matrix metalloproteinases are zinc-dependent endopeptidases conserved throughout the animal kingdom which primarily degrade components of the extracellular matrix. In the nematode Caenorhabditis elegans, the zinc matrix metalloproteinase (ZMP-2) was demonstrated to increase resistance versus heat and bacterial pathogens. Here, we show that the survival reducing activities caused by the knockdown of zmp-2 in C. elegans essentially requires the presence of vitellogenin-6, a protein homologous to mammalian apolipoprotein B, and RME-2, a receptor mediating endocytosis of cholesterol particles. Measurements of reactive oxygen species inside and outside C. elegans revealed that knockdown of zmp-2 causes a prooxidative extracellular mileu which is a prerequisite for the reduction of survival. Interestingly, RNAi for the foxo transcription factor daf-16 completely prevented those survival reducing effects of zmp-2 RNAi, and RNAi in mutants of the steroid signalling pathway revealed that DAF-16 acts by inhibition of DAF-9 and DAF-12. In conclusion, our study demonstrates survival reducing activities caused by the functional loss of ZMP-2 in C. elegans. Those effects are mediated by the transport of oxidized cholesterol adducts which then trigger the inhibition of DAF-9 and DAF-12 through the activation of DAF-16.
Collapse
Affiliation(s)
- Malaika Fischer
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Elena Fitzenberger
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Rebecca Kull
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Michael Boll
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Uwe Wenzel
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
43
|
Amrit FRG, Ratnappan R, Keith SA, Ghazi A. The C. elegans lifespan assay toolkit. Methods 2014; 68:465-75. [PMID: 24727064 DOI: 10.1016/j.ymeth.2014.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of single gene mutations that double its lifespan, the nematode Caenorhabditis elegans has provided remarkable insights into the biology of aging. The precisely measurable lifespan of worms has proven to be an efficient tool to assess the impact of various genetic, physiological and environmental factors on organismal aging. In this article, we describe methods to set up and monitor experiments to determine worm lifespan. We include procedures used for classical, small-scale lifespan assays that are generally performed on solid media, and review recent advances in high-throughput, automated longevity experiments conducted in liquid culture and microfluidic devices. In addition, tools that help analyze this data to obtain survival statistics are summarized, and C. elegans strains that offer particular advantages for lifespan studies are listed.
Collapse
Affiliation(s)
- Francis Raj Gandhi Amrit
- Department of Pediatrics, University of Pittsburgh School of Medicine, 7129 Rangos Research Centre, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| | - Ramesh Ratnappan
- Department of Pediatrics, University of Pittsburgh School of Medicine, 7129 Rangos Research Centre, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| | - Scott Alexander Keith
- Department of Pediatrics, University of Pittsburgh School of Medicine, 7129 Rangos Research Centre, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of Medicine, 7129 Rangos Research Centre, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States.
| |
Collapse
|
44
|
Paveley RA, Bickle QD. Automated imaging and other developments in whole-organism anthelmintic screening. Parasite Immunol 2014; 35:302-13. [PMID: 23581722 DOI: 10.1111/pim.12037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/06/2013] [Indexed: 12/13/2022]
Abstract
Helminth infections still represent a huge public health problem throughout the developing world and in the absence of vaccines control is based on periodic mass drug administration. Poor efficacy of some anthelmintics and concerns about emergence of drug resistance has highlighted the need for new drug discovery. Most current anthelmintics were discovered through in vivo screening of selected compounds in animal models but recent approaches have shifted towards screening for activity against adult or larval stages in vitro. Larvae are normally available in greater numbers than adults, can often be produced in vitro and are small enough for microplate assays. However, the manual visualization of drug effects in vitro is subjective, laborious and slow. This can be overcome by application of automated readouts including high-content imaging. Incorporated into robotically controlled HTS platforms such methods allow the very large compound collections being made available by the pharmaceutical industry or academic organizations to be screened against helminths for the first time, invigorating the drug discovery pipeline. Here, we review the status of whole-organism screens based on in vitro activity against living worms and highlight the recent progress towards automated image-based readouts.
Collapse
Affiliation(s)
- R A Paveley
- Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London, UK
| | | |
Collapse
|
45
|
Lai Y, Xiang M, Liu S, Li E, Che Y, Liu X. A novel high-throughput nematicidal assay using embryo cells and larvae of Caenorhabditis elegans. Exp Parasitol 2014; 139:33-41. [PMID: 24594258 DOI: 10.1016/j.exppara.2014.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/12/2014] [Accepted: 02/18/2014] [Indexed: 12/29/2022]
Abstract
Human health safety and environmental concerns have resulted in the widespread deregistration of several agronomic important nematicides. New and safer nematicides are urgently needed. However, a high-throughput bioassay for screening potential nematicides has not been established. We developed a two-step high-throughput nematicidal screening method to combine a cell-based MTS colorimetric assay with Caenorhabditis elegans embryo cells for preliminary cytotoxicity screening (step 1) followed by in vitro larval assay for nematicidal activity (step 2). Based on three conventional nematicides' test, high correlations were obtained between cell viability and larval viability and "r" values were 0.78 for Avermectin, 0.95 for Fosthiazate, and 0.65 for Formaldehyde solution. Further assays with 60 fungal secondary metabolites (extracts, fractions and pure compounds) also demonstrated the high correlation between cell viability and larval viability (r=0.60) and between the C. elegans cell viability and the juvenile viability of soybean cyst nematode Heterodera glycines (r=0.48) and pine wood nematode Bursaphelenchus xylophilus (r=0.56). Six metabolites with high cytotoxicity have performed high larval mortality with a LC50 range of 6.8-500μg/ml. These results indicate that the proposed two-step screening assay represents an efficient and labor-saving method for screening natural nematicidal products.
Collapse
Affiliation(s)
- Yiling Lai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China.
| | - Shuchun Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Erwei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yongsheng Che
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China; Beijing Institute of Pharmacology and Toxicology, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
46
|
Fitzenberger E, Deusing DJ, Wittkop A, Kler A, Kriesl E, Bonnländer B, Wenzel U. Effects of plant extracts on the reversal of glucose-induced impairment of stress-resistance in Caenorhabditis elegans. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2014; 69:78-84. [PMID: 24390728 DOI: 10.1007/s11130-013-0399-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Enhanced blood glucose levels are a hallmark of diabetes and are associated with diabetic complications and a reduction of lifespan. In order to search for plant extracts that display preventive activities in such a scenario, we tested 16 extracts used in human nutrition for their survival enhancing activities in the nematode Caenorhabditis elegans. Nematodes were exposed for 48 h to 10 mM glucose in the absence or presence of 0.1% extract. Thereafter, survival was measured at 37 °C. Extracts made from coffee, kola, rooibos and cinnamon, did not influence the glucose-induced reduction of survival. Those made from ginseng, camomile, lime blossom, paraguay tea, balm, rhodiola, black tea, or knotgrass all extended the lifespan of the glucose-treated nematodes significantly but did not rescue survival completely. Extracts from the leaves of blackberries, from hibiscus, elderberries, or jiaogulan completely countered the glucose-induced survival reduction. A potent activation of the proteasome was shown for the most preventive extracts suggesting a more efficient degradation of proteins impaired by glucose. In conclusion, we present a simple animal model to screen for plant extracts with potency to reverse glucose toxicity. Extracts from blackberry leaves, hibiscus, elderberries, and jiaogulan were identified as very potent in this regard whose exact mechanisms of action appear worthwile to investigate at the molecular level.
Collapse
Affiliation(s)
- Elena Fitzenberger
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Kishi S. Using zebrafish models to explore genetic and epigenetic impacts on evolutionary developmental origins of aging. Transl Res 2014; 163:123-35. [PMID: 24239812 PMCID: PMC3969878 DOI: 10.1016/j.trsl.2013.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/20/2013] [Accepted: 10/21/2013] [Indexed: 01/10/2023]
Abstract
Can we reset, reprogram, rejuvenate, or reverse the organismal aging process? Certain genetic manipulations could at least reset and reprogram epigenetic dynamics beyond phenotypic plasticity and elasticity in cells, which can be manipulated further into organisms. However, in a whole complex aging organism, how can we rejuvenate intrinsic resources and infrastructures in an intact and noninvasive manner? The incidence of diseases increases exponentially with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but essentially inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these 2 phenomena to rejuvenate over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states based on diverse epigenotypes in response to intrinsic or extrinsic environmental cues and genetic perturbations. We hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds and windows of plasticity and its robustness by molecular genetic and chemical epigenetic approaches, we have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during their embryonic and/or larval stages ("embryonic/larval senescence"). Subsequently, at least some of these mutant animals were found to show a shortened life span, whereas others would be expected to live longer into adulthood. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and its regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes, genotypes, and epigenotypes that can be linked to the senescence phenotype, which facilitates searching for the evolutionary and developmental origins of aging in vertebrates.
Collapse
Affiliation(s)
- Shuji Kishi
- Department of Metabolism & Aging, The Scripps Research Institute, Scripps Florida, Jupiter, Fla.
| |
Collapse
|
48
|
Fitzenberger E, Deusing DJ, Marx C, Boll M, Lüersen K, Wenzel U. The polyphenol quercetin protects the mev-1 mutant of Caenorhabditis elegans from glucose-induced reduction of survival under heat-stress depending on SIR-2.1, DAF-12, and proteasomal activity. Mol Nutr Food Res 2014; 58:984-94. [PMID: 24407905 DOI: 10.1002/mnfr.201300718] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 11/05/2022]
Abstract
SCOPE Hyperglycemia is a hallmark of diabetes mellitus but slighter increases of blood glucose levels are observed also during ageing. Using the Caenorhabditis elegans mev-1 mutant, we identified molecular mechanisms underlying the protection from glucose toxicity by the polyphenol quercetin. METHODS AND RESULTS We fed C. elegans mev-1 mutants on a liquid medium supplemented with 10 mM glucose, which resulted in a reduced survival at 37°C. The polyphenol quercetin (1 μM) was able to prevent glucose-induced lifespan reduction completely. RNA interference revealed that the sirtuin SIR-2.1, the nuclear hormone receptor DAF-12, and its putative co-activator MDT-15 were critical for the quercetin effects. Moreover, RNA interference for key factors of proteostasis reduced survival, which was not further affected by glucose or quercetin, suggesting that those proteins are a target for both substances. Besides unfolded protein response, proper functionality of the proteasome was shown to be crucial for the survival enhancing effects of quercetin and the polyphenol was finally demonstrated to activate proteasomal degradation. CONCLUSION Our studies demonstrate that lowest concentrations of quercetin prevent a glucose-induced reduction of survival. SIR-2.1, DAF-12, and MDT-15 were identified as targets that activate unfolded protein response and proteasomal degradation to limit the accumulation of functionally restricted proteins.
Collapse
Affiliation(s)
- Elena Fitzenberger
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Gasch T, Schott M, Wehrenfennig C, Düring RA, Vilcinskas A. Multifunctional weaponry: the chemical defenses of earwigs. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1186-1193. [PMID: 24090659 DOI: 10.1016/j.jinsphys.2013.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 06/02/2023]
Abstract
Earwigs protect themselves against predators using pincer-like cerci and/or malodorous exudates secreted from abdominal glands. Little is known about the chemistry of these secretions and their potential functions. However, because earwigs live in aggregations and overwinter in soil, they are exposed to high microbial loads throughout their lifecycle, and we therefore hypothesized that the secretions are used not only to deter predators but also to combat pathogens and parasites in their environment. We analyzed the defensive secretions of the European earwig Forficula auricularia, the short-winged earwig Apterygida media and the woodland earwig Chelidurella guentheri by gas chromatography-mass spectrometry. The secretions of all three species contained 2-methyl-1,4-benzoquinone and 2-ethyl-1,4-benzoquinone, whereas A. media also produced 2,3-dimethyl-1,4-benzoquinone and 2-ethyl-3-methyl-1,4-benzoquinone. The latter has not been identified in the exudates of insects before. The composition and/or quantity of these components were species-specific and partially sex-specific. All secretions showed antimicrobial activity against Gram-positive and Gram-negative bacteria as well as two entomopathogenic fungi. Furthermore, the secretion of F. auricularia displayed nematicidal activity against Caenorhabditis elegans. Our data support the hypothesis that earwig secretions are multifunctional, serving both to deter predators and sanitize the microenvironment.
Collapse
Affiliation(s)
- Tina Gasch
- Institute of Phytopathology and Applied Zoology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
50
|
Büchter C, Ackermann D, Havermann S, Honnen S, Chovolou Y, Fritz G, Kampkötter A, Wätjen W. Myricetin-mediated lifespan extension in Caenorhabditis elegans is modulated by DAF-16. Int J Mol Sci 2013; 14:11895-914. [PMID: 23736695 PMCID: PMC3709762 DOI: 10.3390/ijms140611895] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 12/11/2022] Open
Abstract
Myricetin is a naturally occurring flavonol found in many plant based food sources. It increases the lifespan of Caenorhabditis elegans, but the molecular mechanisms are not yet fully understood. We have investigated the impact of this flavonoid on the transcription factors DAF-16 (C. elegans FoxO homologue) and SKN-1 (Nrf2 homologue), which have crucial functions in the regulation of ageing. Myricetin is rapidly assimilated by the nematode, causes a nuclear translocation of DAF-16 but not of SKN-1, and finally prolongs the mean adult lifespan of C. elegans by 32.9%. The lifespan prolongation was associated with a decrease in the accumulation of reactive oxygen species (ROS) detected by DCF. Myricetin also decreases the formation of lipofuscin, a pigment consisting of highly oxidized and cross-linked proteins that is considered as a biomarker of ageing in diverse species. The lifespan extension was completely abolished in a daf-16 loss-of-function mutant strain (CF1038). Consistently with this result, myricetin was also not able to diminish stress-induced ROS accumulation in the mutant. These results strongly indicate that the pro-longevity effect of myricetin is dependent on DAF-16 and not on direct anti-oxidative effects of the flavonoid.
Collapse
Affiliation(s)
- Christian Büchter
- Institute of Agricultural and Nutritional Sciences, Faculty III, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22 (Biozentrum), 06120 Halle/Saale, Germany; E-Mails: (C.B.); (S.H.)
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Daniela Ackermann
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Susannah Havermann
- Institute of Agricultural and Nutritional Sciences, Faculty III, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22 (Biozentrum), 06120 Halle/Saale, Germany; E-Mails: (C.B.); (S.H.)
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Sebastian Honnen
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Yvonni Chovolou
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Gerhard Fritz
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Andreas Kampkötter
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
- Global Drug Development, Safety and Pharmacokinetics, Bayer Animal Health GmbH, Bayer HealthCare, Building 6700 Monheim, 51368 Leverkusen, Germany
| | - Wim Wätjen
- Institute of Agricultural and Nutritional Sciences, Faculty III, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22 (Biozentrum), 06120 Halle/Saale, Germany; E-Mails: (C.B.); (S.H.)
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-0345-5522-381; Fax: +49-0345-5522-382
| |
Collapse
|