1
|
Dietary fish oil improves endothelial function and lowers blood pressure via suppression of sphingolipid-mediated contractions in spontaneously hypertensive rats. J Hypertens 2014; 32:1050-8; discussion 1058. [PMID: 24569415 DOI: 10.1097/hjh.0000000000000131] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Long-chain n-3 polyunsaturated fatty acids from oily fish reduce blood pressure (BP) in hypertension. Previously, we demonstrated that hypertension is associated with marked alterations in sphingolipid biology and elevated ceramide-induced vasoconstriction. Here we investigated in spontaneously hypertensive rats (SHRs) whether fish oil improves endothelial function including reduced vascular contraction induced via the sphingolipid cascade, resulting in reduced BP. METHODS Twelve-week-old SHRs were fed a control or fish oil-enriched diet during 12 weeks, and BP was recorded. Plasma sphingolipid levels were quantified by mass spectrometry and the response of isolated carotid arteries towards different stimuli was measured. Furthermore, erythrocyte membrane fatty acid composition, thromboxane A2 formation and cytokine secretion in ex-vivo lipopolysaccharide-stimulated thoracic aorta segments were determined. RESULTS The fish oil diet reduced the mean arterial BP (P < 0.001) and improved endothelial function, as indicated by a substantially increased relaxation potential towards ex-vivo methacholine exposure of the carotid arteries (P < 0.001). The long-chain n-3 polyunsaturated fatty acid diet resulted in altered levels of specific (glucosyl)ceramide subspecies (P < 0.05), reduced membrane arachidonic acid content (P < 0.001) and decreased thromboxane concentrations in plasma (P < 0.01). Concomitantly, the fish oil diet largely reduced ceramide-induced contractions (P < 0.01), which are predominantly mediated by thromboxane. Furthermore, thromboxane A2 and interleukin-10 were reduced in supernatants of lipopolysaccharide-stimulated thoracic aorta of SHRs fed the fish oil diet while RANTES (regulated on activation, normal T-cell expressed and secreted) was enhanced. This may contribute to reduced vasoconstriction in vivo. CONCLUSIONS Dietary fish oil lowers BP in SHRs and improves endothelial function in association with suppression of sphingolipid-dependent vascular contraction.
Collapse
|
2
|
Abstract
The term 'antioxidant paradox' is often used to refer to the observation that oxygen radicals and other reactive oxygen species are involved in several human diseases, but giving large doses of dietary antioxidant supplements to human subjects has, in most studies, demonstrated little or no preventative or therapeutic effect. Why should this be? First, the role of reactive oxygen species in the origin and/or progression of most human diseases is unclear, although they are probably important in cancer, neurodegenerative diseases and perhaps some others. Second, the endogenous antioxidant defences in the human body are complex, interlocking and carefully regulated. The body's 'total antioxidant capacity' seems unresponsive to high doses of dietary antioxidants, so that the amount of oxidative damage to key biomolecules is rarely changed. Indeed, manipulation of endogenous antioxidant levels (e.g. by supplying weak pro-oxidants) may be a more useful approach to treatment and prevention of diseases in which reactive oxygen species are important than is consumption of large doses of dietary antioxidants.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
3
|
Veskoukis AS, Tsatsakis AM, Kouretas D. Dietary oxidative stress and antioxidant defense with an emphasis on plant extract administration. Cell Stress Chaperones 2012; 17:11-21. [PMID: 21956695 PMCID: PMC3227848 DOI: 10.1007/s12192-011-0293-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/11/2011] [Accepted: 09/13/2011] [Indexed: 01/13/2023] Open
Abstract
Eukaryotic cells generally function in a reduced state, but an amount of reactive species is essential for several biochemical processes. The antioxidant network is the defensive mechanism that occurs when the concentration of reactive species exceeds a threshold. Polyphenolic compounds present in plant extracts are potent antioxidants in vitro, but they may promote oxidative stress when administered in animals and humans, especially when given as supplements in exercise, a modality usually adopted as an oxidant stimulus. This is mainly observed when antioxidant molecules are administered separately and not as part of a diet. Exercise is usually adopted as a physiological model for examining the effects of reactive species in human or animal physiology. The use of exercise as a model demonstrates that reactive species do not always have adverse effects, but are necessary in physiological processes that are beneficial for human health. This review summarizes what is known about antioxidant supplementation and demonstrates the need for a meticulous examination of the in vitro findings before applying them to in vivo models. The term "antioxidant" seems elusive, and it is more appropriate to characterize a compound as "antioxidant" if we know in which concentration it is used, when it is used, and under which conditions.
Collapse
Affiliation(s)
- Aristidis S. Veskoukis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, 41221 Greece
| | - Aristidis M. Tsatsakis
- Forensic Sciences and Toxicology Department, Medical School, University of Crete, 71003 Heraklion, Crete P.O. Box 1393, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, 41221 Greece
| |
Collapse
|
4
|
Halliwell B. Free radicals and antioxidants – quo vadis? Trends Pharmacol Sci 2011; 32:125-30. [DOI: 10.1016/j.tips.2010.12.002] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/02/2010] [Accepted: 12/02/2010] [Indexed: 10/25/2022]
|
5
|
Abstract
This review focuses on the role of oxidative processes in atherosclerosis and its resultant cardiovascular events. There is now a consensus that atherosclerosis represents a state of heightened oxidative stress characterized by lipid and protein oxidation in the vascular wall. The oxidative modification hypothesis of atherosclerosis predicts that low-density lipoprotein (LDL) oxidation is an early event in atherosclerosis and that oxidized LDL contributes to atherogenesis. In support of this hypothesis, oxidized LDL can support foam cell formation in vitro, the lipid in human lesions is substantially oxidized, there is evidence for the presence of oxidized LDL in vivo, oxidized LDL has a number of potentially proatherogenic activities, and several structurally unrelated antioxidants inhibit atherosclerosis in animals. An emerging consensus also underscores the importance in vascular disease of oxidative events in addition to LDL oxidation. These include the production of reactive oxygen and nitrogen species by vascular cells, as well as oxidative modifications contributing to important clinical manifestations of coronary artery disease such as endothelial dysfunction and plaque disruption. Despite these abundant data however, fundamental problems remain with implicating oxidative modification as a (requisite) pathophysiologically important cause for atherosclerosis. These include the poor performance of antioxidant strategies in limiting either atherosclerosis or cardiovascular events from atherosclerosis, and observations in animals that suggest dissociation between atherosclerosis and lipoprotein oxidation. Indeed, it remains to be established that oxidative events are a cause rather than an injurious response to atherogenesis. In this context, inflammation needs to be considered as a primary process of atherosclerosis, and oxidative stress as a secondary event. To address this issue, we have proposed an "oxidative response to inflammation" model as a means of reconciling the response-to-injury and oxidative modification hypotheses of atherosclerosis.
Collapse
Affiliation(s)
- Roland Stocker
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia.
| | | |
Collapse
|
6
|
Dhein S, Kabat A, Olbrich A, Rösen P, Schröder H, Mohr FW. Effect of chronic treatment with vitamin E on endothelial dysfunction in a type I in vivo diabetes mellitus model and in vitro. J Pharmacol Exp Ther 2003; 305:114-22. [PMID: 12649359 DOI: 10.1124/jpet.102.045740] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetes mellitus often leads to generalized vasculopathy. Because of the pathophysiological role of free radicals we investigated the effects of vitamin E. Twenty-eight rats were rendered diabetic by streptozotocin injection and were fed either with a diet with low (10 mg/kg of chow), medium (75 mg/kg of chow) or high amounts of vitamin E (1300 mg/kg of chow). Nine age-matched nondiabetic rats receiving 75 mg of vitamin E/kg chow served as controls. After 7 months, mesenteric microcirculation was investigated. Smooth muscle contractile function was not altered in diabetic versus nondiabetic vessels. Endothelial function was significantly reduced in diabetics; relaxation upon 1 micro M acetylcholine was reduced by 50% in diabetics with a medium and high vitamin E diet. In vitamin E-deprived rats, a complete loss of endothelium-dependent relaxation was observed, and instead, acetylcholine elicited vasoconstriction. L-N(G)-Nitro-arginine-induced vasoconstriction was reduced in small arteries in diabetics, which was not prevented by vitamin E, but was aggravated by vitamin E deprivation. In a subchronic endothelial cell culture model, cells were cultivated with 5 or 20 mM D-glucose for an entire cell culture passage (4 days) with or without vitamin E (20 mg/l versus 0.01 mg/l). Hyperglycemia led to significant reduction in basal and ATP-stimulated nitric oxide (NO)-production. Hyperglycemia-induced reduction in basal NO-release was significantly prevented by vitamin E, whereas reduction in stimulated NO-release was not influenced. NADPH-diaphorase activity was reduced by 40% by hyperglycemia, which was completely prevented by vitamin E. We conclude that 1) vitamin E has a potential to prevent partially hyperglycemia-induced endothelial dysfunction, 2) under in vivo conditions vitamin E deficiency enhanced diabetic endothelial dysfunction dramatically, and 3) positive effects of vitamin E may be attenuated with a longer disease duration.
Collapse
Affiliation(s)
- S Dhein
- University of Leipzig, Heart Centre Leipzig, Clinic for Cardiac Surgery, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Shvedova AA, Kisin E, Murray A, Smith C, Castranova V, Kommineni C. Enhanced oxidative stress in the skin of vitamin E deficient mice exposed to semisynthetic metal working fluids. Toxicology 2002; 176:135-43. [PMID: 12062937 DOI: 10.1016/s0300-483x(02)00093-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Metal working fluids (MWFs) are widely used in industry for metal cutting, drilling, shaping, lubricating, and milling. Many occupational health concerns have arisen for workers exposed to MWFs. It has been reported earlier that occupational exposure to MWFs causes allergic and irritant contact dermatitis. Previously, we have shown that dermal exposure of female and male B6C3F1 mice to 5% MWFs for 3 months resulted in accumulation of mast cells and elevation of histamine in the skin. Topical exposure to MWFs also resulted in elevated oxidative stress in the liver of both sexes and the testes in males. The goal of this study was to evaluate whether preexisting oxidative stress in the skin exacerbated mast cell influx after MWFs treatment. Oxidative stress in the skin of B6C3F1 mice was generated by dietary vitamin E deprivation. Mice were given vitamin E deficient (5-10 i.v./kg of vitamin E) or basal (50 i.v./kg of vitamin E) diets for 34 weeks. Topical treatment with MWFs (100 microl, 30%) started after 18 weeks of alimentary vitamin E deprivation. Histology of the skin after 16 weeks of exposure to MWFs revealed a 53% increase in mast cell accumulation in vitamin E deficient diets compared to mice given a vitamin E sufficient diet. Total antioxidant reserve in skin of vitamin E deprived mice treated with MWFs was decreased by 66% as compared to those mice given a vitamin E sufficient diet. GSH and protein thiols in the dermis of vitamin E deprived mice exposed to MWFs were also decreased 39 and 42%, respectively, as compared to mice given basal diet. This study clearly delineates the role of oxidative stress in enhancing mast cell accumulation caused by topical exposure to MWFs.
Collapse
Affiliation(s)
- Anna A Shvedova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Mail Stop 2015, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, WV 26505, USA
| | | | | | | | | | | |
Collapse
|
8
|
Keaney JF, Vita JA. Vascular oxidative stress and antioxidant protection in atherosclerosis: what do the clinical trials say? JOURNAL OF CARDIOPULMONARY REHABILITATION 2002; 22:225-33. [PMID: 12202841 DOI: 10.1097/00008483-200207000-00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- John F Keaney
- Evans Memorial Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, Room W507, Boston, MA 02118, USA.
| | | |
Collapse
|
9
|
Wang S, Sun NN, Zhang J, Watson RR, Witten ML. Immunomodulatory effects of high-dose alpha-tocopherol acetate on mice subjected to sidestream cigarette smoke. Toxicology 2002; 175:235-45. [PMID: 12049851 DOI: 10.1016/s0300-483x(02)00064-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several recent epidemiological investigations raise serious questions about the health effects of high-dose supplements of Vitamin E (VE) in cigarette smokers. To examine these findings, a total of 96 C57BL/6 mice were randomly assigned to eight groups in a 2 x 4 factorial design (smoke vs. sham smoke and normal diet vs. 3 VE supplements). The mice were exposed to sidestream cigarette smoke (SSCS), at 0.4 mg total particulate matter/m(3) air, from standard research cigarettes (1R4)/day or filtered room air at 30 min/day, 5 days/week, for 9 weeks through a nose-only exposure chamber. The American Institute of Nutrition 93G purified rodent diet was modulated with 75 (regular diet, 1-fold), 1050 (15-fold), 5550 (75-fold), and 11175 (150-fold) IU dl-alpha-tocopherol acetate (alpha-TA)/kg as VE supplementation and provided ad libitum at an average intake rate of 4.11 g diet/mouse/day. This result demonstrated that SSCS exposure results in lung dysfunction, as indicated by a decrease of pulmonary dynamic compliance (C(dyn)) and increase of lung resistance (R(L)), and body weight loss in mice fed with regular diet. These changes accompanied with increases of bronchoalveolar lavage (BAL) concentrations of cytokines interleukin (IL)-1 beta, IL-4 and IFN-gamma, as well as hepatic lipid peroxidation. However, supplemental alpha-TA at the doses of > or = 1050 IU/kg diet prevented the SSCS-induced body weight loss and lung dysfunction. alpha-TA at > or = 5550 IU/kg significantly increased BAL levels of IL-2 and IL-4 in both the sham SSCS and the SSCS groups. Given at 5550 IU alpha-TA/kg, but not higher, mice elevated BAL IL-1 beta level if they were exposed to SSCS. Hepatic lipid peroxidation was decreased in a dose-dependent fashion with different alpha-TA supplements in both the sham SSCS and SSCS groups. Neither SSCS nor alpha-TA had an effect on lung permeability, BAL IL-6, splenic T and B lymphocyte proliferation and their T helper (Th)1 and Th2 cytokines measured among all groups. Data suggest that supplemental alpha-TA may be needed to counteract SSCS-induced oxidative stress, but that potential side effects introduced by high dosage of this synthetic compound should be considered.
Collapse
Affiliation(s)
- Shengjun Wang
- Center for Toxicology and Department of Pediatrics, University of Arizona, P.O. Box 245073, 1501 N. Campbell Avenue, Tucson, AZ 85724-5073, USA
| | | | | | | | | |
Collapse
|
10
|
Sagach VF, Scrosati M, Fielding J, Rossoni G, Galli C, Visioli F. The water-soluble vitamin E analogue Trolox protects against ischaemia/reperfusion damage in vitro and ex vivo. A comparison with vitamin E. Pharmacol Res 2002; 45:435-9. [PMID: 12162942 DOI: 10.1006/phrs.2002.0993] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the activities, both in vitro and ex vivo, of the water-soluble vitamin analogue Trolox in a model of isolated heart ischaemia-reperfusion and we compared them with those of alpha -tocopherol. Isolated rat hearts were perfused with Krebs-Henseleit solution. For in vitro experiments, the hearts were perfused with Trolox (20 micromol l (-1)) and were subsequently subjected to 20 min of global ischaemia and 40 min of post-ischaemic reperfusion. For ex vivo experiments, either Trolox or alpha -tocopherol (10 mg kg(-1) ) were administered by gastric gavage 60 min before excision of the heart. Various parameters of cardiac function were evaluated and oxidative damage was assessed by TBARS production. Trolox significantly enhanced cardiac recovery after ischaemia/reperfusion, both when it was perfused in vitro and after its oral administration. Vitamin E also favourably affected cardiac recovery but did so less effectively than Trolox. Further, the production of TBARS was significantly inhibited by Trolox, suggesting that its beneficial effects are due to its antioxidant activities. In conclusion, perfusion of isolated rat hearts with low concentrations of the water-soluble vitamin E analogue Trolox effectively enhances cardiac recovery after a 20 min ischaemic period and decreases reperfusion-induced oxidative damage. Interestingly, Trolox retains its activities after oral administration. Vitamin E, when administered per os, also increases functional recovery but does so less potently than Trolox. These differential effects are likely due to the scavenging, by Trolox, of reactive oxygen species generated in the water phase.
Collapse
|
11
|
Upston JM, Witting PK, Brown AJ, Stocker R, Keaney JF. Effect of vitamin E on aortic lipid oxidation and intimal proliferation after arterial injury in cholesterol-fed rabbits. Free Radic Biol Med 2001; 31:1245-53. [PMID: 11705703 DOI: 10.1016/s0891-5849(01)00721-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oxidized low-density lipoproteins (LDL) are implicated in atherosclerosis. However, large-scale intervention studies designed to test whether antioxidants, such as vitamin E, can ameliorate cardiovascular disease have generated ambivalent results. This may relate to the fact that the mechanism whereby lipid oxidation is initiated in vivo is unknown and the lack of direct evidence for a deficiency of antioxidants in atherosclerotic lesions. Further, there is little evidence to suggest that vitamin E acts as an antioxidant for lipid peroxidation in vivo. Here we tested the antioxidant effect of dietary vitamin E (alpha-tocopherol) supplementation on intimal proliferation and lipid oxidation in balloon-injured, hypercholesterolemic rabbits. alpha-Tocopherol supplementation increased vascular content of alpha-tocopherol over 30-fold compared to nonsupplemented and alpha-tocopherol-deficient chows. Balloon injury resulted in oxidized lipid deposition in the aorta. Maximum levels of primary lipid oxidation products, measured as hydroperoxides of esterified lipid (LOOH) and oxidized linoleate (HODE), were 0.22 and 1.10 nmol/mg, representing 0.21 and 0.39% of the precursor molecule, respectively. Secondary lipid oxidation products, measured as oxysterols, were maximal at 5.60 nmol/mg or 1.48% of the precursor compound. Vascular HODE and oxysterols were significantly reduced by vitamin E supplementation. However, the intima/media ratio of aortic vessels increased with vitamin E supplementation, suggesting that the antioxidant promoted intimal proliferation. Thus, the study demonstrates a dissociation of aortic lipid oxidation and lesion development, and suggests that vitamin E does not prevent lesion development in this animal model.
Collapse
Affiliation(s)
- J M Upston
- Biochemistry Group, The Heart Research Institute, Sydney, N.S.W., Australia
| | | | | | | | | |
Collapse
|
12
|
Conde CM, Albano F, Bouskela E, Felzenszwalb I, Svensjö E. Inhibition of ischemia/reperfusion induced plasma leakage by α-tocopherol, trolox, and a shark cartilage preparation with anti-oxidant properties. Nutr Res 2001. [DOI: 10.1016/s0271-5317(01)00351-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Giakoustidis D, Kontos N, Iliadis S, Papageorgiou G, Tsantilas D, Spyridis C, Papazoglou K, Botsoglou N, Dimitriadou A, Giakoustidis E. Severe total hepatic ischemia and reperfusion: relationship between very high alpha-tocopherol uptake and lipid peroxidation. Free Radic Res 2001; 35:103-9. [PMID: 11697190 DOI: 10.1080/10715760100300641] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reperfusion injury of the liver occurs in liver transplantation and in major hepatectomies. It triggers a severe oxidative stress that leads to increased lipid peroxidation. In our study we examined the effect of parenteral supranutritional administration of alpha-tocopherol, a vitamin that plays a key role in the endogenous antioxidant system, to rats subjected to severe ischemia/reperfusion (I/R) injury of the liver. alpha-Tocopherol was administered to the animals at doses of 30 and 300 mg/kg bw, whereas total hepatic ischemia was induced for 60 min followed by 120 min reperfusion. Tissue and blood samples were collected for malonyldialdehyde (MDA) and serum alpha-tocopherol assay, respectively. In the sham operation group, mean MDA level in liver was 1.14 nmole/g wet tissue in the control subgroup, and 1.01 or 0.74 nmole/g wet tissue in the subgroups given 30 or 300 mg/kg alpha-tocopherol. In the I/R group, mean MDA level was 1.57 nmole/g wet tissue in the control subgroup, and 0.97 and 0.77 nmole/g wet tissue in the subgroups given 30 or 300 mg/kg alpha-tocopherol. Mean levels of alpha-tocopherol in serum (mumole/l) were 10.20 and 1.80 in the control subgroups, 25.28 and 11.25 in the subgroups treated with 30 and 300 mg/kg bw of alpha-tocopherol, and 31.00 and 13.02 in the subgroups treated with 30 and 300 mg/kg bw of alpha-tocopherol, within the sham-operation and I/R groups, respectively. A significant decrease of MDA accompanied by a significant increase of serum alpha-tocopherol was documented in the alpha-tocopherol-treated rats within both groups. Ischemia/reperfusion triggered a significant increase of the MDA level in the liver of the rats not treated with alpha-tocopherol as compares with the treated animals.
Collapse
Affiliation(s)
- D Giakoustidis
- Department of Surgery, School of Medical Sciences, Aristotle University, Hospital Hippokration, Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Thomas SR, Leichtweis SB, Pettersson K, Croft KD, Mori TA, Brown AJ, Stocker R. Dietary cosupplementation with vitamin E and coenzyme Q(10) inhibits atherosclerosis in apolipoprotein E gene knockout mice. Arterioscler Thromb Vasc Biol 2001; 21:585-93. [PMID: 11304477 DOI: 10.1161/01.atv.21.4.585] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intimal oxidation of LDL is considered an important early event in atherogenesis, and certain antioxidants are antiatherogenic. Dietary coenrichment with vitamin E (VitE) plus ubiquinone-10 (CoQ(10), which is reduced during intestinal uptake to the antioxidant ubiquinol-10, CoQ(10)H(2)) protects, whereas enrichment with VitE alone can increase oxidizability of LDL lipid against ex vivo oxidation. In the present study, we tested whether VitE plus CoQ(10) cosupplementation is more antiatherogenic than either antioxidant alone, by use of apolipoprotein E-deficient (apoE-/-) mice fed a high-fat diet without (control) or with 0.2% (wt/wt) VitE, 0.5% CoQ(10), or 0.2% VitE plus 0.5% CoQ(10) (VitE+CoQ(10)) for 24 weeks. None of the supplements affected plasma cholesterol concentrations, whereas in the VitE and CoQ(10) groups, plasma level of the respective supplement increased. Compared with control, plasma from CoQ(10) or VitE+CoQ(10) but not VitE-supplemented animals was more resistant to ex vivo lipid peroxidation induced by peroxyl radicals. VitE supplementation increased VitE levels in aorta, heart, brain, and skeletal muscle, whereas CoQ(10) supplementation increased CoQ(10) only in plasma and aorta and lowered tissue VITE: All treatments significantly lowered aortic cholesterol compared with control, but only VitE+CoQ(10) supplementation significantly decreased tissue lipid hydroperoxides when expressed per parent lipid. In contrast, none of the treatments affected aortic ratios of 7-ketocholesterol to cholesterol. Compared with controls, VitE+CoQ(10) supplementation decreased atherosclerosis at the aortic root and arch and descending thoracic aorta to an extent that increased with increasing distance from the aortic root. CoQ(10) significantly inhibited atherosclerosis at aortic root and arch, whereas VitE decreased disease at aortic root only. Thus, in apoE-/- mice, VitE+CoQ(10) supplements are more antiatherogenic than CoQ(10) or VitE supplements alone and disease inhibition is associated with a decrease in aortic lipid hydroperoxides but not 7-ketocholesterol.
Collapse
Affiliation(s)
- S R Thomas
- Biochemistry Group, The Heart Research Institute, Camperdown, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Witt W, Kolleck I, Fechner H, Sinha P, Rüstow B. Regulation by vitamin E of the scavenger receptor BI in rat liver and HepG2 cells. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32362-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
16
|
Asmis R, Jelk J. Vitamin E supplementation of human macrophages prevents neither foam cell formation nor increased susceptibility of foam cells to lysis by oxidized LDL. Arterioscler Thromb Vasc Biol 2000; 20:2078-86. [PMID: 10978252 DOI: 10.1161/01.atv.20.9.2078] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several studies in macrophage cell lines, rodent macrophages, and animal models of atherosclerosis suggest that vitamin E may prevent the formation of foam cells. We tested this hypothesis in a recently developed, fully autologous in vitro model of human foam cell formation. During maturation, macrophages continuously increased their alpha-tocopherol/total cholesterol ratio, demonstrating that these cells accumulate alpha-tocopherol at an even higher rate than cholesterol. In the presence of unsupplemented serum, we observed no correlation between serum vitamin E levels and the increase in the cellular alpha-tocopherol/total cholesterol ratio. In contrast, under supplemented conditions, a 3.1-fold increase in the mean serum alpha-tocopherol/total cholesterol ratio resulted in a corresponding mean 3.5-fold increase in the cellular alpha-tocopherol/total cholesterol ratio. Vitamin E loading had no effect on the lipid composition of macrophages and did not affect their growth. Foam cell formation was stimulated in mature unsupplemented and vitamin E-loaded macrophages for 1 week with 50 microg autologous aggregated low density lipoprotein (LDL) in the presence of unsupplemented and vitamin E-loaded serum, respectively. We observed no effect of vitamin E supplementation on the formation of foam cells. However, foam cell formation resulted in a 36% and 44% reduction in the cellular alpha-tocopherol/total cholesterol ratio in unsupplemented and vitamin E-supplemented foam cells, respectively. The loss of vitamin E was accelerated with increasing concentrations of aggregated LDL and was accompanied by an increase in the susceptibility of these foam cells to succumb to the cell lytic effects of oxidized LDL (OxLDL). However, vitamin E supplementation did not protect macrophages or foam cells from OxLDL-mediated cell lysis, suggesting that vitamin E loss in foam cells is not the cause of their increased susceptibility to cell lysis. Our results suggest that the beneficial effects of vitamin E on cardiovascular disease observed in humans are due neither to a reduction in the propensity of macrophages to form foam cells nor to an increased resistance of these cells to cytolytic OxLDL.
Collapse
Affiliation(s)
- R Asmis
- Institute of Biochemistry, University of Basel, Basel, Switzerland.
| | | |
Collapse
|