1
|
Topalidis PI, Demarchi G, Reisinger L, Schubert J, Ameen MS, Weisz N, Schabus M. Selective preservation of prediction-related signals in human sleep. Curr Biol 2025; 35:2195-2201.e4. [PMID: 40245865 DOI: 10.1016/j.cub.2025.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/31/2025] [Accepted: 03/25/2025] [Indexed: 04/19/2025]
Abstract
Imagine listening to a familiar song on the radio. As the melody unfolds, you often anticipate the following note or beat before it plays. This ability reflects the brain's capacity to extract statistical regularities from sensory input and predict future sensory events. It is considered automatic, requiring little to no conscious effort or attention.1,2,3,4,5 But to what extent is this predictive ability maintained when cognitive resources are minimized, such as during sleep? Experimental findings from animal and human studies reveal a complex picture of predictive processing during sleep.6,7,8,9,10,11,12,13 Although some forms of predictions persist-evidenced by differential brain responses to unexpected stimuli and rhythmic music8,9,11,12-neural markers of feedback processing linked to predictions are notably disrupted.7,14 Here, we use multivariate pattern analysis (MVPA) to capture different facets of prediction-related signals, determining whether the brain preactivates the low-level features of expected stimuli and tracks statistical associations between stimuli. Using predictable and random tone sequences in a passive-listening paradigm, we recorded brain activity via electroencephalography (EEG) and magnetoencephalography (MEG) during wakefulness and sleep. We first show that subtle changes in tone features (e.g., tone frequency) elicit feature-specific responses in N1 and N2 sleep, though weaker and less sustained than in wakefulness. Critically, even during sleep, the brain preactivates feature-specific representations, but higher-order tracking of statistical associations between tones remains restricted to wakefulness. Altogether, our results suggest that feature-specific auditory processing is retained despite the fading of consciousness, while only some aspects of anticipatory predictive processing are preserved.
Collapse
Affiliation(s)
- Pavlos I Topalidis
- Centre for Cognitive Neuroscience, Department of Psychology, University of Salzburg, Hellbrunner Str. 34, Salzburg 5020, Austria; Neuroscience Institute, Christian Doppler University Hospital, Department of Neurology, Paracelsus Medical University, Ignaz-Harrer-Straße 79, Salzburg 5020, Austria.
| | - Gianpaolo Demarchi
- Centre for Cognitive Neuroscience, Department of Psychology, University of Salzburg, Hellbrunner Str. 34, Salzburg 5020, Austria; Neuroscience Institute, Christian Doppler University Hospital, Department of Neurology, Paracelsus Medical University, Ignaz-Harrer-Straße 79, Salzburg 5020, Austria
| | - Lisa Reisinger
- Centre for Cognitive Neuroscience, Department of Psychology, University of Salzburg, Hellbrunner Str. 34, Salzburg 5020, Austria
| | - Juliane Schubert
- Centre for Cognitive Neuroscience, Department of Psychology, University of Salzburg, Hellbrunner Str. 34, Salzburg 5020, Austria
| | - Mohamed S Ameen
- Centre for Cognitive Neuroscience, Department of Psychology, University of Salzburg, Hellbrunner Str. 34, Salzburg 5020, Austria
| | - Nathan Weisz
- Centre for Cognitive Neuroscience, Department of Psychology, University of Salzburg, Hellbrunner Str. 34, Salzburg 5020, Austria; Neuroscience Institute, Christian Doppler University Hospital, Department of Neurology, Paracelsus Medical University, Ignaz-Harrer-Straße 79, Salzburg 5020, Austria
| | - Manuel Schabus
- Centre for Cognitive Neuroscience, Department of Psychology, University of Salzburg, Hellbrunner Str. 34, Salzburg 5020, Austria
| |
Collapse
|
2
|
Picchioni D, Yang FN, de Zwart JA, Wang Y, Mandelkow H, Özbay PS, Chen G, Taylor PA, Lam N, Chappel-Farley MG, Chang C, Liu J, van Gelderen P, Duyn JH. Arousal threshold reveals novel neural markers of sleep depth independently from the conventional sleep stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.09.607376. [PMID: 39149368 PMCID: PMC11326234 DOI: 10.1101/2024.08.09.607376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Reports of sleep-specific brain activity patterns have been constrained by assessing brain function as it related to the conventional polysomnographic sleep stages. This limits the variety of sleep states and underlying activity patterns that one can discover. The current study used all-night functional MRI sleep data and defined sleep behaviorally with auditory arousal threshold (AAT) to characterize sleep depth better by searching for novel neural markers of sleep depth that are neuroanatomically localized and temporally unrelated to the conventional stages. Functional correlation values calculated in a four-min time window immediately before the determination of AAT were entered into a linear mixed effects model, allowing multiple arousals across the night per subject into the analysis, and compared to models with sleep stage to determine the unique relationships with AAT. These unique relationships were for thalamocerebellar correlations, the relationship between the right language network and the right "default-mode network dorsal medial prefrontal cortex subsystem," and the relationship between thalamus and ventral attention network. These novel neural markers of sleep depth would have remained undiscovered if the data were merely analyzed with the conventional sleep stages.
Collapse
Affiliation(s)
- Dante Picchioni
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Fan Nils Yang
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Jacco A de Zwart
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Yicun Wang
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Department of Radiology, Stony Brook University, USA
| | - Hendrik Mandelkow
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Artificial Intelligence for Image-Guided Therapy, Koninklijke Philips, Netherlands
| | - Pinar S Özbay
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Institute of Biomedical Engineering, Boğaziçi University, Turkey
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, USA
| | - Paul A Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, USA
| | - Niki Lam
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- School of Medicine and Dentistry, University of Rochester, USA
| | - Miranda G Chappel-Farley
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Center for Sleep and Circadian Science, University of Pittsburgh, USA
| | - Catie Chang
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Departments of Electrical Engineering and Computer Science, Vanderbilt University, USA
| | - Jiaen Liu
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, USA
| | - Peter van Gelderen
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Jeff H Duyn
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| |
Collapse
|
3
|
Pereira M, Chen X, Paltarzhytskaya A, Pacheсo Y, Muller N, Bovy L, Lei X, Chen W, Ren H, Song C, Lewis LD, Dang-Vu TT, Czisch M, Picchioni D, Duyn J, Peigneux P, Tagliazucchi E, Dresler M. Sleep neuroimaging: Review and future directions. J Sleep Res 2025:e14462. [PMID: 39940102 DOI: 10.1111/jsr.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/29/2024] [Accepted: 12/29/2024] [Indexed: 02/14/2025]
Abstract
Sleep research has evolved considerably since the first sleep electroencephalography recordings in the 1930s and the discovery of well-distinguishable sleep stages in the 1950s. While electrophysiological recordings have been used to describe the sleeping brain in much detail, since the 1990s neuroimaging techniques have been applied to uncover the brain organization and functional connectivity of human sleep with greater spatial resolution. The combination of electroencephalography with different neuroimaging modalities such as positron emission tomography, structural magnetic resonance imaging and functional magnetic resonance imaging imposes several challenges for sleep studies, for instance, the need to combine polysomnographic recordings to assess sleep stages accurately, difficulties maintaining and consolidating sleep in an unfamiliar and restricted environment, scanner-induced distortions with physiological artefacts that may contaminate polysomnography recordings, and the necessity to account for all physiological changes throughout the sleep cycles to ensure better data interpretability. Here, we review the field of sleep neuroimaging in healthy non-sleep-deprived populations, from early findings to more recent developments. Additionally, we discuss the challenges of applying concurrent electroencephalography and imaging techniques to sleep, which consequently have impacted the sample size and generalizability of studies, and possible future directions for the field.
Collapse
Affiliation(s)
- Mariana Pereira
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Xinyuan Chen
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | | | - Yibran Pacheсo
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nils Muller
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leonore Bovy
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Wei Chen
- School of Information Science and Technology & Human Phenome Institute, Fudan University, Shanghai, China
| | - Haoran Ren
- School of Health and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Song
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Thien Thanh Dang-Vu
- Department of Health, Kinesiology and Applied Physiology, Concordia University & Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Quebec, Canada
| | | | - Dante Picchioni
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Jeff Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Centre de Recherches Cognition et Neurosciences, and UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Enzo Tagliazucchi
- Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute, Universidad Adolfo Ibanez, Santiago, Chile
| | - Martin Dresler
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
4
|
Shao Y, Guo Y, Chen Y, Zou G, Chen J, Gao X, Lu P, Tong Y, Li Y, Yao P, Liu J, Zhou S, Xu J, Gao JH, Zou Q, Sun H. Increased spindle-related brain activation in right middle temporal gyrus during N2 than N3 among healthy sleepers: Initial discovery and independent sample replication. Neuroimage 2025; 305:120976. [PMID: 39681244 DOI: 10.1016/j.neuroimage.2024.120976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/01/2024] [Accepted: 12/14/2024] [Indexed: 12/18/2024] Open
Abstract
The association between spindle metrics and sleep architecture differs during N2 vs. N3 sleep, the underlying neural mechanism is not clearly illustrated. Here, we tested the discrepancy in spindle-related brain activation between N2 and N3 within healthy college students (dataset 1: n = 27, 59 % females, median age 23 years), using simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI). To assess the replicability of the finding, we repeated the analysis among normal adults (independent dataset 2: n = 30, 50 % females, median age 32 years). The finding from dataset 1 indicated significantly increased blood-oxygen level-dependent signal in the right middle temporal gyrus during N2 compared with N3, which was well replicated in dataset 2. Furthermore, correlation analysis was performed to explore the association between this spindle-related brain activation and N2, N3 sleep duration during EEG-fMRI. We conducted the correlation analysis in N2 and N3, respectively. The negative association between spindle-related brain activation in the right middle temporal gyrus and sleep duration was only observed in N2. Our findings emphasize the unique role of spindle-related brain activation in the right middle temporal gyrus during N2 in shortening N2 sleep duration.
Collapse
Affiliation(s)
- Yan Shao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, PR China
| | - Yupeng Guo
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, PR China
| | - Yun Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, PR China
| | - Guangyuan Zou
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, PR China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, PR China
| | - Jie Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, PR China
| | - Xuejiao Gao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, PR China
| | - Panpan Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, PR China
| | - Yujie Tong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, PR China
| | - Yuezhen Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, PR China; Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tian Tan Hospital, Capital Medical University, Beijing, PR China
| | - Ping Yao
- Mental Health Institute of Inner Mongolia Autonomous Region, The Third Hospital of Inner Mongolia Autonomous Region, Hohhot 010010, PR China
| | - Jiayi Liu
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, PR China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, PR China
| | - Shuqin Zhou
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, PR China
| | - Jing Xu
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, PR China; Laboratory of Applied Brain and Cognitive Sciences, College of International Business, Shanghai International Studies University, Shanghai, PR China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, PR China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, PR China; McGovern Institute for Brain Research, Peking University, Beijing, PR China.
| | - Qihong Zou
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, PR China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, PR China.
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, PR China.
| |
Collapse
|
5
|
Wang Y, Liu Y, Wang X, Kendrick KM, Feng T. The Effects of Hearing One's Own Name on Subsequent Attention to Visual Stimuli in Autistic and Neurotypical Children: An ERP Study. J Autism Dev Disord 2024:10.1007/s10803-024-06639-1. [PMID: 39579283 DOI: 10.1007/s10803-024-06639-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
PURPOSE Hearing one's own name produces unique patterns of brain activation which triggers attention and orienting responses to the caller. Children with autism spectrum disorder (ASD) rarely orientate towards people calling their own name, but the extent to which it may facilitate processing of the following external stimuli are not yet clear. METHODS The current study consisted of both auditory and visual stimuli. Electroencephalogram (EEG) was measured in 28 autistic and neurotypical children (aged 3-7 years) to investigate auditory event-related brain potentials (ERPs) while hearing either their own or an unfamiliar name, and subsequent visual ERPs when viewing objects after hearing them. RESULTS The results demonstrated that, unlike neurotypical children, autistic children did not show enhanced P300 responses upon hearing their own name, but exhibited more negative N1 response in the left frontal region to hearing their own name than an unfamiliar name. However, both autistic and neurotypical children showed equivalent changes in N2, P3 and Late positive potential (LPP) visual ERPs when viewing objects after hearing their own name relative to an unfamiliar name. CONCLUSION These findings suggest that autistic children who do not overtly respond to their own name (characterized by a head-turn), nevertheless exhibit increased attention to visual objects in their environment after hearing it. This implies that autistic children do recognize the sound of their name as important but may not understand the social meaning of it.
Collapse
Affiliation(s)
- Yige Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Liu
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xinling Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
6
|
Tuunanen J, Helakari H, Huotari N, Väyrynen T, Järvelä M, Kananen J, Kivipää A, Raitamaa L, Ebrahimi SM, Kallio M, Piispala J, Kiviniemi V, Korhonen V. Cardiovascular and vasomotor pulsations in the brain and periphery during awake and NREM sleep in a multimodal fMRI study. Front Neurosci 2024; 18:1457732. [PMID: 39440186 PMCID: PMC11493778 DOI: 10.3389/fnins.2024.1457732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction The cerebrospinal fluid dynamics in the human brain are driven by physiological pulsations, including cardiovascular pulses and very low-frequency (< 0.1 Hz) vasomotor waves. Ultrafast functional magnetic resonance imaging (fMRI) facilitates the simultaneous measurement of these signals from venous and arterial compartments independently with both classical venous blood oxygenation level dependent (BOLD) and faster arterial spin-phase contrast. Methods In this study, we compared the interaction of these two pulsations in awake and sleep using fMRI and peripheral fingertip photoplethysmography in both arterial and venous signals in 10 healthy subjects (5 female). Results Sleep increased the power of brain cardiovascular pulsations, decreased peripheral pulsation, and desynchronized them. However, vasomotor waves increase power and synchronicity in both brain and peripheral signals during sleep. Peculiarly, lag between brain and peripheral vasomotor signals reversed in sleep within the default mode network. Finally, sleep synchronized cerebral arterial vasomotor waves with venous BOLD waves within distinct parasagittal brain tissue. Discussion These changes in power and pulsation synchrony may reflect systemic sleep-related changes in vascular control between the periphery and brain vasculature, while the increased synchrony of arterial and venous compartments may reflect increased convection of regional neurofluids in parasagittal areas in sleep.
Collapse
Affiliation(s)
- Johanna Tuunanen
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Heta Helakari
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Niko Huotari
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Tommi Väyrynen
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Matti Järvelä
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Janne Kananen
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
- Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - Annastiina Kivipää
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Lauri Raitamaa
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Seyed-Mohsen Ebrahimi
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Mika Kallio
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
- Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - Johanna Piispala
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
- Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - Vesa Kiviniemi
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Vesa Korhonen
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| |
Collapse
|
7
|
Fialoke S, Tripathi V, Thakral S, Dhawan A, Majahan V, Garg R. Functional connectivity changes in meditators and novices during yoga nidra practice. Sci Rep 2024; 14:12957. [PMID: 38839877 PMCID: PMC11153538 DOI: 10.1038/s41598-024-63765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Yoga nidra (YN) practice aims to induce a deeply relaxed state akin to sleep while maintaining heightened awareness. Despite the growing interest in its clinical applications, a comprehensive understanding of the underlying neural correlates of the practice of YN remains largely unexplored. In this fMRI investigation, we aim to discover the differences between wakeful resting states and states attained during YN practice. The study included individuals experienced in meditation and/or yogic practices, referred to as 'meditators' (n = 30), and novice controls (n = 31). The GLM analysis, based on audio instructions, demonstrated activation related to auditory cues without concurrent default mode network (DMN) deactivation. DMN seed based functional connectivity (FC) analysis revealed significant reductions in connectivity among meditators during YN as compared to controls. We did not find differences between the two groups during the pre and post resting state scans. Moreover, when DMN-FC was compared between the YN state and resting state, meditators showed distinct decoupling, whereas controls showed increased DMN-FC. Finally, participants exhibit a remarkable correlation between reduced DMN connectivity during YN and self-reported hours of cumulative meditation and yoga practice. Together, these results suggest a unique neural modulation of the DMN in meditators during YN which results in being restful yet aware, aligned with their subjective experience of the practice. The study deepens our understanding of the neural mechanisms of YN, revealing distinct DMN connectivity decoupling in meditators and its relationship with meditation and yoga experience. These findings have interdisciplinary implications for neuroscience, psychology, and yogic disciplines.
Collapse
Affiliation(s)
- Suruchi Fialoke
- National Resource Center for Value Education in Engineering, Indian Institute of Technology, Delhi, India
| | - Vaibhav Tripathi
- Psychological and Brain Sciences, Boston University, Boston, USA
| | - Sonika Thakral
- Department of Computer Science, Shaheed Sukhdev College of Business Studies, University of Delhi, Delhi, India
| | - Anju Dhawan
- National Drug Dependence Treatment Centre, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | | | - Rahul Garg
- National Resource Center for Value Education in Engineering, Indian Institute of Technology, Delhi, India.
- Amar Nath and Shashi Khosla School of Information Technology, Indian Institute of Technology, Delhi, India.
- Department of Computer Science and Engineering, Indian Institute of Technology, Delhi, India.
| |
Collapse
|
8
|
Tononi G, Boly M, Cirelli C. Consciousness and sleep. Neuron 2024; 112:1568-1594. [PMID: 38697113 PMCID: PMC11105109 DOI: 10.1016/j.neuron.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Sleep is a universal, essential biological process. It is also an invaluable window on consciousness. It tells us that consciousness can be lost but also that it can be regained, in all its richness, when we are disconnected from the environment and unable to reflect. By considering the neurophysiological differences between dreaming and dreamless sleep, we can learn about the substrate of consciousness and understand why it vanishes. We also learn that the ongoing state of the substrate of consciousness determines the way each experience feels regardless of how it is triggered-endogenously or exogenously. Dreaming consciousness is also a window on sleep and its functions. Dreams tell us that the sleeping brain is remarkably lively, recombining intrinsic activation patterns from a vast repertoire, freed from the requirements of ongoing behavior and cognitive control.
Collapse
Affiliation(s)
- Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| | - Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
| |
Collapse
|
9
|
Tóth A, Traub M, Bencsik N, Détári L, Hajnik T, Dobolyi A. Sleep- and sleep deprivation-related changes of vertex auditory evoked potentials during the estrus cycle in female rats. Sci Rep 2024; 14:5784. [PMID: 38461157 PMCID: PMC10924932 DOI: 10.1038/s41598-024-56392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
The estrus cycle in female rodents has been shown to affect a variety of physiological functions. However, little is known about its presumably thorough effect on auditory processing during the sleep-wake cycle and sleep deprivation. Vertex auditory evoked potentials (vAEPs) were evoked by single click tone stimulation and recorded during different stages of the estrus cycle and sleep deprivation performed in metestrus and proestrus in female rats. vAEPs showed a strong sleep-dependency, with the largest amplitudes present during slow wave sleep while the smallest ones during wakefulness. Higher amplitudes and longer latencies were seen in the light phase during all vigilance stages. The largest amplitudes were found during proestrus (light phase) while the shortest latencies were seen during estrus (dark phase) compared to the 2nd day diestrus baseline. High-amplitude responses without latency changes were also seen during metestrus with increased homeostatic sleep drive. More intense and faster processing of auditory information during proestrus and estrus suggesting a more effective perception of relevant environmental cues presumably in preparation for sexual receptivity. A 4-h sleep deprivation resulted in more pronounced sleep recovery in metestrus compared to proestrus without difference in delta power replacement suggesting a better tolerance of sleep deprivation in proestrus. Sleep deprivation decreased neuronal excitability and responsiveness in a similar manner both during metestrus and proestrus, suggesting that the negative consequences of sleep deprivation on auditory processing may have a limited correlation with the estrus cycle stage.
Collapse
Affiliation(s)
- Attila Tóth
- In Vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
| | - Máté Traub
- In Vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Norbert Bencsik
- Cellular Neurobiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - László Détári
- In Vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Tünde Hajnik
- In Vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Arpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
10
|
Ataei S, Simo E, Bergers M, Schoch SF, Axmacher N, Dresler M. Learning during sleep in humans - A historical review. Sleep Med Rev 2023; 72:101852. [PMID: 37778137 DOI: 10.1016/j.smrv.2023.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
Sleep helps to consolidate previously acquired memories. Whether new information such as languages and other useful skills can also be learned during sleep has been debated for over a century, however, the sporadic studies' different objectives and varied methodologies make it difficult to draw definitive conclusions. This review provides a comprehensive overview of the history of sleep learning research conducted in humans, from its empirical beginnings in the 1940s to the present day. Synthesizing the findings from 51 research papers, we show that several studies support the notion that simpler forms of learning, such as habituation and conditioning, are possible during sleep. In contrast, the findings for more complex, applied learning (e.g., learning a new language during sleep) are more divergent. While there is often an indication of processing and learning during sleep when looking at neural markers, behavioral evidence for the transfer of new knowledge to wake remains inconclusive. We close by critically examining the limitations and assumptions that have contributed to the discrepancies in the literature and highlight promising new directions in the field.
Collapse
Affiliation(s)
- Somayeh Ataei
- Department of Neuropsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eni Simo
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mathijs Bergers
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sarah F Schoch
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, CH, Switzerland
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
11
|
Klar P, Çatal Y, Fogel S, Jocham G, Langner R, Owen AM, Northoff G. Auditory inputs modulate intrinsic neuronal timescales during sleep. Commun Biol 2023; 6:1180. [PMID: 37985812 PMCID: PMC10661171 DOI: 10.1038/s42003-023-05566-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies have demonstrated that intrinsic neuronal timescales (INT) undergo modulation by external stimulation during consciousness. It remains unclear if INT keep the ability for significant stimulus-induced modulation during primary unconscious states, such as sleep. This fMRI analysis addresses this question via a dataset that comprises an awake resting-state plus rest and stimulus states during sleep. We analyzed INT measured via temporal autocorrelation supported by median frequency (MF) in the frequency-domain. Our results were replicated using a biophysical model. There were two main findings: (1) INT prolonged while MF decreased from the awake resting-state to the N2 resting-state, and (2) INT shortened while MF increased during the auditory stimulus in sleep. The biophysical model supported these results by demonstrating prolonged INT in slowed neuronal populations that simulate the sleep resting-state compared to an awake state. Conversely, under sine wave input simulating the stimulus state during sleep, the model's regions yielded shortened INT that returned to the awake resting-state level. Our results highlight that INT preserve reactivity to stimuli in states of unconsciousness like sleep, enhancing our understanding of unconscious brain dynamics and their reactivity to stimuli.
Collapse
Affiliation(s)
- Philipp Klar
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
| | - Yasir Çatal
- The Royal's Institute of Mental Health Research & University of Ottawa, Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Room 6435, Ottawa, ON, K1Z 7K4, Canada
| | - Stuart Fogel
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, K1Z 7K4, Ottawa, ON, Canada
| | - Gerhard Jocham
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Adrian M Owen
- Departments of Physiology and Pharmacology and Psychology, Western University, London, ON, N6A 5B7, Canada
| | - Georg Northoff
- The Royal's Institute of Mental Health Research & University of Ottawa, Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Room 6435, Ottawa, ON, K1Z 7K4, Canada
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Tianmu Road 305, Hangzhou, Zhejiang Province, 310013, China
| |
Collapse
|
12
|
You S, Lv T, Qin R, Hu Z, Ke Z, Yao W, Zhao H, Bai F. Neuro-Navigated rTMS Improves Sleep and Cognitive Impairment via Regulating Sleep-Related Networks' Spontaneous Activity in AD Spectrum Patients. Clin Interv Aging 2023; 18:1333-1349. [PMID: 37601952 PMCID: PMC10439779 DOI: 10.2147/cia.s416992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Study Objectives By examining spontaneous activity changes of sleep-related networks in patients with the Alzheimer's disease (AD) spectrum with or without insomnia disorder (ID) over time via neuro-navigated repetitive transcranial magnetic stimulation (rTMS), we revealed the effect and mechanism of rTMS targeting the left-angular gyrus in improving the comorbidity symptoms of the AD spectrum with ID. Methods A total of 34 AD spectrum patients were recruited in this study, including 18 patients with ID and the remaining 16 patients without ID. All of them were measured for cognitive function and sleep by using the cognitive and sleep subscales of the neuropsychiatric inventory. The amplitude of low-frequency fluctuation changes in sleep-related networks was revealed before and after neuro-navigated rTMS treatment between these two groups, and the behavioral significance was further explored. Results Affective auditory processing and sensory-motor collaborative sleep-related networks with hypo-spontaneous activity were observed at baseline in the AD spectrum with ID group, while substantial increases in activity were evident at follow-up in these subjects. In addition, longitudinal affective auditory processing, sensory-motor and default mode collaborative sleep-related networks with hyper-spontaneous activity were also revealed at follow-up in the AD spectrum with ID group. In particular, longitudinal changes in sleep-related networks were associated with improvements in sleep quality and episodic memory scores in AD spectrum with ID patients. Conclusion We speculated that left angular gyrus-navigated rTMS therapy may enhance the memory function of AD spectrum patients by regulating the spontaneous activity of sleep-related networks, and it was associated with memory consolidation in the hippocampus-cortical circuit during sleep. Clinical Trial Registration The study was registered at the Chinese Clinical Trial Registry, registration ID: ChiCTR2100050496, China.
Collapse
Affiliation(s)
- Shengqi You
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
| | - Tingyu Lv
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Zhihong Ke
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Weina Yao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| |
Collapse
|
13
|
Lai J, Price CN, Bidelman GM. Brainstem speech encoding is dynamically shaped online by fluctuations in cortical α state. Neuroimage 2022; 263:119627. [PMID: 36122686 PMCID: PMC10017375 DOI: 10.1016/j.neuroimage.2022.119627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Experimental evidence in animals demonstrates cortical neurons innervate subcortex bilaterally to tune brainstem auditory coding. Yet, the role of the descending (corticofugal) auditory system in modulating earlier sound processing in humans during speech perception remains unclear. Here, we measured EEG activity as listeners performed speech identification tasks in different noise backgrounds designed to tax perceptual and attentional processing. We hypothesized brainstem speech coding might be tied to attention and arousal states (indexed by cortical α power) that actively modulate the interplay of brainstem-cortical signal processing. When speech-evoked brainstem frequency-following responses (FFRs) were categorized according to cortical α states, we found low α FFRs in noise were weaker, correlated positively with behavioral response times, and were more "decodable" via neural classifiers. Our data provide new evidence for online corticofugal interplay in humans and establish that brainstem sensory representations are continuously yoked to (i.e., modulated by) the ebb and flow of cortical states to dynamically update perceptual processing.
Collapse
Affiliation(s)
- Jesyin Lai
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, USA; Diagnostic Imaging Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Caitlin N Price
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, USA; Department of Audiology and Speech Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gavin M Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, USA; Department of Speech, Language and Hearing Sciences, Indiana University, 2631 East Discovery Parkway, Bloomington, IN 47408, USA; Program in Neuroscience, Indiana University, 1101 E 10th St, Bloomington, IN 47405, USA.
| |
Collapse
|
14
|
Adaptive Solutions to the Problem of Vulnerability During Sleep. EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2022. [DOI: 10.1007/s40806-022-00330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractSleep is a behavioral state whose quantity and quality represent a trade-off between the costs and benefits this state provides versus the costs and benefits of wakefulness. Like many species, we humans are particularly vulnerable during sleep because of our reduced ability to monitor the external environment for nighttime predators and other environmental dangers. A number of variations in sleep characteristics may have evolved over the course of human history to reduce this vulnerability, at both the individual and group level. The goals of this interdisciplinary review paper are (1) to explore a number of biological/instinctual features of sleep that may have adaptive utility in terms of enhancing the detection of external threats, and (2) to consider relatively recent cultural developments that improve vigilance and reduce vulnerability during sleep and the nighttime. This paper will also discuss possible benefits of the proposed adaptations beyond vigilance, as well as the potential costs associated with each of these proposed adaptations. Finally, testable hypotheses will be presented to evaluate the validity of these proposed adaptations.
Collapse
|
15
|
Wang Y, Lu L, Zou G, Zheng L, Qin L, Zou Q, Gao JH. Disrupted neural tracking of sound localization during non-rapid eye movement sleep. Neuroimage 2022; 260:119490. [PMID: 35853543 DOI: 10.1016/j.neuroimage.2022.119490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/16/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022] Open
Abstract
Spatial hearing in humans is a high-level auditory process that is crucial to rapid sound localization in the environment. Both neurophysiological models with animals and neuroimaging evidence from human subjects in the wakefulness stage suggest that the localization of auditory objects is mainly located in the posterior auditory cortex. However, whether this cognitive process is preserved during sleep remains unclear. To fill this research gap, we investigated the sleeping brain's capacity to identify sound locations by recording simultaneous electroencephalographic (EEG) and magnetoencephalographic (MEG) signals during wakefulness and non-rapid eye movement (NREM) sleep in human subjects. Using the frequency-tagging paradigm, the subjects were presented with a basic syllable sequence at 5 Hz and a location change that occurred every three syllables, resulting in a sound localization shift at 1.67 Hz. The EEG and MEG signals were used for sleep scoring and neural tracking analyses, respectively. Neural tracking responses at 5 Hz reflecting basic auditory processing were observed during both wakefulness and NREM sleep, although the responses during sleep were weaker than those during wakefulness. Cortical responses at 1.67 Hz, which correspond to the sound location change, were observed during wakefulness regardless of attention to the stimuli but vanished during NREM sleep. These results for the first time indicate that sleep preserves basic auditory processing but disrupts the higher-order brain function of sound localization.
Collapse
Affiliation(s)
- Yan Wang
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lingxi Lu
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing 100083, China.
| | - Guangyuan Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li Zheng
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lang Qin
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Hayat H, Marmelshtein A, Krom AJ, Sela Y, Tankus A, Strauss I, Fahoum F, Fried I, Nir Y. Reduced neural feedback signaling despite robust neuron and gamma auditory responses during human sleep. Nat Neurosci 2022; 25:935-943. [PMID: 35817847 PMCID: PMC9276533 DOI: 10.1038/s41593-022-01107-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
Abstract
During sleep, sensory stimuli rarely trigger a behavioral response or conscious perception. However, it remains unclear whether sleep inhibits specific aspects of sensory processing, such as feedforward or feedback signaling. Here, we presented auditory stimuli (for example, click-trains, words, music) during wakefulness and sleep in patients with epilepsy, while recording neuronal spiking, microwire local field potentials, intracranial electroencephalogram and polysomnography. Auditory stimuli induced robust and selective spiking and high-gamma (80-200 Hz) power responses across the lateral temporal lobe during both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Sleep only moderately attenuated response magnitudes, mainly affecting late responses beyond early auditory cortex and entrainment to rapid click-trains in NREM sleep. By contrast, auditory-induced alpha-beta (10-30 Hz) desynchronization (that is, decreased power), prevalent in wakefulness, was strongly reduced in sleep. Thus, extensive auditory responses persist during sleep whereas alpha-beta power decrease, likely reflecting neural feedback processes, is deficient. More broadly, our findings suggest that feedback signaling is key to conscious sensory processing.
Collapse
Affiliation(s)
- Hanna Hayat
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Aaron J Krom
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaniv Sela
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Tankus
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Strauss
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Firas Fahoum
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- EEG and Epilepsy Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Itzhak Fried
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA.
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
- The Sieratzki-Sagol Center for Sleep Medicine, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.
| |
Collapse
|
17
|
Prakash P, Vismaya K, Mahesh DS, Prabhu P. Effect of diurnal changes on dichotic listening in younger adults with normal hearing. J Otol 2022; 17:191-196. [PMID: 36249927 PMCID: PMC9547108 DOI: 10.1016/j.joto.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 06/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background Diurnal changes can be defined as the time of the day over an individual's performance level for different activities that involve physical and mental tasks. Objective The current study aimed to evaluate the effect of diurnal changes in scores obtained for the Dichotic Consonant-Vowel paradigm by young adults with normal hearing sensitivity. Method Based on the ‘Morningness-Eveningness questionnaire’ given by Horne & Ostberg, the subjects were divided into moderately-morning, intermediate and moderately-evening categories. The Dichotic Consonant-Vowel tests were performed during morning and evening, and the right ear, left ear and double correct scores were compared between morning and evening for each category. Results There was significant diurnal changes noted for moderately morning and evening categories, where morning-type individuals performed better during morning and evening-type individuals performed better during the evening. The scores of intermediate individuals remained unchanged between morning and evening test results. Conclusion Diurnal change is a phenomenon associated with an individual's biological clock mechanism. Hence, attention and inhibitory controls aid them in carrying out tasks that require sufficient physical and mental efforts. The current study suggests that clinicians and researchers consider diurnal changes as an extraneous variable that could affect the reliability of the Dichotic Consonant-Vowel test results.
Collapse
|
18
|
Sakakura K, Sonoda M, Mitsuhashi T, Kuroda N, Firestone E, O'Hara N, Iwaki H, Lee MH, Jeong JW, Rothermel R, Luat AF, Asano E. Developmental organization of neural dynamics supporting auditory perception. Neuroimage 2022; 258:119342. [PMID: 35654375 PMCID: PMC9354710 DOI: 10.1016/j.neuroimage.2022.119342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose: A prominent view of language acquisition involves learning to ignore irrelevant auditory signals through functional reorganization, enabling more efficient processing of relevant information. Yet, few studies have characterized the neural spatiotemporal dynamics supporting rapid detection and subsequent disregard of irrelevant auditory information, in the developing brain. To address this unknown, the present study modeled the developmental acquisition of cost-efficient neural dynamics for auditory processing, using intracranial electrocorticographic responses measured in individuals receiving standard-of-care treatment for drug-resistant, focal epilepsy. We also provided evidence demonstrating the maturation of an anterior-to-posterior functional division within the superior-temporal gyrus (STG), which is known to exist in the adult STG. Methods: We studied 32 patients undergoing extraoperative electrocorticography (age range: eight months to 28 years) and analyzed 2,039 intracranial electrode sites outside the seizure onset zone, interictal spike-generating areas, and MRI lesions. Patients were given forward (normal) speech sounds, backward-played speech sounds, and signal-correlated noises during a task-free condition. We then quantified sound processing-related neural costs at given time windows using high-gamma amplitude at 70–110 Hz and animated the group-level high-gamma dynamics on a spatially normalized three-dimensional brain surface. Finally, we determined if age independently contributed to high-gamma dynamics across brain regions and time windows. Results: Group-level analysis of noise-related neural costs in the STG revealed developmental enhancement of early high-gamma augmentation and diminution of delayed augmentation. Analysis of speech-related high-gamma activity demonstrated an anterior-to-posterior functional parcellation in the STG. The left anterior STG showed sustained augmentation throughout stimulus presentation, whereas the left posterior STG showed transient augmentation after stimulus onset. We found a double dissociation between the locations and developmental changes in speech sound-related high-gamma dynamics. Early left anterior STG high-gamma augmentation (i.e., within 200 ms post-stimulus onset) showed developmental enhancement, whereas delayed left posterior STG high-gamma augmentation declined with development. Conclusions: Our observations support the model that, with age, the human STG refines neural dynamics to rapidly detect and subsequently disregard uninformative acoustic noises. Our study also supports the notion that the anterior-to-posterior functional division within the left STG is gradually strengthened for efficient speech sound perception after birth.
Collapse
Affiliation(s)
- Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurosurgery, University of Tsukuba, Tsukuba, 3058575, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa, 2360004, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo, 1138421, Japan
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Nolan O'Hara
- Translational Neuroscience Program, Wayne State University, Detroit, Michigan, 48201, USA
| | - Hirotaka Iwaki
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Min-Hee Lee
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Translational Neuroscience Program, Wayne State University, Detroit, Michigan, 48201, USA
| | - Robert Rothermel
- Department of Psychiatry, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Pediatrics, Central Michigan University, Mt. Pleasant, MI 48858, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Translational Neuroscience Program, Wayne State University, Detroit, Michigan, 48201, USA..
| |
Collapse
|
19
|
Mangiaruga A, D’Atri A, Scarpelli S, Alfonsi V, Camaioni M, Annarumma L, Gorgoni M, Pazzaglia M, De Gennaro L. Sleep talking versus sleep moaning: electrophysiological patterns preceding linguistic vocalizations during sleep. Sleep 2022; 45. [PMID: 34893917 DOI: 10.1093/sleep/zsab284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/05/2021] [Indexed: 02/05/2023] Open
Abstract
AbstractStudy ObjectivesSleep talking (ST) has been rarely studied as an isolated phenomenon. Late investigations over the psycholinguistic features of vocal production in ST pointed to coherence with wake language formal features. Therefore, we investigated the EEG correlates of Verbal ST as the overt manifestation of sleep-related language processing, with the hypothesis of shared electrophysiological correlates with wake language production.MethodsFrom a sample of 155 Highly frequent STs, we recorded 13 participants (age range 19–30 years, mean age 24.6 ± 3.3; 7F) via vPSG for at least two consecutive nights, and a total of 28 nights. We first investigated the sleep macrostructure of STs compared to 13 age and gender-matched subjects. We then compared the EEG signal before 21 Verbal STs versus 21 Nonverbal STs (moaning, laughing, crying, etc.) in six STs reporting both vocalization types in Stage 2 NREM sleep.ResultsThe 2 × 2 mixed analysis of variance Group × Night interaction showed no statistically significant effect for macrostructural variables, but significant main effects for Group with lower REM (%), total sleep time, total bedtime, sleep efficiency index, and greater NREM (%) for STs compared to controls. EEG statistical comparisons (paired-samples Student’s t-test) showed a decrement in power spectra for Verbal STs versus Nonverbal STs within the theta and alpha EEG bands, strongly lateralized to the left hemisphere and localized on centro-parietal-occipitals channels. A single left parietal channel (P7) held significance after Bonferroni correction.ConclusionsOur results suggest shared neural mechanisms between Verbal ST and language processing during wakefulness and a possible functional overlapping with linguistic planning in wakefulness.
Collapse
Affiliation(s)
| | - Aurora D’Atri
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila , Coppito, L’Aquila , Italy
| | - Serena Scarpelli
- Department of Psychology, Sapienza, University of Rome , Rome , Italy
| | - Valentina Alfonsi
- Department of Psychology, Sapienza, University of Rome , Rome , Italy
| | - Milena Camaioni
- Department of Psychology, Sapienza, University of Rome , Rome , Italy
| | | | - Maurizio Gorgoni
- Department of Psychology, Sapienza, University of Rome , Rome , Italy
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza, University of Rome , Rome , Italy
- Action and Body Lab, IRCCS Fondazione Santa Lucia , Rome , Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza, University of Rome , Rome , Italy
- Action and Body Lab, IRCCS Fondazione Santa Lucia , Rome , Italy
| |
Collapse
|
20
|
Smith GA, Kistamgari S, Splaingard M. Age-Dependent Responsiveness to Smoke Alarm Signals Among Children. Pediatrics 2022; 149:186861. [PMID: 35466358 DOI: 10.1542/peds.2022-056460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Although it has been established that smoke alarms have more difficulty awakening children from sleep than adults, no attempt has been previously made to characterize how smoke alarm responsiveness changes with age during childhood. The objective of this study is to evaluate the age-dependent responsiveness to various smoke alarm signals among children 5 to 12 years old. METHODS The effect of age on children's response to 4 types of smoke alarms (human voice, hybrid voice-tone, low-frequency tone, and high-frequency tone) was evaluated using combined data from 3 previous studies. RESULTS There were 540 subjects (median age 9 years; 51.7% male). The proportion of children who awakened demonstrated a statistically significant (P < .001) increase of 3.1% to 7.6% for each additional year of age between 5 and 12 years old for the 4 alarm types. Similarly, child age showed a statistically significant (P < .001) effect on the proportion who escaped for each of the 4 alarm types. The proportion of subjects who awakened or escaped did not differ significantly by sex for any of the alarm types. Median time-to-awaken and median time-to-escape decreased with increase in child age for all alarm types. CONCLUSIONS This study demonstrates the substantial influence of child age on the effectiveness of audible smoke alarms during childhood. Among 12-year-olds, only 56.3% escaped within 1 minute (and 67.6% within 2 minutes) to a high-frequency tone. However, a hybrid voice-low-frequency tone alarm is >96% effective at awakening and prompting escape within 1 minute among children 9 years and older.
Collapse
Affiliation(s)
- Gary A Smith
- Center for Injury Research and Policy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio.,Child Injury Prevention Alliance, Columbus, Ohio
| | - Sandhya Kistamgari
- Center for Injury Research and Policy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Mark Splaingard
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio.,Sleep Disorders Center, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
21
|
While you were sleeping: Evidence for high-level executive processing of an auditory narrative during sleep. Conscious Cogn 2022; 100:103306. [DOI: 10.1016/j.concog.2022.103306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
|
22
|
Moyne M, Legendre G, Arnal L, Kumar S, Sterpenich V, Seeck M, Grandjean D, Schwartz S, Vuilleumier P, Domínguez-Borràs J. Brain reactivity to emotion persists in NREM sleep and is associated with individual dream recall. Cereb Cortex Commun 2022; 3:tgac003. [PMID: 35174329 PMCID: PMC8844542 DOI: 10.1093/texcom/tgac003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/02/2022] Open
Abstract
The waking brain efficiently detects emotional signals to promote survival. However, emotion detection during sleep is poorly understood and may be influenced by individual sleep characteristics or neural reactivity. Notably, dream recall frequency has been associated with stimulus reactivity during sleep, with enhanced stimulus-driven responses in high vs. low recallers. Using electroencephalography (EEG), we characterized the neural responses of healthy individuals to emotional, neutral voices, and control stimuli, both during wakefulness and NREM sleep. Then, we tested how these responses varied with individual dream recall frequency. Event-related potentials (ERPs) differed for emotional vs. neutral voices, both in wakefulness and NREM. Likewise, EEG arousals (sleep perturbations) increased selectively after the emotional voices, indicating emotion reactivity. Interestingly, sleep ERP amplitude and arousals after emotional voices increased linearly with participants' dream recall frequency. Similar correlations with dream recall were observed for beta and sigma responses, but not for theta. In contrast, dream recall correlations were absent for neutral or control stimuli. Our results reveal that brain reactivity to affective salience is preserved during NREM and is selectively associated to individual memory for dreams. Our findings also suggest that emotion-specific reactivity during sleep, and not generalized alertness, may contribute to the encoding/retrieval of dreams.
Collapse
Affiliation(s)
- Maëva Moyne
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Guillaume Legendre
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Luc Arnal
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Samika Kumar
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, USA
| | - Virginie Sterpenich
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Margitta Seeck
- Department of Clinical Neuroscience, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
- Department of Clinical Neuroscience, University of Geneva, 4 rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
| | - Didier Grandjean
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Psychology, University of Geneva, Uni Mail, bd du Pont-d’Arve 40, CH-1211 Geneva, Switzerland
| | - Sophie Schwartz
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
- Center for Affective Sciences, CISA - chemin des mines 9, CH-1202 Geneva, Switzerland
| | - Patrik Vuilleumier
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
- Center for Affective Sciences, CISA - chemin des mines 9, CH-1202 Geneva, Switzerland
| | - Judith Domínguez-Borràs
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Clinical Neuroscience, University of Geneva, 4 rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
- Center for Affective Sciences, CISA - chemin des mines 9, CH-1202 Geneva, Switzerland
| |
Collapse
|
23
|
Batterink LJ, Zhang S. Simple statistical regularities presented during sleep are detected but not retained. Neuropsychologia 2022; 164:108106. [PMID: 34864052 DOI: 10.1016/j.neuropsychologia.2021.108106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/06/2021] [Accepted: 11/28/2021] [Indexed: 12/30/2022]
Abstract
In recent years, there has been growing interest and excitement over the newly discovered cognitive capacities of the sleeping brain, including its ability to form novel associations. These recent discoveries raise the possibility that other more sophisticated forms of learning may also be possible during sleep. In the current study, we tested whether sleeping humans are capable of statistical learning - the process of becoming sensitive to repeating, hidden patterns in environmental input, such as embedded words in a continuous stream of speech. Participants' EEG was recorded while they were presented with one of two artificial languages, composed of either trisyllabic or disyllabic nonsense words, during slow-wave sleep. We used an EEG measure of neural entrainment to assess whether participants became sensitive to the repeating regularities during sleep-exposure to the language. We further probed for long-term memory representations by assessing participants' performance on implicit and explicit tests of statistical learning during subsequent wake. In the disyllabic-but not trisyllabic-language condition, participants' neural entrainment to words increased over time, reflecting a gradual gain in sensitivity to the embedded regularities. However, no significant behavioural effects of sleep-exposure were observed after the nap, for either language. Overall, our results indicate that the sleeping brain can detect simple, repeating pairs of syllables, but not more complex triplet regularities. However, the online detection of these regularities does not appear to produce any durable long-term memory traces that persist into wake - at least none that were revealed by our current measures and sample size. Although some perceptual aspects of statistical learning are preserved during sleep, the lack of memory benefits during wake indicates that exposure to a novel language during sleep may have limited practical value.
Collapse
Affiliation(s)
- Laura J Batterink
- Department of Psychology, Brain and Mind Institute, Western University, London, ON, N6A 5B7, Canada.
| | - Steven Zhang
- Department of Psychology, Brain and Mind Institute, Western University, London, ON, N6A 5B7, Canada
| |
Collapse
|
24
|
Sysoev IV, van Luijtelaar G, Lüttjohann A. Thalamo-Cortical and Thalamo-Thalamic Coupling During Sleep and Wakefulness in Rats. Brain Connect 2021; 12:650-659. [PMID: 34498943 DOI: 10.1089/brain.2021.0052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The thalamus, a heterogeneous brain structure, is involved in the generation of sleep-related thalamo-cortical oscillations. Higher order nuclei might possess a distinct function compared with first-order nuclei in brain communication. Here it is investigated whether this distinction can also be found during the process of falling asleep and deepening of slow-wave sleep. Methods: A nonlinear version of Granger causality was used to describe changes in directed network activity between the somatosensory cortex and rostral reticular thalamic nucleus (rRTN) and caudal reticular thalamic nucleus (cRTN), the higher order posterior (PO)- and anterior-thalamic nuclei (ATN), and the first-order ventral posteromedial thalamic nucleus (VPM) as assessed in local field potential recordings acquired during passive wakefulness (PW), light slow-wave sleep (LSWS), and deep slow-wave sleep (DSWS) in freely behaving rats. Surrogate statistics was used to assess significance. Results: Decreases in cortico-thalamo-cortical couplings were found. In contrast, multiple increases in intrathalamic couplings were observed. In particular, the rRTN increased its inhibition on the ATN from PW to LSWS, and this was further strengthened from LSWS to DSWS. The cRTN increased its coupling to VPM and PO from PW to LSWS, but the coupling from cRTN to VPM weakened at the transition from LSWS to DSWS, while its coupling to PO strengthened. Furthermore, intra-RTN coupling from PW to LSWS was differently changed compared with the change from LSWS to DSWS. Discussion: It can be inferred that higher order (ATN and PO) and first-order nuclei (VPM) are differentially inhibited during DSWS, which might be relevant for a proper functioning of sleep-related processes.
Collapse
Affiliation(s)
- Ilya V Sysoev
- Saratov Branch, Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov, Russia
- Institute of Physics, Saratov State University, Saratov, Russia
| | - Gilles van Luijtelaar
- Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
25
|
Computational Modeling of Information Propagation during the Sleep–Waking Cycle. BIOLOGY 2021; 10:biology10100945. [PMID: 34681044 PMCID: PMC8533346 DOI: 10.3390/biology10100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary During the deep phases of sleep we do not normally wake up by a thunder, but we nevertheless notice it when awake. The exact same sound gets to our ears and cortex through the thalamus and still, it triggers two very different responses. There is growing experimental evidence that these two states of the brain—sleep and wakefulness—distribute sensory information in different ways across the cortex. In particular, during sleep, neuronal responses remain local and do not spread out across distant synaptically connected regions. On the contrary, during wakefulness, stimuli are able to elicit a wider spatial response. We have used a computational model of coupled cortical columns to study how these two propagation modes arise. Moreover, the transition from sleep-like to waking-like dynamics occurs in agreement with the synaptic homeostasis hypothesis and only requires the increase of excitatory conductances. We have found that, in order to reproduce the aforementioned observations, this parameter change has to be selectively applied: synaptic conductances between distinct columns have to be potentiated over local ones. Abstract Non-threatening familiar sounds can go unnoticed during sleep despite the fact that they enter our brain by exciting the auditory nerves. Extracellular cortical recordings in the primary auditory cortex of rodents show that an increase in firing rate in response to pure tones during deep phases of sleep is comparable to those evoked during wakefulness. This result challenges the hypothesis that during sleep cortical responses are weakened through thalamic gating. An alternative explanation comes from the observation that the spatiotemporal spread of the evoked activity by transcranial magnetic stimulation in humans is reduced during non-rapid eye movement (NREM) sleep as compared to the wider propagation to other cortical regions during wakefulness. Thus, cortical responses during NREM sleep remain local and the stimulus only reaches nearby neuronal populations. We aim at understanding how this behavior emerges in the brain as it spontaneously shifts between NREM sleep and wakefulness. To do so, we have used a computational neural-mass model to reproduce the dynamics of the sensory auditory cortex and corresponding local field potentials in these two brain states. Following the synaptic homeostasis hypothesis, an increase in a single parameter, namely the excitatory conductance g¯AMPA, allows us to place the model from NREM sleep into wakefulness. In agreement with the experimental results, the endogenous dynamics during NREM sleep produces a comparable, even higher, response to excitatory inputs to the ones during wakefulness. We have extended the model to two bidirectionally connected cortical columns and have quantified the propagation of an excitatory input as a function of their coupling. We have found that the general increase in all conductances of the cortical excitatory synapses that drive the system from NREM sleep to wakefulness does not boost the effective connectivity between cortical columns. Instead, it is the inter-/intra-conductance ratio of cortical excitatory synapses that should raise to facilitate information propagation across the brain.
Collapse
|
26
|
Sifuentes-Ortega R, Lenc T, Nozaradan S, Peigneux P. Partially Preserved Processing of Musical Rhythms in REM but Not in NREM Sleep. Cereb Cortex 2021; 32:1508-1519. [PMID: 34491309 DOI: 10.1093/cercor/bhab303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The extent of high-level perceptual processing during sleep remains controversial. In wakefulness, perception of periodicities supports the emergence of high-order representations such as the pulse-like meter perceived while listening to music. Electroencephalography (EEG) frequency-tagged responses elicited at envelope frequencies of musical rhythms have been shown to provide a neural representation of rhythm processing. Specifically, responses at frequencies corresponding to the perceived meter are enhanced over responses at meter-unrelated frequencies. This selective enhancement must rely on higher-level perceptual processes, as it occurs even in irregular (i.e., syncopated) rhythms where meter frequencies are not prominent input features, thus ruling out acoustic confounds. We recorded EEG while presenting a regular (unsyncopated) and an irregular (syncopated) rhythm across sleep stages and wakefulness. Our results show that frequency-tagged responses at meter-related frequencies of the rhythms were selectively enhanced during wakefulness but attenuated across sleep states. Most importantly, this selective attenuation occurred even in response to the irregular rhythm, where meter-related frequencies were not prominent in the stimulus, thus suggesting that neural processes selectively enhancing meter-related frequencies during wakefulness are weakened during rapid eye movement (REM) and further suppressed in non-rapid eye movement (NREM) sleep. These results indicate preserved processing of low-level acoustic properties but limited higher-order processing of auditory rhythms during sleep.
Collapse
Affiliation(s)
- Rebeca Sifuentes-Ortega
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Center for Research in Cognition & Neurosciences, and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Tomas Lenc
- Institute of Neuroscience (IONS), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Sylvie Nozaradan
- Institute of Neuroscience (IONS), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Center for Research in Cognition & Neurosciences, and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
27
|
Tivadar RI, Knight RT, Tzovara A. Automatic Sensory Predictions: A Review of Predictive Mechanisms in the Brain and Their Link to Conscious Processing. Front Hum Neurosci 2021; 15:702520. [PMID: 34489663 PMCID: PMC8416526 DOI: 10.3389/fnhum.2021.702520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/12/2021] [Indexed: 01/22/2023] Open
Abstract
The human brain has the astonishing capacity of integrating streams of sensory information from the environment and forming predictions about future events in an automatic way. Despite being initially developed for visual processing, the bulk of predictive coding research has subsequently focused on auditory processing, with the famous mismatch negativity signal as possibly the most studied signature of a surprise or prediction error (PE) signal. Auditory PEs are present during various consciousness states. Intriguingly, their presence and characteristics have been linked with residual levels of consciousness and return of awareness. In this review we first give an overview of the neural substrates of predictive processes in the auditory modality and their relation to consciousness. Then, we focus on different states of consciousness - wakefulness, sleep, anesthesia, coma, meditation, and hypnosis - and on what mysteries predictive processing has been able to disclose about brain functioning in such states. We review studies investigating how the neural signatures of auditory predictions are modulated by states of reduced or lacking consciousness. As a future outlook, we propose the combination of electrophysiological and computational techniques that will allow investigation of which facets of sensory predictive processes are maintained when consciousness fades away.
Collapse
Affiliation(s)
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Athina Tzovara
- Institute of Computer Science, University of Bern, Bern, Switzerland
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Sleep-Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Scrivener CL. When Is Simultaneous Recording Necessary? A Guide for Researchers Considering Combined EEG-fMRI. Front Neurosci 2021; 15:636424. [PMID: 34267620 PMCID: PMC8276697 DOI: 10.3389/fnins.2021.636424] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) provide non-invasive measures of brain activity at varying spatial and temporal scales, offering different views on brain function for both clinical and experimental applications. Simultaneous recording of these measures attempts to maximize the respective strengths of each method, while compensating for their weaknesses. However, combined recording is not necessary to address all research questions of interest, and experiments may have greater statistical power to detect effects by maximizing the signal-to-noise ratio in separate recording sessions. While several existing papers discuss the reasons for or against combined recording, this article aims to synthesize these arguments into a flow chart of questions that researchers can consider when deciding whether to record EEG and fMRI separately or simultaneously. Given the potential advantages of simultaneous EEG-fMRI, the aim is to provide an initial overview of the most important concepts and to direct readers to relevant literature that will aid them in this decision.
Collapse
Affiliation(s)
- Catriona L. Scrivener
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
29
|
Soon CS, Vinogradova K, Ong JL, Calhoun VD, Liu T, Zhou JH, Ng KK, Chee MWL. Respiratory, cardiac, EEG, BOLD signals and functional connectivity over multiple microsleep episodes. Neuroimage 2021; 237:118129. [PMID: 33951513 DOI: 10.1016/j.neuroimage.2021.118129] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/04/2021] [Accepted: 04/28/2021] [Indexed: 01/16/2023] Open
Abstract
Falling asleep is common in fMRI studies. By using long eyelid closures to detect microsleep onset, we showed that the onset and termination of short sleep episodes invokes a systematic sequence of BOLD signal changes that are large, widespread, and consistent across different microsleep durations. The signal changes are intimately intertwined with shifts in respiration and heart rate, indicating that autonomic contributions are integral to the brain physiology evaluated using fMRI and cannot be simply treated as nuisance signals. Additionally, resting state functional connectivity (RSFC) was altered in accord with the frequency of falling asleep and in a manner that global signal regression does not eliminate. Our findings point to the need to develop a consensus among neuroscientists using fMRI on how to deal with microsleep intrusions. SIGNIFICANCE STATEMENT: Sleep, breathing and cardiac action are influenced by common brainstem nuclei. We show that falling asleep and awakening are associated with a sequence of BOLD signal changes that are large, widespread and consistent across varied durations of sleep onset and awakening. These signal changes follow closely those associated with deceleration and acceleration of respiration and heart rate, calling into question the separation of the latter signals as 'noise' when the frequency of falling asleep, which is commonplace in RSFC studies, correlates with the extent of RSFC perturbation. Autonomic and central nervous system contributions to BOLD signal have to be jointly considered when interpreting fMRI and RSFC studies.
Collapse
Affiliation(s)
- Chun Siong Soon
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Translational MR Imaging, Yong Loo Lin School of Medicine, National Unviersity of Singapore, Singapore.
| | - Ksenia Vinogradova
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ju Lynn Ong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, USA
| | - Thomas Liu
- UCSD Center for Functional MRI and Department of Radiology, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Juan Helen Zhou
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Translational MR Imaging, Yong Loo Lin School of Medicine, National Unviersity of Singapore, Singapore
| | - Kwun Kei Ng
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Translational MR Imaging, Yong Loo Lin School of Medicine, National Unviersity of Singapore, Singapore.
| |
Collapse
|
30
|
Liu J, Ghastine L, Um P, Rovit E, Wu T. Environmental exposures and sleep outcomes: A review of evidence, potential mechanisms, and implications. ENVIRONMENTAL RESEARCH 2021; 196:110406. [PMID: 33130170 PMCID: PMC8081760 DOI: 10.1016/j.envres.2020.110406] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 06/02/2023]
Abstract
Environmental exposures and poor sleep outcomes are known to have consequential effects on human health. This integrative review first seeks to present and synthesize existing literature investigating the relationship between exposure to various environmental factors and sleep health. We then present potential mechanisms of action as well as implications for policy and future research for each environmental exposure. Broadly, although studies are still emerging, empirical evidence has begun to show a positive association between adverse effects of heavy metal, noise pollution, light pollution, second-hand smoke, and air pollution exposures and various sleep problems. Specifically, these negative sleep outcomes range from subjective sleep manifestations, such as general sleep quality, sleep duration, daytime dysfunction, and daytime sleepiness, as well as objective sleep measures, including difficulties with sleep onset and maintenance, sleep stage or circadian rhythm interference, sleep arousal, REM activity, and sleep disordered breathing. However, the association between light exposure and sleep is less clear. Potential toxicological mechanisms are thought to include the direct effect of various environmental toxicants on the nervous, respiratory, and cardiovascular systems, oxidative stress, and inflammation. Nevertheless, future research is required to tease out the exact pathways of action to explain the associations between each environmental factor and sleep, to inform possible therapies to negate the detrimental effects, and to increase efforts in decreasing exposure to these harmful environmental factors to improve health.
Collapse
Affiliation(s)
- Jianghong Liu
- University of Pennsylvania School of Nursing, 418 Curie Blvd, Philadelphia, PA, 19104, USA.
| | - Lea Ghastine
- Ohio State University College of Medicine, 370 W 9th Ave, Columbus, OH, 43210, USA
| | - Phoebe Um
- Ohio State University College of Medicine, 370 W 9th Ave, Columbus, OH, 43210, USA
| | - Elizabeth Rovit
- University of Pennsylvania School of Nursing, 418 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Tina Wu
- University of Pennsylvania School of Nursing, 418 Curie Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
31
|
Roberts DM, Schade MM, Mathew GM, Gartenberg D, Buxton OM. Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography. Sleep 2021; 43:5811697. [PMID: 32215550 DOI: 10.1093/sleep/zsaa045] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/19/2020] [Indexed: 12/14/2022] Open
Abstract
STUDY OBJECTIVES Multisensor wearable consumer devices allowing the collection of multiple data sources, such as heart rate and motion, for the evaluation of sleep in the home environment, are increasingly ubiquitous. However, the validity of such devices for sleep assessment has not been directly compared to alternatives such as wrist actigraphy or polysomnography (PSG). METHODS Eight participants each completed four nights in a sleep laboratory, equipped with PSG and several wearable devices. Registered polysomnographic technologist-scored PSG served as ground truth for sleep-wake state. Wearable devices providing sleep-wake classification data were compared to PSG at both an epoch-by-epoch and night level. Data from multisensor wearables (Apple Watch and Oura Ring) were compared to data available from electrocardiography and a triaxial wrist actigraph to evaluate the quality and utility of heart rate and motion data. Machine learning methods were used to train and test sleep-wake classifiers, using data from consumer wearables. The quality of classifications derived from devices was compared. RESULTS For epoch-by-epoch sleep-wake performance, research devices ranged in d' between 1.771 and 1.874, with sensitivity between 0.912 and 0.982, and specificity between 0.366 and 0.647. Data from multisensor wearables were strongly correlated at an epoch-by-epoch level with reference data sources. Classifiers developed from the multisensor wearable data ranged in d' between 1.827 and 2.347, with sensitivity between 0.883 and 0.977, and specificity between 0.407 and 0.821. CONCLUSIONS Data from multisensor consumer wearables are strongly correlated with reference devices at the epoch level and can be used to develop epoch-by-epoch models of sleep-wake rivaling existing research devices.
Collapse
Affiliation(s)
| | - Margeaux M Schade
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA
| | - Gina M Mathew
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA
| | | | - Orfeu M Buxton
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA
| |
Collapse
|
32
|
Piorecky M, Koudelka V, Miletinova E, Buskova J, Strobl J, Horacek J, Brunovsky M, Jiricek S, Hlinka J, Tomecek D, Piorecka V. Simultaneous fMRI-EEG-Based Characterisation of NREM Parasomnia Disease: Methods and Limitations. Diagnostics (Basel) 2020; 10:diagnostics10121087. [PMID: 33327626 PMCID: PMC7765133 DOI: 10.3390/diagnostics10121087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 11/25/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) techniques and electroencephalography (EEG) were used to investigate sleep with a focus on impaired arousal mechanisms in disorders of arousal (DOAs). With a prevalence of 2–4% in adults, DOAs are significant disorders that are currently gaining attention among physicians. The paper describes a simultaneous EEG and fMRI experiment conducted in adult individuals with DOAs (n=10). Both EEG and fMRI data were validated by reproducing well established EEG and fMRI associations. A method for identification of both brain functional areas and EEG rhythms associated with DOAs in shallow sleep was designed. Significant differences between patients and controls were found in delta, theta, and alpha bands during awakening epochs. General linear models of the blood-oxygen-level-dependent signal have shown the secondary visual cortex and dorsal posterior cingulate cortex to be associated with alpha spectral power fluctuations, and the precuneus with delta spectral power fluctuations, specifically in patients and not in controls. Future EEG–fMRI sleep studies should also consider subject comfort as an important aspect in the experimental design.
Collapse
Affiliation(s)
- Marek Piorecky
- National Institute of Mental Health, 25067 Klecany, Czech Republic; (V.K.); (E.M.); (J.B.); (J.H.); (S.J.); (J.H.); (D.T.); (V.P.)
- Department of Biomedical Technology, Faculty of Biomedical Engineering, CTU in Prague, 27201 Kladno, Czech Republic;
- Correspondence: (M.P.); (M.B.); Tel.: +420-224-357-996 (M.P.); +420-283-088-438 (M.B.)
| | - Vlastimil Koudelka
- National Institute of Mental Health, 25067 Klecany, Czech Republic; (V.K.); (E.M.); (J.B.); (J.H.); (S.J.); (J.H.); (D.T.); (V.P.)
| | - Eva Miletinova
- National Institute of Mental Health, 25067 Klecany, Czech Republic; (V.K.); (E.M.); (J.B.); (J.H.); (S.J.); (J.H.); (D.T.); (V.P.)
- Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| | - Jitka Buskova
- National Institute of Mental Health, 25067 Klecany, Czech Republic; (V.K.); (E.M.); (J.B.); (J.H.); (S.J.); (J.H.); (D.T.); (V.P.)
- Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| | - Jan Strobl
- Department of Biomedical Technology, Faculty of Biomedical Engineering, CTU in Prague, 27201 Kladno, Czech Republic;
| | - Jiri Horacek
- National Institute of Mental Health, 25067 Klecany, Czech Republic; (V.K.); (E.M.); (J.B.); (J.H.); (S.J.); (J.H.); (D.T.); (V.P.)
- Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| | - Martin Brunovsky
- National Institute of Mental Health, 25067 Klecany, Czech Republic; (V.K.); (E.M.); (J.B.); (J.H.); (S.J.); (J.H.); (D.T.); (V.P.)
- Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
- Correspondence: (M.P.); (M.B.); Tel.: +420-224-357-996 (M.P.); +420-283-088-438 (M.B.)
| | - Stanislav Jiricek
- National Institute of Mental Health, 25067 Klecany, Czech Republic; (V.K.); (E.M.); (J.B.); (J.H.); (S.J.); (J.H.); (D.T.); (V.P.)
- Institute of Computer Science of the Czech Academy of Sciences, 18207 Prague, Czech Republic
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, 16627 Prague, Czech Republic
| | - Jaroslav Hlinka
- National Institute of Mental Health, 25067 Klecany, Czech Republic; (V.K.); (E.M.); (J.B.); (J.H.); (S.J.); (J.H.); (D.T.); (V.P.)
- Institute of Computer Science of the Czech Academy of Sciences, 18207 Prague, Czech Republic
| | - David Tomecek
- National Institute of Mental Health, 25067 Klecany, Czech Republic; (V.K.); (E.M.); (J.B.); (J.H.); (S.J.); (J.H.); (D.T.); (V.P.)
- Institute of Computer Science of the Czech Academy of Sciences, 18207 Prague, Czech Republic
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, 16627 Prague, Czech Republic
| | - Vaclava Piorecka
- National Institute of Mental Health, 25067 Klecany, Czech Republic; (V.K.); (E.M.); (J.B.); (J.H.); (S.J.); (J.H.); (D.T.); (V.P.)
| |
Collapse
|
33
|
Deniz H, Bayazit YA, Sarac ET. Individualized Treatment of Tinnitus during Sleep Using Combined Tinnitus Signal and Music. ORL J Otorhinolaryngol Relat Spec 2020; 83:35-40. [PMID: 32966989 DOI: 10.1159/000509981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/03/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Tinnitus is a widely seen otological symptom that interferes with daily activities and causes discomfort. Tinnitus treatments can be classified into 4 main groups: pharmacological treatments, cognitive and behavioral therapy, psychological treatments, and combined treatment approaches made up of at least 2 of these 3 treatment methods. OBJECTIVE The aim of this study was to assess whether it would be possible to develop an individualized treatment method of tinnitus by application of a combined tinnitus signal and music during sleep. METHODS Forty-three ears of 30 patients who had subjective tinnitus were included. The patients were evaluated using Tinnitus Handicap Inventory, Visual Analogue Scale, and Beck Depression Inventory. The psychoacoustic parameters of tinnitus, such as tinnitus frequency and loudness, and minimal masking levels, were determined. The patients were asked to select musical melodies that they liked. The tinnitus frequency of each patient was taken as the central frequency according to ANSI 2004. All sound files were prepared as stereo channels, with 16-bit resolution and 44,100 Hz sampling rate. The root mean square power value of the music and the band noise's average root mean square power value were equalized with the "Amplification" command, and 70% of the music and 30% of wide/narrow-band noise were mixed as a stereo channel by the "Mix Paste" command. The patients were instructed to listen to that individualized music/narrow-band noise (tinnitus signal) for 2 h during sleep for a duration of 6 months. RESULTS Tinnitus frequencies of the patients measured prior to treatment and at the second, fourth, and sixth months of follow-up were not significantly different. A statistically significant decrease was seen in tinnitus loudness, minimal masking levels, and residual inhibition during the follow-up. Tinnitus Handicap Inventory scores decreased significantly during follow-up, and the number of patients who complained of tinnitus decreased (p < 0.05). The Visual Analogue Scale scores significantly decreased during follow-up (p < 0.05). Beck Depression Inventory scores decreased significantly during follow-up (p < 0.05). CONCLUSION Stimulation of the auditory and limbic systems during sleep by the tinnitus signal combined with individualized musical melodies seems an alternative, effective, and cheap method in the treatment of tinnitus.
Collapse
Affiliation(s)
- Huseyin Deniz
- Ear-Nose-Throat-Audiology Department, Gaziantep University Medicine Faculty, Gaziantep, Turkey,
| | | | - Elif Tugba Sarac
- Ear-Nose-Throat-Audiology Department, Hatay Mustafa Kemal University Medicine Faculty, Hatay, Turkey
| |
Collapse
|
34
|
Frohlich J, Bird LM, Dell'Italia J, Johnson MA, Hipp JF, Monti MM. High-voltage, diffuse delta rhythms coincide with wakeful consciousness and complexity in Angelman syndrome. Neurosci Conscious 2020; 2020:niaa005. [PMID: 32551137 PMCID: PMC7293820 DOI: 10.1093/nc/niaa005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 11/23/2022] Open
Abstract
Abundant evidence from slow wave sleep, anesthesia, coma, and epileptic seizures links high-voltage, slow electroencephalogram (EEG) activity to loss of consciousness. This well-established correlation is challenged by the observation that children with Angelman syndrome (AS), while fully awake and displaying volitional behavior, display a hypersynchronous delta (1–4 Hz) frequency EEG phenotype typical of unconsciousness. Because the trough of the delta oscillation is associated with down-states in which cortical neurons are silenced, the presence of volitional behavior and wakefulness in AS amidst diffuse delta rhythms presents a paradox. Moreover, high-voltage, slow EEG activity is generally assumed to lack complexity, yet many theories view functional brain complexity as necessary for consciousness. Here, we use abnormal cortical dynamics in AS to assess whether EEG complexity may scale with the relative level of consciousness despite a background of hypersynchronous delta activity. As characterized by multiscale metrics, EEGs from 35 children with AS feature significantly greater complexity during wakefulness compared with sleep, even when comparing the most pathological segments of wakeful EEG to the segments of sleep EEG least likely to contain conscious mentation and when factoring out delta power differences across states. These findings (i) warn against reverse inferring an absence of consciousness solely on the basis of high-amplitude EEG delta oscillations, (ii) corroborate rare observations of preserved consciousness under hypersynchronization in other conditions, (iii) identify biomarkers of consciousness that have been validated under conditions of abnormal cortical dynamics, and (iv) lend credence to theories linking consciousness with complexity.
Collapse
Affiliation(s)
- Joel Frohlich
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, CA, USA
| | - Lynne M Bird
- Department of Pediatrics, University of California, San Diego, CA, USA.,Division of Genetics/Dysmorphology, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - John Dell'Italia
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, CA, USA
| | - Micah A Johnson
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, CA, USA
| | - Joerg F Hipp
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, CA, USA.,Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
35
|
Song C, Tagliazucchi E. Linking the nature and functions of sleep: insights from multimodal imaging of the sleeping brain. CURRENT OPINION IN PHYSIOLOGY 2020; 15:29-36. [PMID: 32715184 PMCID: PMC7374576 DOI: 10.1016/j.cophys.2019.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sleep and wakefulness are traditionally considered as two mutually exclusive states with contrasting behavioural manifestations and complementary neurobiological functions. However, the discoveries of local sleep in global wakefulness and local wakefulness in global sleep have challenged this classical view and raised questions about the nature and functions of sleep. Here, we review the contributions from recent multimodal imaging studies of human sleep towards understanding the relationship between the nature and functions of sleep. Through simultaneous tracking of brain state and mapping of brain activity, these studies revealed that the sleeping brain can carry out covert cognitive processing that was thought to be wake-specific (wake-like function in the sleeping brain). Conversely, the awake brain can perform housekeeping functions through local sleep of neural populations (sleep-like function in the awake brain). We discuss how the blurred boundary between sleep and wakefulness highlights the need to radically rethink the definition of brain states, and how the recently discovered fMRI signatures of global and local sleep can help to address these outstanding questions.
Collapse
Affiliation(s)
- Chen Song
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Enzo Tagliazucchi
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
| |
Collapse
|
36
|
Andrillon T, Kouider S. The vigilant sleeper: neural mechanisms of sensory (de)coupling during sleep. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Azimi Z, Barzan R, Spoida K, Surdin T, Wollenweber P, Mark MD, Herlitze S, Jancke D. Separable gain control of ongoing and evoked activity in the visual cortex by serotonergic input. eLife 2020; 9:e53552. [PMID: 32252889 PMCID: PMC7138610 DOI: 10.7554/elife.53552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/04/2020] [Indexed: 01/25/2023] Open
Abstract
Controlling gain of cortical activity is essential to modulate weights between internal ongoing communication and external sensory drive. Here, we show that serotonergic input has separable suppressive effects on the gain of ongoing and evoked visual activity. We combined optogenetic stimulation of the dorsal raphe nucleus (DRN) with wide-field calcium imaging, extracellular recordings, and iontophoresis of serotonin (5-HT) receptor antagonists in the mouse visual cortex. 5-HT1A receptors promote divisive suppression of spontaneous activity, while 5-HT2A receptors act divisively on visual response gain and largely account for normalization of population responses over a range of visual contrasts in awake and anesthetized states. Thus, 5-HT input provides balanced but distinct suppressive effects on ongoing and evoked activity components across neuronal populations. Imbalanced 5-HT1A/2A activation, either through receptor-specific drug intake, genetically predisposed irregular 5-HT receptor density, or change in sensory bombardment may enhance internal broadcasts and reduce sensory drive and vice versa.
Collapse
Affiliation(s)
- Zohre Azimi
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University BochumBochumGermany
- International Graduate School of Neuroscience (IGSN), Ruhr University BochumBochumGermany
| | - Ruxandra Barzan
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University BochumBochumGermany
- International Graduate School of Neuroscience (IGSN), Ruhr University BochumBochumGermany
| | - Katharina Spoida
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Tatjana Surdin
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Patric Wollenweber
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Melanie D Mark
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University BochumBochumGermany
- International Graduate School of Neuroscience (IGSN), Ruhr University BochumBochumGermany
| |
Collapse
|
38
|
Sela Y, Krom AJ, Bergman L, Regev N, Nir Y. Sleep Differentially Affects Early and Late Neuronal Responses to Sounds in Auditory and Perirhinal Cortices. J Neurosci 2020; 40:2895-2905. [PMID: 32071140 PMCID: PMC7117904 DOI: 10.1523/jneurosci.1186-19.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 11/21/2022] Open
Abstract
A fundamental feature of sleep is reduced behavioral responsiveness to external events, but the extent of processing along sensory pathways remains poorly understood. While responses are comparable across wakefulness and sleep in auditory cortex (AC), neuronal activity in downstream regions remains unknown. Here we recorded spiking activity in 435 neuronal clusters evoked by acoustic stimuli in the perirhinal cortex (PRC) and in AC of freely behaving male rats across wakefulness and sleep. Neuronal responses in AC showed modest (∼10%) differences in response gain across vigilance states, replicating previous studies. By contrast, PRC neuronal responses were robustly attenuated by 47% and 36% during NREM sleep and REM sleep, respectively. Beyond the separation according to cortical region, response latency in each neuronal cluster was correlated with the degree of NREM sleep attenuation, such that late (>40 ms) responses in all monitored regions diminished during NREM sleep. The robust attenuation of late responses prevalent in PRC represents a novel neural correlate of sensory disconnection during sleep, opening new avenues for investigating the mediating mechanisms.SIGNIFICANCE STATEMENT Reduced behavioral responsiveness to sensory stimulation is at the core of sleep's definition, but it is still unclear how the sleeping brain responds differently to sensory stimuli. In the current study, we recorded neuronal spiking responses to sounds along the cortical processing hierarchy of rats during wakefulness and natural sleep. Responses in auditory cortex only showed modest changes during sleep, whereas sleep robustly attenuated the responses of neurons in high-level perirhinal cortex. We also found that, during NREM sleep, the response latency predicts the degree of sleep attenuation in individual neurons above and beyond their anatomical location. These results provide anatomical and temporal signatures of sensory disconnection during sleep and pave the way to understanding the underlying mechanisms.
Collapse
Affiliation(s)
- Yaniv Sela
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel, 69978
| | - Aaron Joseph Krom
- Department of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel, 91120, and
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel, 69978
| | - Lottem Bergman
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel, 69978
| | - Noa Regev
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel, 69978
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel, 69978,
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel, 69978
| |
Collapse
|
39
|
Strauss M, Dehaene S. Detection of arithmetic violations during sleep. Sleep 2020; 42:5209361. [PMID: 30476318 DOI: 10.1093/sleep/zsy232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/07/2018] [Accepted: 11/23/2018] [Indexed: 12/31/2022] Open
Abstract
Can the sleeping brain develop predictions of future auditory stimuli? Past research demonstrated disrupted prediction capabilities during sleep in the context of novel, arbitrary auditory sequences, but the availability of overlearned knowledge already stored in long-term memory could still be preserved. We tested the sleeping brain capabilities to detect violations of simple arithmetic facts. Sleeping participants were presented with spoken arithmetic facts such as "two plus two is nine" and brain responses to correct or incorrect results were recorded in electro and magneto-encephalography. Sleep responses were compared to both attentive and inattentive wakefulness. During attentive wakefulness, arithmetic violations elicited a succession of N400 and P600 effects, whereas no such activations could be recorded in sleep or in inattentive wakefulness. Still, small but significant effects remained in sleep, advocating for a preserved but partial accessibility to arithmetic facts stored in long-term memory and preserved predictions of low-level and already learned knowledge. Those effects were very different from residual activities seen in inattention, highlighting the differences of information processing between the sleeping and the inattentive brain.
Collapse
Affiliation(s)
- Mélanie Strauss
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, NeuroSpin Center, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.,Université Paris Descartes, Sorbonne Paris Cité, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France.,Neuropsychology and Functional Imaging Research Group, Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, NeuroSpin Center, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.,Collège de France, Paris, France
| |
Collapse
|
40
|
Schade MM, Mathew GM, Roberts DM, Gartenberg D, Buxton OM. Enhancing Slow Oscillations and Increasing N3 Sleep Proportion with Supervised, Non-Phase-Locked Pink Noise and Other Non-Standard Auditory Stimulation During NREM Sleep. Nat Sci Sleep 2020; 12:411-429. [PMID: 32765139 PMCID: PMC7364346 DOI: 10.2147/nss.s243204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/11/2020] [Indexed: 12/29/2022] Open
Abstract
PURPOSE In non-rapid eye movement (NREM) stage 3 sleep (N3), phase-locked pink noise auditory stimulation can amplify slow oscillatory activity (0.5-1 Hz). Open-loop pink noise auditory stimulation can amplify slow oscillatory and delta frequency activity (0.5-4 Hz). We assessed the ability of pink noise and other sounds to elicit delta power, slow oscillatory power, and N3 sleep. PARTICIPANTS AND METHODS Participants (n = 8) underwent four consecutive inpatient nights in a within-participants design, starting with a habituation night. A registered polysomnographic technologist live-scored sleep stage and administered stimuli on randomized counterbalanced Enhancing and Disruptive nights, with a preceding Habituation night (night 1) and an intervening Sham night (night 3). A variety of non-phase-locked pink noise stimuli were used on Enhancing night during NREM; on Disruptive night, environmental sounds were used throughout sleep to induce frequent auditory-evoked arousals. RESULTS Total sleep time did not differ between conditions. Percentage of N3 was higher in the Enhancing condition, and lower in the Disruptive condition, versus Sham. Standard 0.8 Hz pink noise elicited low-frequency power more effectively than other pink noise, but was not the most effective stimulus. Both pink noise on the "Enhancing" night and sounds intended to Disrupt sleep administered on the "Disruptive" night increased momentary delta and slow-wave activity (ie, during stimulation versus the immediate pre-stimulation period). Disruptive auditory stimulation degraded sleep with frequent arousals and increased next-day vigilance lapses versus Sham despite preserved sleep duration and momentary increases in delta and slow-wave activity. CONCLUSION These findings emphasize sound features of interest in ecologically valid, translational auditory intervention to increase restorative sleep. Preserving sleep continuity should be a primary consideration if auditory stimulation is used to enhance slow-wave activity.
Collapse
Affiliation(s)
- Margeaux M Schade
- Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
| | - Gina Marie Mathew
- Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
| | | | | | - Orfeu M Buxton
- Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
41
|
Abstract
Sleep spindles are burstlike signals in the electroencephalogram (EEG) of the sleeping mammalian brain and electrical surface correlates of neuronal oscillations in thalamus. As one of the most inheritable sleep EEG signatures, sleep spindles probably reflect the strength and malleability of thalamocortical circuits that underlie individual cognitive profiles. We review the characteristics, organization, regulation, and origins of sleep spindles and their implication in non-rapid-eye-movement sleep (NREMS) and its functions, focusing on human and rodent. Spatially, sleep spindle-related neuronal activity appears on scales ranging from small thalamic circuits to functional cortical areas, and generates a cortical state favoring intracortical plasticity while limiting cortical output. Temporally, sleep spindles are discrete events, part of a continuous power band, and elements grouped on an infraslow time scale over which NREMS alternates between continuity and fragility. We synthesize diverse and seemingly unlinked functions of sleep spindles for sleep architecture, sensory processing, synaptic plasticity, memory formation, and cognitive abilities into a unifying sleep spindle concept, according to which sleep spindles 1) generate neural conditions of large-scale functional connectivity and plasticity that outlast their appearance as discrete EEG events, 2) appear preferentially in thalamic circuits engaged in learning and attention-based experience during wakefulness, and 3) enable a selective reactivation and routing of wake-instated neuronal traces between brain areas such as hippocampus and cortex. Their fine spatiotemporal organization reflects NREMS as a physiological state coordinated over brain and body and may indicate, if not anticipate and ultimately differentiate, pathologies in sleep and neurodevelopmental, -degenerative, and -psychiatric conditions.
Collapse
Affiliation(s)
- Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
42
|
Yong Z, Tan JH, Hsieh PJ. Microsleep is associated with brain activity patterns unperturbed by auditory inputs. J Neurophysiol 2019; 122:2568-2575. [PMID: 31553690 DOI: 10.1152/jn.00825.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microsleeps are brief episodes of arousal level decrease manifested through behavioral signs. Brain activity during microsleep in the presence of external stimulus remains poorly understood. In this study, we sought to understand neural responses to auditory stimulation during microsleep. We gave participants the simple task of listening to audios of different pitches and amplitude modulation frequencies during early afternoon functional MRI scans. We found the following: 1) microsleep was associated with cortical activations in broad motor and sensory regions and deactivations in thalamus, irrespective of auditory stimulation; 2) high and low pitch audios elicited different activity patterns in the auditory cortex during awake but not microsleep state; and 3) during microsleep, spatial activity patterns in broad brain regions were similar regardless of the presence or types of auditory stimulus (i.e., stimulus invariant). These findings show that the brain is highly active during microsleep but the activity patterns across broad regions are unperturbed by auditory inputs.NEW & NOTEWORTHY During deep drowsy states, auditory inputs could induce activations in the auditory cortex, but the activation patterns lose differentiation to high/low pitch stimuli. Instead of random activations, activity patterns across the brain during microsleep appear to be structured and may reflect underlying neurophysiological processes that remain unclear.
Collapse
Affiliation(s)
- Zixin Yong
- Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Joo Huang Tan
- Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Po-Jang Hsieh
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
43
|
Rocha S, Smith MG, Witte M, Basner M. Survey Results of a Pilot Sleep Study Near Atlanta International Airport. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4321. [PMID: 31698800 PMCID: PMC6888482 DOI: 10.3390/ijerph16224321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 12/14/2022]
Abstract
Aircraft noise can disturb the sleep of residents living near airports. To investigate potential effects of aircraft noise on sleep, recruitment surveys for a pilot field study were mailed to households around Atlanta International Airport. Survey items included questions about sleep quality, sleep disturbance by noise, noise annoyance, coping behaviors, and health. Of 3159 deliverable surveys, 319 were returned (10.1%). Calculated outdoor nighttime aircraft noise (Lnight) was significantly associated with lower sleep quality (poor or fair; odds ratio (OR) = 1.04/decibel (dB); p < 0.05), trouble falling asleep within 30 min ≥1/week (OR = 1.06/dB; p < 0.01), and trouble sleeping due to awakenings ≥1/week (OR = 1.04/dB; p < 0.05). Lnight was also associated with increased prevalence of being highly sleep disturbed (OR = 1.15/dB; p < 0.0001) and highly annoyed (OR = 1.17/dB; p < 0.0001) by aircraft noise. Furthermore Lnight was associated with several coping behaviors. Residents were more likely to report often or always closing their windows (OR = 1.05/dB; p < 0.01), consuming alcohol (OR = 1.10/dB; p < 0.05), using television (OR = 1.05/dB; p < 0.05) and using music (OR = 1.07/dB; p < 0.05) as sleep aids. There was no significant relationship between Lnight and self-reported general health or likelihood of self-reported diagnosis of sleep disorders, heart disease, hypertension or diabetes. Evidence of self-reported adverse effects of aircraft noise on sleep found in this pilot study warrant further investigation in larger, more representative subject cohorts.
Collapse
Affiliation(s)
| | | | | | - Mathias Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; (S.R.); (M.G.S.); (M.W.)
| |
Collapse
|
44
|
Mellor DJ. Preparing for Life After Birth: Introducing the Concepts of Intrauterine and Extrauterine Sensory Entrainment in Mammalian Young. Animals (Basel) 2019; 9:E826. [PMID: 31635383 PMCID: PMC6826569 DOI: 10.3390/ani9100826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/20/2023] Open
Abstract
Presented is an updated understanding of the development of sensory systems in the offspring of a wide range of terrestrial mammals, the prenatal exposure of those systems to salient stimuli, and the mechanisms by which that exposure can embed particular sensory capabilities that prepare newborns to respond appropriately to similar stimuli they may encounter after birth. Taken together, these are the constituents of the phenomenon of "trans-natal sensory continuity" where the embedded sensory capabilities are considered to have been "learnt" and, when accessed subsequently, they are said to have been "remembered". An alternative explanation of trans-natal sensory continuity is provided here in order to focus on the mechanisms of "embedding" and "accessing" instead of the potentially more subjectively conceived outcomes of "learning" and "memory". Thus, the mechanistic concept of "intrauterine sensory entrainment" has been introduced, its foundation being the well-established neuroplastic capability of nervous systems to respond to sensory inputs by reorganising their neural structures, functions, and connections. Five conditions need to be met before "trans-natal sensory continuity" can occur. They are (1) sufficient neurological maturity to support minimal functional activity in specific sensory receptor systems in utero; (2) the presence of sensory stimuli that activate their aligned receptors before birth; (3) the neurological capability for entrained functions within specific sensory modalities to be retained beyond birth; (4) specific sensory stimuli that are effective both before and after birth; and (5) a capability to detect those stimuli when or if they are presented after birth in ways that differ (e.g., in air) from their presentation via fluid media before birth. Numerous beneficial outcomes of this process have been reported for mammalian newborns, but the range of benefits depends on how many of the full set of sensory modalities are functional at the time of birth. Thus, the breadth of sensory capabilities may be extensive, somewhat restricted, or minimal in offspring that are, respectively, neurologically mature, moderately immature, or exceptionally immature at birth. It is noted that birth marks a transition from intrauterine sensory entrainment to extrauterine sensory entrainment in all mammalian young. Depending on their neurological maturity, extrauterine entrainment contributes to the continuing maturation of the different sensory systems that are operational at birth, the later development and maturation of the systems that are absent at birth, and the combined impact of those factors on the behaviour of newborn and young mammals. Intrauterine sensory entrainment helps to prepare mammalian young for life immediately after birth, and extrauterine sensory entrainment continues this process until all sensory modalities develop full functionality. It is apparent that, overall, extrauterine sensory entrainment and its aligned neuroplastic responses underlie numerous postnatal learning and memory events which contribute to the maturation of all sensory capabilities that eventually enable mammalian young to live autonomously.
Collapse
Affiliation(s)
- David J Mellor
- Animal Welfare Science and Bioethics Centre, School of Veterinary Science, Massey University, Palmerston North 4474, New Zealand.
| |
Collapse
|
45
|
Modulation of phase-locked neural responses to speech during different arousal states is age-dependent. Neuroimage 2019; 189:734-744. [DOI: 10.1016/j.neuroimage.2019.01.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/08/2018] [Accepted: 01/20/2019] [Indexed: 01/29/2023] Open
|
46
|
Smith GA, Chounthirath T, Splaingard M. Effectiveness of a Voice Smoke Alarm Using the Child's Name for Sleeping Children: A Randomized Trial. J Pediatr 2019; 205:250-256.e1. [PMID: 30482491 DOI: 10.1016/j.jpeds.2018.09.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/21/2018] [Accepted: 09/11/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To test maternal voice alarm effectiveness under residential conditions and determine whether personalizing the maternal voice alarm message with the child's first name improves effectiveness. STUDY DESIGN Using a randomized, nonblinded, repeated measures design, we compared 3 maternal voice smoke alarms with respect to their ability to awaken 176 children 5-12 years old from stage 4 slow-wave sleep and prompt their performance of an escape procedure. A conventional residential high-frequency tone smoke alarm was used as a comparative reference. Children's sleep stage was monitored in a residence-like research setting. RESULTS Maternal voice alarms awakened 86%-91% of children and prompted 84%-86% to escape compared with 53% awakened and 51% escaped for the tone alarm. A sleeping child was 2.9-3.4 times more likely to be awakened by each of the 3 voice alarms than the tone alarm. The median time to awaken was 156 seconds for the tone alarm and 2 seconds for each voice alarm. The proportions of children who awakened and escaped differed significantly between the tone alarm and each voice alarm, but no significant differences were found between each pair of the voice alarms, regardless of whether the child's first name was included in the alarm message. CONCLUSIONS The maternal voice alarms significantly outperformed the tone alarm under residential conditions. Personalizing the alarm message with the child's first name did not increase alarm effectiveness. These findings have important implications for development of an effective and practical smoke alarm for children. TRIAL REGISTRATION ClinicalTrials.gov: NCT01169155.
Collapse
Affiliation(s)
- Gary A Smith
- Center for Injury Research and Policy, The Research Institute at Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; Child Injury Prevention Alliance, Columbus, OH
| | - Thitphalak Chounthirath
- Center for Injury Research and Policy, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Mark Splaingard
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; Sleep Disorders Center, Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
47
|
Iwakawa S, Kanmura Y, Kuwaki T. Orexin Receptor Blockade-Induced Sleep Preserves the Ability to Wake in the Presence of Threat in Mice. Front Behav Neurosci 2019; 12:327. [PMID: 30687033 PMCID: PMC6338018 DOI: 10.3389/fnbeh.2018.00327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/11/2018] [Indexed: 01/09/2023] Open
Abstract
Retention of the ability to wake from sleep in response to dangerous situations is an ideal characteristic of safe hypnotics. We studied the effects of a dual orexin receptor antagonist-22 (DORA-22) and the GABA-A receptor modulator, triazolam, on the ability to wake in response to aversive stimuli. We examined four modalities of sensory inputs, namely, auditory (ultrasonic sound), vestibular (trembling), olfactory (predator odor), and autonomic (hypoxia) stimuli. When the mice fell asleep, one of the four stimuli was applied for 30 s. In the case of auditory stimulation, latency to arousal following vehicle, DORA-22, and triazolam administration was 3.0 (2.0–3.8), 3.5 (2.0–6.5), and 161 (117–267) s (median and 25–75 percentile in the parentheses, n = 8), respectively. Latency to return to sleep after arousal was 148 (95–183), 70 (43–98), and 60 (52–69) s, respectively. Similar results were obtained for vestibular and olfactory stimulation. During the hypoxic stimulation, latencies for arousal and returning to sleep were not significantly different among the groups. The findings of this study are consistent with the distinct mechanisms of these sleep promoting therapies; GABA-A receptor activation by triazolam is thought to induce widespread central nervous system (CNS) suppression while DORA-22 more specifically targets sleep/wake pathways through orexin receptor antagonism. These data support the notion that DORA-22 preserves the ability to wake in response to aversive and consciousness-inducing sensory stimuli, regardless of modality, while remaining effective in the absence of threat. This study provides a unique and important safety evaluation of the potential for certain hypnotics.
Collapse
Affiliation(s)
- Shouhei Iwakawa
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuichi Kanmura
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
48
|
Alkahtani MN, Alshathri NA, Aldraiweesh NA, Aljurf LM, Aldaej L, Olaish AH, Nashwan SZ, Almeneessier AS, BaHammam AS. The effect of air conditioner sound on sleep latency, duration, and efficiency in young adults. Ann Thorac Med 2019; 14:69-74. [PMID: 30745938 PMCID: PMC6341869 DOI: 10.4103/atm.atm_195_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Many individuals complain of disturbed sleep during the wintertime when their air conditioner (AC) is off. Therefore, we conducted this study to objectively assess the impact of AC sound on sleep latency, sleep duration, and sleep efficiency. METHODS An experimental study was conducted on 48 healthy young adults, in their homes, to assess the effect of a standardized AC white noise, on sleep latency, duration, and efficiency, while simultaneously monitoring light intensity and room temperature. The study was conducted during the winter months. Sleep quality was objectively assessed using sleep actigraphy. Participants were monitored for two nights, during which two different, randomized sets of conditions were used: During one of the nights, the adults were exposed to 43 dB AC white noise; during the other night, adults were not exposed to the AC white noise. RESULTS Actigraphy results showed that the mean sleep duration during the AC sound nights (ASNs) was 466.8 ± 60.8 min, compared to 478.8 ± 55.4 min during the non-AC sound nights (NASNs) (P = 0.6). Sleep-onset latency was 10.8 ± 15.2 min and 15.1 ± 18.2 min during the ASNs and the NASNs, respectively (P = 0.8). Moreover, there was no difference in sleep efficiency, 81% ± 7.8% vs. 78.8% ± 15.4% in the ASNs and NASNs, respectively (P = 0.9). CONCLUSION AC sound had no significant positive effect on sleep duration, latency, and efficiency.
Collapse
Affiliation(s)
- Malak N Alkahtani
- Department of Medicine, The University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Nourah A Alshathri
- Department of Medicine, The University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Najla A Aldraiweesh
- Department of Medicine, The University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Lina M Aljurf
- Department of Medicine, The University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Luluh Aldaej
- Department of Medicine, The University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Awad H Olaish
- Department of Medicine, The University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Samar Z Nashwan
- Department of Medicine, The University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Aljohara S Almeneessier
- Department of Medicine, The University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed S BaHammam
- Department of Medicine, The University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
49
|
Low and medium frequency auditory steady-state responses decrease during NREM sleep. Int J Psychophysiol 2018; 135:44-54. [PMID: 30452935 DOI: 10.1016/j.ijpsycho.2018.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 11/23/2022]
Abstract
Previous research on auditory steady-state responses (ASSRs) demonstrated sensitivity of 40 Hz ASSR to changes in the level of arousal, both in sleep and in general anaesthesia. In this study we extended the range of stimulation frequencies, using also low and medium stimulation frequencies (4, 6, 8, 12, 20, 40 Hz) and studied their susceptibility to the loss of consciousness in NREM sleep (N2 and N3 stages). Effects of NREM sleep were examined in power domain with relative power (RP), and in phase domain using inter-trial phase coherence (PC) parameter. The activity in power domain was also compared to no-stimulation data. Regions displaying significant waking-NREM sleep differences were selected using non-parametric suprathreshold cluster test. For 4, 6, 20 and 40 Hz stimulation relative power of ASSRs was lower in NREM sleep, with maximal change for 40 Hz stimulation. This decrease was not seen in no-stimulation condition. For all stimulation frequencies (except 12 Hz) we observed decrease of phase coherence of ASSR during NREM sleep. Our results demonstrate that low and medium frequency ASSRs are state-sensitive, thus susceptible to loss of consciousness during NREM sleep. Diminishing of power and phase coherence may result from cortical down states and/or thalamic inhibition. Our results support possible use of low- and medium-frequency ASSRs for discrimination between states of altered consciousness and emphasize the role of the auditory system in determining these variations.
Collapse
|
50
|
Lange J, Massart C, Mouraux A, Standaert FX. Side-channel attacks against the human brain: the PIN code case study (extended version). Brain Inform 2018; 5:12. [PMID: 30370454 PMCID: PMC6429170 DOI: 10.1186/s40708-018-0090-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/15/2018] [Indexed: 11/10/2022] Open
Abstract
We revisit the side-channel attacks with brain–computer interfaces (BCIs) first put forward by Martinovic et al. at the USENIX 2012 Security Symposium. For this purpose, we propose a comprehensive investigation of concrete adversaries trying to extract a PIN code from electroencephalogram signals. Overall, our results confirm the possibility of partial PIN recovery with high probability of success in a more quantified manner and at the same time put forward the challenges of full/systematic PIN recovery. They also highlight that the attack complexities can significantly vary in function of the adversarial capabilities (e.g., supervised/profiled vs. unsupervised/non-profiled), hence leading to an interesting trade-off between their efficiency and practical relevance. We then show that similar attack techniques can be used to threat the privacy of BCI users. We finally use our experiments to discuss the impact of such attacks for the security and privacy of BCI applications at large, and the important emerging societal challenges they raise.
Collapse
|