1
|
Haridevamuthu B, Bharti AK, Nayak SPRR, Narayanan D, Loganathan Sumathi D, Chagaleti BK, Saravanan V, Rajagopal R, Alfarhan A, Muthu Kumaradoss K, Arockiaraj J. Hydroxyl chalcone derivative DK02 as a multi-target-directed ligand for Alzheimer's disease: A preclinical study in zebrafish. Br J Pharmacol 2024. [PMID: 39710579 DOI: 10.1111/bph.17426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/05/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND AND PURPOSE Alzheimer's disease (AD) is a widespread neurodegenerative condition characterized by amyloid-beta (Aβ) plaques and tau protein aggregates, leading to significant cognitive decline. Existing treatments primarily offer symptomatic relief, underscoring the urgent need for novel therapies that address multiple AD pathways. This study evaluates the efficacy of DK02, a hydroxyl chalcone derivative, in a scopolamine-induced dementia model in zebrafish, hypothesizing that it targets several neurodegenerative mechanisms simultaneously. EXPERIMENTAL APPROACH We employed a blend of experiments, including in silico docking, in vitro enzyme inhibition assays and in vivo zebrafish models, to assess therapeutic effects of DK02. Methods included molecular docking to forecast interaction sites, acetylcholinesterase (AChE) inhibition testing, and various behavioural and histopathological analyses to gauge DK02's cognitive and neuroprotective impacts. KEY RESULTS DK02 emerged as a potent AChE inhibitor via virtual screening, and significantly enhanced cognitive functions in zebrafish, by improving memory retention and reducing anxiety-like behaviours. DK02 also displayed strong antioxidant properties, reducing oxidative stress-induced neuronal damage. Histopathological analysis confirmed its neuroprotective effects by showing decreased amyloid plaque burden and mitigated structural brain damage. CONCLUSION AND IMPLICATIONS DK02 shows promise as a multi-target-directed ligand for AD, offering a new therapeutic path by simultaneously addressing cholinergic, oxidative and amyloid pathways. Its potential to enhance cognitive functions and curtail neurodegeneration suggests advantages over current symptomatic treatments. Further research into DK02 mechanisms and long-term impacts is essential for its development in AD therapy.
Collapse
Affiliation(s)
- Balasubramanian Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ankit Kumar Bharti
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Santosh Pushpa Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Dhaareeshwar Narayanan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Dhivya Loganathan Sumathi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Bharath Kumar Chagaleti
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Venkatesan Saravanan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
2
|
Petkova-Kirova P, Anastassova N, Minchev B, Uzunova D, Grigorova V, Tsvetanova E, Georgieva A, Alexandrova A, Stefanova M, Yancheva D, Kalfin R, Tancheva L. Behavioral and Biochemical Effects of an Arylhydrazone Derivative of 5-Methoxyindole-2-Carboxylic Acid in a Scopolamine-Induced Model of Alzheimer's Type Dementia in Rats. Molecules 2024; 29:5711. [PMID: 39683869 DOI: 10.3390/molecules29235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD) has long proven to be a complex neurodegenerative disorder, with cholinergic dysfunction, oxidative stress, and neuroinflammation being just a few of its pathological features. The complexity of the disease requires a multitargeted treatment covering its many aspects. In the present investigation, an arylhydrazone derivative of 5-methoxyindole-2-carboxylic acid (5MeO), with in vitro strong antioxidant, neuroprotective and monoamine oxidase B-inhibiting effects, was studied in a scopolamine-induced Alzheimer-type dementia in rats. Using behavioral and biochemical methods, we evaluated the effects of 5MeO on learning and memory, and elucidated the mechanisms of these effects. Our experiments demonstrated that 5MeO had a beneficial effect on different types of memory as assessed by the step-through and the Barnes maze tasks. It efficiently restored the decreased by scopolamine brain-derived neurotrophic factor and acetylcholine levels and normalized the increased by scopolamine acetylcholine esterase activity in hippocampus. Most effective 5MeO was in counteracting the induced by scopolamine oxidative stress by decreasing the increased by scopolamine levels of lipid peroxidation and by increasing the reduced by scopolamine catalase activity. Blood biochemical analyses demonstrated a favorable safety profile of 5MeO, prompting further pharmacological studies suggesting 5MeO as a safe and efficient candidate in a multitargeted treatment of AD.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Neda Anastassova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Valya Grigorova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
- Department of Physiology and Biochemistry, National Sports Academy, Acad. S. Mladenov Str. 21, 1700 Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
- Department of Healthcare, Faculty of Public Health, Healthcare and Sport, South-West University, Ivan Mihailov 66, 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| |
Collapse
|
3
|
Das A, Sinha K, Chakrabarty S. Elucidating the molecular mechanism of noncompetitive inhibition of acetylcholinesterase by an antidiabetic drug chlorpropamide: identification of new allosteric sites. Phys Chem Chem Phys 2024; 26:28894-28903. [PMID: 39535041 DOI: 10.1039/d4cp02921f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Acetylcholinesterase (AChE) has emerged as an important drug target for the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). Recent experimental studies indicate that certain antidiabetic drugs can be repurposed as potent AChE inhibitors. Enzymatic kinetic assays suggest that the antidiabetic drug chlorpropamide (CPM) acts as a noncompetitive inhibitor, but the mechanism of action and the binding site(s) of interaction with AChE are not known. In this work, we have carried out molecular dynamics (MD) simulations to discover a new allosteric site in addition to the known peripheral anionic site (PAS) as a potential binding site of this noncompetitive inhibitor. We show that the conformational ensemble of the catalytic triad, particularly the HIS447, undergoes a significant population shift on ligand binding that is responsible for deactivation of the enzyme. We also elucidate the pathway of the allosteric signaling in terms of locally correlated domains of the inter-residue interaction network. Thus, our work identifies a new allosteric site for AChE inhibition and eludiates the underlying mechanistic principles. These results would be useful for the rational design of new noncompetitive inhibitors for AChE.
Collapse
Affiliation(s)
- Abhinandan Das
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India.
| | - Krishnendu Sinha
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India.
| | - Suman Chakrabarty
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India.
| |
Collapse
|
4
|
Sabry NC, Michel HE, Menze ET. Repurposing of erythropoietin as a neuroprotective agent against methotrexate-induced neurotoxicity in rats. J Psychopharmacol 2024:2698811241295379. [PMID: 39535118 DOI: 10.1177/02698811241295379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Methotrexate (MTX) is a cytotoxic drug that can trigger neurotoxicity via enhancing oxidative stress, apoptosis, and inflammation. On the other hand, erythropoietin (EPO) functions as an antioxidant, anti-apoptotic, and anti-inflammatory agent, in addition to its hematopoietic effects. AIM The present study was developed to examine the neuroprotective impact of EPO against MTX-provoked neurotoxicity in rats. METHODS Chemo fog was elicited in Wistar rats via injection of one dosage of MTX (20 mg/kg, i.p) on the sixth day of the study. EPO was injected at 500 IU/kg/day, i.p for 10 successive days. RESULTS MTX triggered memory and learning impairment as evidenced by Morris water maze, passive avoidance, and Y-maze cognitive tests. In addition, MTX induced oxidative stress as evident from the decline in hippocampal Nrf2 and HO-1 levels. MTX brought about apoptosis, as demonstrated by the elevation in p53, caspase-3, and Bax levels, as well as the decrease in Bcl2 levels. MTX also decreased Beclin-1, an autophagy-related marker, and increased P62 expression. In addition, MTX downregulated Sirt-1/AKT/FoxO3a pathway and increased miRNA-34a gene expression. Moreover, MTX increased acetylcholinesterase activity and reduced neurogenesis. EPO administration remarkably counteracted MTX-induced molecular and behavioral disorders in rat hippocampi. CONCLUSION Our findings impart preclinical indication for repurposing of EPO as a promising neuroprotective agent through modulating miRNA-34a, autophagy, and the Sirt-1/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Nadine C Sabry
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Ain Shams University, Cairo, Egypt
| | - Haidy E Michel
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Ain Shams University, Cairo, Egypt
| | - Esther T Menze
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Kumar S, Mitra R, Ayyannan SR. Design, synthesis and evaluation of benzothiazole-derived phenyl thioacetamides as dual inhibitors of monoamine oxidases and cholinesterases. Mol Divers 2024:10.1007/s11030-024-11031-3. [PMID: 39520616 DOI: 10.1007/s11030-024-11031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
A series of rationally designed benzothiazole-derived thioacetamides was synthesized and investigated for monoamine oxidases (MAO-A and MAO-B) and cholinesterases (AChE and BChE) inhibition properties. The tested compounds 18-31 inhibited MAO-A and MAO-B in the micromolar to nanomolar range and AChE in the submicromolar range. Compound 28 was identified as the most potent MAO-A inhibitor with an IC50 = 0.030 ± 0.008 µM, whereas compound 30 showed the highest potency towards MAO-B and AChE with IC50 values of 0.015 ± 0.007 µM and 0.114 ± 0.003 µM, respectively. Further, compound 30 inhibited BChE at an IC50 value of 4.125 ± 0.143 µM. Among all screened molecules, compound 30 emerged as the lead dual MAO-B and AChE inhibitor that blocked these enzymes in a competitive-reversible and mixed-reversible mode, respectively. Selected compounds have displayed iron-chelation and antioxidant properties. Further, computational assessment of ligand binding affinity and pharmacokinetic parameters of all new compounds and molecular dynamic simulation of compound 30 with MAO-B and AChE were carried out to understand ligand efficiency, pharmacokinetic, and virtual molecular interaction profile, respectively. The in silico ADMET prediction studies revealed a few undesired pharmacokinetic attributes of our compounds. The attempted virtual lead-based library synthesis and subsequent biological investigation produced a new benzothiazole-bearing dual MAO-B and AChE inhibitor as a prospective MTDL candidate for treating neurological disorders.
Collapse
Affiliation(s)
- Sandeep Kumar
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Rangan Mitra
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
6
|
Gong L, Chen L, Lin Q, Wang L, Zhang Z, Ye Y, Chen B. Nanoscale Metal-Organic Frameworks as a Photoluminescent Platform for Bioimaging and Biosensing Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402641. [PMID: 39011737 DOI: 10.1002/smll.202402641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Indexed: 07/17/2024]
Abstract
The tracking of nanomedicines in their concentration and location inside living systems has a pivotal effect on the understanding of the biological processes, early-stage diagnosis, and therapeutic monitoring of diseases. Nanoscale metal-organic frameworks (nano MOFs) possess high surface areas, definite structure, regulated optical properties, rich functionalized sites, and good biocompatibility that allow them to excel in a wide range of biomedical applications. Controllable syntheses and functionalization endow nano MOFs with better properties as imaging agents and sensing units for the diagnosis and treatment of diseases. This minireview summarizes the tunable synthesis strategies of nano MOFs with controllable size, shape, and regulated luminescent performance, and pinpoints their recent advanced applications as optical elements in bioimaging and biosensing. The current limitations and future development directions of nano MOF-contained materials in bioimaging and biosensing applications are also discussed, aiming to expand the biological applications of nano MOF-based nanomedicine and facilitate their production or clinical translation.
Collapse
Affiliation(s)
- Lingshan Gong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Lixiang Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Quanjie Lin
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362046, P. R. China
| | - Lihua Wang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Yingxiang Ye
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| |
Collapse
|
7
|
Sharma P, Sharma S, Yadav Y, Shukla P, Sagar R. Current pharmacophore based approaches for the development of new anti-Alzheimer's agents. Bioorg Med Chem 2024; 113:117926. [PMID: 39306973 DOI: 10.1016/j.bmc.2024.117926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024]
Abstract
Amyloid beta peptide (Aβ) and hyperphosphorylated neuronal tau proteins accumulate in neurofibrillary tangles in Alzheimer's disease (AD), a chronic neurodegenerative illness. Chronic inflammation in the brain, which promotes disease progression, is another feature of the Alzheimer's disease pathogenesis. Approximately 60-70 % of dementia cases are caused by AD. The development of effective therapies for the treatment of AD is urgently needed given the severity of the condition and its rapidly rising prevalence. Cholinesterase inhibitors, beta-amyloid (A-beta), tau inhibitors, and many other medications are currently used as preventive medicine for AD. These medications can temporarily suppress dementia symptoms but cannot halt or reverse the disease's progression. Many international pharmaceutical companies have tried numerous times to develop an amyloid clearing medication based on the amyloid hypothesis, but without success. Therefore, the amyloid theory may not be entirely plausible. This review mainly covers the recent and important reported pharmacophores as the starting point to discuss already known targets like tau, butyrylcholinesterase, amyloid beta, and acetylcholinesterase and covers the literature between years 2019-2024.
Collapse
Affiliation(s)
- Prachi Sharma
- Department of Chemistry, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Sunil Sharma
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Paritosh Shukla
- Department of Chemistry, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India.
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
8
|
Wu D, Zhao Q, Wang Y, Zhang B, Tang X, Talap J, Sun J, Yang X. Fluorescent Iron-Doped Polymer Dot Nanozyme-Based Cascade System for Dual-Mode Detection of Acetylcholinesterase Activity and Its Inhibitors. Anal Chem 2024; 96:15682-15691. [PMID: 39292617 DOI: 10.1021/acs.analchem.4c03172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The advancement of acetylcholinesterase (AChE) activity and its inhibitor assays is crucial for clinical diagnosis, drug screening, and environmental monitoring. A nanozyme-mediated cascade reaction system could offer promising prospects for a wide range of applications in such biosensing; however, the creation of nanozyme catalysts with diverse functionalities remains a significant challenge. Herein, we have proposed a multifunctional iron-doped polymer dots (Fe-PDs) nanozyme possessing excellent fluorescence and peroxidase (POD)-mimicking activity. Notably, the Fe-PDs nanozyme is capable of catalyzing H2O2 to produce a series of reactive oxygen species, which can simultaneously quench the fluorescence of Fe-PDs and induce a chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB), enabling the dual-mode detection of H2O2 through both fluorescence turn-off and absorbance turn-on signals. Furthermore, by integrating acetylcholine (ACh) and choline oxidase (ChOx), we have developed a three-enzyme (AChE-ChOx-POD) cascade-based fluorometric and colorimetric dual-mode sensing platform for monitoring AChE activity and its inhibitors. The sensitive and convenient dual-mode sensor has achieved low limits of detection with 0.5 mU/mL (fluorometry) and 0.014 mU/mL (colorimetry) for AChE, respectively, which are superior to the traditional Ellman's assay. More significantly, this sensor can also be extended to detect the reversible and irreversible inhibitors of AChE, such as tacrine (IC50 = 23.3 nM) and carbaryl (LOD = 0.8 nM). We firmly believe that this innovative dual-mode nanozyme-involved multienzyme cascade system-based sensing strategy will stimulate further exploration and serve as a versatile and practical tool for biochemical sensing applications.
Collapse
Affiliation(s)
- Donghui Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qilin Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Wang
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi 830017, China
| | - Bing Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianqing Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jadera Talap
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi 830017, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi 830017, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Agarwal U, Verma S, Tonk RK. Chromenone: An emerging scaffold in anti-Alzheimer drug discovery. Bioorg Med Chem Lett 2024; 111:129912. [PMID: 39089526 DOI: 10.1016/j.bmcl.2024.129912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Alzheimer's disease (AD) presents a growing global health concern. In recent decades, natural and synthetic chromenone have emerged as promising drug candidates due to their multi-target potential. Natural chromenone, quercetin, scopoletin, esculetin, coumestrol, umbelliferone, bergapten, and methoxsalen (xanthotoxin), and synthetic chromenone hybrids comprising structures like acridine, 4-aminophenyl, 3-arylcoumarins, quinoline, 1,3,4-oxadiazole, 1,2,3-triazole, and tacrine, have been explored for their potential to combat AD. Key reactions used for synthesis of chromenone hybrids include Perkin and Pechmann condensation. The activity of chromenone hybrids has been reported against several drug targets, including AChE, BuChE, BACE-1, and MAO-A/B. This review comprehensively explores natural, semisynthetic, and synthetic chromenone, elucidating their synthetic routes, possible mode of action/drug targets and structure-activity relationships (SAR). The acquired knowledge provides valuable insights for the development of new chromenone hybrids against AD.
Collapse
Affiliation(s)
- Uma Agarwal
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India
| | - Saroj Verma
- Pharmaceutical Chemistry Division, School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India.
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India.
| |
Collapse
|
10
|
Jerom JP, Jalal A, Sajan AL, Soman R, Nair RH, Narayanan SP. In-vitro Neuro-2a cytotoxicity analysis and molecular docking investigation on potential anti-amyloid agents from Adiantum lunulatum. Heliyon 2024; 10:e38127. [PMID: 39381205 PMCID: PMC11458992 DOI: 10.1016/j.heliyon.2024.e38127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/22/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
In neurodegenerative diseases, amyloid formation by some proteins cause neuronal damage and loss. To prevent this neuronal damage and loss certain pharmaceuticals are available. Many of these pharmaceuticals act on the neurodegenerative disease symptoms but not on the root cause. This study helps to detect more effective agents which directly act on the root cause and reduce the risk of neurodegenerative diseases. To identify new anti-amyloid agents, the folk medicinally important plant Adiantum lunulatum was collected, authenticated, dried, extracted with ethanol and analyzed by GC-MS method. The screening of the identified phytochemicals was done using the webservers swissADME and ProTox-II. In-vitro MTT assay using Neuro-2a cell lines was carried out to determine the cytotoxicity of the extract. The interactions of these phytochemicals with the amyloid forming peptides and proteins were predicted using the molecular docking tools such as AutoDock Vina and BIOVIA discovery studio visualizer 2020. Through GC-MS analysis, 18 different volatile phytochemicals were identified from the ethanol extract. From this, 7 phytochemicals were selected based on the computational non-toxicity prediction. In-vitro cytotoxicity analysis of the ethanol extract using Neuro-2a cell lines detected the IC50 value of 0.09 mg/ml. Of these, the phytochemical P1 (trans, trans-9, 12-Octadecadienoic acid, propyl ester) interacts with tau, and huntingtin proteins, P2 (2-Pentadecanone, 6, 10, 14-trimethyl-) interacts with prion protein. The phytochemicals P1, P3 (Ethyl oleate), P4 (Octadecanoic acid, ethyl ester), and P5 (Phytol) interact with acetylcholinesterase. P2, P4, P5 and P6 (Henicosanal), interact with BACE-1. The phytochemical P3 interacts with γ- Secretase. The interaction of P2 and P5 with BACE-1 and P3 with γ- Secretase show better inhibition in inhibitory constant (K i ) analysis. These phytochemicals have been predicted to show significant potential against the formation or breakdown of peptide/protein amyloids, and further in-vitro studies are necessary to develop them into anti-amyloid agents.
Collapse
Affiliation(s)
| | - Ajmal Jalal
- School of Biosciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Ann Liya Sajan
- School of Biosciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Reshma Soman
- School of Biosciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | | | - Sunilkumar Puthenpurackal Narayanan
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences. Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| |
Collapse
|
11
|
Tan LJ, Lei WJ, Liu MM, Cai ZD, Jiang HL, Liu R, Li ZR. Discovery of cinnamamide/ester triazole hybrids as potential treatment for Alzheimer's disease. Bioorg Chem 2024; 150:107584. [PMID: 38964146 DOI: 10.1016/j.bioorg.2024.107584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Developing multitargeted ligands as promising therapeutics for Alzheimer's disease (AD) has been considered important. Herein, a novel class of cinnamamide/ester-triazole hybrids with multifaceted effects on AD was developed based on the multitarget-directed ligands strategy. Thirty-seven cinnamamide/ester-triazole hybrids were synthesized, with most exhibiting significant inhibitory activity against Aβ-induced toxicity at a single concentration in vitro. The most optimal hybrid compound 4j inhibited copper-induced Aβ toxicity in AD cells. its action was superior to that of donepezil and memantine. It also moderately inhibited intracellular AChE activity and presented favorable bioavailability and blood-brain barrier penetration with low toxicity in vivo. Of note, it ameliorated cognitive impairment, neuronal degeneration, and Aβ deposition in Aβ1-42-injured mice. Mechanistically, the compound regulated APP processing by promoting the ADAM10-associated nonamyloidogenic signaling and inhibiting the BACE1-mediated amyloidogenic pathway. Moreover, it suppressed intracellular AChE activity and tau phosphorylation. Therefore, compound 4j may be a promising multitargeted active molecule against AD.
Collapse
Affiliation(s)
- Lin-Jie Tan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Ju Lei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mi-Min Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhong-Di Cai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hai-Lun Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Zhuo-Rong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
12
|
Sharma A, Rudrawar S, Sharma A, Bharate SB, Jadhav HR. Design, synthesis, in silico, and in vitro evaluation of pyrrol-2-yl-phenyl allylidene hydrazine carboximidamide derivatives as AChE/BACE 1 dual inhibitors. RSC Adv 2024; 14:26703-26722. [PMID: 39184009 PMCID: PMC11341970 DOI: 10.1039/d4ra03589e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Alzheimer's disease (AD) manifests as a progressive decline in cognitive function and mental behavior. Targeting two crucial enzymes associated with AD, acetylcholinesterase (AChE) and BACE 1 (Beta-site APP Cleaving Enzyme), in combination, holds promise for therapeutic breakthroughs. In this study, 40 derivatives of pyrrol-2-yl-phenyl allylidene hydrazine carboximidamide were designed based on prior research. These derivatives underwent synthesis and assessment for their inhibitory potential against AChE and BACE 1. ADME predictions indicated favorable physicochemical properties for these compounds. The findings offer novel avenues for exploring the dual inhibition of AChE and BACE 1 as a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Amit Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus Vidya Vihar Pilani RJ 333031 India +91-1596-244183 +91-1596-255 506
| | - Santosh Rudrawar
- Institute for Glycomics, Griffith University Gold Coast 4222 Australia
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast 4222 Australia
| | - Ankita Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu - 181110 India
| | - Sandip B Bharate
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu - 181110 India
| | - Hemant R Jadhav
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus Vidya Vihar Pilani RJ 333031 India +91-1596-244183 +91-1596-255 506
| |
Collapse
|
13
|
Gyebi GA, Ejoh JC, Ogunyemi OM, Afolabi SO, Ibrahim IM, Anyanwu GO, Olorundare OE, Adebayo JO, Koketsu M. Cholinergic Inhibition and Antioxidant Potential of Gongronema latifolium Benth Leaf in Neurodegeneration: Experimental and In Silico Study. Cell Biochem Biophys 2024:10.1007/s12013-024-01467-7. [PMID: 39120857 DOI: 10.1007/s12013-024-01467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
The use of Gongronema latifolium for the management of various forms of neurological disorders has generated a lot of interest in the need to further investigate its neurotherapeutic constituents. This work, therefore, focused on assessing the inhibitory potential of selected bioactive components derived from G. latifolium against key neurotherapeutic targets and oxidant species associated with neurodegeneration using in vitro analysis and biomolecular modelling. G. latifolium methanol extract (GLME), solvent partition, chromatographic fractions (A-F) of GLME and pregnane compounds (Iloneoside and marsectohexol) derived from fraction-B with the highest activity were investigated for in vitro acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and monoamine oxidase (MAO) inhibition in addition to their in vitro antioxidant activities. The interactions of iloneoside, marsectohexol, and reference drugs with human acetylcholinesterase, butyrylcholinesterase, and β-secretase (BACE-1) were further assessed using molecular docking, binding free energy calculations, cluster analysis, and molecular dynamics simulations. The GLME and fractions inhibited the activities of both acetylcholinesterase and butyrylcholinesterase in a dose-dependent manner. Iloneoside and marsectohexol exhibited in vitro concentration-dependent inhibitory activities against acetylcholinesterase (IC50 = 19.28, 184.9 µM, respectively) and butyrylcholinesterase (IC50 = 30.75, 43.4 µM, respectively). These compounds also possess ferric ion-reducing, hydroxyl, and superoxide radical-scavenging activities. Iloneoside had the highest docking scores of -9.8, -9.9 -9.4 Kcal for AChE, BChE, and BACE1, respectively. The stability of the interaction of the bioactive compounds with the catalytic residues of the protein targets was preserved in a 100 ns molecular dynamics simulation. Iloneoside, a rare pregnane glycoside, was identified as a neurotherapeutic constituent of G. latifolium leaf. Further studies are suggested to investigate the neurotherapeutic potential in animal models.
Collapse
Affiliation(s)
- Gideon A Gyebi
- Department of Biochemistry, Bingham University, Karu, Nigeria.
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, 4000, South Africa.
| | - Joseph C Ejoh
- Department of Biochemistry, Bingham University, Karu, Nigeria
| | - Oludare M Ogunyemi
- Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria
| | - Saheed O Afolabi
- Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | | | | | | | - Joseph O Adebayo
- Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| |
Collapse
|
14
|
Naz H, Rahim F, Hussain R, Khan S, Rehman W, Khan Y, Aziz T, Alharbi M. In silico molecular modeling and in vitro biological screening of novel benzimidazole-based piperazine derivatives as potential acetylcholinesterase and butyrylcholinesterase inhibitors. Z NATURFORSCH C 2024; 0:znc-2024-0068. [PMID: 39007228 DOI: 10.1515/znc-2024-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
New series of benzimidazole incorporating piperazine moieties in single molecular framework has been reported. The structures of the synthesized derivatives were assigned by 1H-NMR, 13C-NMR, and HR-MS techniques. The hybrid derivatives were evaluated for their acetylcholinesterase and butyrylcholinesterase inhibition effect. All the synthesized analogs showed good to moderate inhibitory effect ranging from IC50 value 0.20 ± 0.01 µM to 0.50 ± 0.10 µM for acetylcholinesterase and from IC50 value 0.25 ± 0.01 µM to 0.70 ± 0.10 µM for butyrylcholinesterase except one that showed least potency with IC50 value 1.05 ± 0.1 µM and 1.20 ± 0.1 µM. The differences in inhibitory potential of synthesized compounds were due to the nature and position of substitution attached to the main ring. Additionally, molecular docking study was carried out for most active in order to explore the binding interactions established by ligand (active compounds) with the active residues of targeted AChE & BuChE enzyme.
Collapse
Affiliation(s)
- Haseena Naz
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad, Pakistan
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Yousaf Khan
- Department of Chemistry, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, Arta 47132, Greece
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Pastene-Burgos S, Muñoz-Nuñez E, Quiroz-Carreño S, Pastene-Navarrete E, Espinoza Catalan L, Bustamante L, Alarcón-Enos J. Ceanothanes Derivatives as Peripheric Anionic Site and Catalytic Active Site Inhibitors of Acetylcholinesterase: Insights for Future Drug Design. Int J Mol Sci 2024; 25:7303. [PMID: 39000410 PMCID: PMC11242892 DOI: 10.3390/ijms25137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial and fatal neurodegenerative disorder. Acetylcholinesterase (AChE) plays a key role in the regulation of the cholinergic system and particularly in the formation of amyloid plaques; therefore, the inhibition of AChE has become one of the most promising strategies for the treatment of AD, particularly concerning AChE inhibitors that interact with the peripheral anionic site (PAS). Ceanothic acid isolated from the Chilean Rhamnaceae plants is an inhibitor of AChE through its interaction with PAS. In this study, six ceanothic acid derivatives were prepared, and all showed inhibitory activity against AChE. The structural modifications were performed starting from ceanothic acid by application of simple synthetic routes: esterification, reduction, and oxidation. AChE activity was determined by the Ellmann method for all compounds. Kinetic studies indicated that its inhibition was competitive and reversible. According to the molecular coupling and displacement studies of the propidium iodide test, the inhibitory effect of compounds would be produced by interaction with the PAS of AChE. In silico predictions of physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of the ceanothane derivatives were performed using the Swiss ADME tool.
Collapse
Affiliation(s)
- Sofía Pastene-Burgos
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Evelyn Muñoz-Nuñez
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Soledad Quiroz-Carreño
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Edgar Pastene-Navarrete
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Luis Espinoza Catalan
- Departamento de Química, Universidad Federico Santa María, Valparaíso 2340000, Chile;
| | - Luis Bustamante
- Departamento Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4030000, Chile;
| | - Julio Alarcón-Enos
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| |
Collapse
|
16
|
Gyebi GA, Ogunyemi OM, Ibrahim IM, Ogunro OB, Afolabi SO, Ojo RJ, Anyanwu GO, El-Saber Batiha G, Adebayo JO. Identification of potential inhibitors of cholinergic and β-secretase enzymes from phytochemicals derived from Gongronema latifolium Benth leaf: an integrated computational analysis. Mol Divers 2024; 28:1305-1322. [PMID: 37338673 DOI: 10.1007/s11030-023-10658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/13/2023] [Indexed: 06/21/2023]
Abstract
Neurodegenerative disorders (NDDs) are associated with increased activities of the brain acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and β-secretase enzyme (BACE1). Inhibition of these enzymes affords therapeutic option for managing NDDs such as Alzheimer's disease (AD) and Parkinson's disease (PD). Although, Gongronema latifolium Benth (GL) has been widely documented in ethnopharmacological and scientific reports for the management of NDDs, there is paucity of information on its underlying mechanism and neurotherapeutic constituents. Herein, 152 previously reported Gongronema latifolium derived-phytochemicals (GLDP) were screened against hAChE, hBChE and hBACE-1 using molecular docking, molecular dynamics (MD) simulations, free energy of binding calculations and cluster analysis. The result of the computational analysis identified silymarin, alpha-amyrin and teraxeron with the highest binding energies (-12.3, -11.2, -10.5 Kcal/mol) for hAChE, hBChE and hBACE-1 respectively as compared with those of the reference inhibitors (-12.3, -9.8 and - 9.4 for donepezil, propidium and aminoquinoline compound respectively). These best docked phytochemicals were found to be orientated in the hydrophobic gorge where they interacted with the choline-binding pocket in the A-site and P-site of the cholinesterase and subsites S1, S3, S3' and flip (67-75) residues of the pocket of the BACE-1. The best docked phytochemicals complexed with the target proteins were stable in a 100 ns molecular dynamic simulation. The interactions with the catalytic residues were preserved during the simulation as observed from the MMGBSA decomposition and cluster analyses. The presence of these phytocompounds most notably silymarin, which demonstrated dual high binding tendencies to both cholinesterases, were identified as potential neurotherapeutics subject to further investigation.
Collapse
Affiliation(s)
- Gideon Ampoma Gyebi
- Department of Biochemistry, Faculty of Science and Technology, P.M.B 005, Karu, Nasarawa State, Nigeria.
- Natural Products and Structural (Bio-Chem)-informatics Research Laboratory (NpsBC-Rl), Bingham University, Nasarawa, Nigeria.
| | - Oludare M Ogunyemi
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ibrahim M Ibrahim
- Department of Biophysics, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Olalekan B Ogunro
- Department of Biological Sciences, KolaDaisi University, Ibadan, Nigeria
| | - Saheed O Afolabi
- Faculty of Basic Medical Sciences, Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | - Rotimi J Ojo
- Department of Biochemistry, Faculty of Computing and Applied Sciences, Baze University, Abuja, Nigeria
| | - Gabriel O Anyanwu
- Department of Biochemistry, Faculty of Science and Technology, P.M.B 005, Karu, Nasarawa State, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| | - Joseph O Adebayo
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
17
|
Reid GA, Darvesh S. Interaction of exogenous acetylcholinesterase and butyrylcholinesterase with amyloid-β plaques in human brain tissue. Chem Biol Interact 2024; 395:111012. [PMID: 38648920 DOI: 10.1016/j.cbi.2024.111012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are associated with amyloid-β (Aβ) plaques and exhibit altered biochemical properties in human Alzheimer's disease (AD), as well as in the transgenic 5XFAD mouse model of AD amyloidosis. In the brains of the 5XFAD mouse model devoid of BChE enzyme (5XFAD/BChE-KO), incubation of tissue sections with exogenous BChE purified from human plasma (pl-BChE) leads to its association with Aβ plaques and its biochemical properties are comparable to those reported for endogenous BChE associated with plaques in both human AD and in 5XFAD mouse brain tissue. We sought to determine whether these observations in 5XFAD/BChE-KO mice also apply to human brain tissues. To do so, endogenous ChE activity in human AD brain tissue sections was quenched with 50 % aqueous acetonitrile (MeCNaq) leaving the tissue suitable for further studies. Quenched sections were then incubated with recombinant AChE (r-AChE) or pl-BChE and stained for each enzymes' activity. Exogenous r-AChE or pl-BChE became associated with Aβ plaques, and when bound, had properties that were comparable to the endogenous ChE enzymes associated with plaques in AD brain tissues without acetonitrile treatment. These findings in human AD brain tissue extend previous observations in the 5XFAD/BChE-KO mouse model and demonstrate that exogenously applied r-AChE and pl-BChE have high affinity for Aβ plaques in human brain tissues. This association alters the biochemical properties of these enzymes, most likely due a conformational change. If incorporation of AChE and BChE in Aβ plaques facilitates AD pathogenesis, blocking this association could lead to disease-modifying approaches to AD. This work provides a method to study the mechanism of AChE and BChE interaction with Aβ plaque pathology in post-mortem human brain tissue.
Collapse
Affiliation(s)
- G A Reid
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - S Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada; Department of Medicine (Geriatric Medicine and Neurology), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
18
|
Grodner B, Pisklak DM, Szeleszczuk Ł. Succinimide Derivatives as Acetylcholinesterase Inhibitors-In Silico and In Vitro Studies. Curr Issues Mol Biol 2024; 46:5117-5130. [PMID: 38920979 PMCID: PMC11202142 DOI: 10.3390/cimb46060307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
We studied the effect of succinimide derivatives on acetylcholinesterase activity due to the interest in compounds that influence this enzyme's activity, which could help treat memory issues more effectively. The following parameters were established for this purpose based on kinetic investigations of the enzyme in the presence of succinimide derivatives: the half-maximal inhibitory concentration, the maximum rate, the inhibition constant, and the Michaelis-Menten constant. Furthermore, computational analyses were performed to determine the energy required for succinimide derivatives to dock with the enzyme's active site. The outcomes acquired in this manner demonstrated that all compounds inhibited acetylcholinesterase in a competitive manner. The values of the docking energy parameters corroborated the kinetic parameter values, which indicated discernible, albeit slight, variations in the inhibitory intensity among the various derivatives.
Collapse
Affiliation(s)
- Błażej Grodner
- Chair and Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| | - Dariusz Maciej Pisklak
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| |
Collapse
|
19
|
Vaaland Holmgard IC, González-Bakker A, Poeta E, Puerta A, Fernandes MX, Monti B, Fernández-Bolaños JG, Padrón JM, López Ó, Lindbäck E. Coumarin-azasugar-benzyl conjugates as non-neurotoxic dual inhibitors of butyrylcholinesterase and cancer cell growth. Org Biomol Chem 2024; 22:3425-3438. [PMID: 38590227 DOI: 10.1039/d4ob00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We have applied the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to prepare a library of ten coumarin-azasugar-benzyl conjugates and two phthalimide-azasugar-benzyl conjugates with potential anti-Alzheimer and anti-cancer properties. The compounds were evaluated as cholinesterase inhibitors, demonstrating a general preference, of up to 676-fold, for the inhibition of butyrylcholinesterase (BuChE) over acetylcholinesterase (AChE). Nine of the compounds behaved as stronger BuChE inhibitors than galantamine, one of the few drugs in clinical use against Alzheimer's disease. The most potent BuChE inhibitor (IC50 = 74 nM) was found to exhibit dual activities, as it also showed high activity (GI50 = 5.6 ± 1.1 μM) for inhibiting the growth of WiDr (colon cancer cells). In vitro studies on this dual-activity compound on Cerebellar Granule Neurons (CGNs) demonstrated that it displays no neurotoxicity.
Collapse
Affiliation(s)
- I Caroline Vaaland Holmgard
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway.
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, La Laguna, E-38206, Spain
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, La Laguna, E-38206, Spain
| | - Miguel X Fernandes
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, La Laguna, E-38206, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - Emil Lindbäck
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
20
|
Wang W, Yang J, Liang D, Yao L, Ma L. Prophylactic and therapeutic inhalation of two essential oils ameliorates scopolamine-induced cognitive impairment in mice. Nat Prod Res 2024:1-9. [PMID: 38557211 DOI: 10.1080/14786419.2024.2334335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Clover and lemongrass essential oils of contrasting composition, at three concentration levels (1%, 5%, 10%), were administrated via prophylactic and therapeutic inhalation to scopolamine-treated mice. Chemical analysis showed that clover oil was dominant in eugenol (47.69%) and lemongrass free of eugenol but mainly containing monoterpenoids of comparable proportions. Animal behavioural and brain biochemical tests showed that injection of scopolamine caused memory and learning deficit in mice while prophylactic and therapeutic inhalation of two oils at moderate to high concentrations all obviously reversed the cognitive impairment via inhibiting acetylcholinesterase activities, oxidation and inflammation. Lemongrass essential oil with diverse monoterpenoids can be as effective as or a little bit more potent than eugenol-rich clover essential oil possibly due to the synergistic effect of various monoterpenoids. These findings implied that sniffing of such aroma recipes could be a promising complementary approach for the mitigation of Alzheimer's disease-related cognitive impairment.
Collapse
Affiliation(s)
- Wencui Wang
- Research and Development Center of Aromatic Plants, School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Jingqi Yang
- Research and Development Center of Aromatic Plants, School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Decheng Liang
- Guangdong Yuecheng Technology Co., Ltd, Jiangmen City, Guangdong Province, China
| | - Lei Yao
- Research and Development Center of Aromatic Plants, School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Li Ma
- Research and Development Center of Aromatic Plants, School of Design, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Jiao LL, Dong HL, Liu MM, Wu PL, Cao Y, Zhang Y, Gao FG, Zhu HY. The potential roles of salivary biomarkers in neurodegenerative diseases. Neurobiol Dis 2024; 193:106442. [PMID: 38382884 DOI: 10.1016/j.nbd.2024.106442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
Current research efforts on neurodegenerative diseases are focused on identifying novel and reliable biomarkers for early diagnosis and insight into disease progression. Salivary analysis is gaining increasing interest as a promising source of biomarkers and matrices for measuring neurodegenerative diseases. Saliva collection offers multiple advantages over the currently detected biofluids as it is easily accessible, non-invasive, and repeatable, allowing early diagnosis and timely treatment of the diseases. Here, we review the existing findings on salivary biomarkers and address the potential value in diagnosing neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Based on the available research, β-amyloid, tau protein, α-synuclein, DJ-1, Huntington protein in saliva profiles display reliability and validity as the biomarkers of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling-Ling Jiao
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hui-Lin Dong
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China
| | - Meng-Meng Liu
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China
| | - Peng-Lin Wu
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China
| | - Yi Cao
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China
| | - Yuan Zhang
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China
| | - Fu-Gao Gao
- Xuzhou Cigarette Factory, China Tobacco Jiangsu Industrial Co Ltd, Xuzhou 221005, China.
| | - Huai-Yuan Zhu
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
22
|
Giovannuzzi S, Chavarria D, Provensi G, Leri M, Bucciantini M, Carradori S, Bonardi A, Gratteri P, Borges F, Nocentini A, Supuran CT. Dual Inhibitors of Brain Carbonic Anhydrases and Monoamine Oxidase-B Efficiently Protect against Amyloid-β-Induced Neuronal Toxicity, Oxidative Stress, and Mitochondrial Dysfunction. J Med Chem 2024; 67:4170-4193. [PMID: 38436571 DOI: 10.1021/acs.jmedchem.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
We report here the first dual inhibitors of brain carbonic anhydrases (CAs) and monoamine oxidase-B (MAO-B) for the management of Alzheimer's disease. Classical CA inhibitors (CAIs) such as methazolamide prevent amyloid-β-peptide (Aβ)-induced overproduction of reactive oxygen species (ROS) and mitochondrial dysfunction. MAO-B is also implicated in ROS production, cholinergic system disruption, and amyloid plaque formation. In this work, we combined a reversible MAO-B inhibitor of the coumarin and chromone type with benzenesulfonamide fragments as highly effective CAIs. A hit-to-lead optimization led to a significant set of derivatives showing potent low nanomolar inhibition of the target brain CAs (KIs in the range of 0.1-90.0 nM) and MAO-B (IC50 in the range of 6.7-32.6 nM). Computational studies were conducted to elucidate the structure-activity relationship and predict ADMET properties. The most effective multitarget compounds totally prevented Aβ-related toxicity, reverted ROS formation, and restored the mitochondrial functionality in an SH-SY5Y cell model surpassing the efficacy of single-target drugs.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Daniel Chavarria
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Gustavo Provensi
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, via G. Pieraccini 6, 50139 Florence, Italy
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti and Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
23
|
Long J, Qin F, Luo J, Zhong G, Huang S, Jing L, Yi T, Liu J, Jiang N. Design, synthesis, and biological evaluation of novel capsaicin-tacrine hybrids as multi-target agents for the treatment of Alzheimer's disease. Bioorg Chem 2024; 143:107026. [PMID: 38103330 DOI: 10.1016/j.bioorg.2023.107026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
A series of novel hybrid compounds were designed, synthesized, and utilized as multi-target drugs to treat Alzheimer's disease (AD) by connecting capsaicin and tacrine moieties. The biological assays indicated that most of these compounds demonstrated strong inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities with IC50 values in the nanomolar, as well as good blood-brain barrier permeability. Among the synthesized hybrids, compound 5s displayed the most balanced inhibitory effect on hAChE (IC50 = 69.8 nM) and hBuChE (IC50 = 68.0 nM), and exhibited promising inhibitory activity against β-secretase-1 (BACE-1) (IC50 = 3.6 µM). Combining inhibition kinetics and molecular model analysis, compound 5s was shown to be a mixed inhibitor affecting both the catalytic active site (CAS) and peripheral anionic site (PAS) of hAChE. Additionally, compound 5s showed low toxicity in PC12 and BV2 cell assays. Moreover, compound 5s demonstrated good tolerance at the dose of up to 2500 mg/kg and exhibited no hepatotoxicity at the dose of 3 mg/kg in mice, and it could effectively improve memory ability in mice. Taken together, these findings suggest that compound 5s is a promising and effective multi-target agent for the potential treatment of AD.
Collapse
Affiliation(s)
- Juanyue Long
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Fengxue Qin
- Blood Transfusion Department, Affiliated Hospital of Youjiang Medical University For Nationalities, Baise, Guangxi 533000, PR China
| | - Jinchong Luo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, PR China
| | - Guohui Zhong
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Shutong Huang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Lin Jing
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Tingzhuang Yi
- Department of Oncology, Affiliated Hospital of Youjiang Medical University For Nationalities, Baise, Guangxi 533000, PR China.
| | - Jing Liu
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China; School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, PR China.
| | - Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China.
| |
Collapse
|
24
|
Loganathan C, Ameen F, Sakayanathan P, Amirul Islam M, Thayumanavan P. Exploring the interaction of phytochemicals from Hibiscus rosa-sinensis flowers with glucosidase and acetylcholinesterase: An integrated in vitro and in silico approach. Comput Biol Chem 2024; 108:107996. [PMID: 38061170 DOI: 10.1016/j.compbiolchem.2023.107996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024]
Abstract
Targeting multiple factors such as oxidative stress, alpha glucosidase and acetylcholinesterase (AChE) are considered advantageous for the treatment of diabetes and diabetes associated-cognitive dysfunction. In the present study, Hibiscus rosa-sinensis flowers anthocyanin-rich extract (HRA) was prepared. Phytochemical analysis of HRA using LC-ESI/MS/MS revealed the presence of various phenolic acids, flavonoids and anthocyanins. HRA showed in vitro antioxidant activity at low concentrations. HRA inhibited all the activities of mammalian glucosidases and AChE activity. The IC50 value of HRA for the inhibition of maltase, sucrase, isomaltase, glucoamylase and AChE was found to be 308.02 ± 34.25 µg/ml, 287.8 ± 19.49 µg/ml, 424.58 ± 34.75 µg/ml, 408.94 ± 64.82 µg/ml and 264.13 ± 30.84 µg/ml, respectively. Kinetic analysis revealed mixed-type inhibition against all the activities except for glucoamylase (competitive) activity. In silico analysis confirmed the interaction of two active constituents cyanidin 3-sophoroside (CS) and quercetin 3-O-sophoroside (QS) with four subunits, n-terminal and c-terminal subunits of human maltase-glucoamylase and sucrase-isomaltase as well as with AChE. Molecular dynamics simulation, binding free energy calculation, DCCM, PCA, PCA-based free energy surface analysis ascertained the stable binding of CS and QS with target proteins studied. HRA could be used as complementary therapy for diabetes and cognitive improvement.
Collapse
Affiliation(s)
- Chitra Loganathan
- Bioinnov Solutions LLP, Research and Development Center, Salem, Tamil Nadu 636002, India; Department of Prosthodontics and Implantology, Saveetha Dental College and Hospital, Saveetha Institute of Medical And Technical Sciences (SIMATS), Chennai 600077, India.
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Penislusshiyan Sakayanathan
- Bioinnov Solutions LLP, Research and Development Center, Salem, Tamil Nadu 636002, India; Department of Biochemistry, Periyar University, Salem, Tamil Nadu 636011, India
| | - M Amirul Islam
- Verschuren Centre for Sustainability in Energy and the Environment 1250 Grand Lake Road, Sydney, Nova Scotia, Canada B1M 1A2
| | | |
Collapse
|
25
|
Arora R, Babbar R, Dabra A, Chopra B, Deswal G, Grewal AS. Marine-derived Compounds: A Powerful Platform for the Treatment of Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:166-181. [PMID: 38305396 DOI: 10.2174/0118715249269050231129103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is a debilitating form of dementia that primarily affects cholinergic neurons in the brain, significantly reducing an individual's capacity for learning and creative skills and ultimately resulting in an inability to carry out even basic daily tasks. As the elderly population is exponentially increasing, the disease has become a significant concern for society. Therefore, neuroprotective substances have garnered considerable interest in addressing this universal issue. Studies have shown that oxidative damage to neurons contributes to the pathophysiological processes underlying AD progression. In AD, tau phosphorylation and glutamate excitotoxicity may play essential roles, but no permanent cure for AD is available. The existing therapies only manage the early symptoms of AD and often come with numerous side effects and toxicities. To address these challenges, researchers have turned to nature and explored various sources such as plants, animals, and marine organisms. Many historic holy books from different cultures emphasize that adding marine compounds to the regular diet enhances brain function and mitigates its decline. Consequently, researchers have devoted significant time to identifying potentially active neuroprotective substances from marine sources. Marine-derived compounds are gaining recognition due to their abundant supply of diverse chemical compounds with biological and pharmacological potential and unique mechanisms of action. Several studies have reported that plants exhibit multitarget potential in treating AD. In light of this, the current study focuses on marine-derived components with excellent potential for treating this neurodegenerative disease.
Collapse
Affiliation(s)
- Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Abhishek Dabra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Geeta Deswal
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | | |
Collapse
|
26
|
Hsieh MJ, Lee CH, Chen DY, Wu CL, Huang YT, Chang SH. Cholinesterase inhibitors associated with lower rate of mortality in dementia patients with heart failure: a nationwide propensity weighting study. Clin Auton Res 2023; 33:715-726. [PMID: 37935929 DOI: 10.1007/s10286-023-00982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/07/2023] [Indexed: 11/09/2023]
Abstract
PURPOSE This study investigates the potential impact of cholinesterase inhibitors (ChEIs) on patients with heart failure (HF) and dementia. ChEIs are known to boost acetylcholine levels and benefit cognition in patients with dementia; however, their effect on patients with HF is uncertain. This study aimed to assess whether cardiovascular events and mortality among patients with HF and dementia are altered by ChEI therapy. METHODS Data from the National Health Insurance Research Database in Taiwan were retrospectively analyzed. Dementia patients diagnosed with HF were followed for 5 years until all-cause mortality, cardiovascular mortality, hospitalization for worsening HF, or the end of the study. Multivariable Cox models and inverse probability of treatment weighting (IPTW) were employed. RESULTS Out of 20,848 patients with dementia, 5138 had HF. Among them, 726 were ChEI users and 4412 were non-users. Based on IPTW, the ChEI users had significantly lower estimated risks of all-cause mortality [hazard ratio (HR) 0.43; 95% confidence interval (CI) 0.38-0.49, p < 0.001] and cardiovascular mortality (HR 0.41; 95% CI 0.33-0.53, p < 0.001) compared with the non-users, but there was no significant difference in hospitalization for worsening HF (HR 0.73; 95% CI 0.51-1.05, p = 0.091) after 5 years. The survival benefits of ChEIs were consistent across subgroups. CONCLUSIONS The results of this retrospective cohort study suggest that ChEIs may be beneficial in reducing all-cause and cardiovascular mortality in patients with dementia with HF. Further research is needed to validate these findings and explore the potential benefits of ChEIs in all patients with HF, including those without dementia.
Collapse
Affiliation(s)
- Ming-Jer Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, No 5, Fuxing St. Guishan Dist., Taoyuan, 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, No 5, Fuxing St. Guishan Dist., Taoyuan, 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Dong-Yi Chen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, No 5, Fuxing St. Guishan Dist., Taoyuan, 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Ling Wu
- Centre for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yu-Tung Huang
- Centre for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Shang-Hung Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, No 5, Fuxing St. Guishan Dist., Taoyuan, 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Centre for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
| |
Collapse
|
27
|
Al-Rifai NM, Al-Khalileh NM, Zahra JA, El-Barghouthi MI, Darras FH. Synthesis, biological evaluation, and computational studies of N-benzyl pyridinium-curcumin derivatives as potent AChE inhibitors with antioxidant activity. J Enzyme Inhib Med Chem 2023; 38:2281264. [PMID: 37985494 PMCID: PMC11003481 DOI: 10.1080/14756366.2023.2281264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
A library of N-benzylpyridinium-based compounds, 7a-j and 8a-j, was designed and synthesised as potential acetylcholinesterase) AChE (inhibitors. An in vitro assay for the synthesised compounds showed that most compounds had significant AChE inhibitory activities at the nanomolar and submicromolar levels. The benzyl (8a) and fluoro (8b) derivatives were the most active, with IC50 values ≤56 nM. Compound 7f, which had a benzyl moiety, showed the highest potency among all the target compounds, with an IC50 value of 7.5 ± 0.19 nM against AChE, which was higher than that of the activities of tacrine (IC50 = 30 ± 0.2 nM) and donepezil (IC50 = 14 ± 0.12 nM). Compounds with vanillin moieties exhibited antioxidant activity. Among the tested compounds, four derivatives (7f, 7 g, 8f, and 8 g) exhibited superior AChE inhibitory activity, with Ki values of 6-16 nM, which were potent in the same range as the approved drug, donepezil. These compounds showed moderate antioxidant activities, as indicated by the results of the ABTS assay.
Collapse
Affiliation(s)
- Nafisah M. Al-Rifai
- Pharmaceutical-Chemical Engineering Department, School of Medical Sciences, German Jordanian University, P.O. Box 35247, Amman11180, Jordan
| | | | - Jalal A. Zahra
- Chemistry Department, The University of Jordan, Amman, Jordan
| | - Musa I. El-Barghouthi
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa13133, Jordan
| | | |
Collapse
|
28
|
Subramanian N, Watson B, Li CZ, Moss M, Liu C. Patterning amyloid-β aggregation under the effect of acetylcholinesterase using a biological nanopore - an in vitro study. SENSORS AND ACTUATORS REPORTS 2023; 6:100170. [PMID: 37663321 PMCID: PMC10469531 DOI: 10.1016/j.snr.2023.100170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Aggregation of amyloid-β peptide (Aβ) is hypothesized to be the primary cause of Alzheimer's disease (AD) progression. Aβ aggregation has been widely studied using conventional sensing tools like emission fluorescence, electron microscopy, mass spectroscopy, and circular dichroism. However, none of these techniques can provide cost-efficient, highly sensitive quantification of Aβ aggregation kinetics at the molecular level. Among the influences on Aβ aggregation of interest to disease progression is the acceleration of Aβ aggregation by acetylcholinesterase (AChE), which is present in the brain and inflicts the fast progression of disease due to its direct interaction with Aβ. In this work, we demonstrate the ability of a biological nanopore to map and quantify AChE accelerated aggregation of Aβ monomers to mixed oligomers and small soluble aggregates with single-molecule precision. This method will allow future work on testing direct and indirect effects of therapeutic drugs on AChE accelerated Aβ aggregation as well as disease prognosis.
Collapse
Affiliation(s)
- Nandhini Subramanian
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Brittany Watson
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Chen-Zhong Li
- Biomedical Engineering Program, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Melissa Moss
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
29
|
Zueva IV, Vasilieva EA, Gaynanova GA, Moiseenko AV, Burtseva AD, Boyko KM, Zakharova LY, Petrov KA. Can Activation of Acetylcholinesterase by β-Amyloid Peptide Decrease the Effectiveness of Cholinesterase Inhibitors? Int J Mol Sci 2023; 24:16395. [PMID: 38003588 PMCID: PMC10671303 DOI: 10.3390/ijms242216395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
A central event in the pathogenesis of Alzheimer's disease (AD) is the accumulation of senile plaques composed of aggregated amyloid-β (Aβ) peptides. The main class of drugs currently used for the treatment of AD are the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. In this study, it has been shown that Aβ augmented AChE activity in vitro, maximum activation of 548 ± 5% was achieved following 48 h of incubation with 10 μM of Aβ1-40, leading to a 7.7-fold increase in catalytic efficiency. The observed non-competitive type of AChE activation by Aβ1-40 was associated with increased Vmax and unchanged Km. Although BChE activity also increased following incubation with Aβ1-40, this was less efficiently achieved as compared with AChE. Ex vivo electrophysiological experiments showed that 10 μM of Aβ1-40 significantly decreased the effect of the AChE inhibitor huperzine A on the synaptic potential parameters.
Collapse
Affiliation(s)
- Irina V. Zueva
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, Arbuzov Str., 8, 420088 Kazan, Russia; (I.V.Z.); (L.Y.Z.)
| | - Elmira A. Vasilieva
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, Arbuzov Str., 8, 420088 Kazan, Russia; (I.V.Z.); (L.Y.Z.)
| | - Gulnara A. Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, Arbuzov Str., 8, 420088 Kazan, Russia; (I.V.Z.); (L.Y.Z.)
| | - Andrey V. Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1–12, 119991 Moscow, Russia
| | - Anna D. Burtseva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33/2, 119071 Moscow, Russia; (A.D.B.); (K.M.B.)
- Landau Phystech School of Physics and Research, Moscow Institute of Physics and Technology, Institutsky Lane, 9, Dolgoprudny, 141700 Moscow, Russia
| | - Konstantin M. Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33/2, 119071 Moscow, Russia; (A.D.B.); (K.M.B.)
| | - Lucia Ya. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, Arbuzov Str., 8, 420088 Kazan, Russia; (I.V.Z.); (L.Y.Z.)
| | - Konstantin A. Petrov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, Arbuzov Str., 8, 420088 Kazan, Russia; (I.V.Z.); (L.Y.Z.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| |
Collapse
|
30
|
Mu X, Yuan S, Zhang D, Lai R, Liao C, Li G. Selective modulation of alkali metal ions on acetylcholinesterase. Phys Chem Chem Phys 2023; 25:30308-30318. [PMID: 37934509 DOI: 10.1039/d3cp02887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Acetylcholinesterase (AChE) is an important hydrolase in cholinergic synapses and a candidate target in the treatment of Alzheimer's disease. The lithium treatment widely used in neurological disorders can alter the AChE activity, yet the underlying mechanism of how the ion species regulate the enzymatic activity remains unclear. In this work, we performed combined quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulations and well-tempered metadynamics to understand the modulation of human AChE (hAChE) activity using three alkali metal ions (Li+, Na+, and K+) in different concentrations. Our simulations show that the binding affinity and catalytic activity are affected by different ion species through allosteric ion coordination geometries on the hAChE complex and distant electrostatic screening effect. A Li+ cluster involving D330, E393, and D397 residues and three Li+ ions was found to be highly conserved and can be critical to the enzyme activity. Binding energy calculations indicate that the electrostatic screening from allosterically bound cations can affect the key residues at the catalytic site and active-site gorge, including E199. Furthermore, an increase in ion concentration can lead to lower reactivity, especially for Li+ ions, which exhibit more cation-hAChE contacts than Na+ and K+. The selective ion binding and their preferred modulation on hAChE are highly related to ion species. This work provides a molecular perspective on selective modulation by different ion species of the enzyme catalytic processes.
Collapse
Affiliation(s)
- Xia Mu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Shengwei Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Dinglin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Rui Lai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Chenyi Liao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
31
|
Gutti G, Leifeld J, Kakarla R, Bajad NG, Ganeshpurkar A, Kumar A, Krishnamurthy S, Klein-Schmidt C, Tapken D, Hollmann M, Singh SK. Discovery of triazole-bridged aryl adamantane analogs as an intriguing class of multifunctional agents for treatment of Alzheimer's disease. Eur J Med Chem 2023; 259:115670. [PMID: 37515920 DOI: 10.1016/j.ejmech.2023.115670] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
Alzheimer's disease (AD) is a progressive brain disorder associated with slow loss of brain functions leading to memory failure and modest changes in behavior. The multifactorial neuropathological condition is due to a depletion of cholinergic neurons and accumulation of amyloid-beta (Aβ) plaques. Recently, a multi-target-directed ligand (MTDL) strategy has emerged as a robust drug discovery tool to overcome current challenges. In this research work, we aimed to design and develop a library of triazole-bridged aryl adamantane analogs for the treatment of AD. All synthesized analogs were characterized and evaluated through various in vitro and in vivo biological studies. The optimal compounds 32 and 33 exhibited potent inhibitory activities against acetylcholinesterase (AChE) (32 - IC50 = 0.086 μM; 33 - 0.135 μM), and significant Aβ aggregation inhibition (20 μM). N-methyl-d-aspartate (NMDA) receptor (GluN1-1b/GluN2B subunit combination) antagonistic activity of compounds 32 and 33 measured upon heterologous expression in Xenopus laevis oocytes showed IC50 values of 3.00 μM and 2.86 μM, respectively. The compounds possessed good blood-brain barrier permeability in the PAMPA assay and were safe for SH-SY5Y neuroblastoma (10 μM) and HEK-293 cell lines (30 μM). Furthermore, in vivo behavioral studies in rats demonstrated that both compounds improved cognitive and spatial memory impairment at a dose of 10 mg/kg oral administration. Together, our findings suggest triazole-bridged aryl adamantane as a promising new scaffold for the development of anti-Alzheimer's drugs.
Collapse
Affiliation(s)
- Gopichand Gutti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India; Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Leifeld
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Ramakrishna Kakarla
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Nilesh Gajanan Bajad
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Ganeshpurkar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Christina Klein-Schmidt
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Daniel Tapken
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael Hollmann
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
32
|
Conceição RAD, von Ranke N, Azevedo L, Franco D, Nadur NF, Kummerle AE, Barbosa MLDC, Souza AMT. Structure-based design of new N-benzyl-piperidine derivatives as multitarget-directed AChE/BuChE inhibitors for Alzheimer's disease. J Cell Biochem 2023; 124:1734-1748. [PMID: 37796142 DOI: 10.1002/jcb.30483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
The pathogenic complexity of Alzheimer's disease (AD) demands the development of multitarget-directed agents aiming at improving actual pharmacotherapy. Based on the cholinergic hypothesis and considering the well-established role of butyrylcholinesterase (BuChE) in advanced stages of AD, the chemical structure of the acetylcholinesterase (AChE) inhibitor drug donepezil (1) was rationally modified for the design of new N-benzyl-piperidine derivatives (4a-d) as potential multitarget-direct AChE and BuChE inhibitors. The designed analogues were further studied through the integration of in silico and in vitro methods. ADMET predictions showed that 4a-d are anticipated to be orally bioavailable, able to cross the blood-brain barrier and be retained in the brain, and to have low toxicity. Computational docking and molecular dynamics indicated the formation of favorable complexes between 4a-d and both cholinesterases. Derivative 4a presented the lowest binding free energy estimation due to interaction with key residues from both target enzymes (-36.69 ± 4.47 and -32.23 ± 3.99 kcal/mol with AChE and BuChE, respectively). The in vitro enzymatic assay demonstrated that 4a was the most potent inhibitor of AChE (IC50 2.08 ± 0.16 µM) and BuChE (IC50 7.41 ± 0.44 µM), corroborating the in silico results and highlighting 4a as a novel multitarget-directed AChE/BuChE inhibitor.
Collapse
Affiliation(s)
- Raissa Alves da Conceição
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Organic Synthesis and Medicinal Chemistry (LaSOQuiM), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia von Ranke
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Azevedo
- Laboratory of Molecular Diversity and Medicinal Chemistry (LaDMol-QM), Institute of Chemistry, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Daiana Franco
- Laboratory of Molecular Diversity and Medicinal Chemistry (LaDMol-QM), Institute of Chemistry, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Nathalia Fonseca Nadur
- Laboratory of Molecular Diversity and Medicinal Chemistry (LaDMol-QM), Institute of Chemistry, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Arthur Eugen Kummerle
- Laboratory of Molecular Diversity and Medicinal Chemistry (LaDMol-QM), Institute of Chemistry, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Maria Letícia de C Barbosa
- Laboratory of Organic Synthesis and Medicinal Chemistry (LaSOQuiM), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra M T Souza
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Shah A, Mir PA, Adnan M, Patel M, Maqbool M, Mir RH, Masoodi MH. Synthetic and Natural Bioactive Molecules in Balancing the Crosstalk among Common Signaling Pathways in Alzheimer's Disease: Understanding the Neurotoxic Mechanisms for Therapeutic Intervention. ACS OMEGA 2023; 8:39964-39983. [PMID: 37929080 PMCID: PMC10620788 DOI: 10.1021/acsomega.3c05662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
The structure and function of the brain greatly rely on different signaling pathways. The wide variety of biological processes, including neurogenesis, axonal remodeling, the development and maintenance of pre- and postsynaptic terminals, and excitatory synaptic transmission, depends on combined actions of these molecular pathways. From that point of view, it is important to investigate signaling pathways and their crosstalk in order to better understand the formation of toxic proteins during neurodegeneration. With recent discoveries, it is established that the modulation of several pathological events in Alzheimer's disease (AD) due to the mammalian target of rapamycin (mTOR), Wnt signaling, 5'-adenosine monophosphate activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), and sirtuin 1 (Sirt1, silent mating-type information regulator 2 homologue 1) are central to the key findings. These include decreased amyloid formation and inflammation, mitochondrial dynamics control, and enhanced neural stability. This review intends to emphasize the importance of these signaling pathways, which collectively determine the fate of neurons in AD in several ways. This review will also focus on the role of novel synthetic and natural bioactive molecules in balancing the intricate crosstalk among different pathways in order to prolong the longevity of AD patients.
Collapse
Affiliation(s)
- Abdul
Jalil Shah
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Prince Ahad Mir
- Khalsa
College of Pharmacy, G.T. Road, Amritsar 143002, Punjab, India
| | - Mohd Adnan
- Department
of Biology, College of Science, University
of Ha’il, Ha’il 81451, Saudi Arabia
| | - Mitesh Patel
- Research
and Development Cell, Department of Biotechnology, Parul Institute
of Applied Sciences, Parul University, Vadodara 391760, India
| | - Mudasir Maqbool
- Pharmacy
Practice Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
34
|
Aljabri M, Alharbi K, Alonazi M. In vitro and in silico analysis of Solanum torvum fruit and methyl caffeate interaction with cholinesterases. Saudi J Biol Sci 2023; 30:103815. [PMID: 37811479 PMCID: PMC10558794 DOI: 10.1016/j.sjbs.2023.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/26/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Oxidative stress along with dysfunction in cholinergic neurotransmission primarily underlies cognitive impairment. A significant approach to mitigate cognitive dysfunction involves the inhibition of cholinesterases, namely acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Exploring the potential antioxidant and anticholinesterase effects of edible plants holds promise for their utilization as botanicals to enhance cognition. Solanum torvum fruit with vast biological properties are used as food. In the present study, butanolic extract of S. torvum fruits (BESTF) was prepared. Additionally, the study investigated into the properties of methyl caffeate (MC), a compound present in S. torvum, obtained in its pure form. In vitro antioxidant and anticholinesterases activity of BESTF and MC were determined. BESTF and MC showed potent antioxidant property. BESTF and MC dose-dependently inhibited AChE (IC50 values: 166.6 µg/ml and 680.6 µM, respectively) and BChE (IC50 values: 161.55 µg/ml and 413 µM, respectively). BESTF and MC inhibited AChE and BChE in competitive mode. Active site gorge of AChE/BChE was occupied by MC which formed interaction with amino acids present in catalytic site and PAS in in silico. Further, molecular dynamics simulations followed by free energy calculation, principal component analysis and dynamic cross-correlation matrix provided the compelling evidence that that MC maintained stable interactions during MD simulation with AChE and BChE. Collectively, the results from the present study underlines the cognitive-enhancing effect of BESTF and MC.
Collapse
Affiliation(s)
- Maha Aljabri
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mona Alonazi
- Biochemistry Department, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| |
Collapse
|
35
|
Remya C, Dileep KV, Variyar EJ, Omkumar RV, Sadasivan C. Lobeline: A multifunctional alkaloid modulates cholinergic and glutamatergic activities. IUBMB Life 2023; 75:844-855. [PMID: 37335270 DOI: 10.1002/iub.2762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Developing drugs for Alzheimer's disease (AD) is an extremely challenging task due to its devastating pathology. Previous studies have indicated that natural compounds play a crucial role as lead molecules in the development of drugs. Even though, there are remarkable technological advancements in the isolation and synthesis of natural compounds, the targets for many of them are still unknown. In the present study, lobeline, a piperidine alkaloid has been identified as a cholinesterase inhibitor through chemical similarity assisted target fishing method. The structural similarities between lobeline and donepezil, a known acetylcholinesterase (AChE) inhibitor encouraged us to hypothesize that lobeline may also exhibit AChE inhibitory properties. It was further confirmed by in silico, in vitro and biophysical studies that lobeline could inhibit cholinesterase. The binding profiles indicated that lobeline has a higher affinity for AChE than BChE. Since excitotoxicity is one of the major pathological events associated with AD progression, we also investigated the neuroprotective potential of lobeline against glutamate mediated excitotoxicity in rat primary cortical neurons. The cell based NMDA receptor (NMDAR) assay with lobeline suggested that neuroprotective potential of lobeline is mediated through the blockade of NMDAR activity.
Collapse
Affiliation(s)
- Chandran Remya
- Department of Biotechnology and Microbiology, Kannur University, Thalassery, Kerala, India
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Kalarickal V Dileep
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Elessery J Variyar
- Department of Biotechnology and Microbiology, Kannur University, Thalassery, Kerala, India
- Inter University Centre for Bioscience, Kannur University, Thalassery, Kerala, India
| | | | - Chittalakkottu Sadasivan
- Department of Biotechnology and Microbiology, Kannur University, Thalassery, Kerala, India
- Inter University Centre for Bioscience, Kannur University, Thalassery, Kerala, India
| |
Collapse
|
36
|
Voicu V, Brehar FM, Toader C, Covache-Busuioc RA, Corlatescu AD, Bordeianu A, Costin HP, Bratu BG, Glavan LA, Ciurea AV. Cannabinoids in Medicine: A Multifaceted Exploration of Types, Therapeutic Applications, and Emerging Opportunities in Neurodegenerative Diseases and Cancer Therapy. Biomolecules 2023; 13:1388. [PMID: 37759788 PMCID: PMC10526757 DOI: 10.3390/biom13091388] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In this review article, we embark on a thorough exploration of cannabinoids, compounds that have garnered considerable attention for their potential therapeutic applications. Initially, this article delves into the fundamental background of cannabinoids, emphasizing the role of endogenous cannabinoids in the human body and outlining their significance in studying neurodegenerative diseases and cancer. Building on this foundation, this article categorizes cannabinoids into three main types: phytocannabinoids (plant-derived cannabinoids), endocannabinoids (naturally occurring in the body), and synthetic cannabinoids (laboratory-produced cannabinoids). The intricate mechanisms through which these compounds interact with cannabinoid receptors and signaling pathways are elucidated. A comprehensive overview of cannabinoid pharmacology follows, highlighting their absorption, distribution, metabolism, and excretion, as well as their pharmacokinetic and pharmacodynamic properties. Special emphasis is placed on the role of cannabinoids in neurodegenerative diseases, showcasing their potential benefits in conditions such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. The potential antitumor properties of cannabinoids are also investigated, exploring their potential therapeutic applications in cancer treatment and the mechanisms underlying their anticancer effects. Clinical aspects are thoroughly discussed, from the viability of cannabinoids as therapeutic agents to current clinical trials, safety considerations, and the adverse effects observed. This review culminates in a discussion of promising future research avenues and the broader implications for cannabinoid-based therapies, concluding with a reflection on the immense potential of cannabinoids in modern medicine.
Collapse
Affiliation(s)
- Victor Voicu
- Pharmacology, Toxicology and Clinical Psychopharmacology, “Carol Davila” University of Medicine and Pharmacy in Bucharest, 020021 Bucharest, Romania;
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Felix-Mircea Brehar
- Neurosurgery Department, Emergency Clinical Hospital Bagdasar-Arseni, 041915 Bucharest, Romania
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Andrei Bordeianu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
37
|
Fronza MG, Alves D, Praticò D, Savegnago L. The neurobiology and therapeutic potential of multi-targeting β-secretase, glycogen synthase kinase 3β and acetylcholinesterase in Alzheimer's disease. Ageing Res Rev 2023; 90:102033. [PMID: 37595640 DOI: 10.1016/j.arr.2023.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia, affecting almost 50 million of people around the world, characterized by a complex and age-related progressive pathology with projections to duplicate its incidence by the end of 2050. AD pathology has two major hallmarks, the amyloid beta (Aβ) peptides accumulation and tau hyperphosphorylation, alongside with several sub pathologies including neuroinflammation, oxidative stress, loss of neurogenesis and synaptic dysfunction. In recent years, extensive research pointed out several therapeutic targets which have shown promising effects on modifying the course of the disease in preclinical models of AD but with substantial failure when transposed to clinic trials, suggesting that modulating just an isolated feature of the pathology might not be sufficient to improve brain function and enhance cognition. In line with this, there is a growing consensus that an ideal disease modifying drug should address more than one feature of the pathology. Considering these evidence, β-secretase (BACE1), Glycogen synthase kinase 3β (GSK-3β) and acetylcholinesterase (AChE) has emerged as interesting therapeutic targets. BACE1 is the rate-limiting step in the Aβ production, GSK-3β is considered the main kinase responsible for Tau hyperphosphorylation, and AChE play an important role in modulating memory formation and learning. However, the effects underlying the modulation of these enzymes are not limited by its primarily functions, showing interesting effects in a wide range of impaired events secondary to AD pathology. In this sense, this review will summarize the involvement of BACE1, GSK-3β and AChE on synaptic function, neuroplasticity, neuroinflammation and oxidative stress. Additionally, we will present and discuss new perspectives on the modulation of these pathways on AD pathology and future directions on the development of drugs that concomitantly target these enzymes.
Collapse
Affiliation(s)
- Mariana G Fronza
- Neurobiotechnology Research Group (GPN) - Centre for Technology Development CDTec, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Diego Alves
- Laboratory of Clean Organic Synthesis (LASOL), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), UFPel, RS, Brazil
| | - Domenico Praticò
- Alzheimer's Center at Temple - ACT, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Lucielli Savegnago
- Neurobiotechnology Research Group (GPN) - Centre for Technology Development CDTec, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil.
| |
Collapse
|
38
|
Zambrano P, Jemiola-Rzeminska M, Muñoz-Torrero D, Suwalsky M, Strzalka K. A rhein-huprine hybrid protects erythrocyte membrane integrity against Alzheimer's disease related Aβ(1-42) peptide. Biophys Chem 2023; 300:107061. [PMID: 37307659 DOI: 10.1016/j.bpc.2023.107061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
Alzheimer's disease remains largely unknown, and currently there is no complete cure for the disease. New synthetic approaches have been developed to create multi-target agents, such as RHE-HUP, a rhein-huprine hybrid which can modulate several biological targets that are relevant to the development of the disease. While RHE-HUP has shown in vitro and in vivo beneficial effects, the molecular mechanisms by which it exerts its protective effect on cell membranes have not been fully clarified. To better understand RHE-HUP interactions with cell membranes, we used synthetic membrane models and natural models of human membranes. For this purpose, human erythrocytes and molecular model of its membrane built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were used. The latter correspond to classes of phospholipids present in the outer and inner monolayers of the human erythrocyte membrane, respectively. X-ray diffraction and differential scanning calorimetry (DSC) results indicated that RHE-HUP was able to interact mainly with DMPC. In addition, scanning electron microscopy (SEM) analysis showed that RHE-HUP modified the normal biconcave shape of erythrocytes inducing the formation of echinocytes. Moreover, the protective effect of RHE-HUP against the disruptive effect of Aβ(1-42) on the studied membrane models was tested. X-ray diffraction experiments showed that RHE-HUP induced a recovery in the ordering of DMPC multilayers after the disruptive effect of Aβ(1-42), confirming the protective role of the hybrid.
Collapse
Affiliation(s)
- Pablo Zambrano
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| | - Malgorzata Jemiola-Rzeminska
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Mario Suwalsky
- Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Kazimierz Strzalka
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
39
|
Felsztyna I, Perillo MA, Clop EM. Nanoarchitectonic approaches for measuring the catalytic behavior of a membrane anchored enzyme. From Langmuir-Blodgett to a novel Langmuir-Schaefer based nanofilm building device. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184177. [PMID: 37225031 DOI: 10.1016/j.bbamem.2023.184177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Self-organized lipid monolayers at the air-water interface (Langmuir films, LF) are commonly used for measuring the catalytic properties of membrane-bound enzymes. This methodology allows to provide a consistent flat topography molecular density, packing defects and thickness. The aim of the present work was to show the methodological advantages of using the horizontal transfer method (Langmuir-Schaefer) with respect to the vertical transfer method (Langmuir-Blodgett) when mounting a device to measure catalytic activity of membrane enzymes. Based on the results obtained we can conclude that it is possible to prepare stable Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) films from Bovine Erythrocyte Membranes (BEM) preserving the catalytic activity of its native Acetylcholinesterase (BEA). In comparison, the LS films showed Vmax values more similar to the enzyme present in the vesicles of natural membranes. In addition, it was much easier to produce large amounts of transferred areas with the horizontal transfer methodology. It was possible to decrease the time required to mount an assay with numerous activity points, such as building activity curves as a function of substrate concentration. The present results show that LSBEM provides a proof of concept for the development of biosensors based on transferred purified membrane for the screening of new products acting on an enzyme embedded on its natural milieu. In the case of BEA, the application of these enzymatic sensors could have medical interest, providing drug screening tools for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Iván Felsztyna
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - María A Perillo
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Eduardo M Clop
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina.
| |
Collapse
|
40
|
Abdullaha M, Banoo R, Nuthakki VK, Sharma M, Kaur S, Thakur S, Kumar A, Jadhav HR, Bharate SB. Methoxy-naphthyl-Linked N-Benzyl Pyridinium Styryls as Dual Cholinesterase Inhibitors: Design, Synthesis, Biological Evaluation, and Structure-Activity Relationship. ACS OMEGA 2023; 8:17591-17608. [PMID: 37251153 PMCID: PMC10210183 DOI: 10.1021/acsomega.2c08167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
The multifaceted nature of Alzheimer's disease (AD) indicates the need for multitargeted agents as potential therapeutics. Both cholinesterases (ChEs), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), play a vital role in disease progression. Thus, inhibiting both ChEs is more beneficial than only one for effectively managing AD. The present study provides a detailed lead optimization of the e-pharmacophore-generated pyridinium styryl scaffold to discover a dual ChE inhibitor. A structure-activity relationship analysis indicated the importance of three structural fragments, methoxy-naphthyl, vinyl-pyridinium, and substituted-benzyl, in a dual ChE inhibitor pharmacophore. The optimized 6-methoxy-naphthyl derivative, 7av (SB-1436), inhibits EeAChE and eqBChE with IC50 values of 176 and 370 nM, respectively. The kinetic study has shown that 7av inhibits AChE and BChE in a non-competitive manner with ki values of 46 and 115 nM, respectively. The docking and molecular dynamics simulation demonstrated that 7av binds with the catalytic and peripheral anionic sites of AChE and BChE. Compound 7av also significantly stops the self-aggregation of Aβ. The data presented herein indicate the potential of 7av for further investigation in preclinical models of AD.
Collapse
Affiliation(s)
- Mohd Abdullaha
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Razia Banoo
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay K. Nuthakki
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohit Sharma
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sukhleen Kaur
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Shikha Thakur
- Department
of Pharmacy, Birla Institute of Technology
and Sciences Pilani, Pilani 333031, Rajasthan, India
| | - Ajay Kumar
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Hemant R. Jadhav
- Department
of Pharmacy, Birla Institute of Technology
and Sciences Pilani, Pilani 333031, Rajasthan, India
| | - Sandip B. Bharate
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
41
|
Pasieka A, Panek D, Zaręba P, Sługocka E, Gucwa N, Espargaró A, Latacz G, Khan N, Bucki A, Sabaté R, Więckowska A, Malawska B. Novel drug-like fluorenyl derivatives as selective butyrylcholinesterase and β-amyloid inhibitors for the treatment of Alzheimer's disease. Bioorg Med Chem 2023; 88-89:117333. [PMID: 37236021 DOI: 10.1016/j.bmc.2023.117333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Butyrylcholinesterase (BuChE) and amyloid β (Aβ) aggregation remain important biological target and mechanism in the search for effective treatment of Alzheimer's disease. Simultaneous inhibition thereof by the application of multifunctional agents may lead to improvement in terms of symptoms and causes of the disease. Here, we present the rational design, synthesis, biological evaluation and molecular modelling studies of novel series of fluorene-based BuChE and Aβ inhibitors with drug-like characteristics and advantageous Central Nervous System Multiparameter Optimization scores. Among 17 synthesized and tested compounds, we identified 22 as the most potent eqBuChE inhibitor with IC50 of 38 nM and 37.4% of Aβ aggregation inhibition at 10 μM. Based on molecular modelling studies, including molecular dynamics, we determined the binding mode of the compounds within BuChE and explained the differences in the activity of the two enantiomers of compound 22. A novel series of fluorenyl compounds meeting the drug-likeness criteria seems to be a promising starting point for further development as anti-Alzheimer agents.
Collapse
Affiliation(s)
- Anna Pasieka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland.
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Emilia Sługocka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza St., 31-530 Kraków, Poland
| | - Natalia Gucwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028 Barcelona, Spain
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Nadia Khan
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland; Departement of Pathophysiology, Jagiellonian University Medical College, 18 Czysta St., 31-121 Kraków, Poland
| | - Adam Bucki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Kraków, Poland
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028 Barcelona, Spain
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| |
Collapse
|
42
|
Madhav H, Abdel-Rahman SA, Hashmi MA, Rahman MA, Rehan M, Pal K, Nayeem SM, Gabr MT, Hoda N. Multicomponent Petasis reaction for the identification of pyrazine based multi-target directed anti-Alzheimer's agents: In-silico design, synthesis, and characterization. Eur J Med Chem 2023; 254:115354. [PMID: 37043996 DOI: 10.1016/j.ejmech.2023.115354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Multi-target directed ligands (MTDLs) have recently attracted significant interest due to their exceptional effectiveness against multi-factorial Alzheimer's disease. The present work described the development of pyrazine-based MTDLs using multicomponent Petasis reaction for the dual inhibition of tau-aggregation and human acetylcholinesterase (hAChE). The molecular structure of synthesized ligands was validated by 1H & 13C NMR and mass spectrometry. The screened compounds were shown to have a strong inhibitory effect at 10 μM concentration against tau-oligomerization and hAChE, but only moderate inhibitory activity against Aβ42. Among all the compounds, the half-maximal inhibitory concentration (IC50) for 21 and 24 against hAChE were 0.71 μM and 1.09 μM, respectively, while they displayed half-maximal effective concentrations (EC50) values of 2.21 μM and 2.71 μM for cellular tau-oligomerization, respectively. Additionally, an MTT experiment using tau-expressing SH-SY5Y neuroblastoma cells revealed that 21 was more neuroprotective than the FDA-approved medication donepezil. Furthermore, an MD simulation study was performed to investigate the dynamics and stability of AChE-21 and AChE-24 complexes in an aqueous environment. The MM-PBSA calculations were performed to evaluate the binding of 21 and 24 with AChE, and the relative binding energy was calculated as -870.578 and -875.697 kJ mol-1, respectively. As a result, the study offered insight into the design of new MTDLs and highlighted 21 as a potential roadblock to the development of anti-AD medications.
Collapse
Affiliation(s)
- Hari Madhav
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Somaya A Abdel-Rahman
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Md Ataur Rahman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Mohammad Rehan
- Max-Planck-Institute für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Moustafa T Gabr
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
43
|
Jamal QMS, Khan MI, Alharbi AH, Ahmad V, Yadav BS. Identification of Natural Compounds of the Apple as Inhibitors against Cholinesterase for the Treatment of Alzheimer's Disease: An In Silico Molecular Docking Simulation and ADMET Study. Nutrients 2023; 15:nu15071579. [PMID: 37049419 PMCID: PMC10097405 DOI: 10.3390/nu15071579] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia in older people, causes neurological problems associated with memory and thinking. The key enzymes involved in Alzheimer's disease pathways are acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Because of this, there is a lot of interest in finding new AChE inhibitors. Among compounds that are not alkaloids, flavonoids have stood out as good candidates. The apple fruit, Malus domestica (Rosaceae), is second only to cranberries regarding total phenolic compound concentration. Computational tools and biological databases were used to investigate enzymes and natural compounds. Molecular docking techniques were used to analyze the interactions of natural compounds of the apple with enzymes involved in the central nervous system (CNS), acetylcholinesterase, and butyrylcholinesterase, followed by binding affinity calculations using the AutoDock tool. The molecular docking results revealed that CID: 107905 exhibited the best interactions with AChE, with a binding affinity of -12.2 kcal/mol, and CID: 163103561 showed the highest binding affinity with BuChE, i.e., -11.2 kcal/mol. Importantly, it was observed that amino acid residue Trp286 of AChE was involved in hydrogen bond formation, Van Der Walls interactions, and Pi-Sigma/Pi-Pi interactions in the studied complexes. Moreover, the results of the Molecular Dynamics Simulation (MDS) analysis indicated interaction stability. This study shows that CID: 12000657 could be used as an AChE inhibitor and CID: 135398658 as a BuChE inhibitor to treat Alzheimer's disease and other neurological disorders.
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali H Alharbi
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Varish Ahmad
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Brijesh Singh Yadav
- Faculty of Biosciences and Aquaculture, Nord University, N-8026 Bodø, Norway
| |
Collapse
|
44
|
Nuthakki VK, Choudhary S, Reddy CN, Bhatt S, Jamwal A, Jotshi A, Raghuvanshi R, Sharma A, Thakur S, Jadhav HR, Bharate SS, Nandi U, Kumar A, Bharate SB. Design, Synthesis, and Pharmacological Evaluation of Embelin-Aryl/alkyl Amine Hybrids as Orally Bioavailable Blood-Brain Barrier Permeable Multitargeted Agents with Therapeutic Potential in Alzheimer's Disease: Discovery of SB-1448. ACS Chem Neurosci 2023; 14:1193-1219. [PMID: 36812360 DOI: 10.1021/acschemneuro.3c00030] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The complex and multifaceted nature of Alzheimer's disease has brought about a pressing demand to develop ligands targeting multiple pathways to combat its outrageous prevalence. Embelin is a major secondary metabolite of Embelia ribes Burm f., one of the oldest herbs in Indian traditional medicine. It is a micromolar inhibitor of cholinesterases (ChEs) and β-site amyloid precursor protein cleaving enzyme 1 (BACE-1) with poor absorption, distribution, metabolism, and excretion (ADME) properties. Herein, we synthesize a series of embelin-aryl/alkyl amine hybrids to improve its physicochemical properties and therapeutic potency against targeted enzymes. The most active derivative, 9j (SB-1448), inhibits human acetylcholinesterase (hAChE), human butyrylcholinesterase (hBChE), and human BACE-1 (hBACE-1) with IC50 values of 0.15, 1.6, and 0.6 μM, respectively. It inhibits both ChEs noncompetitively with ki values of 0.21 and 1.3 μM, respectively. It is orally bioavailable, crosses blood-brain barrier (BBB), inhibits Aβ self-aggregation, possesses good ADME properties, and protects neuronal cells from scopolamine-induced cell death. The oral administration of 9j at 30 mg/kg attenuates the scopolamine-induced cognitive impairments in C57BL/6J mice.
Collapse
Affiliation(s)
- Vijay K Nuthakki
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sushil Choudhary
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chilakala N Reddy
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shipra Bhatt
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashiya Jamwal
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anshika Jotshi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rinky Raghuvanshi
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankita Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shikha Thakur
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Kumar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
45
|
Sharma P, Singh M. An ongoing journey of chalcone analogues as single and multi-target ligands in the field of Alzheimer's disease: A review with structural aspects. Life Sci 2023; 320:121568. [PMID: 36925061 DOI: 10.1016/j.lfs.2023.121568] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disorder with progressive dementia and cognitive impairment. AD poses severe health challenge in elderly people and become one of the leading causes of death worldwide. It possesses complex pathophysiology with several hypotheses (cholinergic hypothesis, amyloid hypothesis, tau hypothesis, oxidative stress, mitochondrial dysfunction etc.). Several attempts have been made for the management of multifactorial AD. Acetylcholinesterase is the only target has been widely explored in the management of AD to the date. The current review set forth the chalcone based natural, semi-synthetic and synthetic compounds in the search of potential anti-Alzheimer's agents. The main highlights of current review emphasizes on chalcone target different enzymes and pathways like Acetylcholinesterase, β-secretase (BACE1), tau proteins, MAO, free radicals, Advanced glycation end Products (AGEs) etc. and their structure activity relationships contributing in the inhibition of above mentioned various targets of AD.
Collapse
Affiliation(s)
- Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
46
|
Yu J, Wu D, Zhao Y, Guo L, Liu P. Study on multi-target effects of PIMPC on Aβ/Cu 2+-induced Alzheimer's disease model of rats. Brain Res 2023; 1802:148226. [PMID: 36586663 DOI: 10.1016/j.brainres.2022.148226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3), a key role in the pathogenesis of Alzheimer's disease (AD), has been linked with the formation of β-amyloid (Aβ), tubulin-associated unit (tau) protein phosphorylation and apoptosis. Moreover, the excessive presence of elements such as copper (Cu) can promote Aβ aggregation and increase the risk of AD. Combined with the role of GSK-3 and metal elements in AD, a metal-chelating imine GSK-3 inhibitor N-(4-{[(2-amino-5-phenylpyridin-3-ylidene)imino]methyl}pyridin-2-yl)cyclopropanecarboxamide (PIMPC) was designed and synthesized. In our study, Aβ/Cu2+-induced AD rat model was established and treated with PIMPC. The results indicated that PIMPC can not only down-regulate the high expression levels of Aβ, tau and p-tau proteins of the AD rats, but also chelate Cu and aluminum (Al) elements in the brain. In addition, PIMPC may play an anti-apoptotic effect by down-regulating the high expression of cleaved Caspase-3 protein, and it can modulate ATPase and nitric oxide synthase (NOS) levels, oxidative stress and neurotransmitter disturbance. In summary, PIMPC acts on multiple targets to relieve the learning and memory impairment of AD rats induced by Aβ/Cu2+.
Collapse
Affiliation(s)
- Jiasi Yu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dan Wu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanan Zhao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Linli Guo
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
47
|
Taha M, Rahim F, Zaman K, Anouar EH, Uddin N, Nawaz F, Sajid M, Khan KM, Shah AA, Wadood A, Rehman AU, Alhibshi AH. Synthesis, in vitro biological screening and docking study of benzo[ d]oxazole bis Schiff base derivatives as a potent anti-Alzheimer agent. J Biomol Struct Dyn 2023; 41:1649-1664. [PMID: 34989316 DOI: 10.1080/07391102.2021.2023640] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have synthesized benzo[d]oxazole derivatives (1-21) through a multistep reaction. Alteration in the structure of derivatives was brought in the last step via using various substituted aromatic aldehydes. In search of an anti-Alzheimer agent, all derivatives were evaluated against acetylcholinesterase and butyrylcholinesterase enzyme under positive control of standard drug donepezil (IC50 = 0.016 ± 0.12 and 4.5 ± 0.11 µM) respectively. In case of acetylcholinesterase enzyme inhibition, derivatives 8, 9 and 18 (IC50 = 0.50 ± 0.01, 0.90 ± 0.05 and 0.3 ± 0.05 µM) showed very promising inhibitory potentials. While in case of butyrylcholinesterase enzyme inhibition, most of the derivatives like 6, 8, 9, 13, 15, 18 and 19 (IC50 = 2.70 ± 0.10, 2.60 ± 0.10, 2.20 ± 0.10, 4.25 ± 0.10, 3.30 ± 0.10, 0.96 ± 0.05 and 3.20 ± 0.10 µM) displayed better inhibitory potential than donepezil. Moreover, derivative 18 is the most potent one among the series in both inhibitions. The binding interaction of derivatives with the active gorge of the enzyme was confirmed via a docking study. Furthermore, the binding interaction between derivatives and the active site of enzymes was correlated through the SAR study. Structures of all derivatives were confirmed through spectroscopic techniques such as 1H-NMR, 13C-NMR and HREI-MS, respectively.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Khalid Zaman
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Faisal Nawaz
- Department of Chemistry, University of Wah, Wah Cantt, Pakistan
| | - Muhammad Sajid
- Department of Biochemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Adnan Ali Shah
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia.,Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Amani H Alhibshi
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
48
|
Parlar S, Sayar G, Tarikogullari AH, Karadagli SS, Alan E, Sevin G, Erciyas E, Holzgrabe U, Alptuzun V. N-Substituted piperidine-3-carbohydrazide-hydrazones against Alzheimer's disease: Synthesis and evaluation of cholinesterase, beta-amyloid inhibitory activity, and antioxidant capacity. Arch Pharm (Weinheim) 2023; 356:e2200519. [PMID: 36461719 DOI: 10.1002/ardp.202200519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022]
Abstract
A series of piperidine-3-carbohydrazide-hydrazones bearing phenylethyl, phenylpropyl, and phenylbutyl substituents on piperidine nitrogen were designed and synthesized as cholinesterase (ChE) inhibitors. The title compounds were screened for acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) inhibitory activities and antioxidant capacities, and the active ones for Aβ42 self-aggregation inhibition, in vitro. The chemiluminescence method was used to determine the effect of the selected compounds on the reactive oxygen species (ROS) levels in brain tissue. Physicochemical properties were calculated by the MOE program. Kinetic analysis and molecular modeling studies were also carried out for the most active compounds. Generally, the final compounds exhibited moderate to good AChE or BuChE inhibitory activity. Among them, 3g and 3j showed the most potent activity against AChE (IC50 = 4.32 µM) and BuChE (IC50 = 1.27 µM), respectively. The kinetic results showed that both compounds exhibited mixed-type inhibition. Among the selected compounds, nitro derivatives (3g, 4g, and 5g) provided better Aβ42 inhibition. According to the chemiluminescence assay, 4i exhibited the most active superoxide free-radical scavenger activity and 3g, 3j, and 4i showed similar scavenger activity on other ROS. All results suggested that 3g, 3j, and 4i have good AChE/BuChE, Aβ42 inhibitory potentials and antioxidant capacities and can therefore be suggested as promising multifunctional agents to combat Alzheimer's disease.
Collapse
Affiliation(s)
- Sulunay Parlar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gozde Sayar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ayse H Tarikogullari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Sumru Sozer Karadagli
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Elif Alan
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gulnur Sevin
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ercin Erciyas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| | - Vildan Alptuzun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
49
|
DFT Study of Regio- and Stereoselective 13DC Reaction between Diazopropane and Substituted Chalcone Derivatives: Molecular Docking of Novel Pyrazole Derivatives as Anti-Alzheimer's Agents. Molecules 2023; 28:molecules28041899. [PMID: 36838888 PMCID: PMC9964806 DOI: 10.3390/molecules28041899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
In the present work, a combination of experimental and density functional theory (DFT) investigation of the (3+2) cycloaddition reactions of diazopropane with chalcone derivatives was reported. All calculations were performed using several DFT approaches (B3LYP, M06, M06-2X) and 6-311+G(d, p) basis set. Based on the NMR, MS analyses and IRC calculations, the pyrazole derivatives are the kinetic adducts over the oxadiazoles. The use of two equivalents of diazopropane leads to thermodynamical products. A molecular docking analysis was performed to investigate the efficiency of the obtained products against selected drug targets in anti-Alzheimer ligand-receptor interactions. We revealed that the ligands selected were bound mainly to the catalytic (CAS) and peripheral (PAS) anionic sites of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors, respectively. The selected ligands 1, 3, 4 and P14 may act as the best inhibitors against Alzheimer's disease (AD).
Collapse
|
50
|
Gondal HY, Tariq S, Akhter S, Raza AR, Rehman MFU, Rubab SL. Synthesis, characterization, and in vitro anti-cholinesterase screening of novel indole amines. RSC Adv 2023; 13:1203-1215. [PMID: 36686913 PMCID: PMC9811652 DOI: 10.1039/d2ra05105b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
The present study involved the targeted synthesis and characterization of novel indole amines with anti-acetylcholinesterase profiling. A series of proposed indole amines was virtually screened against human acetylcholinesterase. A few indole amines (23, 24, and 25) showing strong enzyme binding in the in silico studies were synthesized in the laboratory and characterized using spectroscopic (IR, UV, NMR, single crystal XRD) and spectrometric (EIMS, HR-EIMS) methods. The indole amine 23 was crystallized from EtOH and analyzed with single crystal XRD. These ligands interacted with the PAS site in the enzyme, and their binding may disrupt the activity. The in vitro acetylcholinesterase inhibition studies revealed that the IC50 values for indole amines 25 and 24 (4.28 and 4.66 μM, respectively) were comparable to that of galantamine (4.15 μM) and may be studied further as cost-effective acetylcholinesterase inhibitors.
Collapse
Affiliation(s)
- Humaira Yasmeen Gondal
- Institute of Chemistry, Ibn e Sina Block, University of Sargodha Sargodha-40100 Pakistan +92-48-9230-546
| | - Sobia Tariq
- Institute of Chemistry, Ibn e Sina Block, University of Sargodha Sargodha-40100 Pakistan +92-48-9230-546
| | - Shahzaib Akhter
- Institute of Chemistry, Ibn e Sina Block, University of Sargodha Sargodha-40100 Pakistan +92-48-9230-546
| | - Abdul Rauf Raza
- Institute of Chemistry, Ibn e Sina Block, University of Sargodha Sargodha-40100 Pakistan +92-48-9230-546
| | - Muhammad Fayyaz Ur Rehman
- Institute of Chemistry, Ibn e Sina Block, University of Sargodha Sargodha-40100 Pakistan +92-48-9230-546
| | - Syeda Laila Rubab
- Department of Chemistry, Division of Science and Technology, University of Education Lahore-54770 Pakistan
| |
Collapse
|