1
|
Rey S, Marra V, Smith C, Staras K. Nanoscale Remodeling of Functional Synaptic Vesicle Pools in Hebbian Plasticity. Cell Rep 2021; 30:2006-2017.e3. [PMID: 32049027 PMCID: PMC7016504 DOI: 10.1016/j.celrep.2020.01.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/21/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
Vesicle pool properties are known determinants of synaptic efficacy, but their potential role as modifiable substrates in forms of Hebbian plasticity is still unclear. Here, we investigate this using a nanoscale readout of functionally recycled vesicles in natively wired hippocampal CA3→CA1 circuits undergoing long-term potentiation (LTP). We show that the total recycled vesicle pool is larger after plasticity induction, with the smallest terminals exhibiting the greatest relative expansion. Changes in the spatial organization of vesicles accompany potentiation including a specific increase in the number of recycled vesicles at the active zone, consistent with an ultrastructural remodeling component of synaptic strengthening. The cAMP-PKA pathway activator, forskolin, selectively mimics some features of LTP-driven changes, suggesting that distinct and independent modules of regulation accompany plasticity expression. Our findings provide evidence for a presynaptic locus of LTP encoded in the number and arrangement of functionally recycled vesicles, with relevance for models of long-term plasticity storage.
Collapse
Affiliation(s)
- Stephanie Rey
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Vincenzo Marra
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester L1 7RH, United Kingdom
| | - Catherine Smith
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Kevin Staras
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| |
Collapse
|
2
|
Astrocyte-mediated switch in spike timing-dependent plasticity during hippocampal development. Nat Commun 2020; 11:4388. [PMID: 32873805 PMCID: PMC7463247 DOI: 10.1038/s41467-020-18024-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/31/2020] [Indexed: 01/31/2023] Open
Abstract
Presynaptic spike timing-dependent long-term depression (t-LTD) at hippocampal CA3-CA1 synapses is evident until the 3rd postnatal week in mice, disappearing during the 4th week. At more mature stages, we found that the protocol that induced t-LTD induced t-LTP. We characterized this form of t-LTP and the mechanisms involved in its induction, as well as that driving this switch from t-LTD to t-LTP. We found that this t-LTP is expressed presynaptically at CA3-CA1 synapses, as witnessed by coefficient of variation, number of failures, paired-pulse ratio and miniature responses analysis. Additionally, this form of presynaptic t-LTP does not require NMDARs but the activation of mGluRs and the entry of Ca2+ into the postsynaptic neuron through L-type voltage-dependent Ca2+ channels and the release of Ca2+ from intracellular stores. Nitric oxide is also required as a messenger from the postsynaptic neuron. Crucially, the release of adenosine and glutamate by astrocytes is required for t-LTP induction and for the switch from t-LTD to t-LTP. Thus, we have discovered a developmental switch of synaptic transmission from t-LTD to t-LTP at hippocampal CA3-CA1 synapses in which astrocytes play a central role and revealed a form of presynaptic LTP and the rules for its induction. Presynaptic spike timing-dependent long-term depression at hippocampal CA3-CA1 synapses is evident until the third postnatal week in mice. The authors show that maturation beyond four weeks is associated with a switch to long-term potentiation in which astrocytes play a central role.
Collapse
|
3
|
Letellier M, Levet F, Thoumine O, Goda Y. Differential role of pre- and postsynaptic neurons in the activity-dependent control of synaptic strengths across dendrites. PLoS Biol 2019; 17:e2006223. [PMID: 31166943 PMCID: PMC6576792 DOI: 10.1371/journal.pbio.2006223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/17/2019] [Accepted: 05/17/2019] [Indexed: 01/07/2023] Open
Abstract
Neurons receive a large number of active synaptic inputs from their many presynaptic partners across their dendritic tree. However, little is known about how the strengths of individual synapses are controlled in balance with other synapses to effectively encode information while maintaining network homeostasis. This is in part due to the difficulty in assessing the activity of individual synapses with identified afferent and efferent connections for a synapse population in the brain. Here, to gain insights into the basic cellular rules that drive the activity-dependent spatial distribution of pre- and postsynaptic strengths across incoming axons and dendrites, we combine patch-clamp recordings with live-cell imaging of hippocampal pyramidal neurons in dissociated cultures and organotypic slices. Under basal conditions, both pre- and postsynaptic strengths cluster on single dendritic branches according to the identity of the presynaptic neurons, thus highlighting the ability of single dendritic branches to exhibit input specificity. Stimulating a single presynaptic neuron induces input-specific and dendritic branchwise spatial clustering of presynaptic strengths, which accompanies a widespread multiplicative scaling of postsynaptic strengths in dissociated cultures and heterosynaptic plasticity at distant synapses in organotypic slices. Our study provides evidence for a potential homeostatic mechanism by which the rapid changes in global or distant postsynaptic strengths compensate for input-specific presynaptic plasticity.
Collapse
Affiliation(s)
- Mathieu Letellier
- RIKEN Brain Science Institute, Wako, Saitama, Japan
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, France
- * E-mail: (ML); (YG)
| | - Florian Levet
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, France
- Bordeaux Imaging Center, University of Bordeaux, Bordeaux, France
- Bordeaux Imaging Center, CNRS UMS 3420, Bordeaux, France
- Bordeaux Imaging Center, INSERM US04, Bordeaux, France
| | - Olivier Thoumine
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, France
| | - Yukiko Goda
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- * E-mail: (ML); (YG)
| |
Collapse
|
4
|
Padamsey Z, Tong R, Emptage N. Glutamate is required for depression but not potentiation of long-term presynaptic function. eLife 2017; 6:29688. [PMID: 29140248 PMCID: PMC5714480 DOI: 10.7554/elife.29688] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022] Open
Abstract
Hebbian plasticity is thought to require glutamate signalling. We show this is not the case for hippocampal presynaptic long-term potentiation (LTPpre), which is expressed as an increase in transmitter release probability (Pr). We find that LTPpre can be induced by pairing pre- and postsynaptic spiking in the absence of glutamate signalling. LTPpre induction involves a non-canonical mechanism of retrograde nitric oxide signalling, which is triggered by Ca2+ influx from L-type voltage-gated Ca2+ channels, not postsynaptic NMDA receptors (NMDARs), and does not require glutamate release. When glutamate release occurs, it decreases Pr by activating presynaptic NMDARs, and promotes presynaptic long-term depression. Net changes in Pr, therefore, depend on two opposing factors: (1) Hebbian activity, which increases Pr, and (2) glutamate release, which decreases Pr. Accordingly, release failures during Hebbian activity promote LTPpre induction. Our findings reveal a novel framework of presynaptic plasticity that radically differs from traditional models of postsynaptic plasticity. Neurons communicate with one another at junctions called synapses. One neuron at the synapse releases a chemical substance called a neurotransmitter, which binds to and activates the other neuron. The release of neurotransmitter thus enables the electrical activity of one cell to influence the electrical activity of another. The efficiency of this communication can change over time, as is thought to occur during learning. If the neurons on both sides of a synapse are repeatedly active at the same time, the ability of the neurons to transmit electrical signals to each other increases. One way that communication between neurons can become more efficient is if the first neuron becomes more likely to release neurotransmitter. Most synapses in the brain release a neurotransmitter called glutamate, and most types of learning involve changes in the efficiency of communication at glutamatergic synapses. But glutamate release is unreliable. Active glutamatergic neurons fail to release glutamate about 80% of the time. If glutamate has a key role in learning, how does the brain learn efficiently when glutamate release is so unlikely? To find out, Padamsey et al. studied glutamatergic synapses in slices of tissue from mouse and rat brains. When both neurons at a synapse were repeatedly active at the same time, the first neuron would sometimes become more likely to release glutamate. But this only happened at synapses in which the first neuron usually failed to release glutamate in the first place. This suggests that communication failures help to drive change at synapses. When two neurons that are often active at the same time do not communicate efficiently, this failure triggers molecular changes that make future communication more reliable. Previous results have shown that synapses can change when glutamate release occurs. The current results show that they can also change when it does not. This means that the brain can continue to learn despite frequent communication failures between neurons. Many neurological disorders, including Alzheimer’s disease, show altered glutamate signalling at synapses. Padamsey et al. hope that a better understanding of this process will lead to new therapies for these disorders.
Collapse
Affiliation(s)
- Zahid Padamsey
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Rudi Tong
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Nigel Emptage
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Rampérez A, Sánchez-Prieto J, Torres M. Brefeldin A sensitive mechanisms contribute to endocytotic membrane retrieval and vesicle recycling in cerebellar granule cells. J Neurochem 2017; 141:662-675. [PMID: 28295320 DOI: 10.1111/jnc.14017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 11/26/2022]
Abstract
The recycling of synaptic vesicle (SV) proteins and transmitter release occur at multiple sites along the axon. These processes are sensitive to inhibition of the small GTP binding protein ARF1, which regulates the adaptor protein 1 and 3 complex (AP-1/AP-3). As the axon matures, SV recycling becomes restricted to the presynaptic bouton, and its machinery undergoes a complex process of maturation. We used the styryl dye FM1-43 to highlight differences in the efficiency of membrane recycling at different sites in cerebellar granule cells cultured for 7 days in vitro. We used Brefeldin A (BFA) to inhibit AP-1/AP-3-mediated recycling and to test the contribution of this pathway to the heterogeneity of the responses when these cells are strongly stimulated. Combining imaging techniques and ultrastructural analyses, we found a significant decrease in the density of functional boutons and an increase in the presence of endosome-like structures within the boutons of cells incubated with BFA prior to FM1-43 loading. Such effects were not observed when BFA was added 5 min after the end of the loading step, when endocytosis was almost fully completed. In this situation, vesicles were found closer to the active zone (AZ) in boutons exposed to BFA. Together, these data suggest that the AP-1/AP-3 pathway contributes to SV recycling, affecting different steps in all boutons but not equally, and thus being partly responsible for the heterogeneity of the different recycling efficiencies. Cover Image for this issue: doi. 10.1111/jnc.13801.
Collapse
Affiliation(s)
- Alberto Rampérez
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Magdalena Torres
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
6
|
Astrocytes regulate heterogeneity of presynaptic strengths in hippocampal networks. Proc Natl Acad Sci U S A 2016; 113:E2685-94. [PMID: 27118849 DOI: 10.1073/pnas.1523717113] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dendrites are neuronal structures specialized for receiving and processing information through their many synaptic inputs. How input strengths are modified across dendrites in ways that are crucial for synaptic integration and plasticity remains unclear. We examined in single hippocampal neurons the mechanism of heterosynaptic interactions and the heterogeneity of synaptic strengths of pyramidal cell inputs. Heterosynaptic presynaptic plasticity that counterbalances input strengths requires N-methyl-d-aspartate receptors (NMDARs) and astrocytes. Importantly, this mechanism is shared with the mechanism for maintaining highly heterogeneous basal presynaptic strengths, which requires astrocyte Ca(2+) signaling involving NMDAR activation, astrocyte membrane depolarization, and L-type Ca(2+) channels. Intracellular infusion of NMDARs or Ca(2+)-channel blockers into astrocytes, conditionally ablating the GluN1 NMDAR subunit, or optogenetically hyperpolarizing astrocytes with archaerhodopsin promotes homogenization of convergent presynaptic inputs. Our findings support the presence of an astrocyte-dependent cellular mechanism that enhances the heterogeneity of presynaptic strengths of convergent connections, which may help boost the computational power of dendrites.
Collapse
|
7
|
Lamanna J, Signorini MG, Cerutti S, Malgaroli A. A pre-docking source for the power-law behavior of spontaneous quantal release: application to the analysis of LTP. Front Cell Neurosci 2015; 9:44. [PMID: 25741239 PMCID: PMC4332339 DOI: 10.3389/fncel.2015.00044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/29/2015] [Indexed: 11/13/2022] Open
Abstract
In neurons, power-law behavior with different scaling exponents has been reported at many different levels, including fluctuations in membrane potentials, synaptic transmission up to neuronal network dynamics. Unfortunately in most cases the source of this non-linear feature remains controversial. Here we have analyzed the dynamics of spontaneous quantal release at hippocampal synapses and characterized their power-law behavior. While in control conditions a fractal exponent greater than zero was rarely observed, its value was greatly increased by α-latrotoxin (α-LTX), a potent stimulator of spontaneous release, known to act at the very last step of vesicle fusion. Based on computer modeling, we confirmed that at an increase in fusion probability would unmask a pre-docking phenomenon with 1/f structure, where α estimated from the release series appears to sense the increase in release probability independently from the number of active sites. In the simplest scenario the pre-docking 1/f process could coincide with the Brownian diffusion of synaptic vesicles. Interestingly, when the effect of long-term potentiation (LTP) was tested, a ~200% long-lasting increase in quantal frequency was accompanied by a significant increase in the scaling exponent. The similarity between the action of LTP and of α-LTX suggests an increased contribution of high release probability sites following the induction of LTP. In conclusion, our results indicate that the source of the synaptic power-law behavior arises before synaptic vesicles dock to the active zone and that the fractal exponent α is capable of sensing a change in release probability independently from the number of active sites or synapses.
Collapse
Affiliation(s)
- Jacopo Lamanna
- Università Vita-Salute San Raffaele Milan, Italy ; Neurobiology of Learning Unit, Division of Neuroscience, San Raffaele Scientific Institute Milan, Italy
| | - Maria G Signorini
- Department of Electronics Information and Bioengineering (DEIB), Politecnico di Milano Milan, Italy
| | - Sergio Cerutti
- Department of Electronics Information and Bioengineering (DEIB), Politecnico di Milano Milan, Italy
| | - Antonio Malgaroli
- Università Vita-Salute San Raffaele Milan, Italy ; Neurobiology of Learning Unit, Division of Neuroscience, San Raffaele Scientific Institute Milan, Italy
| |
Collapse
|
8
|
Park P, Volianskis A, Sanderson TM, Bortolotto ZA, Jane DE, Zhuo M, Kaang BK, Collingridge GL. NMDA receptor-dependent long-term potentiation comprises a family of temporally overlapping forms of synaptic plasticity that are induced by different patterns of stimulation. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130131. [PMID: 24298134 PMCID: PMC3843864 DOI: 10.1098/rstb.2013.0131] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP) is extensively studied since it is believed to use the same molecular mechanisms that are required for many forms of learning and memory. Unfortunately, many controversies exist, not least the seemingly simple issue concerning the locus of expression of LTP. Here, we review our recent work and some of the extensive literature on this topic and present new data that collectively suggest that LTP can be explained, during its first few hours, by the coexistence of at least three mechanistically distinct processes that are all triggered by the synaptic activation of NMDARs.
Collapse
Affiliation(s)
- Pojeong Park
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, , Seoul 151-746, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Padamsey Z, Emptage N. Two sides to long-term potentiation: a view towards reconciliation. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130154. [PMID: 24298155 DOI: 10.1098/rstb.2013.0154] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Almost since the discovery of long-term potentiation (LTP) in the hippocampus, its locus of expression has been debated. Throughout the years, convincing evidence has accumulated to suggest that LTP can be supported either presynaptically, by an increase in transmitter release, or postsynaptically, by an increase in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor number. However, whereas postsynaptic enhancement appears to be consistently obtained across studies following LTP induction, presynaptic enhancement is not as reliably observed. Such discrepancies, along with the failure to convincingly identify a retrograde messenger required for presynaptic change, have led to the general view that LTP is mainly supported postsynaptically, and certainly, research within the field for the past decade has been heavily focused on the postsynaptic locus. Here, we argue that LTP can be expressed at either synaptic locus, but that pre- and postsynaptic forms of LTP are dissociable phenomena mediated by distinct mechanistic processes, which are sensitive to different patterns of neuronal activity. This view of LTP helps to reconcile discrepancies across the literature and may put to rest a decades-long debate.
Collapse
Affiliation(s)
- Zahid Padamsey
- Department of Pharmacology, University of Oxford, , Oxford OX1 3QT, UK
| | | |
Collapse
|
10
|
Bourne JN, Chirillo MA, Harris KM. Presynaptic ultrastructural plasticity along CA3→CA1 axons during long-term potentiation in mature hippocampus. J Comp Neurol 2013; 521:3898-912. [PMID: 23784793 PMCID: PMC3838200 DOI: 10.1002/cne.23384] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/30/2013] [Accepted: 06/07/2013] [Indexed: 11/12/2022]
Abstract
In area CA1 of the mature hippocampus, synaptogenesis occurs within 30 minutes after the induction of long-term potentiation (LTP); however, by 2 hours many small dendritic spines are lost, and those remaining have larger synapses. Little is known, however, about associated changes in presynaptic vesicles and axonal boutons. Axons in CA1 stratum radiatum were evaluated with 3D reconstructions from serial section electron microscopy at 30 minutes and 2 hours after induction of LTP by theta-burst stimulation (TBS). The frequency of axonal boutons with a single postsynaptic partner was decreased by 33% at 2 hours, corresponding perfectly to the 33% loss specifically of small dendritic spines (head diameters <0.45 μm). Docked vesicles were reduced at 30 minutes and then returned to control levels by 2 hours following induction of LTP. By 2 hours there were fewer small synaptic vesicles overall in the presynaptic vesicle pool. Clathrin-mediated endocytosis was used as a marker of local activity, and axonal boutons containing clathrin-coated pits showed a more pronounced decrease in presynaptic vesicles at both 30 minutes and 2 hours after induction of LTP relative to control values. Putative transport packets, identified as a cluster of less than 10 axonal vesicles occurring between synaptic boutons, were stable at 30 minutes but markedly reduced by 2 hours after the induction of LTP. APV blocked these effects, suggesting that the loss of axonal boutons and presynaptic vesicles was dependent on N-methyl-D-aspartic acid (NMDA) receptor activation during LTP. These findings show that specific presynaptic ultrastructural changes complement postsynaptic ultrastructural plasticity during LTP.
Collapse
Affiliation(s)
- Jennifer N Bourne
- Center for Learning and Memory, Section of Neurobiology, Institute for Neuroscience, University of Texas, Austin, Texas, 78712; Department of Physiology and Biophysics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045
| | | | | |
Collapse
|
11
|
Bliss TVP, Collingridge GL. Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol Brain 2013; 6:5. [PMID: 23339575 PMCID: PMC3562207 DOI: 10.1186/1756-6606-6-5] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 12/27/2012] [Indexed: 12/17/2022] Open
Abstract
A consensus has famously yet to emerge on the locus and mechanisms underlying the expression of the canonical NMDA receptor-dependent form of LTP. An objective assessment of the evidence leads us to conclude that both presynaptic and postsynaptic expression mechanisms contribute to this type of synaptic plasticity.
Collapse
Affiliation(s)
- Tim V P Bliss
- Division of Neurophysiology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| | | |
Collapse
|
12
|
Abstract
Synaptic vesicles release neurotransmitter at chemical synapses, thus initiating the flow of information in neural networks. To achieve this, vesicles undergo a dynamic cycle of fusion and retrieval to maintain the structural and functional integrity of the presynaptic terminals in which they reside. Moreover, compelling evidence indicates these vesicles differ in their availability for release and mobilization in response to stimuli, prompting classification into at least three different functional pools. Ongoing studies of the molecular and cellular bases for this heterogeneity attempt to link structure to physiology and clarify how regulation of vesicle pools influences synaptic strength and presynaptic plasticity. We discuss prevailing perspectives on vesicle pools, the role they play in shaping synaptic transmission, and the open questions that challenge current understanding.
Collapse
Affiliation(s)
- AbdulRasheed A Alabi
- Department of Molecular and Cellular Physiology, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford Medical School, Stanford, California 94305, USA
| | | |
Collapse
|
13
|
Mayford M, Siegelbaum SA, Kandel ER. Synapses and memory storage. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a005751. [PMID: 22496389 DOI: 10.1101/cshperspect.a005751] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The synapse is the functional unit of the brain. During the last several decades we have acquired a great deal of information on its structure, molecular components, and physiological function. It is clear that synapses are morphologically and molecularly diverse and that this diversity is recruited to different functions. One of the most intriguing findings is that the size of the synaptic response in not invariant, but can be altered by a variety of homo- and heterosynaptic factors such as past patterns of use or modulatory neurotransmitters. Perhaps the most difficult challenge in neuroscience is to design experiments that reveal how these basic building blocks of the brain are put together and how they are regulated to mediate the information flow through neural circuits that is necessary to produce complex behaviors and store memories. In this review we will focus on studies that attempt to uncover the role of synaptic plasticity in the regulation of whole-animal behavior by learning and memory.
Collapse
Affiliation(s)
- Mark Mayford
- The Scripps Research Institute, Department of Cell Biology, La Jolla, California 92037, USA
| | | | | |
Collapse
|
14
|
Ratnayaka A, Marra V, Bush D, Burden JJ, Branco T, Staras K. Recruitment of resting vesicles into recycling pools supports NMDA receptor-dependent synaptic potentiation in cultured hippocampal neurons. J Physiol 2012; 590:1585-97. [PMID: 22271866 PMCID: PMC3413500 DOI: 10.1113/jphysiol.2011.226688] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Most presynaptic terminals in the central nervous system are characterized by two functionally distinct vesicle populations: a recycling pool, which supports action potential-driven neurotransmitter release via vesicle exocytosis, and a resting pool. The relative proportions of these two pools are highly variable between individual synapses, prompting speculation on their specific relationship, and on the possible functions of the resting pool. Using fluorescence imaging of FM-styryl dyes and synaptophysinI-pHluorin (sypHy) as well as correlative electron microscopy approaches, we show here that Hebbian plasticity-dependent changes in synaptic strength in rat hippocampal neurons can increase the recycling pool fraction at the expense of the resting pool in individual synaptic terminals. This recruitment process depends on NMDA-receptor activation, nitric oxide signalling and calcineurin and is accompanied by an increase in the probability of neurotransmitter release at individual terminals. Blockade of actin-mediated intersynaptic vesicle exchange does not prevent recycling pool expansion demonstrating that vesicle recruitment is intrasynaptic. We propose that the conversion of resting pool vesicles to the functionally recycling pool provides a rapid mechanism to implement long-lasting changes in presynaptic efficacy.
Collapse
Affiliation(s)
- Arjuna Ratnayaka
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Over the past decade, the use and development of optical imaging techniques has advanced our understanding of synaptic plasticity by offering the spatial and temporal resolution necessary to examine long-term changes at individual synapses. Here, we review the use of these techniques in recent studies of synaptic plasticity and, in particular, long-term potentiation in the hippocampus.
Collapse
Affiliation(s)
- Zahid Padamsey
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | | |
Collapse
|
16
|
Nauen DW. Methods of measuring activity at individual synapses: a review of techniques and the findings they have made possible. J Neurosci Methods 2010; 194:195-205. [PMID: 20888362 DOI: 10.1016/j.jneumeth.2010.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Neurons in the brain are often linked by single synaptic contacts (Gulyás et al., 1993) and the probabilistic character of synaptic activity makes it desirable to increase the resolution of physiological experiments by observing the function of the smallest possible number of synaptic terminals, ideally, one. Because they are critically important and technically difficult to resolve, several of the core questions investigated in singe-site experiments have been under study for decades (Auger and Marty, 2000). Many approaches have been taken toward the goal of measuring activity at few synapses, and consideration of the capabilities and limitations of each of these methods permits a review of the contributions each has made possible to present understanding of synaptic function. A number of methodological advances in recent years have increased resolving power. New techniques often build on previous developments and many effective approaches combine components of existing specialized methods with new technology. One theme that emerges is that synaptic properties vary among regions, reducing the utility of general questions such as whether synaptic glutamate saturates receptors or how rapidly synaptic vesicle pools are depleted. For several core questions, multiple studies using different methods have reached similar conclusions, suggesting that consensus may be emerging for some anatomic synapses.
Collapse
Affiliation(s)
- David W Nauen
- Department of Neurobiology, University of Pittsburgh School of Medicine, W1401 BST, 200 Lothrop Street, Pittsburgh, PA 15261, United States.
| |
Collapse
|
17
|
Schimanski LA, Barnes CA. Neural Protein Synthesis during Aging: Effects on Plasticity and Memory. Front Aging Neurosci 2010; 2. [PMID: 20802800 PMCID: PMC2928699 DOI: 10.3389/fnagi.2010.00026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 06/15/2010] [Indexed: 12/13/2022] Open
Abstract
During aging, many experience a decline in cognitive function that includes memory loss. The encoding of long-term memories depends on new protein synthesis, and this is also reduced during aging. Thus, it is possible that changes in the regulation of protein synthesis contribute to the memory impairments observed in older animals. Several lines of evidence support this hypothesis. For instance, protein synthesis is required for a longer period following learning to establish long-term memory in aged rodents. Also, under some conditions, synaptic activity or pharmacological activation can induce de novo protein synthesis and lasting changes in synaptic transmission in aged, but not young, rodents; the opposite results can be observed in other conditions. These changes in plasticity likely play a role in manifesting the altered place field properties observed in awake and behaving aged rats. The collective evidence suggests a link between memory loss and the regulation of protein synthesis in senescence. In fact, pharmaceuticals that target the signaling pathways required for induction of protein synthesis have improved memory, synaptic plasticity, and place cell properties in aged animals. We suggest that a better understanding of the mechanisms that lead to different protein expression patterns in the neural circuits that change as a function of age will enable the development of more effective therapeutic treatments for memory loss.
Collapse
Affiliation(s)
- Lesley A Schimanski
- Evelyn F. McKnight Brain Institute and Division of Neural Systems, Memory and Aging, Arizona Research Laboratories, University of Arizona Tucson, AZ, USA
| | | |
Collapse
|
18
|
Rapid structural alterations of the active zone lead to sustained changes in neurotransmitter release. Proc Natl Acad Sci U S A 2010; 107:8836-41. [PMID: 20421490 DOI: 10.1073/pnas.0906087107] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The likelihood with which an action potential elicits neurotransmitter release, the release probability (p(r)), is an important component of synaptic strength. Regulatory mechanisms controlling several steps of synaptic vesicle (SV) exocytosis may affect p(r), yet their relative importance in determining p(r) and eliciting temporal changes in neurotransmitter release at individual synapses is largely unknown. We have investigated whether the size of the active zone cytomatrix is a major determinant of p(r) and whether changes in its size lead to corresponding alterations in neurotransmitter release. We have used a fluorescent sensor of SV exocytosis, synaptophysin-pHluorin, to measure p(r) at individual synapses with high accuracy and employed a fluorescently labeled cytomatrix protein, Bassoon, to quantify the amount of active zone cytomatrix present at these synapses. We find that, for synapses made by a visually identified presynaptic neuron, p(r) is indeed strongly correlated with the amount of active zone cytomatrix present at the presynaptic specialization. Intriguingly, active zone cytomatrices are frequently subject to synapse-specific changes in size on a time scale of minutes. These spontaneous alterations in active zone size are associated with corresponding changes in neurotransmitter release. Our results suggest that the size of the active zone cytomatrix has a large influence on the reliability of synaptic transmission. Furthermore, they implicate mechanisms leading to rapid structural alterations at active zones in synapse-specific forms of plasticity.
Collapse
|
19
|
Cousin MA. Use of FM1-43 and other derivatives to investigate neuronal function. ACTA ACUST UNITED AC 2008; Chapter 2:Unit 2.6. [PMID: 18428675 DOI: 10.1002/0471142301.ns0206s43] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The fluorescent dye FM1-43 and its derivatives can be used to monitor the physiology of synaptic vesicle turnover in central nerve terminals. They do so by their ability to reversibly partition into membranes, a process that results in a huge increase in fluorescence in comparison to their quantum yield in solution. This unit provides protocols for quantifying total synaptic vesicle turnover, the kinetics and extent of synaptic vesicle exocytosis, and the kinetics and mode of synaptic vesicle endocytosis. Descriptions of other ways these protocols have been used to derive information about the life cycle of the synaptic vesicle are also provided.
Collapse
|
20
|
Schwarz JM, Liang SL, Thompson SM, McCarthy MM. Estradiol induces hypothalamic dendritic spines by enhancing glutamate release: a mechanism for organizational sex differences. Neuron 2008; 58:584-98. [PMID: 18498739 DOI: 10.1016/j.neuron.2008.03.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 01/18/2008] [Accepted: 03/04/2008] [Indexed: 10/22/2022]
Abstract
The naturally occurring sex difference in dendritic spine number on hypothalamic neurons offers a unique opportunity to investigate mechanisms establishing synaptic patterning during perinatal sensitive periods. A major advantage of the rat as a model of sexual differentiation is that treatment of neonatal females with estradiol will permanently induce the male phenotype. During the development of other systems, exuberant innervation is followed by activity-dependent pruning necessary for elimination of spurious synapses. In contrast, we demonstrate that estradiol-induced organization in the hypothalamus involves the induction of new synapses on dendritic spines. Activation of estrogen receptors by estradiol triggers a nongenomic activation of PI3 kinase that results in enhanced glutamate release from presynaptic neurons. Subsequent activation of ionotropic glutamate receptors activates MAP kinases, thereby inducing dendritic spine formation. These results reveal a transneuronal mechanism by which estradiol acts during a sensitive period to establish a profound and lasting sex difference in hypothalamic synaptic patterning.
Collapse
Affiliation(s)
- Jaclyn M Schwarz
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD 212101, USA.
| | | | | | | |
Collapse
|
21
|
Corti V, Sanchez-Ruiz Y, Piccoli G, Bergamaschi A, Cannistraci CV, Pattini L, Cerutti S, Bachi A, Alessio M, Malgaroli A. Protein fingerprints of cultured CA3-CA1 hippocampal neurons: comparative analysis of the distribution of synaptosomal and cytosolic proteins. BMC Neurosci 2008; 9:36. [PMID: 18402664 PMCID: PMC2324106 DOI: 10.1186/1471-2202-9-36] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 04/10/2008] [Indexed: 11/21/2022] Open
Abstract
Background All studies aimed at understanding complex molecular changes occurring at synapses face the problem of how a complete view of the synaptic proteome and of its changes can be efficiently met. This is highly desirable when synaptic plasticity processes are analyzed since the structure and the biochemistry of neurons and synapses get completely reshaped. Because most molecular studies of synapses are nowadays mainly or at least in part based on protein extracts from neuronal cultures, this is not a feasible option: these simplified versions of the brain tissue on one hand provide an homogeneous pure population of neurons but on the other yield only tiny amounts of proteins, many orders of magnitude smaller than conventional brain tissue. As a way to overcome this limitation and to find a simple way to screen for protein changes at cultured synapses, we have produced and characterized two dimensional electrophoresis (2DE) maps of the synaptic proteome of CA3-CA1 hippocampal neurons in culture. Results To obtain 2D maps, hippocampal cultures were mass produced and after synaptic maturation, proteins were extracted following subfractionation procedures and separated by 2D gel electrophoresis. Similar maps were obtained for the crude cytosol of cultured neurons and for synaptosomes purified from CA3-CA1 hippocampal tissue. To efficiently compare these different maps some clearly identifiable reference points were molecularly identified by mass spectrometry and immunolabeling methods. This information was used to run a differential analysis and establish homologies and dissimilarities in these 2D protein profiles. Conclusion Because reproducible fingerprints of cultured synapses were clearly obtained, we believe that our mapping effort could represent a simple tool to screen for protein expression and/or protein localization changes in CA3-CA1 hippocampal neurons following plasticity.
Collapse
Affiliation(s)
- Valeria Corti
- Proteome Biochemistry, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
O'Connor DH, Wittenberg GM, Wang SSH. Timing and contributions of pre-synaptic and post-synaptic parameter changes during unitary plasticity events at CA3-CA1 synapses. Synapse 2007; 61:664-78. [PMID: 17503487 DOI: 10.1002/syn.20403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
At individual synapses, post-synaptic responses include a mixture of "successes" and "failures" in which transmitter is released or not released, respectively. Previously we measured synaptic strength at CA3-CA1 synapses averaged over all trials, including both successes and failures, using an induction protocol that allowed us to observe potentiation and depression events as step-like changes. Here we report quantal properties of 15 of the earlier experiments, including 14 potentiation events and eight depression events. In five experiments both potentiation events and depression events were evoked at the same synapse. During potentiation, success rate increased from 0.56 +/- 0.14 (mean +/- SD) to 0.69 +/- 0.12, and during depression, success rate decreased from 0.70 +/- 0.09 to 0.51 +/- 0.10. During potentiation potency increased from 10 +/- 5 to 19 +/- 9 pA, and during depression, potency decreased from 18 +/- 12 to 12 +/- 7 pA. On average, changes in potency accounted for 76% of the change in response size in potentiation events and 60% of the change in depression events. A reduced-assumption spectral analysis method showed evidence for multiple quantal peaks in distributions of post-synaptic current amplitudes. Consistent with the observed changes in potency, estimated quantal size (Q) increased with potentiation and decreased with depression. A change in potency, which is thought to reflect post-synaptic expression mechanisms, was followed within seconds to minutes by a change in success rate, which is thought to reflect pre-synaptic expression mechanisms. Synaptic plasticity events may therefore consist of changes that occur on both sides of a synapse in a temporally coordinated fashion.
Collapse
Affiliation(s)
- Daniel H O'Connor
- Department of Molecular Biology and Program in Neuroscience, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | |
Collapse
|
23
|
Liu S, Fa M, Ninan I, Trinchese F, Dauer W, Arancio O. Alpha-synuclein involvement in hippocampal synaptic plasticity: role of NO, cGMP, cGK and CaMKII. Eur J Neurosci 2007; 25:3583-96. [PMID: 17610578 DOI: 10.1111/j.1460-9568.2007.05569.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synaptic plasticity involves a series of coordinate changes occurring both pre- and postsynaptically, of which alpha-synuclein is an integral part. We have investigated on mouse primary hippocampal neurons in culture whether redistribution of alpha-synuclein during plasticity involves retrograde signaling activation through nitric oxide (NO), cGMP, cGMP-dependent protein kinase (cGK) and calmodulin-dependent protein kinase II. We have found that deletion of the alpha-synuclein gene blocks both the long-lasting enhancement of evoked and miniature transmitter release and the increase in the number of functional presynaptic boutons evoked through the NO donor, DEA/NO, and the cGMP analog, 8-Br-cGMP. In agreement with these findings both DEA/NO and 8-Br-cGMP were capable of producing a long-lasting increase in number of clusters for alpha-synuclein through activation of soluble guanylyl cyclase, cGK and calcium/calmodulin-dependent protein kinase IIalpha. Thus, our results suggest that NO, cGMP, GMP-dependent protein kinase and calmodulin-dependent protein kinase II play a key role in the redistribution of alpha-synuclein during plasticity.
Collapse
Affiliation(s)
- Shumin Liu
- Department of Pathology, Taub Institute, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
24
|
Thiagarajan TC, Lindskog M, Malgaroli A, Tsien RW. LTP and adaptation to inactivity: Overlapping mechanisms and implications for metaplasticity. Neuropharmacology 2007; 52:156-75. [PMID: 16949624 DOI: 10.1016/j.neuropharm.2006.07.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/20/2006] [Accepted: 07/21/2006] [Indexed: 11/16/2022]
Abstract
LTP and other rapidly induced forms of synaptic modification tune individual synaptic weights, whereas slower forms of plasticity such as adaptation to inactivity are thought to keep neurons within their firing limits and preserve their capability for information processing. Here we describe progress in understanding the relationship between LTP and adaptation to inactivity. A prevailing view is that adaptation to inactivity is purely postsynaptic, scales synaptic strength uniformly across all synapses, and thus preserves relative synaptic weights without interfering with signatures of prior LTP or the relative capacity for future LTP. However, recent evidence in hippocampal neurons indicates that, like LTP, adaptation to AMPA receptor blockade can draw upon a repertoire of synaptic expression mechanisms including enhancement of presynaptic vesicular turnover and increased quantal amplitude mediated by recruitment of homomeric GluR1 AMPA receptors. These pre- and postsynaptic changes appeared coordinated and preferentially expressed at subset of synapses, thereby increasing the variability of miniature EPSCs. In contrast to the NMDA receptor-, Ca2+ entry-dependent induction of LTP, adaptation to inactivity may be mediated by attenuation of voltage-sensitive L-type Ca2+ channel function. The associated intracellular signaling involves elevation of betaCaMKII, which in turn downregulates alphaCaMKII, a key player in LTP. Thus, adaptation to inactivity and LTP are not strictly independent with regard to mechanisms of signaling and expression. Indeed, we and others have found that responses to LTP-inducing stimuli can be sharply altered by prior inactivity, suggesting that the slow adaptation changes the rules of plasticity-an interesting example of "metaplasticity".
Collapse
Affiliation(s)
- Tara C Thiagarajan
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, B105 Beckman Center, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
25
|
Lauri SE, Palmer M, Segerstrale M, Vesikansa A, Taira T, Collingridge GL. Presynaptic mechanisms involved in the expression of STP and LTP at CA1 synapses in the hippocampus. Neuropharmacology 2007; 52:1-11. [PMID: 16919682 DOI: 10.1016/j.neuropharm.2006.06.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 06/22/2006] [Accepted: 06/23/2006] [Indexed: 11/28/2022]
Abstract
The study of long-term potentiation (LTP) has for many years been the centre of a raging debate as to whether the process is expressed by presynaptic or postsynaptic mechanisms. Here we present evidence that two forms of synaptic plasticity at CA3-CA1 synapses in the hippocampus are expressed by presynaptic changes. One form is short-term potentiation (STP) and the other a neonatal form of early-LTP (E-LTP). We review recent experimental data that suggests that this latter form of LTP involves an increase in the probability of neurotransmitter release (Pr). We describe how this is caused by the rapid down-regulation of a high affinity kainate receptor, which otherwise responds to ambient levels of l-glutamate by depressing Pr.
Collapse
Affiliation(s)
- Sari E Lauri
- Neuroscience Center and Department of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
26
|
Walz C, Jüngling K, Lessmann V, Gottmann K. Presynaptic Plasticity in an Immature Neocortical Network Requires NMDA Receptor Activation and BDNF Release. J Neurophysiol 2006; 96:3512-6. [PMID: 17110740 DOI: 10.1152/jn.00018.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activity-dependent developmental maturation of the neocortical network is thought to involve the stabilization and potentiation of immature synapses. In particular, N-methyl-d-aspartate (NMDA) receptor-dependent long-term plasticity that is expressed presynaptically appears to be crucial for the selection of functionally adequate synapses. However, presynaptic expression of long-term plasticity in neocortical neurons has mainly been studied indirectly by electrophysiological techniques. Here we analyzed presynaptic plasticity directly by repeated imaging of actively cycling presynaptic vesicles with the styryl dye FM4-64 in cultured neocortical neurons at 34°C. To monitor long-term changes, stimulation-induced saturating FM4-64 staining and subsequent destaining was performed twice with an interval of 1.5 h between stainings and with the first staining serving as a plasticity stimulus. In the vast majority of presynaptic release sites, we found an increase in the mean fluorescence intensity after the second staining indicating an enhanced number of cycling synaptic vesicles. Most intriguingly, we additionally observed the appearance of new active release sites. As demonstrated by the addition of the NMDA receptor antagonist d-2-amino-5-phosphonopentanoic acid (d-AP5), both plasticity phenomena were strictly dependent on NMDA receptor activation. This suggests that a subpopulation of release sites was functionally silent during the first round of staining. Moreover, we studied a potential role of brain-derived neurotrophic factor (BDNF) in this type of presynaptic plasticity by imaging BDNF-deficient neocortical neurons. The increase in fluorescence intensity was strongly inhibited in BDNF-knockout neurons and was absent in wild-type neurons in the presence of BDNF scavenging trkB receptor bodies. These results indicate that BDNF might play an important role as a plasticity-related messenger molecule in neocortical neurons.
Collapse
Affiliation(s)
- Corinna Walz
- Institut für Neuro- und Sinnesphysiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
27
|
Ninan I, Liu S, Rabinowitz D, Arancio O. Early presynaptic changes during plasticity in cultured hippocampal neurons. EMBO J 2006; 25:4361-71. [PMID: 16957772 PMCID: PMC1570425 DOI: 10.1038/sj.emboj.7601318] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 08/08/2006] [Indexed: 11/09/2022] Open
Abstract
Long-lasting increase in synaptic strength is thought to underlie learning. An explosion of data has characterized changes in postsynaptic (pstS) AMPA receptor cycling during potentiation. However, changes occurring within the presynaptic (prS) terminal remain largely unknown. We show that appearance of new release sites during potentiation between cultured hippocampal neurons is due to (a) conversion of nonrecycling sites to recycling sites, (b) formation of new releasing sites from areas containing diffuse staining for the prS marker Vesicle-Associated Membrane Protein-2 and (c) budding of new recycling sites from previously existing recycling sites. In addition, potentiation is accompanied by a release probability increase in pre-existing boutons depending upon their individual probability. These prS changes precede and regulate fluorescence increase for pstS GFP-tagged-AMPA-receptor subunit GluR1. These results suggest that potentiation involves early changes in the prS terminal including remodeling and release probability increase of pre-existing synapses.
Collapse
Affiliation(s)
- Ipe Ninan
- Taub Institute and Department of Pathology, Columbia University, New York City, NY, USA
| | - Shumin Liu
- Taub Institute and Department of Pathology, Columbia University, New York City, NY, USA
| | - Daniel Rabinowitz
- Department of Statistics, Columbia University, New York City, NY, USA
| | - Ottavio Arancio
- Taub Institute and Department of Pathology, Columbia University, New York City, NY, USA
- Taub Institute and Department of Pathology, Columbia University, P&S 12-442, 630W, 168th Street, New York City, NY 10032, USA. Tel.: +1 212 342 5527; Fax: +1 212 342 5523; E-mail:
| |
Collapse
|
28
|
Yao J, Qi J, Chen G. Actin-dependent activation of presynaptic silent synapses contributes to long-term synaptic plasticity in developing hippocampal neurons. J Neurosci 2006; 26:8137-47. [PMID: 16885227 PMCID: PMC6673772 DOI: 10.1523/jneurosci.1183-06.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Developing neurons have greater capacity in experience-dependent plasticity than adult neurons but the molecular mechanism is not well understood. Here we report a developmentally regulated long-term synaptic plasticity through actin-dependent activation of presynaptic silent synapses in cultured hippocampal neurons. Live FM 1-43 imaging and retrospective immunocytochemistry revealed that many presynaptic boutons in immature neurons are functionally silent at resting conditions, but can be converted into active ones after repetitive neuronal stimulation. The activation of presynaptic silent synapses is dependent on L-type calcium channels and protein kinase A (PKA)/PKC signaling pathways. Moreover, blocking actin polymerization with latrunculin A and cytochalasin B abolishes long-term increase of presynaptic functional boutons induced by repetitive stimulation, whereas actin polymerizer jasplakinolide increases the number of active boutons in immature neurons. In mature neurons, however, presynaptic boutons are mostly functional and repetitive stimulation did not induce additional enhancement. Quantitative immunostaining with phalloidin revealed a significant increase in axonal F-actin level after repetitive stimulation in immature but not mature neurons. These results suggest that actin-dependent activation of presynaptic silent synapses contributes significantly to the long-term synaptic plasticity during neuronal development.
Collapse
|
29
|
Garner CC, Waites CL, Ziv NE. Synapse development: still looking for the forest, still lost in the trees. Cell Tissue Res 2006; 326:249-62. [PMID: 16909256 DOI: 10.1007/s00441-006-0278-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 06/08/2006] [Indexed: 01/23/2023]
Abstract
Synapse development in the vertebrate central nervous system is a highly orchestrated process occurring not only during early stages of brain development, but also (to a lesser extent) in the mature nervous system. During development, the formation of synapses is intimately linked to the differentiation of neuronal cells, the extension of their axons and dendrites, and the course wiring of the nervous system. Subsequently, the stabilization, elimination, and strengthening of synaptic contacts is coupled to the refinement of axonal and dendritic arbors, to the establishment of functionally meaningful connections, and probably also to the day-to-day acquisition, storage, and retrieval of memories, higher order thought processes, and behavioral patterns.
Collapse
Affiliation(s)
- Craig C Garner
- Department of Psychiatry and Behavioral Science, Nancy Pritzer Laboratory, Stanford University, Palo Alto, CA 94304-5485, USA.
| | | | | |
Collapse
|
30
|
Harata NC, Aravanis AM, Tsien RW. Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion. J Neurochem 2006; 97:1546-70. [PMID: 16805768 DOI: 10.1111/j.1471-4159.2006.03987.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurotransmitters and hormones are released from neurosecretory cells by exocytosis (fusion) of synaptic vesicles, large dense-core vesicles and other types of vesicles or granules. The exocytosis is terminated and followed by endocytosis (retrieval). More than fifty years of research have established full-collapse fusion and clathrin-mediated endocytosis as essential modes of exo-endocytosis. Kiss-and-run and vesicle reuse represent alternative modes, but their prevalence and importance have yet to be elucidated, especially in neurons of the mammalian CNS. Here we examine various modes of exo-endocytosis across a wide range of neurosecretory systems. Full-collapse fusion and kiss-and-run coexist in many systems and play active roles in exocytotic events. In small nerve terminals of CNS, kiss-and-run has an additional role of enabling nerve terminals to conserve scarce vesicular resources and respond to high-frequency inputs. Full-collapse fusion and kiss-and-run will each contribute to maintaining cellular communication over a wide range of frequencies.
Collapse
Affiliation(s)
- Nobutoshi C Harata
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
31
|
Hawkins RD, Kandel ER, Bailey CH. Molecular mechanisms of memory storage in Aplysia. THE BIOLOGICAL BULLETIN 2006; 210:174-91. [PMID: 16801493 DOI: 10.2307/4134556] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cellular studies of implicit and explicit memory suggest that experience-dependent modulation of synaptic strength and structure is a fundamental mechanism by which these memories are encoded, processed, and stored within the brain. In this review, we focus on recent advances in our understanding of the molecular mechanisms that underlie short-term, intermediate-term, and long-term forms of implicit memory in the marine invertebrate Aplysia californica, and consider how the conservation of common elements in each form may contribute to the different temporal phases of memory storage.
Collapse
Affiliation(s)
- Robert D Hawkins
- Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032, USA.
| | | | | |
Collapse
|
32
|
Je HS, Zhou J, Yang F, Lu B. Distinct mechanisms for neurotrophin-3-induced acute and long-term synaptic potentiation. J Neurosci 2006; 25:11719-29. [PMID: 16354930 PMCID: PMC6726032 DOI: 10.1523/jneurosci.4087-05.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although neurotrophins elicit both acute and long-term effects, it is unclear whether the two modes of action are mediated by the same or different mechanisms. Using neuromuscular junction (NMJ) as a model system, we identified three characteristic features required for long-term, but not acute, forms of synaptic modulation by neurotrophin-3 (NT-3): endocytosis of NT-3-receptor complex, activation of the PI3 kinase substrate Akt, and new protein synthesis. Long-term effects were eliminated when NT-3 was conjugated to a bead that was too large to be endocytosed or when dominant-negative dynamin was expressed in presynaptic neurons. Presynaptic inhibition of Akt also selectively prevented NT-3-mediated long-term effects. Blockade of protein translation by the mammalian target of rapamycin inhibitor rapamycin prevented the long-term structural and functional changes at the NMJ, without affecting the acute potentiation of synaptic transmission by NT-3. These results reveal fundamental differences between acute and long-term modulation by neurotrophins.
Collapse
Affiliation(s)
- Hyun-Soo Je
- Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-3714, USA
| | | | | | | |
Collapse
|
33
|
Lu FM, Hawkins RD. Presynaptic and postsynaptic Ca(2+) and CamKII contribute to long-term potentiation at synapses between individual CA3 neurons. Proc Natl Acad Sci U S A 2006; 103:4264-9. [PMID: 16537519 PMCID: PMC1449681 DOI: 10.1073/pnas.0508162103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term potentiation (LTP) in the Schaffer collateral pathway from the CA3 to the CA1 region of the hippocampus is thought to involve postsynaptic mechanisms including Ca(2+)- and CamKII-dependent alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor insertion. However, very little is known about possible presynaptic mechanisms. It is easier to address that question at synapses between individual neurons in the CA3 region, where both sides of the synapses are accessible to substances injected into the cell bodies. Previous studies using that method showed that CA3-CA3 LTP involves presynaptic protein kinases as well as postsynaptic receptor insertion. We have extended those findings by exploring the pre- and postsynaptic roles of Ca(2+) and CamKII, and we have also compared results with two induction protocols, 1-Hz-paired and -burst-paired, which may involve pre- and/or postsynaptic mechanisms in addition to receptor insertion in CA1. Similar to results in CA1, we find that CA3-CA3 LTP completely depends on postsynaptic Ca(2+) with the 1-Hz-paired protocol but depends only partially on postsynaptic Ca(2+) or CamKII with the -burst-paired protocol. Potentiation with that protocol also partially depends on presynaptic Ca(2+) or CamKII, suggesting that the additional mechanisms of potentiation, at least in part, are presynaptic. Furthermore, the pre- and postsynaptic mechanisms seem to act in series, suggesting coordinate regulation of the two sides of the synapses. CA3-CA3 LTP with the 1-Hz-paired protocol also partially depends on presynaptic Ca(2+), suggesting that it may involve presynaptic mechanisms as well.
Collapse
Affiliation(s)
- Fang-Min Lu
- *Center for Neurobiology and Behavior, Columbia University, New York, NY 10032; and
| | - Robert D. Hawkins
- *Center for Neurobiology and Behavior, Columbia University, New York, NY 10032; and
- New York State Psychiatric Institute, New York, NY 10032
- To whom correspondence should be addressed at:
Center for Neurobiology and Behavior, Columbia University, 1051 Riverside Drive, New York, NY 10032. E-mail:
| |
Collapse
|
34
|
Micheva KD, Smith SJ. Strong effects of subphysiological temperature on the function and plasticity of mammalian presynaptic terminals. J Neurosci 2006; 25:7481-8. [PMID: 16107635 PMCID: PMC6725406 DOI: 10.1523/jneurosci.1801-05.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most cellular processes are known to be strongly temperature dependent. Nevertheless, a large fraction of studies of mammalian synaptic function have been and are performed near room temperature (i.e., at least 10 degrees C below physiological temperature). Here, we examined the effects of temperature on presynaptic function in primary cultures of rat hippocampal neurons. FM dyes, VAMP (vesicle-associated membrane protein)-GFP (green fluorescent protein) transfection, and HRP uptake were used to quantify various aspects of synaptic vesicle recycling. Our results show that there are very substantial differences in synaptic vesicle recycling at physiological temperature as opposed to the common, lower experimental temperatures. At 37 degrees C, compared with 23 degrees C, the speed of both exocytosis and endocytosis was higher. The size of the recycling vesicle pool (in both number of vesicles and spatial extent) was twofold larger at 37 degrees C. In addition, although repeated 10 Hz electrical stimulation caused an NMDA receptor-dependent enlargement (averaging 170%) of the measurable recycling vesicle pool at 23 degrees C, the same stimulus repetition had no effect at 37 degrees C. These results show that it is potentially misleading to extend conclusions drawn about vesicle function or presynaptic plasticity at lowered experimental temperature to physiological conditions and that much new experimental work at the higher physiological temperature range will be needed to understand the true parameters of presynaptic functions.
Collapse
Affiliation(s)
- Kristina D Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
35
|
Karpova AY, Tervo DGR, Gray NW, Svoboda K. Rapid and reversible chemical inactivation of synaptic transmission in genetically targeted neurons. Neuron 2006; 48:727-35. [PMID: 16337911 DOI: 10.1016/j.neuron.2005.11.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 05/05/2005] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
Abstract
Inducible and reversible silencing of selected neurons in vivo is critical to understanding the structure and dynamics of brain circuits. We have developed Molecules for Inactivation of Synaptic Transmission (MISTs) that can be genetically targeted to allow the reversible inactivation of neurotransmitter release. MISTs consist of modified presynaptic proteins that interfere with the synaptic vesicle cycle when crosslinked by small molecule "dimerizers." MISTs based on the vesicle proteins VAMP2/Synaptobrevin and Synaptophysin induced rapid ( approximately 10 min) and reversible block of synaptic transmission in cultured neurons and brain slices. In transgenic mice expressing MISTs selectively in Purkinje neurons, administration of dimerizer reduced learning and performance of the rotarod behavior. MISTs allow for specific, inducible, and reversible lesions in neuronal circuits and may provide treatment of disorders associated with neuronal hyperactivity.
Collapse
|
36
|
Thiagarajan TC, Lindskog M, Tsien RW. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 2005; 47:725-37. [PMID: 16129401 DOI: 10.1016/j.neuron.2005.06.037] [Citation(s) in RCA: 386] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 06/17/2005] [Accepted: 06/28/2005] [Indexed: 11/16/2022]
Abstract
In response to activity deprivation, CNS neurons undergo slow adaptive modification of unitary synaptic transmission. The changes are comparable in degree to those induced by brief intense stimulation, but their molecular basis is largely unknown. Our data indicate that prolonged AMPAR blockade acts through loss of Ca2+ entry through L-type Ca2+ channels to bring about an increase in both vesicle pool size and turnover rate, as well as a postsynaptic enhancement of the contribution of GluR1 homomers, concentrated at the largest synapses. The changes were consistent with a morphological scaling of overall synapse size, but also featured a dramatic shift toward synaptic drive contributed by the Ca2+-permeable homomeric GluR1 receptors. These results extend beyond "synaptic homeostasis" to involve more profound changes that can be better described as "metaplasticity".
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/physiology
- Animals
- Blotting, Western
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cells, Cultured
- Electrophysiology
- Excitatory Postsynaptic Potentials/physiology
- Hippocampus/cytology
- Hippocampus/drug effects
- Hippocampus/physiology
- Homeostasis/drug effects
- Homeostasis/physiology
- Immunohistochemistry
- Neuronal Plasticity/physiology
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques
- Polyamines/pharmacology
- Pyramidal Cells/drug effects
- Pyramidal Cells/physiology
- Rats
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/physiology
- Synapses/drug effects
- Synapses/physiology
- Transfection
Collapse
Affiliation(s)
- Tara C Thiagarajan
- Department of Molecular and Cellular Physiology, Beckman Center, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
37
|
Kelly BL, Vassar R, Ferreira A. Beta-amyloid-induced dynamin 1 depletion in hippocampal neurons. A potential mechanism for early cognitive decline in Alzheimer disease. J Biol Chem 2005; 280:31746-53. [PMID: 16002400 PMCID: PMC1364535 DOI: 10.1074/jbc.m503259200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptic dysfunction is one of the earliest events in the pathogenesis of Alzheimer disease (AD). However, the molecular mechanisms underlying synaptic defects in AD are largely unknown. We report here that beta-amyloid (Abeta), the main component of senile plaques, induced a significant decrease in dynamin 1, a protein that is essential for synaptic vesicle recycling and, hence, for memory formation and information processing. The Abeta-induced dynamin 1 decrease occurred in the absence of overt synaptic loss and was also observed in the Tg2576 mouse model of AD. In addition, our results provided evidence that the Abeta-induced decrease in dynamin 1 was likely the result of a calpain-mediated cleavage of dynamin 1 protein and possibly the down-regulation of dynamin 1 gene expression. These data suggest a mechanism to explain the early cognitive loss without a major decline in synapse number observed in AD and propose a novel therapeutic target for AD intervention.
Collapse
Affiliation(s)
- Brent L. Kelly
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, and
| | - Robert Vassar
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, and
| | - Adriana Ferreira
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, and
- Institute for Neuroscience, Northwestern University, Chicago, IL 6061
- Address correspondence to: Adriana Ferreira*, Northwestern Institute for Neuroscience, Northwestern University, Chicago, IL 60611, Tel. 312-503-0597; Fax. 312-503-7345, E-mail:
| |
Collapse
|
38
|
Lin JW, Fu Q. Modulation of available vesicles and release kinetics at the inhibitor of the crayfish neuromuscular junction. Neuroscience 2005; 130:889-95. [PMID: 15652987 DOI: 10.1016/j.neuroscience.2004.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2004] [Indexed: 11/21/2022]
Abstract
We have investigated the effect of serotonin (5-HT) and okadaic acid (OA) on presynaptic processes at the crayfish inhibitory neuromuscular junction. Two different physiological parameters of transmitter release were examined: release kinetics and the size of the readily releasable pool of vesicles (RRP). Using a paired pulse stimulus and high frequency trains, we established that a single broad action potential, recorded in 20 mM tetraethylammonium and 1 mM 4-amino-pyridine, released the RRP in its entirety. Thus, by measuring the amplitude of inhibitory postsynaptic potential (IPSC) we were able to directly assess the effects of 5-HT and OA on the RRP. Serotonin at 200 nM and OA at 2.5 microM each significantly increased IPSC above control levels and the effects of these two modulators were comparable. Both modulators also induced a leftward shift in the rising phase of IPSC, i.e. an apparent acceleration in release kinetics. The shift caused by OA was significantly more pronounced than that induced by 5-HT. This apparent acceleration in release was not associated with a corresponding change in the presynaptic Ca2+ transient measured at a 2 kHz resolution, suggesting that modulation was not due to an acceleration in Ca2+ channel kinetics. In view of the comparable increase in the size of the RRP by the modulators, the differential modulation of release kinetics suggests that these two parameters may be modulated by separate biochemical processes.
Collapse
Affiliation(s)
- J-W Lin
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.
| | | |
Collapse
|
39
|
García-Junco-Clemente P, Linares-Clemente P, Fernández-Chacón R. Active zones for presynaptic plasticity in the brain. Mol Psychiatry 2005; 10:185-200; image 131. [PMID: 15630409 DOI: 10.1038/sj.mp.4001628] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Some of the most abundant synapses in the brain such as the synapses formed by the hippocampal mossy fibers, cerebellar parallel fibers and several types of cortical afferents express presynaptic forms of long-term potentiation (LTP), a putative cellular model for spatial, motor and fear learning. Those synapses often display presynaptic mechanisms of LTP induction, which are either NMDA receptor independent of dependent of presynaptic NMDA receptors. Recent investigations on the molecular mechanisms of neurotransmitter release modulation in short- and long-term synaptic plasticity in central synapses give a preponderant role to active zone proteins as Munc-13 and RIM1-alpha, and point toward the maturation process of synaptic vesicles prior to Ca(2+)-dependent fusion as a key regulatory step of presynaptic plasticity.
Collapse
Affiliation(s)
- P García-Junco-Clemente
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla. Avda. Sánchez-Pizjuán 4, Sevilla, Spain
| | | | | |
Collapse
|
40
|
Kumashiro S, Lu YF, Tomizawa K, Matsushita M, Wei FY, Matsui H. Regulation of synaptic vesicle recycling by calcineurin in different vesicle pools. Neurosci Res 2005; 51:435-43. [PMID: 15740806 DOI: 10.1016/j.neures.2004.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 12/21/2004] [Accepted: 12/21/2004] [Indexed: 11/19/2022]
Abstract
The synaptic vesicles keep recycling by the processes of endocytosis and exocytosis to maintain the normal synaptic transmission. The synaptic vesicles are classified as the readily releasable pool (RRP) and the reserve pool (RP). In the endocytosis process, calcineurin (CaN), a Ca2+/calmodulin-dependent protein phosphatase, has been shown to play important roles. However, it is unclear about its roles in different vesicle pools. Here, we investigated the role of CaN in the regulation of vesicle recycling in the RRP and RP. Vesicle recycling was monitored by using fluorescent dyes FM1-43 and FM4-64 in the primary cultures of hippocampal neurons. Inhibition of CaN by FK506 and cyclosporin A suppressed the endocytosis in the RP, but not in the RRP. Inhibition of CaN also restrained the exocytic process triggered by 10 Hz stimulation, but had no effect on 3-5 Hz stimulation-induced exocytosis. FK506 also reduced the total vesicle pool size in the synaptic terminals. A synthesized CaN inhibitory peptide showed the similar effects as FK506 and cyclosporin A. These results revealed a novel mechanism that CaN plays critical roles in the distinct vesicle recycling processes.
Collapse
Affiliation(s)
- Susumu Kumashiro
- Department of Physiology, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Awatramani G, Murphy TH. Selective reduction of weak synaptic activity awakens dormant synapses. Neuron 2005; 44:743-4. [PMID: 15572104 DOI: 10.1016/j.neuron.2004.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Slutsky et al. (this issue of Neuron) report that by selectively filtering out low-level uncorrelated synaptic activity at NMDA receptors in hippocampal cultures they can unlock a large reserve of quiescent synapses and make them available for potentiation with theta burst stimulation. These findings differ from previously reported activity-dependent mechanisms in that inactivity does not necessarily increase synaptic activity globally.
Collapse
Affiliation(s)
- Gautam Awatramani
- Department of Psychiatry, University of British Columbia, 4835-2255 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
42
|
Palmer MJ, Isaac JTR, Collingridge GL. Multiple, developmentally regulated expression mechanisms of long-term potentiation at CA1 synapses. J Neurosci 2005; 24:4903-11. [PMID: 15163681 PMCID: PMC6729367 DOI: 10.1523/jneurosci.0170-04.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term potentiation (LTP) of AMPA receptor-mediated synaptic transmission at hippocampal CA1 synapses has been extensively studied, but the mechanisms responsible for its expression remain unresolved. We tested a hypothesis that there are multiple, developmentally regulated expression mechanisms by directly comparing LTP in hippocampal slices obtained from rats of two ages. At postnatal day 12 (P12), LTP was fully accounted for by an increase in potency (mean amplitude of responses excluding failures). This was associated with either an increase in AMPA receptor single-channel conductance (gamma) or no change in gamma, suggesting an increase in the number of AMPA receptors. At P6, LTP was explained by an additional two mechanisms. In the majority of neurons, LTP was associated with an increase in success rate and a decrease in paired-pulse facilitation. In the remaining neurons, LTP was attributable to an increase in potency. However, in contrast to P12 neurons, the potency increase was associated with a decrease in gamma, suggesting the insertion of receptors with lower gamma. We conclude that there are multiple expression mechanisms for LTP at CA1 synapses that are developmentally regulated. These findings suggest that a single class of synapse uses a number of different molecular mechanisms to produce long-term changes in synaptic strength.
Collapse
Affiliation(s)
- Mary J Palmer
- The Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, Bristol, BS8 1TD, United Kingdom.
| | | | | |
Collapse
|
43
|
Abstract
One of the most significant challenges in neuroscience is to identify the cellular and molecular processes that underlie learning and memory formation. The past decade has seen remarkable progress in understanding changes that accompany certain forms of acquisition and recall, particularly those forms which require activation of afferent pathways in the hippocampus. This progress can be attributed to a number of factors including well-characterized animal models, well-defined probes for analysis of cell signaling events and changes in gene transcription, and technology which has allowed gene knockout and overexpression in cells and animals. Of the several animal models used in identifying the changes which accompany plasticity in synaptic connections, long-term potentiation (LTP) has received most attention, and although it is not yet clear whether the changes that underlie maintenance of LTP also underlie memory consolidation, significant advances have been made in understanding cell signaling events that contribute to this form of synaptic plasticity. In this review, emphasis is focused on analysis of changes that occur after learning, especially spatial learning, and LTP and the value of assessing these changes in parallel is discussed. The effect of different stressors on spatial learning/memory and LTP is emphasized, and the review concludes with a brief analysis of the contribution of studies, in which transgenic animals were used, to the literature on memory/learning and LTP.
Collapse
Affiliation(s)
- M A Lynch
- Trinity College Institute of Neuroscience, Department of Physiology, Trinity College, Dublin, Ireland.
| |
Collapse
|
44
|
Kesavapany S, Li BS, Amin N, Zheng YL, Grant P, Pant HC. Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:143-53. [PMID: 15023357 DOI: 10.1016/j.bbapap.2003.11.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 11/12/2003] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a member of the cyclin-dependent kinase family that is involved in the regulation of the cell cycle. As their name suggests, the Cdks require association with activator proteins called cyclins for their activity. Cdk5, however, is unique to this family of proline-directed serine/threonine kinases on two accounts. Firstly, Cdk5 has not been found to function in the cell cycle and, although expressed in a number of tissues, its activity is restricted to the nervous system. Secondly, unlike the other members of the Cdk family, Cdk5 is not activated by association with a cyclin, although it can bind them. Instead, Cdk5 is activated by the activator proteins p35 and p39 that are structurally distinct from cyclins and have, for the most part, a neuronal-specific expression pattern. In the past decade of research on Cdk5, it is now established that Cdk5 activity is critical for the proper formation and function of the brain. Moreover, its role as a central kinase, phosphorylating its substrates in its 'cross-talk' control of other kinase and signal transduction pathways, has also been determined. In addition to the normal physiological role of Cdk5, the kinase has been implicated in certain neurodegenerative disorders. For example, Cdk5 associates with the proteolytic, more active p25 fragment that is derived through the cleavage of p35. In turn, the p25/Cdk5 complex aberrantly phosphorylates its substrates tau and neurofilaments, which has been implicated in the pathogenesis of these disorders. Here, we attempt to review the past decade of research on Cdk5 from our laboratory and others, on the roles of Cdk5 in nervous system function. Additionally, our research has recently uncovered a possible therapeutic avenue of research, focusing on inhibition of aberrant Cdk5 hyperactivity which may well be used to treat the symptoms of a number of neurodegenerative diseases. The elucidation of a specific inhibitor of p25/Cdk5, termed CIP, also inhibits p25/Cdk5-mediated tau phosphorylation. This may well provide us with avenues of research focusing on the inhibition of pathologically damaging p25/Cdk5 species.
Collapse
Affiliation(s)
- Sashi Kesavapany
- Cytoskeletal Protein Regulation Section, Laboratory of Neurochemistry, Building 36, Room 4D-28, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Gabriel Horn
- University of Cambridge, Department of Zoology, Sub-Department of Animal Behaviour, Madingley, Cambridge CB3 8AA, UK.
| |
Collapse
|
46
|
Long-term depression of presynaptic release from the readily releasable vesicle pool induced by NMDA receptor-dependent retrograde nitric oxide. J Neurosci 2003. [PMID: 12843298 DOI: 10.1523/jneurosci.23-13-05936.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Postsynaptic alterations are currently believed to be able to fully account for NMDA-receptor-dependent long-term depression (LTD) and long-term potentiation of synaptic strength, although there is also evidence supporting changes in presynaptic release. Using dualphoton laser scan microscopy of N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide (FM1-43) to directly visualize presynaptic vesicular release at Schaffer collateral-CA1 excitatory synapses in hippocampal slices, we demonstrate reduced vesicular release associated with LTD. Selective loading, by hypertonic shock, of the readily releasable vesicle pool (RRP) showed that LTD of release is a selective modification of release from the RRP. Presynaptic LTD of RRP release required activation of NMDA receptors, production and extracellular diffusion of the intercellular messenger NO, and activation of cGMP-dependent protein kinase.
Collapse
|
47
|
Choi S, Klingauf J, Tsien RW. Fusion pore modulation as a presynaptic mechanism contributing to expression of long-term potentiation. Philos Trans R Soc Lond B Biol Sci 2003; 358:695-705. [PMID: 12740115 PMCID: PMC1693158 DOI: 10.1098/rstb.2002.1249] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Working on the idea that postsynaptic and presynaptic mechanisms of long-term potentiation (LTP) expression are not inherently mutually exclusive, we have looked for the existence and functionality of presynaptic mechanisms for augmenting transmitter release in hippocampal slices. Specifically, we asked if changes in glutamate release might contribute to the conversion of 'silent synapses' that show N-methyl-D-aspartate (NMDA) responses but no detectable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) responses, to ones that exhibit both. Here, we review experiments where NMDA receptor responses provided a bioassay of cleft glutamate concentration, using opposition between peak [glu](cleft )and a rapidly reversible antagonist, L-AP5. We discuss findings of a dramatic increase in peak [glu](cleft) upon expression of pairing-induced LTP (Choi). We present simulations with a quantitative model of glutamatergic synaptic transmission that includes modulation of the presynaptic fusion pore, realistic cleft geometry and a distributed array of postsynaptic receptors and glutamate transporters. The modelling supports the idea that changes in the dynamics of glutamate release can contribute to synaptic unsilencing. We review direct evidence from Renger et al., in accord with the modelling, that trading off the strength and duration of the glutamate transient can markedly alter AMPA receptor responses with little effect on NMDA receptor responses. An array of additional findings relevant to fusion pore modulation and its proposed contribution to LTP expression are considered.
Collapse
Affiliation(s)
- Sukwoo Choi
- Department of Neuroscience, Ewha Institute for Neuroscience (EIN), School of Medicine, Ewha Womans University, Seoul 110-783, South Korea
| | | | | |
Collapse
|
48
|
Sokolov MV, Rossokhin AV, Astrelin AV, Frey JU, Voronin LL. Quantal analysis suggests strong involvement of presynaptic mechanisms during the initial 3 h maintenance of long-term potentiation in rat hippocampal CA1 area in vitro. Brain Res 2002; 957:61-75. [PMID: 12443981 DOI: 10.1016/s0006-8993(02)03600-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Long-term potentiation (LTP) is the most prominent model to study neuronal plasticity. Previous studies using quantal analysis of an early stage of LTP in the CA1 hippocampal region (<1 h after induction) suggested increases in both the mean number of transmitter quanta released by each presynaptic pulse (m, quantal content) and postsynaptic effect of a single quantum (v, quantal size). When LTP was large, it was m that increased predominantly suggesting prevailing presynaptic contribution. However, LTP consists of several temporary phases with presumably different mechanisms. Here we recorded excitatory postsynaptic potentials from CA1 hippocampal slices before and up to 3.5 h after LTP induction. A new version of the noise deconvolution revealed significant increases in m with smaller and often not statistically significant changes in v. The changes in m were similar for both early (<1 h) and later (1-3 h) post-tetanic periods and correlated with LTP magnitude. The coefficient of variation of the response amplitude and the number of failures decreased during both early and late post-tetanic periods. The results suggest that both early (<0.5 h) and later LTP components (0.5-3 h) are maintained by presynaptic changes, which include increases in release probabilities and the number of effective release sites. In addition initially silent synapses can be converted into effective ones due to either pre- or postsynaptic rearrangements. If this occurs, our data indicate that the number and the efficacy of the receptors in the new transmission sites are approximately similar to those in the previously effective sites.
Collapse
Affiliation(s)
- M V Sokolov
- Brain Research Institute, Russian Academy of Medical Sciences, 103064 Moscow, Russia
| | | | | | | | | |
Collapse
|
49
|
Abstract
To explore mechanisms governing the formation, stability, and elimination of synapses during neuronal development, we used FM 1-43 fluorescence imaging to track vesicle turnover at >7000 individually identified developing synapses between embryonic rat hippocampal neurons in culture. The majority of presynaptic boutons were stable in efficacy and position over a period of 1.5 hr. Activity, evoked by burst-patterned field stimulation, decreased presynaptic function across the population of boutons, an effect that required NMDA receptor activation. Decreased FM 1-43 staining correlated with low synapsin-I and synaptophysin immunoreactivities, suggesting that decreased presynaptic function was commensurate with synaptic disassembly. These observations provide new information on the stability of developing presynaptic function and suggest that NMDA receptor activation may regulate the stability of developing synapses.
Collapse
|
50
|
Colicos MA, Collins BE, Sailor MJ, Goda Y. Remodeling of synaptic actin induced by photoconductive stimulation. Cell 2001; 107:605-16. [PMID: 11733060 DOI: 10.1016/s0092-8674(01)00579-7] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Use-dependent synapse remodeling is thought to provide a cellular mechanism for encoding durable memories, yet whether activity triggers an actual structural change has remained controversial. We use photoconductive stimulation to demonstrate activity-dependent morphological synaptic plasticity by video imaging of GFP-actin at individual synapses. A single tetanus transiently moves presynaptic actin toward and postsynaptic actin away from the synaptic junction. Repetitive spaced tetani induce glutamate receptor-dependent stable restructuring of synapses. Presynaptic actin redistributes and forms new puncta that label for an active synapse marker FM5-95 within 2 hr. Postsynaptic actin sprouts projections toward the new presynaptic actin puncta, resembling the axon-dendrite interaction during synaptogenesis. Our results indicate that activity-dependent presynaptic structural plasticity facilitates the formation of new active presynaptic terminals.
Collapse
Affiliation(s)
- M A Colicos
- Neurobiology Section/Division of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|