1
|
Qian T, Wang H, Xia X, Li Y. Current and emerging methods for probing neuropeptide transmission. Curr Opin Neurobiol 2023; 81:102751. [PMID: 37487399 DOI: 10.1016/j.conb.2023.102751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/26/2023]
Abstract
Neuropeptides comprise the most diverse category of neurochemicals in the brain, playing critical roles in a wide range of physiological and pathophysiological processes. Monitoring neuropeptides with high spatial and temporal resolution is essential for understanding how peptidergic transmission is regulated throughout the central nervous system. In this review, we provide an overview of current non-optical and optical approaches used to detect neuropeptides, including their design principles, intrinsic properties, and potential limitations. We also highlight the advantages of using G protein‒coupled receptor (GPCR) activation‒based (GRAB) sensors to monitor neuropeptides in vivo with high sensitivity, good specificity, and high spatiotemporal resolution. Finally, we present a promising outlook regarding the development and optimization of new GRAB neuropeptide sensors, as well as their potential applications.
Collapse
Affiliation(s)
- Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China
| | - Xiju Xia
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Chinese Institute for Brain Research, Beijing, 102206, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Illuminating membrane structural dynamics of fusion and endocytosis with advanced light imaging techniques. Biochem Soc Trans 2022; 50:1157-1167. [PMID: 35960003 PMCID: PMC9444071 DOI: 10.1042/bst20210263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Visualization of cellular dynamics using fluorescent light microscopy has become a reliable and indispensable source of experimental evidence for biological studies. Over the past two decades, the development of super-resolution microscopy platforms coupled with innovations in protein and molecule labeling led to significant biological findings that were previously unobservable due to the barrier of the diffraction limit. As a result, the ability to image the dynamics of cellular processes is vastly enhanced. These imaging tools are extremely useful in cellular physiology for the study of vesicle fusion and endocytosis. In this review, we will explore the power of stimulated emission depletion (STED) and confocal microscopy in combination with various labeling techniques in real-time observation of the membrane transformation of fusion and endocytosis, as well as their underlying mechanisms. We will review how STED and confocal imaging are used to reveal fusion and endocytic membrane transformation processes in live cells, including hemi-fusion; hemi-fission; hemi-to-full fusion; fusion pore opening, expansion, constriction and closure; shrinking or enlargement of the Ω-shape membrane structure after vesicle fusion; sequential compound fusion; and the sequential endocytic membrane transformation from flat- to O-shape via the intermediate Λ- and Ω-shape transition. We will also discuss how the recent development of imaging techniques would impact future studies in the field.
Collapse
|
3
|
Selective control of synaptically-connected circuit elements by all-optical synapses. Commun Biol 2022; 5:33. [PMID: 35017641 PMCID: PMC8752598 DOI: 10.1038/s42003-021-02981-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/15/2021] [Indexed: 12/29/2022] Open
Abstract
Understanding percepts, engrams and actions requires methods for selectively modulating synaptic communication between specific subsets of interconnected cells. Here, we develop an approach to control synaptically connected elements using bioluminescent light: Luciferase-generated light, originating from a presynaptic axon terminal, modulates an opsin in its postsynaptic target. Vesicular-localized luciferase is released into the synaptic cleft in response to presynaptic activity, creating a real-time Optical Synapse. Light production is under experimenter-control by introduction of the small molecule luciferin. Signal transmission across this optical synapse is temporally defined by the presence of both the luciferin and presynaptic activity. We validate synaptic Interluminescence by multi-electrode recording in cultured neurons and in mice in vivo. Interluminescence represents a powerful approach to achieve synapse-specific and activity-dependent circuit control in vivo.
Collapse
|
4
|
Milosevic I. Spatial and Temporal Aspects of Exocytosis Studied on the Isolated Plasma Membranes. Methods Mol Biol 2021; 2233:311-325. [PMID: 33222144 DOI: 10.1007/978-1-0716-1044-2_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Exocytosis of large-dense core vesicles in neuroendocrine cells is a highly regulated, calcium-dependent process, mediated by networks of interrelated proteins and lipids. Here, I describe experimental procedures for studies of selective spatial and temporal aspects of exocytosis at the plasma membrane, or in its proximity, using adrenal chromaffin cells. The assay utilizes primary cells subjected to a brief ultrasonic pulse, resulting in the formation of thin, flat inside-out plasma membranes with attached secretory vesicles and elements of cell cytoskeleton. In this model, secretion of plasma membrane-attached secretory vesicles was found to be dependent on calcium and sensitive to clostridial neurotoxins. Depending on the probe selected for secretory vesicle cargo, protein, and/or lipid detection, this simple assay is versatile, fast and inexpensive, and offers excellent spatial resolution.
Collapse
Affiliation(s)
- Ira Milosevic
- European Neuroscience Institute (ENI), A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany. .,Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Structural and Functional Analysis of the CAPS SNARE-Binding Domain Required for SNARE Complex Formation and Exocytosis. Cell Rep 2020; 26:3347-3359.e6. [PMID: 30893606 DOI: 10.1016/j.celrep.2019.02.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/18/2019] [Accepted: 02/15/2019] [Indexed: 12/29/2022] Open
Abstract
Exocytosis of synaptic vesicles and dense-core vesicles requires both the Munc13 and CAPS (Ca2+-dependent activator proteins for secretion) proteins. CAPS contains a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-binding region (called the DAMH domain), which has been found to be essential for SNARE-mediated exocytosis. Here we report a crystal structure of the CAPS-1 DAMH domain at 2.9-Å resolution and reveal a dual role of CAPS-1 in SNARE complex formation. CAPS-1 plays an inhibitory role dependent on binding of the DAMH domain to the MUN domain of Munc13-1, which hinders the ability of Munc13 to catalyze opening of syntaxin-1, inhibiting SNARE complex formation, and a chaperone role dependent on interaction of the DAMH domain with the syntaxin-1/SNAP-25 complex, which stabilizes the open conformation of Syx1, facilitating SNARE complex formation. Our results suggest that CAPS-1 facilitates SNARE complex formation via the DAMH domain in a manner dependent on sequential and cooperative interaction with Munc13-1 and SNARE proteins.
Collapse
|
6
|
Barwary NJS, Wan D, Falcone FH. NPY-mRFP Rat Basophilic Leukemia (RBL) Reporter: A Novel, Fast Reporter of Basophil/Mast Cell Degranulation. Methods Mol Biol 2020; 2163:163-170. [PMID: 32766974 DOI: 10.1007/978-1-0716-0696-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Humanized rat basophilic leukemia (RBL) reporter cell lines are increasingly used for the detection of allergen-specific IgE and other purposes, such as the detection of allergens and standardization of allergen preparations. Existing reporter systems have many strengths and advantages but can be expensive or require longer incubation times. The new NPY-mRFP reporter cell line addresses such problems, as it requires neither expensive substrates nor overnight incubation for detection of activation. The fusion of Neuropeptide Y (NPY) with monomeric Red Fluorescent Protein (mRFP) results in localization of the fluorescent protein in granules. As NPY-mRFP is preformed in granules, the reporter system activation can be assessed using fluorescence measurements after as soon as 45-60 min, as described in this chapter, without the need to add any substrates.
Collapse
Affiliation(s)
- Nafal J S Barwary
- Department of Biology, School of Science, University of Duhok, Duhok, Kurdistan Regional Government, Iraq
| | | | - Franco H Falcone
- Institute for Parasitology, Justus Liebig University Giessen, Biomedizinisches Forschungszentrum Seltersberg (BFS), Giessen, Germany.
| |
Collapse
|
7
|
Katoh K. Software-Based Three-Dimensional Deconvolution Microscopy of Cytoskeletal Proteins in Cultured Fibroblast Using Open-Source Software and Open Hardware. J Imaging 2019; 5:jimaging5120088. [PMID: 34460602 PMCID: PMC8321150 DOI: 10.3390/jimaging5120088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
As conventional fluorescence microscopy and confocal laser scanning microscopy generally produce images with blurring at the upper and lower planes along the z-axis due to non-focal plane image information, the observation of biological images requires "deconvolution." Therefore, a microscope system's individual blur function (point spread function) is determined theoretically or by actual measurement of microbeads and processed mathematically to reduce noise and eliminate blurring as much as possible. Here the author describes the use of open-source software and open hardware design to build a deconvolution microscope at low cost, using readily available software and hardware. The advantage of this method is its cost-effectiveness and ability to construct a microscope system using commercially available optical components and open-source software. Although this system does not utilize expensive equipment, such as confocal and total internal reflection fluorescence microscopes, decent images can be obtained even without previous experience in electronics and optics.
Collapse
Affiliation(s)
- Kazuo Katoh
- Faculty of Health Sciences, Tsukuba University of Technology, Laboratory of Human Anatomy and Cell Biology, 4-12-7 Kasuga, Tsukuba-city, Ibaraki 305-8521, Japan
| |
Collapse
|
8
|
Maidorn M, Olichon A, Rizzoli SO, Opazo F. Nanobodies reveal an extra-synaptic population of SNAP-25 and Syntaxin 1A in hippocampal neurons. MAbs 2018; 11:305-321. [PMID: 30466346 PMCID: PMC6380399 DOI: 10.1080/19420862.2018.1551675] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synaptic vesicle fusion (exocytosis) is a precisely regulated process that entails the formation of SNARE complexes between the vesicle protein synaptobrevin 2 (VAMP2) and the plasma membrane proteins Syntaxin 1 and SNAP-25. The sub-cellular localization of the latter two molecules remains unclear, although they have been the subject of many recent investigations. To address this, we generated two novel camelid single domain antibodies (nanobodies) specifically binding to SNAP-25 and Syntaxin 1A. These probes penetrated more easily into samples and detected their targets more efficiently than conventional antibodies in crowded regions. When investigated by super-resolution imaging, the nanobodies revealed substantial extra-synaptic populations for both SNAP-25 and Syntaxin 1A, which were poorly detected by antibodies. Moreover, extra-synaptic Syntaxin 1A molecules were recruited to synapses during stimulation, suggesting that these are physiologically-active molecules. We conclude that nanobodies are able to reveal qualitatively and quantitatively different organization patterns, when compared to conventional antibodies.
Collapse
Affiliation(s)
- Manuel Maidorn
- a Institute of Neuro- and Sensory Physiology , University Medical Center Göttingen , Göttingen , Germany.,b Center for Biostructural Imaging of Neurodegeneration (BIN) , University of Göttingen Medical Center , Göttingen , Germany
| | - Aurélien Olichon
- c Inserm, UMR 1037-CRCT , Toulouse , France.,d Université Toulouse III-Paul Sabatier , Toulouse , France
| | - Silvio O Rizzoli
- a Institute of Neuro- and Sensory Physiology , University Medical Center Göttingen , Göttingen , Germany.,b Center for Biostructural Imaging of Neurodegeneration (BIN) , University of Göttingen Medical Center , Göttingen , Germany
| | - Felipe Opazo
- a Institute of Neuro- and Sensory Physiology , University Medical Center Göttingen , Göttingen , Germany.,b Center for Biostructural Imaging of Neurodegeneration (BIN) , University of Göttingen Medical Center , Göttingen , Germany
| |
Collapse
|
9
|
Falcone FH, Wan D, Barwary N, Sagi-Eisenberg R. RBL cells as models for in vitro studies of mast cells and basophils. Immunol Rev 2018; 282:47-57. [DOI: 10.1111/imr.12628] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Franco H. Falcone
- Division of Molecular Therapeutics and Formulation; School of Pharmacy; University of Nottingham; Nottingham UK
| | - Daniel Wan
- Division of Molecular Therapeutics and Formulation; School of Pharmacy; University of Nottingham; Nottingham UK
| | - Nafal Barwary
- Division of Molecular Therapeutics and Formulation; School of Pharmacy; University of Nottingham; Nottingham UK
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology; Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
10
|
Syntaxins on granules promote docking of granules via interactions with munc18. Sci Rep 2018; 8:193. [PMID: 29317735 PMCID: PMC5760731 DOI: 10.1038/s41598-017-18597-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/13/2017] [Indexed: 01/02/2023] Open
Abstract
SNAREs and SNARE-binding accessory proteins are believed to be central molecular components of neurotransmitter release, although the precise sequence of molecular events corresponding to distinct physiological states is unclear. The mechanism of docking of vesicles to the plasma membrane remains elusive, as the anchoring protein residing on vesicles is unknown. Here I show that targeting small amounts of syntaxin to granules by transmembrane domain alteration leads to a substantial enhancement of syntaxin clustering beneath granules, as well as of morphological granule docking. The effect was abolished without munc18 and strongly reduced by removal of the N-terminal peptide in the syntaxin mutant. Thus, in contrast to the current paradigm, I demonstrate that syntaxin acts from the vesicular membrane, strongly facilitating docking of vesicles, likely via interaction of its N-peptide with munc18. Docking was assayed by quantifying the syntaxin clusters beneath granules, using two-color Total Internal Reflectance Fluorescence microscopy in live PC-12 cells and confirmed by electron microscopy. Hereby, I propose a new model of vesicle docking, wherein munc18 bridges the few syntaxin molecules residing on granules to the syntaxin cluster on the plasma membrane, suggesting that the number of syntaxins on vesicles determines docking and conceivably fusion probability.
Collapse
|
11
|
Michaeli L, Gottfried I, Bykhovskaia M, Ashery U. Phosphatidylinositol (4, 5)-bisphosphate targets double C2 domain protein B to the plasma membrane. Traffic 2017; 18:825-839. [PMID: 28941037 DOI: 10.1111/tra.12528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023]
Abstract
Double C2 domain protein B (DOC2B) is a high-affinity Ca2+ sensor that translocates from the cytosol to the plasma membrane (PM) and promotes vesicle priming and fusion. However, the molecular mechanism underlying its translocation and targeting to the PM in living cells is not completely understood. DOC2B interacts in vitro with the PM components phosphatidylserine, phosphatidylinositol (4, 5)-bisphosphate [PI(4, 5)P2 ] and target SNAREs (t-SNAREs). Here, we show that PI(4, 5)P2 hydrolysis at the PM of living cells abolishes DOC2B translocation, whereas manipulations of t-SNAREs and other phosphoinositides have no effect. Moreover, we were able to redirect DOC2B to intracellular membranes by synthesizing PI(4, 5)P2 in those membranes. Molecular dynamics simulations and mutagenesis in the calcium and PI(4, 5)P2 -binding sites strengthened our findings, demonstrating that both calcium and PI(4, 5)P2 are required for the DOC2B-PM association and revealing multiple PI(4, 5)P2 -C2B interactions. In addition, we show that DOC2B translocation to the PM is ATP-independent and occurs in a diffusion-like manner. Our data suggest that the Ca2+ -triggered translocation of DOC2B is diffusion-driven and aimed at PI(4, 5)P2 -containing membranes.
Collapse
Affiliation(s)
- Lirin Michaeli
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Irit Gottfried
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | | | - Uri Ashery
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Wang J, Richards DA. The actin binding protein scinderin acts in PC12 cells to tether dense-core vesicles prior to secretion. Mol Cell Neurosci 2017; 85:12-18. [PMID: 28823945 DOI: 10.1016/j.mcn.2017.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Mechanistic understanding of the control of vesicle motion from within a secretory cell to the site of exocytosis remains incomplete. In this work, we have used total internal reflection (TIRF) microscopy to examine the mobility of secretory vesicles at the plasma membrane. Under resting conditions, we found vesicles showed little lateral mobility. Anchoring of vesicles in this membrane proximal compartment could be disrupted with latrunculin A, indicating an apparent actin dependent process. A candidate intermediary between vesicles and the actin skeleton is the actin binding protein scinderin. Co-transfection of an shRNA construct against scinderin blocked secretion, and also increased the mobility of vesicles in the membrane-proximal section of the cell, indicating a dual role for scinderin in secretion; tethering vesicles to the cytoskeleton, as well as liberating them following stimulation through the previously described calcium dependent actin severing activity. Analysis of lipid dependence indicates that scinderin exhibits calcium dependent binding to phosphatidyl-inositol monophosphate, providing a possible mechanism for vesicle binding.
Collapse
Affiliation(s)
- J Wang
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, MLC2001, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - D A Richards
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, MLC2001, 3333 Burnet Avenue, Cincinnati, OH 45229, United States; Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, 1 College Circle, Bangor, ME 04401, United States.
| |
Collapse
|
13
|
How intravesicular composition affects exocytosis. Pflugers Arch 2017; 470:135-141. [PMID: 28779472 DOI: 10.1007/s00424-017-2035-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/26/2022]
Abstract
Large dense core vesicles and chromaffin granules accumulate solutes at large concentrations (for instance, catecholamines, 0.5-1 M; ATP, 120-300 mM; or Ca2+, 40 mM (12)). Solutes seem to aggregate to a condensed protein matrix, which is mainly composed of chromogranins, to elude osmotic lysis. This association is also responsible for the delayed release of catecholamines during exocytosis. Here, we compile experimental evidence, obtained since the inception of single-cell amperometry, demonstrating how the alteration of intravesicular composition promotes changes in the quantum characteristics of exocytosis. As chromaffin cells are large and their vesicles contain a high concentration of electrochemically detectable species, most experimental data comes from this cell model.
Collapse
|
14
|
Dun AR, Lord GJ, Wilson RS, Kavanagh DM, Cialowicz KI, Sugita S, Park S, Yang L, Smyth AM, Papadopulos A, Rickman C, Duncan RR. Navigation through the Plasma Membrane Molecular Landscape Shapes Random Organelle Movement. Curr Biol 2017; 27:408-414. [PMID: 28089515 PMCID: PMC5300901 DOI: 10.1016/j.cub.2016.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/05/2016] [Accepted: 12/02/2016] [Indexed: 12/13/2022]
Abstract
Eukaryotic plasma membrane organization theory has long been controversial, in part due to a dearth of suitably high-resolution techniques to probe molecular architecture in situ and integrate information from diverse data streams [1]. Notably, clustered patterning of membrane proteins is a commonly conserved feature across diverse protein families (reviewed in [2]), including the SNAREs [3], SM proteins [4, 5], ion channels [6, 7], and receptors (e.g., [8]). Much effort has gone into analyzing the behavior of secretory organelles [9-13], and understanding the relationship between the membrane and proximal organelles [4, 5, 12, 14] is an essential goal for cell biology as broad concepts or rules may be established. Here we explore the generally accepted model that vesicles at the plasmalemma are guided by cytoskeletal tracks to specific sites on the membrane that have clustered molecular machinery for secretion [15], organized in part by the local lipid composition [16]. To increase our understanding of these fundamental processes, we integrated nanoscopy and spectroscopy of the secretory machinery with organelle tracking data in a mathematical model, iterating with knockdown cell models. We find that repeated routes followed by successive vesicles, the re-use of similar fusion sites, and the apparently distinct vesicle "pools" are all fashioned by the Brownian behavior of organelles overlaid on navigation between non-reactive secretory protein molecular depots patterned at the plasma membrane.
Collapse
Affiliation(s)
- Alison R Dun
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK; Edinburgh Super-Resolution Imaging Consortium
| | - Gabriel J Lord
- Department of Mathematics, Maxwell Institute, MACS, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Rhodri S Wilson
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK; Edinburgh Super-Resolution Imaging Consortium
| | - Deirdre M Kavanagh
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK; Edinburgh Super-Resolution Imaging Consortium
| | - Katarzyna I Cialowicz
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK; Edinburgh Super-Resolution Imaging Consortium
| | - Shuzo Sugita
- Toronto Western Research Institute, Room 11-432, McLaughlin Wing, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
| | - Seungmee Park
- Toronto Western Research Institute, Room 11-432, McLaughlin Wing, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
| | - Lei Yang
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK; Edinburgh Super-Resolution Imaging Consortium
| | - Annya M Smyth
- Centre for Inflammation Research, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andreas Papadopulos
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Colin Rickman
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK; Edinburgh Super-Resolution Imaging Consortium
| | - Rory R Duncan
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK; Edinburgh Super-Resolution Imaging Consortium.
| |
Collapse
|
15
|
Cortese G, Gandasi NR, Barg S, Pedersen MG. Statistical Frailty Modeling for Quantitative Analysis of Exocytotic Events Recorded by Live Cell Imaging: Rapid Release of Insulin-Containing Granules Is Impaired in Human Diabetic β-cells. PLoS One 2016; 11:e0167282. [PMID: 27907065 PMCID: PMC5132000 DOI: 10.1371/journal.pone.0167282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/20/2016] [Indexed: 12/20/2022] Open
Abstract
Hormones and neurotransmitters are released when secretory granules or synaptic vesicles fuse with the cell membrane, a process denoted exocytosis. Modern imaging techniques, in particular total internal reflection fluorescence (TIRF) microscopy, allow the investigator to monitor secretory granules at the plasma membrane before and when they undergo exocytosis. However, rigorous statistical approaches for temporal analysis of such exocytosis data are still lacking. We propose here that statistical methods from time-to-event (also known as survival) analysis are well suited for the problem. These methods are typically used in clinical settings when individuals are followed over time to the occurrence of an event such as death, remission or conception. We model the rate of exocytosis in response to pulses of stimuli in insulin-secreting pancreatic β-cell from healthy and diabetic human donors using piecewise-constant hazard modeling. To study heterogeneity in the granule population we exploit frailty modeling, which describe unobserved differences in the propensity to exocytosis. In particular, we insert a discrete frailty in our statistical model to account for the higher rate of exocytosis in an immediately releasable pool (IRP) of insulin-containing granules. Estimates of parameters are obtained from maximum-likelihood methods. Since granules within the same cell are correlated, i.e., the data are clustered, a modified likelihood function is used for log-likelihood ratio tests in order to perform valid inference. Our approach allows us for example to estimate the size of the IRP in the cells, and we find that the IRP is deficient in diabetic cells. This novel application of time-to-event analysis and frailty modeling should be useful also for the study of other well-defined temporal events at the cellular level.
Collapse
Affiliation(s)
- Giuliana Cortese
- Department of Statistical Sciences, University of Padua, Padua, Italy
| | - Nikhil R Gandasi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
16
|
Pedersen MG, Tagliavini A, Cortese G, Riz M, Montefusco F. Recent advances in mathematical modeling and statistical analysis of exocytosis in endocrine cells. Math Biosci 2016; 283:60-70. [PMID: 27838280 DOI: 10.1016/j.mbs.2016.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 12/15/2022]
Abstract
Most endocrine cells secrete hormones as a result of Ca2+-regulated exocytosis, i.e., fusion of the membranes of hormone-containing secretory granules with the cell membrane, which allows the hormone molecules to escape to the extracellular space. As in neurons, electrical activity and cell depolarization open voltage-sensitive Ca2+ channels, and the resulting Ca2+ influx elevate the intracellular Ca2+ concentration, which in turn causes exocytosis. Whereas the main molecular components involved in exocytosis are increasingly well understood, quantitative understanding of the dynamical aspects of exocytosis is still lacking. Due to the nontrivial spatiotemporal Ca2+ dynamics, which depends on the particular pattern of electrical activity as well as Ca2+ channel kinetics, exocytosis is dependent on the spatial arrangement of Ca2+ channels and secretory granules. For example, the creation of local Ca2+ microdomains, where the Ca2+ concentration reaches tens of µM, are believed to be important for triggering exocytosis. Spatiotemporal simulations of buffered Ca2+ diffusion have provided important insight into the interplay between electrical activity, Ca2+ channel kinetics, and the location of granules and Ca2+ channels. By confronting simulations with statistical time-to-event (or survival) regression analysis of single granule exocytosis monitored with TIRF microscopy, a direct connection between location and rate of exocytosis can be obtained at the local, single-granule level. To get insight into whole-cell secretion, simplifications of the full spatiotemporal dynamics have shown to be highly helpful. Here, we provide an overview of recent approaches and results for quantitative analysis of Ca2+ regulated exocytosis of hormone-containing granules.
Collapse
Affiliation(s)
- Morten Gram Pedersen
- Department of Information Engineering, University of Padua, Via Gradenigo 6/B, 35131 Padova, Italy.
| | - Alessia Tagliavini
- Department of Information Engineering, University of Padua, Via Gradenigo 6/B, 35131 Padova, Italy
| | - Giuliana Cortese
- Department of Statistical Sciences, University of Padua, Via Cesare Battisti 141, 35121 Padova, Italy
| | - Michela Riz
- Department of Information Engineering, University of Padua, Via Gradenigo 6/B, 35131 Padova, Italy; Sanofi, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Francesco Montefusco
- Department of Information Engineering, University of Padua, Via Gradenigo 6/B, 35131 Padova, Italy
| |
Collapse
|
17
|
Trexler AJ, Sochacki KA, Taraska JW. Imaging the recruitment and loss of proteins and lipids at single sites of calcium-triggered exocytosis. Mol Biol Cell 2016; 27:2423-34. [PMID: 27307587 PMCID: PMC4966983 DOI: 10.1091/mbc.e16-01-0057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/09/2016] [Indexed: 12/13/2022] Open
Abstract
Imaging of exocytic and endocytic proteins shows which are present at exocytic sites before, during, and after exocytosis in living cells. Rab proteins and SNARE modulators are lost, and dynamin, PIP2, and BAR-domain proteins are rapidly and transiently recruited, where they may modulate the nascent fusion pore. How and when the dozens of molecules that control exocytosis assemble in living cells to regulate the fusion of a vesicle with the plasma membrane is unknown. Here we image with two-color total internal reflection fluorescence microscopy the local changes of 27 proteins at single dense-core vesicles undergoing calcium-triggered fusion. We identify two broad dynamic behaviors of exocytic molecules. First, proteins enriched at exocytic sites are associated with DCVs long before exocytosis, and near the time of membrane fusion, they diffuse away. These proteins include Rab3 and Rab27, rabphilin3a, munc18a, tomosyn, and CAPS. Second, we observe a group of classical endocytic proteins and lipids, including dynamins, amphiphysin, syndapin, endophilin, and PIP2, which are rapidly and transiently recruited to the exocytic site near the time of membrane fusion. Dynamin mutants unable to bind amphiphysin were not recruited, indicating that amphiphysin is involved in localizing dynamin to the fusion site. Expression of mutant dynamins and knockdown of endogenous dynamin altered the rate of cargo release from single vesicles. Our data reveal the dynamics of many key proteins involved in exocytosis and identify a rapidly recruited dynamin/PIP2/BAR assembly that regulates the exocytic fusion pore of dense-core vesicles in cultured endocrine beta cells.
Collapse
Affiliation(s)
- Adam J Trexler
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kem A Sochacki
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
18
|
Villanueva J, Gimenez-Molina Y, Viniegra S, Gutiérrez LM. F-actin cytoskeleton and the fate of organelles in chromaffin cells. J Neurochem 2016; 137:860-6. [PMID: 26843469 DOI: 10.1111/jnc.13560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/31/2022]
Abstract
In addition to playing a fundamental structural role, the F-actin cytoskeleton in neuroendocrine chromaffin cells has a prominent influence on governing the molecular mechanism and regulating the secretory process. Performing such roles, the F-actin network might be essential to first transport, and later locate the cellular organelles participating in the secretory cycle. Chromaffin granules are transported from the internal cytosolic regions to the cell periphery along microtubular and F-actin structures. Once in the cortical region, they are embedded in the F-actin network where these vesicles experience restrictions in motility. Similarly, mitochondria transport is affected by both microtubule and F-actin inhibitors and suffers increasing motion restrictions when they are located in the cortical region. Therefore, the F-actin cortex is a key factor in defining the existence of two populations of cortical and perinuclear granules and mitochondria which could be distinguished by their different location and mobility. Interestingly, other important organelles for controlling intracellular calcium levels, such as the endoplasmic reticulum network, present clear differences in distribution and much lower mobility than chromaffin vesicles and mitochondria. Nevertheless, both mitochondria and the endoplasmic reticulum appear to distribute in the proximity of secretory sites to fulfill a pivotal role, forming triads with calcium channels ensuring the fine tuning of the secretory response. This review presents the contributions that provide the basis for our current view regarding the influence that F-actin has on the distribution of organelles participating in the release of catecholamines in chromaffin cells, and summarizes this knowledge in simple models. In chromaffin cells, organelles such as granules and mitochondria distribute forming cortical and perinuclear populations whereas others like the ER present homogenous distributions. In the present review we discuss the role of transport systems and the existence of an F-actin cortical structure as the main factors behind the formation of organelle subpopulations in this neuroendocrine cell model. This article is part of a mini review series on Chromaffin cells (ISCCB Meeting, 2015). Cover image for this issue: doi: 10.1111/jnc.13322.
Collapse
Affiliation(s)
- José Villanueva
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant (Alicante), Spain
| | - Yolanda Gimenez-Molina
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant (Alicante), Spain
| | - Salvador Viniegra
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant (Alicante), Spain
| | - Luis M Gutiérrez
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant (Alicante), Spain
| |
Collapse
|
19
|
Luo N, Yan A, Yang Z. Measuring Exocytosis Rate Using Corrected Fluorescence Recovery After Photoconversion. Traffic 2016; 17:554-64. [PMID: 26822068 DOI: 10.1111/tra.12380] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/31/2022]
Abstract
Exocytosis plays crucial roles in regulating the distribution and function of plasma membrane (PM) and extracellular matrix proteins. However, measuring the exocytosis rate of a specific protein by conventional methods is very difficult because of exocytosis-independent trafficking such as endocytosis, which also affects membrane protein distribution. Here, we describe a novel method, corrected fluorescence recovery after photoconversion, in which exocytosis-dependent and -independent trafficking events are measured simultaneously to accurately determine exocytosis rate. In this method, the protein-of-interest is tagged with Dendra2, a green-to-red photoconvertible fluorescent protein. Following the photoconversion of PM-localized Dendra2, both the recovery of the green signal and the changes in the photoconverted red signal are measured, and the rate of exocytosis is calculated from the changing rates of these two signals.
Collapse
Affiliation(s)
- Nan Luo
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, University of California, Riverside, CA, USA.,Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - An Yan
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, University of California, Riverside, CA, USA.,Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.,Current address: Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, University of California, Riverside, CA, USA.,Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
20
|
Tanaka S, Takakuwa Y. A method for detailed analysis of the structure of mast cell secretory granules by negative contrast imaging. Sci Rep 2016; 6:23369. [PMID: 26997316 PMCID: PMC4800307 DOI: 10.1038/srep23369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/04/2016] [Indexed: 12/15/2022] Open
Abstract
Secretory granules (SGs) in mast cells contain various molecules that elicit allergy symptoms and are generally considered therapeutic targets. However, the biogenesis, maintenance, regulation, and recycling of these granules remain controversial, mainly due to the lack of suitable live-cell imaging methods. In this study, we applied negative contrast imaging with soluble green fluorescent protein (GFP) expressed in the cytoplasm as a method to validate structural information of mast cell SGs. We evaluated the accuracy of the method in detail, and we demonstrated that it can be used for quantitative analysis. Using this technique, secretory granules, the nucleus, mitochondria, and the cell body were visualized in individual RBL-2H3 mast cells without any influence. When combined with conventional multicolor fluorescence imaging, visualization of SG-associated proteins and SG-SG fusion was achieved. Moreover, 3D images were constructed based on this method, and detailed information on the number, size, and shape of individual SGs was obtained. We found that cell volume was correlated with SG number. In summary, the technique provides valuable and unique data, and will therefore advance SG research.
Collapse
Affiliation(s)
- Shotaro Tanaka
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Kawada 8-1, Shinjuku, Tokyo 162-8666, Japan
| | - Yuichi Takakuwa
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Kawada 8-1, Shinjuku, Tokyo 162-8666, Japan
| |
Collapse
|
21
|
Gandasi NR, Vestö K, Helou M, Yin P, Saras J, Barg S. Survey of Red Fluorescence Proteins as Markers for Secretory Granule Exocytosis. PLoS One 2015; 10:e0127801. [PMID: 26091288 PMCID: PMC4474633 DOI: 10.1371/journal.pone.0127801] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/18/2015] [Indexed: 12/18/2022] Open
Abstract
Fluorescent proteins (FPs) have proven to be valuable tools for high-resolution imaging studies of vesicle transport processes, including exo- and endocytosis. Since the pH of the vesicle lumen changes between acidic and neutral during these events, pH-sensitive FPs with near neutral pKa, such as pHluorin, are particularly useful. FPs with pKa>6 are readily available in the green spectrum, while red-emitting pH-sensitive FPs are rare and often not well characterized as reporters of exo- or endocytosis. Here we tested a panel of ten orange/red and two green FPs in fusions with neuropeptide Y (NPY) for use as secreted vesicle marker and reporter of dense core granule exocytosis and release. We report relative brightness, bleaching rate, targeting accuracy, sensitivity to vesicle pH, and their performance in detecting exocytosis in live cells. Tandem dimer (td)-mOrange2 was identified as well-targeted, bright, slowly bleaching and pH-sensitive FP that performed similar to EGFP. Single exocytosis events were readily observed, which allowed measurements of fusion pore lifetime and the dynamics of the exocytosis protein syntaxin at the release site during membrane fusion and cargo release.
Collapse
Affiliation(s)
- Nikhil R. Gandasi
- Institute of Medical Cell Biology, Uppsala University, Box 571, Husargatan 3, 75123, Uppsala, Sweden
| | - Kim Vestö
- Institute of Medical Cell Biology, Uppsala University, Box 571, Husargatan 3, 75123, Uppsala, Sweden
| | - Maria Helou
- Institute of Medical Cell Biology, Uppsala University, Box 571, Husargatan 3, 75123, Uppsala, Sweden
| | - Peng Yin
- Institute of Medical Cell Biology, Uppsala University, Box 571, Husargatan 3, 75123, Uppsala, Sweden
| | - Jan Saras
- Institute of Medical Cell Biology, Uppsala University, Box 571, Husargatan 3, 75123, Uppsala, Sweden
| | - Sebastian Barg
- Institute of Medical Cell Biology, Uppsala University, Box 571, Husargatan 3, 75123, Uppsala, Sweden
| |
Collapse
|
22
|
Abstract
To gain novel insights into the dynamics of exocytosis, our group focuses on the changes in lipid bilayer shape that must be precisely regulated during the fusion of vesicle and plasma membranes. These rapid and localized changes are achieved by dynamic interactions between lipids and specialized proteins that control membrane curvature. The absence of such interactions would not only have devastating consequences for vesicle fusion, but a host of other cellular functions that involve control of membrane shape. In recent years, the identity of a number of proteins with membrane-shaping properties has been determined. What remains missing is a roadmap of when, where, and how they act as fusion and content release progress. Our understanding of the molecular events that enable membrane remodeling has historically been limited by a lack of analytical methods that are sensitive to membrane curvature or have the temporal resolution to track rapid changes. PTIRFM satisfies both of these criteria. We discuss how pTIRFM is implemented to visualize and interpret rapid, submicron changes in the orientation of chromaffin cell membranes during dense core vesicle (DCV) fusion. The chromaffin cells we use are isolated from bovine adrenal glands. The membrane is stained with a lipophilic carbocyanine dye,1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate, or diD. DiD intercalates in the membrane plane with a "fixed" orientation and is therefore sensitive to the polarization of the evanescent field. The diD-stained cell membrane is sequentially excited with orthogonal polarizations of a 561 nm laser (p-pol, s-pol). A 488 nm laser is used to visualize vesicle constituents and time the moment of fusion. Exocytosis is triggered by locally perfusing cells with a depolarizing KCl solution. Analysis is performed offline using custom-written software to understand how diD emission intensity changes relate to fusion pore dilation.
Collapse
|
23
|
Passmore DR, Rao T, Anantharam A. Real-time investigation of plasma membrane deformation and fusion pore expansion using polarized Total Internal Reflection Fluorescence Microscopy. Methods Mol Biol 2014; 1174:263-73. [PMID: 24947388 DOI: 10.1007/978-1-4939-0944-5_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Polarized Total Internal Reflection Fluorescence Microscopy (pTIRFM) allows for real-time observation of plasma membrane deformations. The technique provides insights into the dynamics of biological processes requiring rapid and localized changes in membrane shape. Such processes include exocytosis, endocytosis, cytokinesis, and cell motility. In this chapter, we describe how to implement a polarization-based TIRF imaging system to monitor exocytosis in adrenal chromaffin cells.
Collapse
Affiliation(s)
- Daniel R Passmore
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | | | | |
Collapse
|
24
|
Schneider R, Glaser T, Berndt M, Diez S. Using a quartz paraboloid for versatile wide-field TIR microscopy with sub-nanometer localization accuracy. OPTICS EXPRESS 2013; 21:3523-3539. [PMID: 23481810 DOI: 10.1364/oe.21.003523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Illumination based on objective-type total internal reflection (TIR) is nowadays widely used in high-performance fluorescence microscopy. However, the desirable application of such setups for dark-field imaging of scattering entities is cumbersome due to the spatial overlap of illumination and detection light, which cannot be separated spectrally. Here, we report a novel TIR approach based on a parabolically shaped quartz prism that allows for the detection of single-molecule fluorescence as well as single-particle scattering with high signal-to-noise ratios. We demonstrate homogeneous and spatially invariant illumination profiles in combination with a convenient control over a wide range of illumination angles. Moreover, we quantitatively compare the fluorescence performance of our setup to objective-type TIR and demonstrate sub-nanometer localization accuracies for the scattering of 40 nm gold nanoparticles (AuNPs). When bound to individual kinesin-1 motors, the AuNPs reliably report on the characteristic 8 nm stepping along microtubules.
Collapse
Affiliation(s)
- René Schneider
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
25
|
Loder MK, Tsuboi T, Rutter GA. Live-cell imaging of vesicle trafficking and divalent metal ions by total internal reflection fluorescence (TIRF) microscopy. Methods Mol Biol 2013; 950:13-26. [PMID: 23086867 DOI: 10.1007/978-1-62703-137-0_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Total internal reflection fluorescence (TIRF) microscopy is an especially powerful tool for visualizing live cellular events. Fluorescent molecules alone provide broad information about the expression and localization of proteins and other molecules; however, the temporal and spatial resolution is confounded by signal from outside the area of interest and the intensity of the illumination required. TIRF overcomes this limitation by using the reflective properties of a laser beam to illuminate a narrow (<100 nm) strip at the surface of a cell with a relatively low powered evanescent wave, thus making it possible to measure events occurring specifically at the plasma membrane such as exocytosis, single molecule interactions, and ionic changes during signal transduction. Here we describe some of the methods for using TIRF microscopy to study the processes involved in exocytosis from excitable cells (i.e., neurons, endocrine, neuroendocrine, and exocrine cells) and the release of physiologically active substances (i.e., neurotransmitters, hormones, and mucus).The failure of regulated exocytosis is associated with various diseases such as allergy, brain dysfunction, and endocrine illness. Diabetes mellitus, which is due to an absolute (type I) or relative (type II) deficiency of insulin secretion from pancreatic β-cells, is a major area of therapeutic interest. Insulin is stored in dense core vesicles with Zn(2+) ions in pancreatic β-cells. Insulin secretion is regulated by plasma glucose concentration which acts through intracellular metabolism to influence intracellular [Ca(2+)]. However, the precise molecular mechanisms controlling insulin granule movement towards, and fusion at, the plasma membrane remain only partially understood. To tackle this problem, we have used live cell imaging techniques to image regulated exocytosis in single living β-cells alongside intracellular Ca(2+) and Zn(2+) concentrations.
Collapse
Affiliation(s)
- Merewyn K Loder
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | | | | |
Collapse
|
26
|
Abstract
Neuropeptides are found in many mammalian CNS neurons where they play key roles in modulating neuronal activity. In contrast to amino acid transmitter release at the synapse, neuropeptide release is not restricted to the synaptic specialization, and after release, a neuropeptide may diffuse some distance to exert its action through a G protein-coupled receptor. Some neuropeptides such as hypocretin/orexin are synthesized only in single regions of the brain, and the neurons releasing these peptides probably have similar functional roles. Other peptides such as neuropeptide Y (NPY) are synthesized throughout the brain, and neurons that synthesize the peptide in one region have no anatomical or functional connection with NPY neurons in other brain regions. Here, I review converging data revealing a complex interaction between slow-acting neuromodulator peptides and fast-acting amino acid transmitters in the control of energy homeostasis, drug addiction, mood and motivation, sleep-wake states, and neuroendocrine regulation.
Collapse
|
27
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|
28
|
Scalettar BA, Jacobs C, Fulwiler A, Prahl L, Simon A, Hilken L, Lochner JE. Hindered submicron mobility and long-term storage of presynaptic dense-core granules revealed by single-particle tracking. Dev Neurobiol 2012; 72:1181-95. [PMID: 21976424 DOI: 10.1002/dneu.20984] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 01/29/2023]
Abstract
Dense-core granules (DCGs) are organelles found in neuroendocrine cells and neurons that house, transport, and release a number of important peptides and proteins. In neurons, DCG cargo can include the secreted neuromodulatory proteins tissue plasminogen activator (tPA) and/or brain-derived neurotrophic factor (BDNF), which play a key role in modulating synaptic efficacy in the hippocampus. This function has spurred interest in DCGs that localize to synaptic contacts between hippocampal neurons, and several studies recently have established that DCGs localize to, and undergo regulated exocytosis from, postsynaptic sites. To complement this work, we have studied presynaptically localized DCGs in hippocampal neurons, which are much more poorly understood than their postsynaptic analogs. Moreover, to enhance relevance, we visualized DCGs via fluorescence labeling of exogenous and endogenous tPA and BDNF. Using single-particle tracking, we determined trajectories of more than 150 presynaptically localized DCGs. These trajectories reveal that mobility of DCGs in presynaptic boutons is highly hindered and that storage is long-lived. We also computed mean-squared displacement curves, which can be used to elucidate mechanisms of transport. Over shorter time windows, most curves are linear, demonstrating that DCG transport in boutons is driven predominantly by diffusion. The remaining curves plateau with time, consistent with motion constrained by a submicron-sized corral. These results have relevance to recent models of presynaptic organization and to recent hypotheses about DCG cargo function. The results also provide estimates for transit times to the presynaptic plasma membrane that are consistent with measured times for onset of neurotrophin release from synaptically localized DCGs.
Collapse
Affiliation(s)
- B A Scalettar
- Department of Physics, Lewis and Clark College, Portland, Oregon 97219, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
The Golgi-associated long coiled-coil protein NECC1 participates in the control of the regulated secretory pathway in PC12 cells. Biochem J 2012; 443:387-96. [PMID: 22250954 DOI: 10.1042/bj20110554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Golgi-associated long coiled-coil proteins, often referred to as golgins, are involved in the maintenance of the structural organization of the Golgi apparatus and the regulation of membrane traffic events occurring in this organelle. Little information is available on the contribution of golgins to Golgi function in cells specialized in secretion such as endocrine cells or neurons. In the present study, we characterize the intracellular distribution as well as the biochemical and functional properties of a novel long coiled-coil protein present in neuroendocrine tissues, NECC1 (neuroendocrine long coiled-coil protein 1). The present study shows that NECC1 is a peripheral membrane protein displaying high stability to detergent extraction, which distributes across the Golgi apparatus in neuroendocrine cells. In addition, NECC1 partially localizes to post-Golgi carriers containing secretory cargo in PC12 cells. Overexpression of NECC1 resulted in the formation of juxtanuclear aggregates together with a slight fragmentation of the Golgi and a decrease in K+-stimulated hormone release. In contrast, NECC1 silencing did not alter Golgi architecture, but enhanced K+-stimulated hormone secretion in PC12 cells. In all, the results of the present study identify NECC1 as a novel component of the Golgi matrix and support a role for this protein as a negative modulator of the regulated trafficking of secretory cargo in neuroendocrine cells.
Collapse
|
30
|
Thorn P. Measuring calcium signals and exocytosis in tissues. Biochim Biophys Acta Gen Subj 2012; 1820:1179-84. [PMID: 22402251 DOI: 10.1016/j.bbagen.2012.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Since the 1960s it has been clear that calcium is a key regulator of exocytosis. Early experiments directly showed that the secretory output was calcium dependent. But it has taken improvements in technology and clever experimentation to determine the relationships between the calcium signal and exocytosis. Today controversies still remain because of limitations in our ability to record both the calcium responses within the local domains that control secretion and in the methods used to record exocytosis. SCOPE OF REVIEW Here the techniques used to measure calcium and exocytosis are reviewed with a distinction being drawn between measurements in excitable cells versus measurements in non-excitable cells. The review has a focus on techniques that are relevant to in vitro studies of native tissues and recent in vivo recordings. MAJOR CONCLUSIONS There are a range of methods used to study the stimulus-secretion pathway. Each presents their own advantages and drawbacks. These are discussed with reference to the latest work determining the factors controlling exocytosis in tissues. GENERAL SIGNIFICANCE Stimulus-secretion coupling is the fundamental step in the control of neurotransmitter release, hormone secretion and protein secretion. Understanding secretory control is therefore important in understanding the physiological regulation of processes ranging from learning and memory to pancreatic secretion. Recent technological advances are now enabling us to study stimulus-secretion coupling within native tissues. This is helping us to understand the physiological complexities of secretory control. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
Collapse
Affiliation(s)
- Peter Thorn
- School of Biomedical Science, University of Queensland, QLD, Australia.
| |
Collapse
|
31
|
The F-Actin Cortex in Chromaffin Granule Dynamics and Fusion: a Minireview. J Mol Neurosci 2012; 48:323-7. [DOI: 10.1007/s12031-012-9718-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/03/2012] [Indexed: 10/14/2022]
|
32
|
Gutiérrez LM. New insights into the role of the cortical cytoskeleton in exocytosis from neuroendocrine cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:109-37. [PMID: 22449488 DOI: 10.1016/b978-0-12-394306-4.00009-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cortical cytoskeleton is a dense network of filamentous actin (F-actin) that participates in the events associated with secretion from neuroendocrine cells. This filamentous web traps secretory vesicles, acting as a retention system that blocks the access of vesicles to secretory sites during the resting state, and it mediates their active directional transport during stimulation. The changes in the cortical cytoskeleton that drive this functional transformation have been well documented, particularly in cultured chromaffin cells. At the biochemical level, alterations in F-actin are governed by the activity of molecular motors like myosins II and V and by other calcium-dependent proteins that influence the polymerization and cross-linking of F-actin structures. In addition to modulating vesicle transport, the F-actin cortical network and its associated motor proteins also influence the late phases of the secretory process, including membrane fusion and the release of active substances through the exocytotic fusion pore. Here, we discuss the potential interactions between the F-actin cortical web and proteins such as SNAREs during secretion. We also discuss the role of the cytoskeleton in organizing the molecular elements required to sustain regulated exocytosis, forming a molecular structure that foments the efficient release of neurotransmitters and hormones.
Collapse
Affiliation(s)
- Luis M Gutiérrez
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Alicante, Spain
| |
Collapse
|
33
|
Milla J, Montesinos MS, Machado JD, Borges R, Alonso E, Moreno-Ortega AJ, Cano-Abad MF, García AG, Ruiz-Nuño A. Ouabain enhances exocytosis through the regulation of calcium handling by the endoplasmic reticulum of chromaffin cells. Cell Calcium 2011; 50:332-42. [PMID: 21741086 DOI: 10.1016/j.ceca.2011.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 05/23/2011] [Accepted: 06/09/2011] [Indexed: 11/18/2022]
Abstract
The augmentation of neurotransmitter and hormone release produced by ouabain inhibition of plasmalemmal Na+/K+-ATPase (NKA) is well established. However, the mechanism underlying this action is still controversial. Here we have shown that in bovine adrenal chromaffin cells ouabain diminished the mobility of chromaffin vesicles, an indication of greater number of docked vesicles at subplasmalemmal exocytotic sites. On the other hand, ouabain augmented the number of vesicles undergoing exocytosis in response to a K+ pulse, rather than the quantal size of single vesicles. Furthermore, ouabain produced a tiny and slow Ca2+ release from the endoplasmic reticulum (ER) and gradually augmented the transient elevations of the cytosolic Ca2+ concentrations ([Ca2+]c) triggered by K+ pulses. These effects were paralleled by gradual increments of the transient catecholamine release responses triggered by sequential K+ pulses applied to chromaffin cell populations treated with ouabain. Both, the increases of K+-elicited [Ca2+]c and secretion in ouabain-treated cells were blocked by thapsigargin (THAPSI), 2-aminoethoxydiphenyl borate (2-APB) and caffeine. These results are compatible with the view that ouabain may enhance the ER Ca2+ load and facilitate the Ca2+-induced-Ca2+ release (CICR) component of the [Ca2+]c signal generated during K+ depolarisation. This could explain the potentiating effects of ouabain on exocytosis.
Collapse
Affiliation(s)
- Juan Milla
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, and Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ca2+ induces clustering of membrane proteins in the plasma membrane via electrostatic interactions. EMBO J 2011; 30:1209-20. [PMID: 21364530 DOI: 10.1038/emboj.2011.53] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 02/02/2011] [Indexed: 12/23/2022] Open
Abstract
Membrane proteins and membrane lipids are frequently organized in submicron-sized domains within cellular membranes. Factors thought to be responsible for domain formation include lipid-lipid interactions, lipid-protein interactions and protein-protein interactions. However, it is unclear whether the domain structure is regulated by other factors such as divalent cations. Here, we have examined in native plasma membranes and intact cells the role of the second messenger Ca(2+) in membrane protein organization. We find that Ca(2+) at low micromolar concentrations directly redistributes a structurally diverse array of membrane proteins via electrostatic effects. Redistribution results in a more clustered pattern, can be rapid and triggered by Ca(2+) influx through voltage-gated calcium channels and is reversible. In summary, the data demonstrate that the second messenger Ca(2+) strongly influences the organization of membrane proteins, thus adding a novel and unexpected factor that may control the domain structure of biological membranes.
Collapse
|
35
|
Abstract
We know neuropeptides now for over 40 years as chemical signals in the brain. The discovery of neuropeptides is founded on groundbreaking research in physiology, endocrinology, and biochemistry during the last century and has been built on three seminal notions: (1) peptide hormones are chemical signals in the endocrine system; (2) neurosecretion of peptides is a general principle in the nervous system; and (3) the nervous system is responsive to peptide signals. These historical lines have contributed to how neuropeptides can be defined today: "Neuropeptides are small proteinaceous substances produced and released by neurons through the regulated secretory route and acting on neural substrates." Thus, neuropeptides are the most diverse class of signaling molecules in the brain engaged in many physiological functions. According to this definition almost 70 genes can be distinguished in the mammalian genome, encoding neuropeptide precursors and a multitude of bioactive neuropeptides. In addition, among cytokines, peptide hormones, and growth factors there are several subfamilies of peptides displaying most of the hallmarks of neuropeptides, for example neural chemokines, cerebellins, neurexophilins, and granins. All classical neuropeptides as well as putative neuropeptides from the latter families are presented as a resource.
Collapse
Affiliation(s)
- J Peter H Burbach
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
36
|
Monitoring of Cellular Dynamics with Electrochemical Detection Techniques. MODERN ASPECTS OF ELECTROCHEMISTRY 2011. [DOI: 10.1007/978-1-4614-0347-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Suzuki Y, Urano T. Novel Situations of Endothelial Injury in Stroke — Mechanisms of Stroke and Strategy of Drug Development: Novel Mechanism of the Expression and Amplification of Cell Surface–Associated Fibrinolytic Activity Demonstrated by Real-Time Imaging Analysis. J Pharmacol Sci 2011; 116:19-24. [DOI: 10.1254/jphs.10r23fm] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
38
|
Mattheyses AL, Simon SM, Rappoport JZ. Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 2010; 123:3621-8. [PMID: 20971701 PMCID: PMC2964103 DOI: 10.1242/jcs.056218] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Total internal reflection fluorescence (TIRF) microscopy can be used in a wide range of cell biological applications, and is particularly well suited to analysis of the localization and dynamics of molecules and events near the plasma membrane. The TIRF excitation field decreases exponentially with distance from the cover slip on which cells are grown. This means that fluorophores close to the cover slip (e.g. within ~100 nm) are selectively illuminated, highlighting events that occur within this region. The advantages of using TIRF include the ability to obtain high-contrast images of fluorophores near the plasma membrane, very low background from the bulk of the cell, reduced cellular photodamage and rapid exposure times. In this Commentary, we discuss the applications of TIRF to the study of cell biology, the physical basis of TIRF, experimental setup and troubleshooting.
Collapse
Affiliation(s)
- Alexa L. Mattheyses
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sanford M. Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Joshua Z. Rappoport
- The University of Birmingham, School of Biosciences, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
39
|
Borges R, Pereda D, Beltrán B, Prunell M, Rodríguez M, Machado JD. Intravesicular factors controlling exocytosis in chromaffin cells. Cell Mol Neurobiol 2010; 30:1359-64. [PMID: 21046452 PMCID: PMC11498768 DOI: 10.1007/s10571-010-9589-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/02/2010] [Indexed: 11/29/2022]
Abstract
Chromaffin granules are similar organelles to the large dense core vesicles (LDCV) present in many secretory cell types including neurons. LDCV accumulate solutes at high concentrations (catecholamines, 0.5-1 M; ATP, 120-300 mM; or Ca(2+), 40 mM (Bulenda and Gratzl Biochemistry 24:7760-7765, 1985). Solutes seem to aggregate to a condensed matrix to elude osmotic lysis. The affinity of solutes for LDCV matrix is responsible for the delayed release of catecholamines during exocytosis. The aggregation of solutes occurs due to a specific H(+) pump denominated V-ATPase that maintains an inner acidic media (pH ≈5.5). This pH gradient against cytosol is also responsible for the vesicular accumulation of amines and Ca(2+). When this gradient is reduced by modulation of the V-ATPase activity, catecholamines and Ca(2+) are moved toward the cytosol. In addition, some drugs largely accumulate inside LDCV and not only impair the accumulation of natural solutes, but also act as false neurotransmitters when they are co-released with catecholamines. There is much experimental evidence to conclude that the physiological modulation of vesicle pH and the manipulation of intravesicular media with drugs affect the LDCV cargo and change the kinetics of exocytosis. Here, we will present some experimental data demonstrating the participation of drugs in the kinetics of exocytosis through changes in the composition of vesicular media. We also offer a model to explain the regulation of exocytosis by the intravesicular media that conciliate the experimentally obtained data.
Collapse
Affiliation(s)
- Ricardo Borges
- Unit of Pharmacology, Medical School, La Laguna University, 38071 La Laguna, Tenerife, Spain.
| | | | | | | | | | | |
Collapse
|
40
|
Characterization of the intracellular localization, processing, and secretion of two glial cell line-derived neurotrophic factor splice isoforms. J Neurosci 2010; 30:11403-13. [PMID: 20739562 DOI: 10.1523/jneurosci.5888-09.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Endocrine and neuronal cells have highly developed secretion mechanisms, and the secretion can be either constitutive or regulated by physiological stimuli. In the constitutive pathway, intracellular transport vesicles undergo immediate fusion reactions after arrival at the target. In regulated secretion, vesicles accumulate near the target membrane until triggered to fuse, typically by a local rise in free Ca(2+). In the present study, we characterize the processing and secretion mechanisms of the glial cell line-derived neurotrophic factor (GDNF). Although the function of GDNF has been extensively studied, very little is known about the basic cell biology of GDNF and its precursor forms (alpha)pro-GDNF and (beta)pro-GDNF that have different pro-regions. Our results show that both (alpha)pro-GDNF and (beta)pro-GDNF are secreted. We demonstrate that KCl-induced depolarization increases the secretion of (beta)pro-GDNF and corresponding mature GDNF, but not (alpha)pro-GDNF and corresponding mature GDNF, to the cell medium in a Ca(2+)-dependent manner. In parallel with this, immunofluorescence analysis of cells show that (alpha)pro-GDNF/GDNF is localized mostly in the Golgi complex, whereas (beta)pro-GDNF/GDNF is localized primarily in secretogranin II and Rab3A-positive vesicles of the regulated secretory pathway. In addition, we find that matrix metalloproteinases and plasmin that cleave pro-BDNF and pro-NGF are not responsible for the cleavage of pro-GDNF, whereas furin endoproteinase, PACE4, and proprotein convertases PC5A, PC5B, and PC7 can cleave pro-GDNF into mature GDNF. Thus, the processing and secretion mechanisms of GDNF are different from those of BDNF and NGF.
Collapse
|
41
|
Moreno A, SantoDomingo J, Fonteriz RI, Lobatón CD, Montero M, Alvarez J. A confocal study on the visualization of chromaffin cell secretory vesicles with fluorescent targeted probes and acidic dyes. J Struct Biol 2010; 172:261-9. [PMID: 20600953 DOI: 10.1016/j.jsb.2010.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/14/2010] [Accepted: 06/16/2010] [Indexed: 12/24/2022]
Abstract
Secretory vesicles have low pH and have been classically identified as those labelled by a series of acidic fluorescent dyes such as acridine orange or neutral red, which accumulate into the vesicles according to the pH gradient. More recently, several fusion proteins containing enhanced green fluorescent protein (EGFP) and targeted to the secretory vesicles have been engineered. Both targeted fluorescent proteins and acidic dyes have been used, separately or combined, to monitor the dynamics of secretory vesicle movements and their fusion with the plasma membrane. We have now investigated in detail the degree of colocalization of both types of probes using several fusion proteins targeted to the vesicles (synaptobrevin2-EGFP, Cromogranin A-EGFP and neuropeptide Y-EGFP) and several acidic dyes (acridine orange, neutral red and lysotracker red) in chromaffin cells, PC12 cells and GH(3) cells. We find that all the acidic dyes labelled the same population of vesicles. However, that population was largely different from the one labelled by the targeted proteins, with very little colocalization among them, in all the cell types studied. Our data show that the vesicles containing the proteins more characteristic of the secretory vesicles are not labelled by the acidic dyes, and vice versa. Peptide glycyl-L-phenylalanine 2-naphthylamide (GPN) produced a rapid and selective disruption of the vesicles labelled by acidic dyes, suggesting that they could be mainly lysosomes. Therefore, these labelling techniques distinguish two clearly different sets of acidic vesicles in neuroendocrine cells. This finding should be taken into account whenever vesicle dynamics is studied using these techniques.
Collapse
Affiliation(s)
- Alfredo Moreno
- Instituto de Biología y Genética Molecular, Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas, Ramón y Cajal, 7, E-47005 Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Bioanalytical tools for single-cell study of exocytosis. Anal Bioanal Chem 2010; 397:3281-304. [PMID: 20521141 DOI: 10.1007/s00216-010-3843-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/08/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022]
Abstract
Regulated exocytosis is a fundamental biological process used to deliver chemical messengers for cell-cell communication via membrane fusion and content secretion. A plethora of cell types employ this chemical-based communication to achieve crucial functions in many biological systems. Neurons in the brain and platelets in the circulatory system are representative examples utilizing exocytosis for neurotransmission and blood clotting. Single-cell studies of regulated exocytosis in the past several decades have greatly expanded our knowledge of this critical process, from vesicle/granule transport and docking at the early stages of exocytosis to membrane fusion and to eventual chemical messenger secretion. Herein, four main approaches that have been widely used to study single-cell exocytosis will be highlighted, including total internal reflection fluorescence microscopy, capillary electrophoresis, single-cell mass spectrometry, and microelectrochemistry. These techniques are arranged in the order following the route of a vesicle/granule destined for secretion. Within each section, the basic principles and experimental strategies are reviewed and representative examples are given revealing critical spatial, temporal, and chemical information of a secretory vesicle/granule at different stages of its lifetime. Lastly, an analytical chemist's perspective on potential future developments in this exciting field is discussed.
Collapse
|
43
|
Sato M, Mori Y, Matsui T, Aoki R, Oya M, Yanagihara Y, Fukuda M, Tsuboi T. Role of the polybasic sequence in the Doc2alpha C2B domain in dense-core vesicle exocytosis in PC12 cells. J Neurochem 2010; 114:171-81. [PMID: 20403080 DOI: 10.1111/j.1471-4159.2010.06739.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The double C2 (Doc2) family is characterized by an N-terminal Munc13-1-interacting domain and C-terminal tandem C2 domains, and it comprises three isoforms, Doc2alpha, Doc2beta, and Doc2gamma, in humans and mice. Doc2alpha, the best-characterized, brain-specific isoform, exhibits Ca(2+)-dependent phospholipid-binding activity through its C2A domain, and the Ca(2+)-binding activity is thought to be important for the regulation of Ca(2+)-dependent exocytosis. In contrast to the C2A domain, however, nothing is known about the physiological functions of the C2B domain in regulated exocytosis. In this study, we demonstrated by a mutation analysis that the polybasic sequence in the C2B domain of Doc2alpha (306 KKSKHKTCVKKK 317) is required for binding of syntaxin-1a/synaptosome-associated protein of 25 kDa (SNAP-25) heterodimer. We also investigated the effect of Lys-to-Gln (named KQ) mutations in the polybasic sequence of the C2B domain on vesicle dynamics by total internal reflection fluorescence microscopy in PC12 cells. A Doc2alpha(KQ) mutant, which lacks binding activity toward syntaxin-1a/SNAP-25 heterodimer, significantly decreased the number of plasma membrane-docked vesicles before stimulation and strongly inhibited high-KCl-induced exocytosis from the plasma membrane-docked vesicles. These results indicate that the polybasic sequence in the C2B domain functions as a binding site for syntaxin-1a/SNAP-25 heterodimer and controls the number of 'readily releasable' vesicles in neuroendocrine cells.
Collapse
Affiliation(s)
- Mai Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Courel M, Soler-Jover A, Rodriguez-Flores JL, Mahata SK, Elias S, Montero-Hadjadje M, Anouar Y, Giuly RJ, O'Connor DT, Taupenot L. Pro-hormone secretogranin II regulates dense core secretory granule biogenesis in catecholaminergic cells. J Biol Chem 2010; 285:10030-10043. [PMID: 20061385 PMCID: PMC2843166 DOI: 10.1074/jbc.m109.064196] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/16/2009] [Indexed: 11/06/2022] Open
Abstract
Processes underlying the formation of dense core secretory granules (DCGs) of neuroendocrine cells are poorly understood. Here, we present evidence that DCG biogenesis is dependent on the secretory protein secretogranin (Sg) II, a member of the granin family of pro-hormone cargo of DCGs in neuroendocrine cells. Depletion of SgII expression in PC12 cells leads to a decrease in both the number and size of DCGs and impairs DCG trafficking of other regulated hormones. Expression of SgII fusion proteins in a secretory-deficient PC12 variant rescues a regulated secretory pathway. SgII-containing dense core vesicles share morphological and physical properties with bona fide DCGs, are competent for regulated exocytosis, and maintain an acidic luminal pH through the V-type H(+)-translocating ATPase. The granulogenic activity of SgII requires a pH gradient along this secretory pathway. We conclude that SgII is a critical factor for the regulation of DCG biogenesis in neuroendocrine cells, mediating the formation of functional DCGs via its pH-dependent aggregation at the trans-Golgi network.
Collapse
Affiliation(s)
- Maïté Courel
- Department of Medicine, University of California San Diego, La Jolla, California 92093-0838.
| | - Alex Soler-Jover
- Department of Medicine, University of California San Diego, La Jolla, California 92093-0838
| | | | - Sushil K Mahata
- Department of Medicine, University of California San Diego, La Jolla, California 92093-0838; Veteran Affairs San Diego Healthcare System, San Diego, California 92093
| | - Salah Elias
- INSERM U982, University of Rouen, 76821 Mont-St.-Aignan Cedex, France
| | | | - Youssef Anouar
- INSERM U982, University of Rouen, 76821 Mont-St.-Aignan Cedex, France
| | - Richard J Giuly
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, California 92093
| | - Daniel T O'Connor
- Department of Medicine, University of California San Diego, La Jolla, California 92093-0838; Veteran Affairs San Diego Healthcare System, San Diego, California 92093.
| | - Laurent Taupenot
- Department of Medicine, University of California San Diego, La Jolla, California 92093-0838; Veteran Affairs San Diego Healthcare System, San Diego, California 92093.
| |
Collapse
|
45
|
Sobota JA, Mohler WA, Cowan AE, Eipper BA, Mains RE. Dynamics of peptidergic secretory granule transport are regulated by neuronal stimulation. BMC Neurosci 2010; 11:32. [PMID: 20202202 PMCID: PMC2838897 DOI: 10.1186/1471-2202-11-32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/04/2010] [Indexed: 12/03/2022] Open
Abstract
Background Peptidergic neurons store and secrete the contents of large dense core vesicles (LDCVs) from axon terminals and from dendrites. Secretion of peptides requires a highly regulated exocytotic mechanism, plus coordinated synthesis and transport of LDCVs to their sites of release. Although these trafficking events are critical to function, little is known regarding the dynamic behavior of LDCVs and the mechanisms by which their transport is regulated. Sensory neurons also package opiate receptors in peptide-containing LDCVs, which is thought to be important in pain sensation. Since peptide granules cannot be refilled locally after their contents are secreted, it is particularly important to understand how neurons support regulated release of peptides. Results A vector encoding soluble peptidylglycine α-hydroxylating monooxygenase fused to green fluorescent protein was constructed to address these questions in cultured primary peptidergic neurons of the trigeminal ganglion using time lapse confocal microscopy. The time course of release differs with secretagogue; the secretory response to depolarization with K+ is rapid and terminates within 15 minutes, while phorbol ester stimulation of secretion is maintained over a longer period. The data demonstrate fundamental differences between LDCV dynamics in axons and growth cones under basal conditions. Conclusions Under basal conditions, LDCVs move faster away from the soma than toward the soma, but fewer LDCVs travel anterograde than retrograde. Stimulation decreased average anterograde velocity and increases granule pausing. Data from antibody uptake, quantification of enzyme secretion and appearance of pHluorin fluorescence demonstrate distributed release of peptides all along the axon, not just at terminals.
Collapse
Affiliation(s)
- Jacqueline A Sobota
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-3401, USA
| | | | | | | | | |
Collapse
|
46
|
Li J, Xiao Y, Zhou W, Wu Z, Zhang R, Xu T. Silence of Synaptotagmin VII inhibits release of dense core vesicles in PC12 cells. ACTA ACUST UNITED AC 2009; 52:1156-63. [PMID: 20016973 DOI: 10.1007/s11427-009-0160-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 08/27/2009] [Indexed: 11/27/2022]
Abstract
Synaptotagmin VII (Syt VII), which has a higher Ca(2+) affinity and slower disassembly kinetics with lipid than Syt I and Syt IX, was regarded as being uninvolved in synaptic vesicle (SV) exocytosis but instead possibly as a calcium sensor for the slower kinetic phase of dense core vesicles (DCVs) release. By using high temporal resolution capacitance and amperometry measurements, it was demonstrated that the knockdown of endogenous Syt VII attenuated the fusion of DCV with the plasma membrane, reduced the amplitude of the exocytotic burst of the Ca(2+)-triggered DCV release without affecting the slope of the sustained component, and blocked the fusion pore expansion. This suggests that Syt VII is the Ca(2+) sensor of DCV fusion machinery and is an essential factor for the establishment and maintenance of the pool size of releasable DCVs in PC12 cells.
Collapse
Affiliation(s)
- JiangLi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
47
|
Zhang X, Bao L, Ma GQ. Sorting of neuropeptides and neuropeptide receptors into secretory pathways. Prog Neurobiol 2009; 90:276-83. [PMID: 19853638 DOI: 10.1016/j.pneurobio.2009.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 08/11/2009] [Accepted: 10/09/2009] [Indexed: 01/07/2023]
Abstract
There are two major secretory pathways in neurons, the regulated pathway and the constitutive pathway. Neuropeptides and other regulated secretory proteins are known to be sorted into large dense-core vesicles of the regulated pathway in the trans-Golgi network and are secreted upon stimulus-induced increases in intracellular Ca(2+). The newly synthesized cell surface receptors are usually sorted into microvesicles of the constitutive pathway and inserted into the plasma membrane by spontaneous exocytosis. Small-diameter sensory neurons in dorsal root ganglia and pheochromocytoma cells express neuropeptides (e.g., substance P) and several neuropeptide receptors including opioid receptors. The mu-opioid receptors are delivered to the cell surface through the constitutive pathway, whereas another type of opioid receptor, the delta-opioid receptor, is often found in the membrane of large dense-core vesicles and can be inserted into the plasma membrane when exocytosis occurs. Recent studies show that sequences with opposite electrical polarity within the prohormones of substance P are essential for their sorting into large dense-core vesicles. Moreover, the delta-opioid receptor is sorted into large dense-core vesicles by its interaction with protachykinin, a prohormone of substance P. These findings provide insight into the molecular mechanisms that determine the sorting and trafficking of neuropeptides and neuropeptide receptors in neurons.
Collapse
Affiliation(s)
- Xu Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China.
| | | | | |
Collapse
|
48
|
Jacobs DT, Weigert R, Grode KD, Donaldson JG, Cheney RE. Myosin Vc is a molecular motor that functions in secretory granule trafficking. Mol Biol Cell 2009; 20:4471-88. [PMID: 19741097 DOI: 10.1091/mbc.e08-08-0865] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Class V myosins are actin-based motor proteins that have critical functions in organelle trafficking. Of the three class V myosins expressed in mammals, relatively little is known about Myo5c except that it is abundant in exocrine tissues. Here we use MCF-7 cells to identify the organelles that Myo5c associates with, image the dynamics of Myo5c in living cells, and test the functions of Myo5c. Endogenous Myo5c localizes to two distinct compartments: small puncta and slender tubules. Myo5c often exhibits a highly polarized distribution toward the leading edge in migrating cells and is clearly distinct from the Myo5a or Myo5b compartments. Imaging with GFP-Myo5c reveals that Myo5c puncta move slowly (approximately 30 nm/s) and microtubule independently, whereas tubules move rapidly (approximately 440 nm/s) and microtubule dependently. Myo5c puncta colocalize with secretory granule markers such as chromogranin A and Rab27b, whereas Myo5c tubules are labeled by Rab8a. TIRF imaging indicates that the granules can be triggered to undergo secretion. To test if Myo5c functions in granule trafficking, we used the Myo5c tail as a dominant negative and found that it dramatically perturbs the distribution of granule markers. These results provide the first live-cell imaging of Myo5c and indicate that Myo5c functions in secretory granule trafficking.
Collapse
Affiliation(s)
- Damon T Jacobs
- Department of Cell and Molecular Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
49
|
Okayama M, Arakawa T, Tanimura A, Mizoguchi I, Tajima Y, Takuma T. Role of VAMP8/endobrevin in constitutive exocytotic pathway in HeLa cells. Cell Struct Funct 2009; 34:115-25. [PMID: 19738360 DOI: 10.1247/csf.09013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To evaluate the role of VAMP8/endobrevin in constitutive exocytosis, we have examined the exocytotic pathways of VAMP8 and human growth hormone, both GFP-tagged, by total internal reflection fluorescence microscopy (TIRF-M). Human GH-GFP and VAMP8-GFP were similarly expressed in small round vesicles and elongated tubular vesicles in HeLa cells, and were mostly exocytosed at the peripheral area of the cells. VAMP8-GFP gave 2 types of exocytotic images: a burst type and a non-burst type. The burst type showed a sharp transient increase in the peak fluorescence intensity and a much slower decrease in the average intensity in the active windows, where exocytosis took place, as observed in the "full-fusion" type of exocytosis. The non-burst type showed a relatively long-lasting fusion to the plasma membrane with little transfer of VAMP8-GFP to the plasma membrane, as observed in the so-called "kiss-and-run" type of exocytosis. Endogenous VAMP8 and hGH-GFP were colocalized on the same vesicles at least in part. However, the constitutive exocytosis of hGH-GFP and CLuc, a secreted luciferase from Cypridina noctiluca, was normal, even when siRNAs for VAMP8 and VAMP3 robustly decreased their proteins. These results suggest that VAMP8 is not essential for constitutive exocytosis, although it can be involved in the exocytosis.
Collapse
Affiliation(s)
- Miki Okayama
- Department of Orthodontics, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Regehr WG, Carey MR, Best AR. Activity-dependent regulation of synapses by retrograde messengers. Neuron 2009; 63:154-70. [PMID: 19640475 PMCID: PMC3251517 DOI: 10.1016/j.neuron.2009.06.021] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/19/2009] [Accepted: 06/26/2009] [Indexed: 01/01/2023]
Abstract
Throughout the brain, postsynaptic neurons release substances from their cell bodies and dendrites that regulate the strength of the synapses they receive. Diverse chemical messengers have been implicated in retrograde signaling from postsynaptic neurons to presynaptic boutons. Here, we provide an overview of the signaling systems that lead to rapid changes in synaptic strength. We consider the capabilities, specializations, and physiological roles of each type of signaling system.
Collapse
Affiliation(s)
- Wade G Regehr
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|