1
|
Olivares-Yañez C, Alessandri MP, Salas L, Larrondo LF. Methylxanthines Modulate Circadian Period Length Independently of the Action of Phosphodiesterase. Microbiol Spectr 2023; 11:e0372722. [PMID: 37272789 PMCID: PMC10434132 DOI: 10.1128/spectrum.03727-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/22/2023] [Indexed: 06/06/2023] Open
Abstract
In Neurospora crassa, caffeine and other methylxanthines are known to inhibit phosphodiesterase (PDE) activity, leading to augmented cAMP levels. In this organism, it has also been shown that the addition of these drugs significantly lengthens the circadian period, as seen by conidiation rhythms. Utilizing in vivo bioluminescence reporters, pharmacological inhibitors, and cAMP analogs, we revisited the effect of methylxanthines and the role of cAMP signaling in the Neurospora clockworks. We observed that caffeine, like all tested methylxanthines, led to significant period lengthening, visualized with both core-clock transcriptional and translational reporters. Remarkably, this phenotype is still observed when phosphodiesterase (PDE) activity is genetically or chemically (via 3-isobutyl-1-methylxanthine) abrogated. Likewise, methylxanthines still exert a period effect in several cAMP signaling pathway mutants, including adenylate cyclase (cr-1) and protein kinase A (PKA) (Δpkac-1) mutants, suggesting that these drugs lead to circadian phenotypes through mechanisms different from the canonical PDE-cAMP-PKA signaling axis. Thus, this study highlights the strong impact of methylxanthines on circadian period in Neurospora, albeit the exact mechanisms somehow remain elusive. IMPORTANCE Evidence from diverse organisms show that caffeine causes changes in the circadian clock, causing period lengthening. The fungus Neurospora crassa is no exception; here, several methylxanthines such as caffeine, theophylline, and aminophylline cause period lengthening in a concentration-dependent manner. Although methylxanthines are expected to inhibit phosphodiesterase activity, we were able to show by genetic and pharmacological means that these drugs exert their effects through a different mechanism. Moreover, our results indicate that increases in cAMP levels and changes in PKA activity do not impact the circadian period and therefore are not part of underlying effects of methylxanthine. These results set the stage for future analyses dissecting the molecular mechanisms by which these drugs dramatically modify the circadian period.
Collapse
Affiliation(s)
- Consuelo Olivares-Yañez
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - María P. Alessandri
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreto Salas
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis F. Larrondo
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Elgendy AM, Mohamed AA, Duvic B, Tufail M, Takeda M. Involvement of Cis-Acting Elements in Molecular Regulation of JH-Mediated Vitellogenin Gene 2 of Female Periplaneta americana. Front Physiol 2021; 12:723072. [PMID: 34526913 PMCID: PMC8435907 DOI: 10.3389/fphys.2021.723072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023] Open
Abstract
Vitellogenins (Vgs) are yolk protein precursors that are regulated by juvenile hormone (JH) and/or 20-hydroxyecdysone (20E) in insects. JH acts as the principal gonadotropin that stimulates vitellogenesis in hemimetabolous insects. In this study, we cloned and characterized the Periplaneta americana Vitellogenin 2 (Vg2) promoter. Multiple sites for putative transcription factor binding were predicted for the 1,804 bp Vg2 promoter region, such as the Broad-Complex, ecdysone response element (EcRE), GATA, Hairy, JH response element (JHRE), and Methoprene (Met)-binding motif, among others. Luciferase reporter assay has identified that construct -177 bp is enough to support JH III induction but not 20E suppression. This 38 bp region (from -177 to -139 bp) contains two conserved response element half-sites separated by 2 nucleotides spacer (DR2) and is designated as Vg2RE (-168GAGTCACGGAGTCGCCGCTG-149). Mutation assay and luciferase assay data using mutated constructs verified the crucial role of G residues in Vg2RE for binding the isolated fat body nuclear protein. In Sf9 cells, a luciferase reporter placed under the control of a minimal promoter containing Vg2RE was induced by JH III in a dose- and time-dependent manner. Nuclear proteins isolated from previtellogenic female fat body cells bound to Vg2RE, and this binding was outcompeted by a 50-fold excess of cold Drosophila melanogaster DR4 and Galleria mellonella JH binding protein response elements (Chorion factor-I/Ultraspiracle). Affinity pull-down experiment with nuclear extracts of previtellogenic female fat body, using 31-bp probe Vg2RE as bait, yielded a 71 kDa candidate nuclear protein that may mediate the regulatory action of the JH III.
Collapse
Affiliation(s)
- Azza M Elgendy
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt.,Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Muhammad Tufail
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan.,Ghazi University, Dera Ghazi Khan, Punjab, Pakistan
| | - Makio Takeda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
3
|
Abstract
Circadian clocks are biochemical time-keeping machines that synchronize animal behavior and physiology with planetary rhythms. In Drosophila, the core components of the clock comprise a transcription/translation feedback loop and are expressed in seven neuronal clusters in the brain. Although it is increasingly evident that the clocks in each of the neuronal clusters are regulated differently, how these clocks communicate with each other across the circadian neuronal network is less clear. Here, we review the latest evidence that describes the physical connectivity of the circadian neuronal network . Using small ventral lateral neurons as a starting point, we summarize how one clock may communicate with another, highlighting the signaling pathways that are both upstream and downstream of these clocks. We propose that additional efforts are required to understand how temporal information generated in each circadian neuron is integrated across a neuronal circuit to regulate rhythmic behavior.
Collapse
Affiliation(s)
- Myra Ahmad
- Department of Pediatrics, Division of Medical Genetics, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Wanhe Li
- Laboratory of Genetics, The Rockefeller University, New York, NY, USA
| | - Deniz Top
- Department of Pediatrics, Division of Medical Genetics, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Hartsock MJ, Spencer RL. Memory and the circadian system: Identifying candidate mechanisms by which local clocks in the brain may regulate synaptic plasticity. Neurosci Biobehav Rev 2020; 118:134-162. [PMID: 32712278 DOI: 10.1016/j.neubiorev.2020.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
The circadian system is an endogenous biological network responsible for coordinating near-24-h cycles in behavior and physiology with daily timing cues from the external environment. In this review, we explore how the circadian system regulates memory formation, retention, and recall. Circadian rhythms in these memory processes may arise through several endogenous pathways, and recent work highlights the importance of genetic timekeepers found locally within tissues, called local clocks. We evaluate the circadian memory literature for evidence of local clock involvement in memory, identifying potential nodes for direct interactions between local clock components and mechanisms of synaptic plasticity. Our discussion illustrates how local clocks may pervasively modulate neuronal plastic capacity, a phenomenon that we designate here as circadian metaplasticity. We suggest that this function of local clocks supports the temporal optimization of memory processes, illuminating the potential for circadian therapeutic strategies in the prevention and treatment of memory impairment.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| |
Collapse
|
5
|
Toprak U, Hegedus D, Doğan C, Güney G. A journey into the world of insect lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21682. [PMID: 32335968 DOI: 10.1002/arch.21682] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism is fundamental to life. In insects, it is critical, during reproduction, flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. Fat body contains various different cell types; however, adipocytes and oenocytes are the primary cells related to lipid metabolism. Lipid metabolism starts with the hydrolysis of dietary lipids, absorption of lipid monomers, followed by lipid transport from midgut to the fat body, lipogenesis or lipolysis in the fat body, and lipid transport from fat body to other sites demanding energy. Lipid metabolism is under the control of hormones, transcription factors, secondary messengers and posttranscriptional modifications. Primarily, lipogenesis is under the control of insulin-like peptides that activate lipogenic transcription factors, such as sterol regulatory element-binding proteins, whereas lipolysis is coordinated by the adipokinetic hormone that activates lipolytic transcription factors, such as forkhead box class O and cAMP-response element-binding protein. Calcium is the primary-secondary messenger affecting lipid metabolism and has different outcomes depending on the site of lipogenesis or lipolysis. Phosphorylation is central to lipid metabolism and multiple phosphorylases are involved in lipid accumulation or hydrolysis. Although most of the knowledge of insect lipid metabolism comes from the studies on the model Drosophila; other insects, in particular those with obligatory or facultative diapause, also have great potential to study lipid metabolism. The use of these models would significantly improve our knowledge of insect lipid metabolism.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
6
|
An in vivo RNAi screen uncovers the role of AdoR signaling and adenosine deaminase in controlling intestinal stem cell activity. Proc Natl Acad Sci U S A 2019; 117:464-471. [PMID: 31852821 DOI: 10.1073/pnas.1900103117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metabolites are increasingly appreciated for their roles as signaling molecules. To dissect the roles of metabolites, it is essential to understand their signaling pathways and their enzymatic regulations. From an RNA interference (RNAi) screen for regulators of intestinal stem cell (ISC) activity in the Drosophila midgut, we identified adenosine receptor (AdoR) as a top candidate gene required for ISC proliferation. We demonstrate that Ras/MAPK and Protein Kinase A (PKA) signaling act downstream of AdoR and that Ras/MAPK mediates the major effect of AdoR on ISC proliferation. Extracellular adenosine, the ligand for AdoR, is a small metabolite that can be released by various cell types and degraded in the extracellular space by secreted adenosine deaminase. Interestingly, down-regulation of adenosine deaminase-related growth factor A (Adgf-A) from enterocytes is necessary for extracellular adenosine to activate AdoR and induce ISC overproliferation. As Adgf-A expression and its enzymatic activity decrease following tissue damage, our study provides important insights into how the enzymatic regulation of extracellular adenosine levels under tissue-damage conditions facilitates ISC proliferation.
Collapse
|
7
|
Pathak SS, Liu D, Li T, de Zavalia N, Zhu L, Li J, Karthikeyan R, Alain T, Liu AC, Storch KF, Kaufman RJ, Jin VX, Amir S, Sonenberg N, Cao R. The eIF2α Kinase GCN2 Modulates Period and Rhythmicity of the Circadian Clock by Translational Control of Atf4. Neuron 2019; 104:724-735.e6. [PMID: 31522764 PMCID: PMC6872934 DOI: 10.1016/j.neuron.2019.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/13/2019] [Accepted: 08/03/2019] [Indexed: 12/20/2022]
Abstract
The integrated stress response (ISR) is activated in response to diverse stress stimuli to maintain homeostasis in neurons. Central to this process is the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). Here, we report a critical role for ISR in regulating the mammalian circadian clock. The eIF2α kinase GCN2 rhythmically phosphorylates eIF2α in the suprachiasmatic circadian clock. Increased eIF2α phosphorylation shortens the circadian period in both fibroblasts and mice, whereas reduced eIF2α phosphorylation lengthens the circadian period and impairs circadian rhythmicity in animals. Mechanistically, phosphorylation of eIF2α promotes mRNA translation of Atf4. ATF4 binding motifs are identified in multiple clock genes, including Per2, Per3, Cry1, Cry2, and Clock. ATF4 binds to the TTGCAGCA motif in the Per2 promoter and activates its transcription. Together, these results demonstrate a significant role for ISR in circadian physiology and provide a potential link between dysregulated ISR and circadian dysfunction in brain diseases.
Collapse
Affiliation(s)
- Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Dong Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Tianbao Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nuria de Zavalia
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Lei Zhu
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, QC H4H 1R3, Canada
| | - Jin Li
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Ramanujam Karthikeyan
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Andrew C Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Kai-Florian Storch
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, QC H4H 1R3, Canada
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Shimon Amir
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC H4B 1R6, Canada.
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada.
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Ri H, Lee J, Sonn JY, Yoo E, Lim C, Choe J. Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors. Mol Cells 2019; 42:301-312. [PMID: 31091556 PMCID: PMC6530642 DOI: 10.14348/molcells.2019.2451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
Post-transcriptional regulation underlies the circadian control of gene expression and animal behaviors. However, the role of mRNA surveillance via the nonsense-mediated mRNA decay (NMD) pathway in circadian rhythms remains elusive. Here, we report that Drosophila NMD pathway acts in a subset of circadian pacemaker neurons to maintain robust 24 h rhythms of free-running locomotor activity. RNA interference-mediated depletion of key NMD factors in timeless-expressing clock cells decreased the amplitude of circadian locomotor behaviors. Transgenic manipulation of the NMD pathway in clock neurons expressing a neuropeptide PIGMENT-DISPERSING FACTOR (PDF) was sufficient to dampen or lengthen free-running locomotor rhythms. Confocal imaging of a transgenic NMD reporter revealed that arrhythmic Clock mutants exhibited stronger NMD activity in PDF-expressing neurons than wild-type. We further found that hypomorphic mutations in Suppressor with morphogenetic effect on genitalia 5 (Smg5 ) or Smg6 impaired circadian behaviors. These NMD mutants normally developed PDF-expressing clock neurons and displayed daily oscillations in the transcript levels of core clock genes. By contrast, the loss of Smg5 or Smg6 function affected the relative transcript levels of cAMP response element-binding protein B (CrebB ) in an isoform-specific manner. Moreover, the overexpression of a transcriptional repressor form of CrebB rescued free-running locomotor rhythms in Smg5-depleted flies. These data demonstrate that CrebB is a rate-limiting substrate of the genetic NMD pathway important for the behavioral output of circadian clocks in Drosophila.
Collapse
Affiliation(s)
- Hwajung Ri
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jongbin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jun Young Sonn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Eunseok Yoo
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
9
|
Wheaton KL, Hansen KF, Aten S, Sullivan KA, Yoon H, Hoyt KR, Obrietan K. The Phosphorylation of CREB at Serine 133 Is a Key Event for Circadian Clock Timing and Entrainment in the Suprachiasmatic Nucleus. J Biol Rhythms 2018; 33:497-514. [PMID: 30175684 DOI: 10.1177/0748730418791713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Within the suprachiasmatic nucleus (SCN)-the locus of the master circadian clock- transcriptional regulation via the CREB/CRE pathway is implicated in the functioning of the molecular clock timing process, and is a key conduit through which photic input entrains the oscillator. One event driving CRE-mediated transcription is the phosphorylation of CREB at serine 133 (Ser133). Indeed, numerous reporter gene assays have shown that an alanine point mutation in Ser133 reduces CREB-mediated transcription. Here, we sought to examine the contribution of Ser133 phosphorylation to the functional role of CREB in SCN clock physiology in vivo. To this end, we used a CREB knock-in mouse strain, in which Ser133 was mutated to alanine (S/A CREB). Under a standard 12 h light-dark cycle, S/A CREB mice exhibited a marked alteration in clock-regulated wheel running activity. Relative to WT mice, S/A CREB mice had highly fragmented bouts of locomotor activity during the night phase, elevated daytime activity, and a delayed phase angle of entrainment. Further, under free-running conditions, S/A CREB mice had a significantly longer tau than WT mice and reduced activity amplitude. In S/A CREB mice, light-evoked clock entrainment, using both Aschoff type 1 and 6 h "jet lag" paradigms, was markedly reduced relative to WT mice. S/A CREB mice exhibited attenuated transcriptional drive, as assessed by examining both clock-gated and light-evoked gene expression. Finally, SCN slice culture imaging detected a marked disruption in cellular clock phase synchrony following a phase-resetting stimulus in S/A CREB mice. Together, these data indicate that signaling through CREB phosphorylation at Ser133 is critical for the functional fidelity of both SCN timing and entrainment.
Collapse
Affiliation(s)
- Kelin L Wheaton
- Division of Pharmaceutics and Pharmaceutical Chemistry, Ohio State University, Columbus, OH
| | | | - Sydney Aten
- Department of Neuroscience, Ohio State University, Columbus, OH
| | - Kyle A Sullivan
- Department of Neuroscience, Ohio State University, Columbus, OH
| | - Hyojung Yoon
- Department of Neuroscience, Ohio State University, Columbus, OH
| | - Kari R Hoyt
- Division of Pharmaceutics and Pharmaceutical Chemistry, Ohio State University, Columbus, OH
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH
| |
Collapse
|
10
|
Calcium and cAMP directly modulate the speed of the Drosophila circadian clock. PLoS Genet 2018; 14:e1007433. [PMID: 29879123 PMCID: PMC6007936 DOI: 10.1371/journal.pgen.1007433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/19/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Circadian clocks impose daily periodicities to animal behavior and physiology. At their core, circadian rhythms are produced by intracellular transcriptional/translational feedback loops (TTFL). TTFLs may be altered by extracellular signals whose actions are mediated intracellularly by calcium and cAMP. In mammals these messengers act directly on TTFLs via the calcium/cAMP-dependent transcription factor, CREB. In the fruit fly, Drosophila melanogaster, calcium and cAMP also regulate the periodicity of circadian locomotor activity rhythmicity, but whether this is due to direct actions on the TTFLs themselves or are a consequence of changes induced to the complex interrelationship between different classes of central pacemaker neurons is unclear. Here we investigated this question focusing on the peripheral clock housed in the non-neuronal prothoracic gland (PG), which, together with the central pacemaker in the brain, controls the timing of adult emergence. We show that genetic manipulations that increased and decreased the levels of calcium and cAMP in the PG caused, respectively, a shortening and a lengthening of the periodicity of emergence. Importantly, knockdown of CREB in the PG caused an arrhythmic pattern of eclosion. Interestingly, the same manipulations directed at central pacemaker neurons caused arrhythmicity of eclosion and of adult locomotor activity, suggesting a common mechanism. Our results reveal that the calcium and cAMP pathways can alter the functioning of the clock itself. In the PG, these messengers, acting as outputs of the clock or as second messengers for stimuli external to the PG, could also contribute to the circadian gating of adult emergence. Circadian clocks impose daily periodicities to animal behavior and physiology. At their core, circadian rhythms are produced by intracellular transcriptional/translational feedback loops (TTFL). TTFLs may be altered by extracellular signals whose actions are mediated intracellularly by calcium and cAMP. In Drosophila, calcium and cAMP levels affect the periodicity of Drosophila circadian rhythms, but whether this is due to direct actions on the TTFLs themselves or is a consequence of changes induced to the complex interrelationship between different classes of central pacemaker neurons is unclear. Here we used the non-neuronal circadian clock located in the prothoracic gland (PG) to show that these messengers affect the speed of the circadian clock that controls the timing of adult emergence and suggest that these actions are mediated by CREB. Importantly, since calcium and cAMP are also output signals of the clock, they may contribute to the mechanism that imposes a circadian gating to the timing of adult emergence.
Collapse
|
11
|
Ly S, Pack AI, Naidoo N. The neurobiological basis of sleep: Insights from Drosophila. Neurosci Biobehav Rev 2018; 87:67-86. [PMID: 29391183 PMCID: PMC5845852 DOI: 10.1016/j.neubiorev.2018.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Sleep is a biological enigma that has raised numerous questions about the inner workings of the brain. The fundamental question of why our nervous systems have evolved to require sleep remains a topic of ongoing scientific deliberation. This question is largely being addressed by research using animal models of sleep. Drosophila melanogaster, also known as the common fruit fly, exhibits a sleep state that shares common features with many other species. Drosophila sleep studies have unearthed an immense wealth of knowledge about the neuroscience of sleep. Given the breadth of findings published on Drosophila sleep, it is important to consider how all of this information might come together to generate a more holistic understanding of sleep. This review provides a comprehensive summary of the neurobiology of Drosophila sleep and explores the broader insights and implications of how sleep is regulated across species and why it is necessary for the brain.
Collapse
Affiliation(s)
- Sarah Ly
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States.
| | - Allan I Pack
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States; Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, 125 South 31st St., Philadelphia, PA, 19104-3403, United States
| | - Nirinjini Naidoo
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States; Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, 125 South 31st St., Philadelphia, PA, 19104-3403, United States.
| |
Collapse
|
12
|
Selcho M, Millán C, Palacios-Muñoz A, Ruf F, Ubillo L, Chen J, Bergmann G, Ito C, Silva V, Wegener C, Ewer J. Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila. Nat Commun 2017; 8:15563. [PMID: 28555616 PMCID: PMC5459987 DOI: 10.1038/ncomms15563] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
Animal circadian clocks consist of central and peripheral pacemakers, which are coordinated to produce daily rhythms in physiology and behaviour. Despite its importance for optimal performance and health, the mechanism of clock coordination is poorly understood. Here we dissect the pathway through which the circadian clock of Drosophila imposes daily rhythmicity to the pattern of adult emergence. Rhythmicity depends on the coupling between the brain clock and a peripheral clock in the prothoracic gland (PG), which produces the steroid hormone, ecdysone. Time information from the central clock is transmitted via the neuropeptide, sNPF, to non-clock neurons that produce the neuropeptide, PTTH. These secretory neurons then forward time information to the PG clock. We also show that the central clock exerts a dominant role on the peripheral clock. This use of two coupled clocks could serve as a paradigm to understand how daily steroid hormone rhythms are generated in animals.
Collapse
Affiliation(s)
- Mareike Selcho
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carola Millán
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| | - Angelina Palacios-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| | - Franziska Ruf
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lilian Ubillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| | - Jiangtian Chen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Gregor Bergmann
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Chihiro Ito
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Valeria Silva
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| |
Collapse
|
13
|
Kim EZ, Vienne J, Rosbash M, Griffith LC. Nonreciprocal homeostatic compensation in Drosophila potassium channel mutants. J Neurophysiol 2017; 117:2125-2136. [PMID: 28298298 DOI: 10.1152/jn.00002.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/06/2017] [Accepted: 03/11/2017] [Indexed: 01/30/2023] Open
Abstract
Homeostatic control of intrinsic excitability is important for long-term regulation of neuronal activity. In conjunction with many other forms of plasticity, intrinsic homeostasis helps neurons maintain stable activity regimes in the face of external input variability and destabilizing genetic mutations. In this study, we report a mechanism by which Drosophila melanogaster larval motor neurons stabilize hyperactivity induced by the loss of the delayed rectifying K+ channel Shaker cognate B (Shab), by upregulating the Ca2+-dependent K+ channel encoded by the slowpoke (slo) gene. We also show that loss of SLO does not trigger a reciprocal compensatory upregulation of SHAB, implying that homeostatic signaling pathways utilize compensatory pathways unique to the channel that was mutated. SLO upregulation due to loss of SHAB involves nuclear Ca2+ signaling and dCREB, suggesting that the slo homeostatic response is transcriptionally mediated. Examination of the changes in gene expression induced by these mutations suggests that there is not a generic transcriptional response to increased excitability in motor neurons, but that homeostatic compensations are influenced by the identity of the lost conductance.NEW & NOTEWORTHY The idea that activity-dependent homeostatic plasticity is driven solely by firing has wide credence. In this report we show that homeostatic compensation after loss of an ion channel conductance is tailored to identity of the channel lost, not its properties.
Collapse
Affiliation(s)
- Eugene Z Kim
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts; and
| | - Julie Vienne
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts; and
| | - Michael Rosbash
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts; and.,Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts
| | - Leslie C Griffith
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts; and
| |
Collapse
|
14
|
Kaiser TS, Poehn B, Szkiba D, Preussner M, Sedlazeck FJ, Zrim A, Neumann T, Nguyen LT, Betancourt AJ, Hummel T, Vogel H, Dorner S, Heyd F, von Haeseler A, Tessmar-Raible K. The genomic basis of circadian and circalunar timing adaptations in a midge. Nature 2016; 540:69-73. [PMID: 27871090 PMCID: PMC5133387 DOI: 10.1038/nature20151] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/10/2016] [Indexed: 12/25/2022]
Abstract
Organisms use endogenous clocks to anticipate regular environmental cycles, such as days and tides. Natural variants resulting in differently timed behaviour or physiology, known as chronotypes in humans, have not been well characterized at the molecular level. We sequenced the genome of Clunio marinus, a marine midge whose reproduction is timed by circadian and circalunar clocks. Midges from different locations show strain-specific genetic timing adaptations. We examined genetic variation in five C. marinus strains from different locations and mapped quantitative trait loci for circalunar and circadian chronotypes. The region most strongly associated with circadian chronotypes generates strain-specific differences in the abundance of calcium/calmodulin-dependent kinase II.1 (CaMKII.1) splice variants. As equivalent variants were shown to alter CaMKII activity in Drosophila melanogaster, and C. marinus (Cma)-CaMKII.1 increases the transcriptional activity of the dimer of the circadian proteins Cma-CLOCK and Cma-CYCLE, we suggest that modulation of alternative splicing is a mechanism for natural adaptation in circadian timing. Genomic and molecular analyses of Clunio marinus timing strains suggest that modulation of alternative splicing of Ca2+/calmodulin-dependent kinase II represents a mechanism for evolutionary adaptation of circadian timing. Kristin Tessmar-Raible and colleagues report the genome of Clunio marinus, a marine midge whose reproduction is timed to the tides by circadian and circalunar clocks. To identify genetic variation associated with timing differences, the authors report genetic mapping in a selection of C. marinus strains with a range of circadian and circalunar timing. They suggest that circalunar and circadian timing are regulated by separate pathways, do not find involvement of core clock genes, and implicate calcium/calmodulin-dependent kinase II.1 in the regulation of circadian timing.
Collapse
Affiliation(s)
- Tobias S Kaiser
- Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.,Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.,Research Platform 'Rhythms of Life', University of Vienna, A-1030 Vienna, Austria
| | - Birgit Poehn
- Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.,Research Platform 'Rhythms of Life', University of Vienna, A-1030 Vienna, Austria
| | - David Szkiba
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Marco Preussner
- Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, FU Berlin, D-14195 Berlin, Germany
| | - Fritz J Sedlazeck
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Alexander Zrim
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Tobias Neumann
- Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.,Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Lam-Tung Nguyen
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, A-1030 Vienna, Austria
| | - Andrea J Betancourt
- Institute of Population Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Josef-Baumann-Gasse 1, A-1210 Vienna, Austria
| | - Thomas Hummel
- Research Platform 'Rhythms of Life', University of Vienna, A-1030 Vienna, Austria.,Department of Neurobiology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Silke Dorner
- Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Florian Heyd
- Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, FU Berlin, D-14195 Berlin, Germany
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.,Research Platform 'Rhythms of Life', University of Vienna, A-1030 Vienna, Austria.,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, A-1030 Vienna, Austria
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.,Research Platform 'Rhythms of Life', University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
15
|
Kim M, Lee H, Hur JH, Choe J, Lim C. CRTC Potentiates Light-independent timeless Transcription to Sustain Circadian Rhythms in Drosophila. Sci Rep 2016; 6:32113. [PMID: 27577611 PMCID: PMC5005998 DOI: 10.1038/srep32113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/02/2016] [Indexed: 12/18/2022] Open
Abstract
Light is one of the strongest environmental time cues for entraining endogenous circadian rhythms. Emerging evidence indicates that CREB-regulated transcription co-activator 1 (CRTC1) is a key player in this pathway, stimulating light-induced Period1 (Per1) transcription in mammalian clocks. Here, we demonstrate a light-independent role of Drosophila CRTC in sustaining circadian behaviors. Genomic deletion of the crtc locus causes long but poor locomotor rhythms in constant darkness. Overexpression or RNA interference-mediated depletion of CRTC in circadian pacemaker neurons similarly impairs the free-running behavioral rhythms, implying that Drosophila clocks are sensitive to the dosage of CRTC. The crtc null mutation delays the overall phase of circadian gene expression yet it remarkably dampens light-independent oscillations of TIMELESS (TIM) proteins in the clock neurons. In fact, CRTC overexpression enhances CLOCK/CYCLE (CLK/CYC)-activated transcription from tim but not per promoter in clock-less S2 cells whereas CRTC depletion suppresses it. Consistently, TIM overexpression partially but significantly rescues the behavioral rhythms in crtc mutants. Taken together, our data suggest that CRTC is a novel co-activator for the CLK/CYC-activated tim transcription to coordinate molecular rhythms with circadian behaviors over a 24-hour time-scale. We thus propose that CRTC-dependent clock mechanisms have co-evolved with selective clock genes among different species.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hoyeon Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin-Hoe Hur
- UNIST-Olympus Biomed Imaging Center (UOBC), UNIST, Ulsan 44919, Republic of Korea
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
16
|
Rawashdeh O, Jilg A, Maronde E, Fahrenkrug J, Stehle JH. Period1gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK. J Neurochem 2016; 138:731-45. [DOI: 10.1111/jnc.13689] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Oliver Rawashdeh
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
- School of Biomedical Sciences; University of Queensland; St Lucia Qld Australia
| | - Antje Jilg
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
| | - Erik Maronde
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
| | - Jan Fahrenkrug
- Department of Clinical Chemistry; Bispebjerg Hospital, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jörg H. Stehle
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
| |
Collapse
|
17
|
Yoshii T, Fujii K, Tomioka K. Induction of Drosophila Behavioral and Molecular Circadian Rhythms by Temperature Steps in Constant Light. J Biol Rhythms 2016; 22:103-14. [PMID: 17440212 DOI: 10.1177/0748730406298176] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In constant light, where Drosophila rhythms are normally disrupted, temperature cycles induce circadian rhythms at both the molecular and behavioral level. The authors investigated the process by which the thermoperiod induces the rhythms using temperature steps. A 10 °C temperature step-up induced a single locomotor activity peak ca 9 h after the temperature transition, whereas a 10 °C step-down induced a strong activity peak ca 24 h after the transition, and the peak recurred for several cycles, suggesting that the underlying clock is reset. Arrhythmic per01, tim 01, dClkJrk, and cyc01 mutant flies failed to show the rhythm after the step-down, suggesting that per, tim, dClk, and cyc are necessary for the step-down—induced rhythm. After the step-up, per01 flies exhibited an activity peak similar to that of wild-type flies, suggesting that the peak can be induced by the step-up in absence of PER. mRNA levels of per, tim , dClk, vri, and Pdp1ε were changed in response to the temperature steps, but the changes differed depending on the direction of temperature steps, suggesting that steps-up and steps-down have different roles in the initiation of the oscillation. Probably, alternating 12-h temperature steps-up and steps-down will induce opposite changes in mRNA levels of clock genes, eventually producing stable molecular oscillations. Although TIM shows responses to temperature consistent with the changes of its mRNA, this is not the case for PER, consistent with posttranscriptional regulation. Changes of the mRNA levels were significantly altered but still observed in per 01 flies but not observed in dClkJrk flies, except for per mRNA. This suggests that dCLK is involved in the temperature-induced changes in the levels of most clock gene mRNA but that per is regulated via a different mechanism.
Collapse
Affiliation(s)
- Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | |
Collapse
|
18
|
Eck S, Helfrich-Förster C, Rieger D. The Timed Depolarization of Morning and Evening Oscillators Phase Shifts the Circadian Clock of Drosophila. J Biol Rhythms 2016; 31:428-42. [PMID: 27269519 DOI: 10.1177/0748730416651363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phase response curves (PRCs) for light or temperature stimuli have been shown to be most valuable in understanding how circadian clocks are entrained to daily environmental cycles. Nowadays, PRC experiments in which clock neurons are manipulated in a temporally restricted manner by thermogenetic or optogenetic tools are also useful to comprehend clock network properties. Here, we temporally depolarized specific clock neurons of Drosophila melanogaster by activating temperature-sensitive dTrpA1 channels to unravel their role in phase shifting the flies' activity rhythm. The depolarization of all clock neurons caused a PRC resembling the flies' light PRC, with strong phase delays in the first half of the subjective night and modest phase advances in its second half. However, the activation of the flies' pigment-dispersing factor (PDF)-positive morning (M) neurons (s-LNvs) only induced phase advances, and these reached into the subjective day, where the light PRC has its dead zone. This indicates that the M neurons are very potent in accelerating the clock, which is in line with previous observations. In contrast, the evening (E) neurons together with the PDF-positive l-LNvs appear to mediate phase delays. Most interestingly, the molecular clock (Period protein cycling) of the depolarized clock neurons was shifted in parallel to the behavior, and this shift was already visible within the first cycle after the temperature pulse. We identified cAMP response element binding protein B (CREB) as a putative link between membrane depolarization and the molecular clock.
Collapse
Affiliation(s)
- Saskia Eck
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Germany
| | | | - Dirk Rieger
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Germany
| |
Collapse
|
19
|
Neuronal energy-sensing pathway promotes energy balance by modulating disease tolerance. Proc Natl Acad Sci U S A 2016; 113:E3307-14. [PMID: 27208092 DOI: 10.1073/pnas.1606106113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The starvation-inducible coactivator cAMP response element binding protein (CREB)-cAMP-regulated transcription coactivator (Crtc) has been shown to promote starvation resistance in Drosophila by up-regulating CREB target gene expression in neurons, although the underlying mechanism is unclear. We found that Crtc and its binding partner CREB enhance energy homeostasis by stimulating the expression of short neuropeptide F (sNPF), an ortholog of mammalian neuropeptide Y, which we show here is a direct target of CREB and Crtc. Neuronal sNPF was found to promote energy homeostasis via gut enterocyte sNPF receptors, which appear to maintain gut epithelial integrity. Loss of Crtc-sNPF signaling disrupted epithelial tight junctions, allowing resident gut flora to promote chronic increases in antimicrobial peptide (AMP) gene expression that compromised energy balance. Growth on germ-free food reduced AMP gene expression and rescued starvation sensitivity in Crtc mutant flies. Overexpression of Crtc or sNPF in neurons of wild-type flies dampens the gut immune response and enhances starvation resistance. Our results reveal a previously unidentified tolerance defense strategy involving a brain-gut pathway that maintains homeostasis through its effects on epithelial integrity.
Collapse
|
20
|
Gonzales ED, Tanenhaus AK, Zhang J, Chaffee RP, Yin JCP. Early-onset sleep defects in Drosophila models of Huntington's disease reflect alterations of PKA/CREB signaling. Hum Mol Genet 2015; 25:837-52. [PMID: 26604145 DOI: 10.1093/hmg/ddv482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/17/2015] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurological disorder whose non-motor symptoms include sleep disturbances. Whether sleep and activity abnormalities are primary molecular disruptions of mutant Huntingtin (mutHtt) expression or result from neurodegeneration is unclear. Here, we report Drosophila models of HD exhibit sleep and activity disruptions very early in adulthood, as soon as sleep patterns have developed. Pan-neuronal expression of full-length or N-terminally truncated mutHtt recapitulates sleep phenotypes of HD patients: impaired sleep initiation, fragmented and diminished sleep, and nighttime hyperactivity. Sleep deprivation of HD model flies results in exacerbated sleep deficits, indicating that homeostatic regulation of sleep is impaired. Elevated PKA/CREB activity in healthy flies produces patterns of sleep and activity similar to those in our HD models. We were curious whether aberrations in PKA/CREB signaling were responsible for our early-onset sleep/activity phenotypes. Decreasing signaling through the cAMP/PKA pathway suppresses mutHtt-induced developmental lethality. Genetically reducing PKA abolishes sleep/activity deficits in HD model flies, restores the homeostatic response and extends median lifespan. In vivo reporters, however, show dCREB2 activity is unchanged, or decreased when sleep/activity patterns are abnormal, suggesting dissociation of PKA and dCREB2 occurs early in pathogenesis. Collectively, our data suggest that sleep defects may reflect a primary pathological process in HD, and that measurements of sleep and cAMP/PKA could be prodromal indicators of disease, and serve as therapeutic targets for intervention.
Collapse
Affiliation(s)
| | | | | | - Ryan P Chaffee
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, USA and
| | - Jerry C P Yin
- Department of Medical Genetics, Department of Neurology, University of Wisconsin-Madison, 1685 Highland Ave., Madison, WI 53705-2281, USA
| |
Collapse
|
21
|
Graves J, Markman S, Alegranti Y, Gechtler J, Johnson RI, Cagan R, Ben-Menahem D. The LH/CG receptor activates canonical signaling pathway when expressed in Drosophila. Mol Cell Endocrinol 2015; 413:145-56. [PMID: 26112185 DOI: 10.1016/j.mce.2015.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/29/2015] [Accepted: 06/18/2015] [Indexed: 01/12/2023]
Abstract
G-protein coupled receptors (GPCRs) and their ligands provide precise tissue regulation and are therefore often restricted to specific animal phyla. For example, the gonadotropins and their receptors are crucial for vertebrate reproduction but absent from invertebrates. In mammals, LHR mainly couples to the PKA signaling pathway, and CREB is the major transcription factor of this pathway. Here we present the results of expressing elements of the human gonadotropin system in Drosophila. Specifically, we generated transgenic Drosophila expressing the human LH/CG receptor (denoted as LHR), a constitutively active form of LHR, and an hCG analog. We demonstrate activation-dependent signaling by LHR to direct Drosophila phenotypes including lethality and specific midline defects; these phenotypes were due to LHR activation of PKA/CREB pathway activity. That the LHR can act in an invertebrate demonstrates the conservation of factors required for GPCR function among phylogenetically distant organisms. This novel gonadotropin model may assist the identification of new modulators of mammalian fertility by exploiting the powerful genetic and pharmacological tools available in Drosophila.
Collapse
Affiliation(s)
- Justin Graves
- Dept. of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New-York, NY, USA
| | - Svetlana Markman
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yair Alegranti
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jenia Gechtler
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ruth I Johnson
- Dept. of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New-York, NY, USA
| | - Ross Cagan
- Dept. of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New-York, NY, USA
| | - David Ben-Menahem
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
22
|
Zordan MA, Sandrelli F. Circadian Clock Dysfunction and Psychiatric Disease: Could Fruit Flies have a Say? Front Neurol 2015; 6:80. [PMID: 25941512 PMCID: PMC4403521 DOI: 10.3389/fneur.2015.00080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/24/2015] [Indexed: 12/15/2022] Open
Abstract
There is evidence of a link between the circadian system and psychiatric diseases. Studies in humans and mammals suggest that environmental and/or genetic disruption of the circadian system leads to an increased liability to psychiatric disease. Disruption of clock genes and/or the clock network might be related to the etiology of these pathologies; also, some genes, known for their circadian clock functions, might be associated to mental illnesses through clock-independent pleiotropy. Here, we examine the features which we believe make Drosophila melanogaster a model apt to study the role of the circadian clock in psychiatric disease. Despite differences in the organization of the clock system, the molecular architecture of the Drosophila and mammalian circadian oscillators are comparable and many components are evolutionarily related. In addition, Drosophila has a rather complex nervous system, which shares much at the cell and neurobiological level with humans, i.e., a tripartite brain, the main neurotransmitter systems, and behavioral traits: circadian behavior, learning and memory, motivation, addiction, social behavior. There is evidence that the Drosophila brain shares some homologies with the vertebrate cerebellum, basal ganglia, and hypothalamus-pituitary-adrenal axis, the dysfunctions of which have been tied to mental illness. We discuss Drosophila in comparison to mammals with reference to the: organization of the brain and neurotransmitter systems; architecture of the circadian clock; clock-controlled behaviors. We sum up current knowledge on behavioral endophenotypes, which are amenable to modeling in flies, such as defects involving sleep, cognition, or social interactions, and discuss the relationship of the circadian system to these traits. Finally, we consider if Drosophila could be a valuable asset to understand the relationship between circadian clock malfunction and psychiatric disease.
Collapse
Affiliation(s)
- Mauro Agostino Zordan
- Department of Biology, University of Padova, Padova, Italy
- Cognitive Neuroscience Center, University of Padova, Padova, Italy
| | | |
Collapse
|
23
|
Zhang J, Yin JCP, Wesley CS. Notch Intracellular Domain (NICD) Suppresses Long-Term Memory Formation in Adult Drosophila Flies. Cell Mol Neurobiol 2015; 35:763-8. [PMID: 25791355 DOI: 10.1007/s10571-015-0183-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/16/2015] [Indexed: 01/09/2023]
Abstract
Notch receptor signaling is evolutionarily conserved and well known for its roles in animal development. Many studies in Drosophila have shown that Notch also performs important functions in memory formation in adult flies. An intriguing observation is that increased expression of the full-length Notch receptor (Nfull) triggers long-term memory (LTM) formation even after very weak training (single training). Canonical Notch signaling is mediated by Notch intracellular domain (NICD), but it is not known whether increased expression of NICD recapitulates the LTM enhancement induced by increased Nfull expression. Here, we report that increased NICD expression either has no impact on LTM formation or suppresses it. Furthermore, it either has no impact or decreases both the levels and activity of cAMP response element binding protein, a key factor supporting LTM. These results indicate that NICD signaling is not sufficient to explain Nfull-induced LTM enhancement. Our findings may also shed light on the molecular mechanisms of memory loss in neurological diseases associated with increased NICD expression and canonical Notch signaling.
Collapse
Affiliation(s)
- Jiabin Zhang
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | | |
Collapse
|
24
|
Zhang J, Tanenhaus AK, Davis JC, Hanlon BM, Yin JCP. Spatio-temporal in vivo recording of dCREB2 dynamics in Drosophila long-term memory processing. Neurobiol Learn Mem 2014; 118:80-8. [PMID: 25460038 DOI: 10.1016/j.nlm.2014.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 11/19/2022]
Abstract
CREB (cAMP response element-binding protein) is an evolutionarily conserved transcription factor, playing key roles in synaptic plasticity, intrinsic excitability and long-term memory (LTM) formation. The Drosophila homologue of mammalian CREB, dCREB2, is also important for LTM. However, the spatio-temporal nature of dCREB2 activity during memory consolidation is poorly understood. Using an in vivo reporter system, we examined dCREB2 activity continuously in specific brain regions during LTM processing. Two brain regions that have been shown to be important for Drosophila LTM are the ellipsoid body (EB) and the mushroom body (MB). We found that dCREB2 reporter activity is persistently elevated in EB R2/R4m neurons, but not neighboring R3/R4d neurons, following LTM-inducing training. In multiple subsets of MB neurons, dCREB2 reporter activity is suppressed immediately following LTM-specific training, and elevated during late windows. In addition, we observed heterogeneous responses across different subsets of neurons in MB αβ lobe during LTM processing. All of these changes suggest that dCREB2 functions in both the EB and MB for LTM formation, and that this activity contributes to the process of systems consolidation.
Collapse
Affiliation(s)
- Jiabin Zhang
- Neuroscience Training Program, 1300 University Ave., University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Genetics, 3434 Genetics/Biotechnology, 425 Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - Anne K Tanenhaus
- Neuroscience Training Program, 1300 University Ave., University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Genetics, 3434 Genetics/Biotechnology, 425 Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - John C Davis
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - Bret M Hanlon
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - Jerry C P Yin
- Department of Genetics, 3434 Genetics/Biotechnology, 425 Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Neurology, 1685 Highland Ave., University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
25
|
Control of lipid metabolism by tachykinin in Drosophila. Cell Rep 2014; 9:40-47. [PMID: 25263556 DOI: 10.1016/j.celrep.2014.08.060] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/09/2014] [Accepted: 08/22/2014] [Indexed: 11/22/2022] Open
Abstract
The intestine is a key organ for lipid uptake and distribution, and abnormal intestinal lipid metabolism is associated with obesity and hyperlipidemia. Although multiple regulatory gut hormones secreted from enteroendocrine cells (EEs) regulate systemic lipid homeostasis, such as appetite control and energy balance in adipose tissue, their respective roles regarding lipid metabolism in the intestine are not well understood. We demonstrate that tachykinins (TKs), one of the most abundant secreted peptides expressed in midgut EEs, regulate intestinal lipid production and subsequently control systemic lipid homeostasis in Drosophila and that TKs repress lipogenesis in enterocytes (ECs) associated with TKR99D receptor and protein kinase A (PKA) signaling. Interestingly, nutrient deprivation enhances the production of TKs in the midgut. Finally, unlike the physiological roles of TKs produced from the brain, gut-derived TKs do not affect behavior, thus demonstrating that gut TK hormones specifically regulate intestinal lipid metabolism without affecting neuronal functions.
Collapse
|
26
|
Santos AR, Kanellopoulos AK, Bagni C. Learning and behavioral deficits associated with the absence of the fragile X mental retardation protein: what a fly and mouse model can teach us. ACTA ACUST UNITED AC 2014; 21:543-55. [PMID: 25227249 PMCID: PMC4175497 DOI: 10.1101/lm.035956.114] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Fragile X syndrome (FXS) is the most frequent form of inherited mental disability and is considered a monogenic cause of autism spectrum disorder. FXS is caused by a triplet expansion that inhibits the expression of the FMR1 gene. The gene product, the Fragile X Mental Retardation Protein (FMRP), regulates mRNA metabolism in brain and nonneuronal cells. During brain development, FMRP controls the expression of key molecules involved in receptor signaling, cytoskeleton remodeling, protein synthesis and, ultimately, spine morphology. Symptoms associated with FXS include neurodevelopmental delay, cognitive impairment, anxiety, hyperactivity, and autistic-like behavior. Twenty years ago the first Fmr1 KO mouse to study FXS was generated, and several years later other key models including the mutant Drosophila melanogaster, dFmr1, have further helped the understanding of the cellular and molecular causes behind this complex syndrome. Here, we review to which extent these biological models are affected by the absence of FMRP, pointing out the similarities with the observed human dysfunction. Additionally, we discuss several potential treatments under study in animal models that are able to partially revert some of the FXS abnormalities.
Collapse
Affiliation(s)
- Ana Rita Santos
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Alexandros K Kanellopoulos
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Claudia Bagni
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium Department of Biomedicine and Prevention, University of Rome "Tor Vergata" 00133, Rome, Italy
| |
Collapse
|
27
|
Shafer OT, Yao Z. Pigment-Dispersing Factor Signaling and Circadian Rhythms in Insect Locomotor Activity. CURRENT OPINION IN INSECT SCIENCE 2014; 1:73-80. [PMID: 25386391 PMCID: PMC4224320 DOI: 10.1016/j.cois.2014.05.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Though expressed in relatively few neurons in insect nervous systems, pigment-dispersing factor (PDF) plays many roles in the control of behavior and physiology. PDF's role in circadian timekeeping is its best-understood function and the focus of this review. Here we recount the isolation and characterization of insect PDFs, review the evidence that PDF acts as a circadian clock output factor, and discuss emerging models of how PDF functions within circadian clock neuron network of Drosophila, the species in which this peptide's circadian roles are best understood.
Collapse
|
28
|
Helfrich-Förster C. From neurogenetic studies in the fly brain to a concept in circadian biology. J Neurogenet 2014; 28:329-47. [PMID: 24655073 DOI: 10.3109/01677063.2014.905556] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This paper is dedicated to Karl-Friedrich Fischbach, who has always shared with me the interest in the function of the fly brain, especially that of its optic lobes. He has accompanied me during my first steps in scientific research. The paper tells the story how our first common attempts to localize the circadian clock in the fly brain finally helped in phrasing the two-oscillator principle of circadian clocks that seems to be valid far beyond the fly circadian system. I hope that Karl-Friedrich will take this story as praise for his generosity in supporting younger scientists outside his own lab, even without the reward of a common paper.
Collapse
Affiliation(s)
- Charlotte Helfrich-Förster
- Neurobiology and Genetics, Biocenter, Theodor-Boveri Institute, University of Würzburg , Würzburg , Germany
| |
Collapse
|
29
|
Fropf R, Zhang J, Tanenhaus AK, Fropf WJ, Siefkes E, Yin JCP. Time of day influences memory formation and dCREB2 proteins in Drosophila. Front Syst Neurosci 2014; 8:43. [PMID: 24744705 PMCID: PMC3978337 DOI: 10.3389/fnsys.2014.00043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/11/2014] [Indexed: 11/15/2022] Open
Abstract
Many biological phenomena oscillate under the control of the circadian system, exhibiting peaks and troughs of activity across the day/night cycle. In most animal models, memory formation also exhibits this property, but the underlying neuronal and molecular mechanisms remain unclear. The dCREB2 transcription factor shows circadian regulated oscillations in its activity, and has been shown to be important for both circadian biology and memory formation. We show that the time-of-day (TOD) of behavioral training affects Drosophila memory formation. dCREB2 exhibits complex changes in protein levels across the daytime and nighttime, and these changes in protein abundance are likely to contribute to oscillations in dCREB2 activity and TOD effects on memory formation.
Collapse
Affiliation(s)
- Robin Fropf
- Departments of Genetics, University of Wisconsin-Madison Madison, WI, USA ; Neuroscience Training Program, University of Wisconsin-Madison Madison, WI, USA
| | - Jiabin Zhang
- Departments of Genetics, University of Wisconsin-Madison Madison, WI, USA ; Neuroscience Training Program, University of Wisconsin-Madison Madison, WI, USA
| | - Anne K Tanenhaus
- Departments of Genetics, University of Wisconsin-Madison Madison, WI, USA ; Neuroscience Training Program, University of Wisconsin-Madison Madison, WI, USA
| | - Whitney J Fropf
- Departments of Genetics, University of Wisconsin-Madison Madison, WI, USA
| | - Ellen Siefkes
- Departments of Genetics, University of Wisconsin-Madison Madison, WI, USA
| | - Jerry C P Yin
- Departments of Genetics, University of Wisconsin-Madison Madison, WI, USA ; Department of Neurology, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
30
|
Genetic and functional studies implicate synaptic overgrowth and ring gland cAMP/PKA signaling defects in the Drosophila melanogaster neurofibromatosis-1 growth deficiency. PLoS Genet 2013; 9:e1003958. [PMID: 24278035 PMCID: PMC3836801 DOI: 10.1371/journal.pgen.1003958] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 10/01/2013] [Indexed: 12/21/2022] Open
Abstract
Neurofibromatosis type 1 (NF1), a genetic disease that affects 1 in 3,000, is caused by loss of a large evolutionary conserved protein that serves as a GTPase Activating Protein (GAP) for Ras. Among Drosophila melanogaster Nf1 (dNf1) null mutant phenotypes, learning/memory deficits and reduced overall growth resemble human NF1 symptoms. These and other dNf1 defects are relatively insensitive to manipulations that reduce Ras signaling strength but are suppressed by increasing signaling through the 3′-5′ cyclic adenosine monophosphate (cAMP) dependent Protein Kinase A (PKA) pathway, or phenocopied by inhibiting this pathway. However, whether dNf1 affects cAMP/PKA signaling directly or indirectly remains controversial. To shed light on this issue we screened 486 1st and 2nd chromosome deficiencies that uncover >80% of annotated genes for dominant modifiers of the dNf1 pupal size defect, identifying responsible genes in crosses with mutant alleles or by tissue-specific RNA interference (RNAi) knockdown. Validating the screen, identified suppressors include the previously implicated dAlk tyrosine kinase, its activating ligand jelly belly (jeb), two other genes involved in Ras/ERK signal transduction and several involved in cAMP/PKA signaling. Novel modifiers that implicate synaptic defects in the dNf1 growth deficiency include the intersectin-related synaptic scaffold protein Dap160 and the cholecystokinin receptor-related CCKLR-17D1 drosulfakinin receptor. Providing mechanistic clues, we show that dAlk, jeb and CCKLR-17D1 are among mutants that also suppress a recently identified dNf1 neuromuscular junction (NMJ) overgrowth phenotype and that manipulations that increase cAMP/PKA signaling in adipokinetic hormone (AKH)-producing cells at the base of the neuroendocrine ring gland restore the dNf1 growth deficiency. Finally, supporting our previous contention that ALK might be a therapeutic target in NF1, we report that human ALK is expressed in cells that give rise to NF1 tumors and that NF1 regulated ALK/RAS/ERK signaling appears conserved in man. Neurofibromatosis type 1 (NF1) is a genetic disease that affects 1 in 3,000 and that is caused by loss of a protein that inactivates Ras oncoproteins. NF1 is a characteristically variable disease that predisposes patients to several symptoms, the most common of which include benign and malignant tumors, reduced growth and learning problems. We and others previously found that fruit fly mutants that lack a highly conserved dNf1 gene are reduced in size and exhibit impaired learning and memory, and that both defects appear due to abnormal Ras and cyclic-AMP (cAMP) signaling. The former was unremarkable, but how loss of dNf1 affects cAMP signaling remains poorly understood. Here we report results of a genetic screen for dominant modifiers of the dNf1 growth defect. This screen and follow-up functional studies support a model in which synaptic defects and reduced cAMP signaling in specific parts of the neuroendocrine ring gland contribute to the dNf1 growth defect. Beyond these results, we show that human ALK is expressed in cells that give rise to NF1 tumors, and that NF1 regulated ALK/RAS/ERK signaling is evolutionary conserved.
Collapse
|
31
|
Vanderheyden WM, Gerstner JR, Tanenhaus A, Yin JC, Shaw PJ. ERK phosphorylation regulates sleep and plasticity in Drosophila. PLoS One 2013; 8:e81554. [PMID: 24244744 PMCID: PMC3828275 DOI: 10.1371/journal.pone.0081554] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 10/21/2013] [Indexed: 11/20/2022] Open
Abstract
Given the relationship between sleep and plasticity, we examined the role of Extracellular signal-regulated kinase (ERK) in regulating baseline sleep, and modulating the response to waking experience. Both sleep deprivation and social enrichment increase ERK phosphorylation in wild-type flies. The effects of both sleep deprivation and social enrichment on structural plasticity in the LNvs can be recapitulated by expressing an active version of ERK (UAS-ERKSEM) pan-neuronally in the adult fly using GeneSwitch (Gsw) Gsw-elav-GAL4. Conversely, disrupting ERK reduces sleep and prevents both the behavioral and structural plasticity normally induced by social enrichment. Finally, using transgenic flies carrying a cAMP response Element (CRE)-luciferase reporter we show that activating ERK enhances CRE-Luc activity while disrupting ERK reduces it. These data suggest that ERK phosphorylation is an important mediator in transducing waking experience into sleep.
Collapse
Affiliation(s)
- William M. Vanderheyden
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Anatomy, Washington University Medical School, Saint Louis, Missouri, United States of America
- * E-mail:
| | - Jason R. Gerstner
- Translational Research Laboratories, Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anne Tanenhaus
- Departments of Genetics and Neurology, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Jerry C. Yin
- Departments of Genetics and Neurology, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Paul J. Shaw
- Department of Anatomy, Washington University Medical School, Saint Louis, Missouri, United States of America
| |
Collapse
|
32
|
Notch-inducible hyperphosphorylated CREB and its ultradian oscillation in long-term memory formation. J Neurosci 2013; 33:12825-34. [PMID: 23904617 DOI: 10.1523/jneurosci.0783-13.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Notch is a cell surface receptor that is known to regulate developmental processes by establishing physical contact between neighboring cells. Many recent studies show that it also plays an important role in the formation of long-term memory (LTM) in adults, implying that memory formation requires regulation at the level of cell-cell contacts among brain cells. Neither the target of Notch activity in LTM formation nor the underlying mechanism of regulation is known. We report here results of our studies in adult Drosophila melanogaster showing that Notch regulates dCrebB-17A, the CREB protein. CREB is a transcriptional factor that is pivotal for intrinsic and synaptic plasticity involved in LTM formation. Notch in conjunction with PKC activity upregulates the level of a hyperphosphorylated form of CREB (hyper-PO4 CREB) and triggers its ultradian oscillation, both of which are linked to LTM formation. One of the sites that is phosphorylated in hyper-PO4 CREB is serine 231, which is the functional equivalent of mammalian CREB serine 133, the phosphorylation of which is an important regulator of CREB functions. Our data suggest the model that Notch and PKC activities generate a cyclical accumulation of cytoplasmic hyper-PO4 CREB that is a precursor for generating the nuclear CREB isoforms. Cyclical accumulation of CREB might be important for repetitive aspects of LTM formation, such as memory consolidation. Because Notch, PKC, and CREB have been implicated in many neurodegenerative diseases (e.g., Alzheimer's disease), our data might also shed some light on memory loss and dementia.
Collapse
|
33
|
Fropf R, Tubon TC, Yin JCP. Nuclear gating of a Drosophila dCREB2 activator is involved in memory formation. Neurobiol Learn Mem 2013; 106:258-67. [PMID: 24076014 DOI: 10.1016/j.nlm.2013.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/19/2013] [Accepted: 09/07/2013] [Indexed: 11/29/2022]
Abstract
The transcription factor CREB is an important regulator of many adaptive processes in neurons, including sleep, cellular homeostasis, and memory formation. The Drosophila dCREB2 family includes multiple protein isoforms generated from a single gene. Overexpression of an activator or blocker isoform has been shown to enhance or block memory formation, but the molecular mechanisms underlying these phenomena remain unclear. In the present study, we generate isoform-specific antibodies and new transgenic flies to track and manipulate the activity of different dCREB2 isoforms during memory formation. We find that nuclear accumulation of a dCREB2 activator-related species, p35+, is dynamically regulated during memory formation. Furthermore, various dCREB2 genetic manipulations that enhance or block memory formation correspondingly increase or decrease p35+ levels in the nucleus. Finally, we show that overexpression of S6K can enhance memory formation and increase p35+ nuclear abundance. Taken together, these results suggest that regulation of dCREB2 localization may be a key molecular convergence point in the coordinated host of events that lead to memory formation.
Collapse
Affiliation(s)
- Robin Fropf
- Neuroscience Training Program, University of Wisconsin-Madison, 1300 University Ave., Madison, WI 53706, United States; Department of Genetics, University of Wisconsin-Madison, 3434 Genetics/Biotechnology, 425 Henry Mall, Madison, WI 53706, United States.
| | | | | |
Collapse
|
34
|
Abstract
CREB-responsive transcription has an important role in adaptive responses in all cells and tissue. In the nervous system, it has an essential and well established role in long-term memory formation throughout a diverse set of organisms. Activation of this transcription factor correlates with long-term memory formation and disruption of its activity interferes with this process. Most convincingly, augmenting CREB activity in a number of different systems enhances memory formation. In Drosophila, a sequence rearrangement in the original transgene used to enhance memory formation has been a source of confusion. This rearrangement prematurely terminates translation of the full-length protein, leaving the identity of the "enhancing molecule" unclear. In this report, we show that a naturally occurring, downstream, in-frame initiation codon is used to make a dCREB2 protein off of both transgenic and chromosomal substrates. This protein is a transcriptional activator and is responsible for memory enhancement. A number of parameters can affect enhancement, including the short-lived activity of the activator protein, and the time-of-day when induction and behavioral training occur. Our results reaffirm that overexpression of a dCREB2 activator can enhance memory formation and illustrate the complexity of this behavioral enhancement.
Collapse
|
35
|
Lee JE, Zamdborg L, Southey BR, Atkins N, Mitchell JW, Li M, Gillette MU, Kelleher NL, Sweedler JV. Quantitative peptidomics for discovery of circadian-related peptides from the rat suprachiasmatic nucleus. J Proteome Res 2013; 12:585-93. [PMID: 23256577 DOI: 10.1021/pr300605p] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In mammals the suprachiasmatic nucleus (SCN), the master circadian clock, is sensitive to light input via the optic chiasm and synchronizes many daily biological rhythms. Here we explore variations in the expression levels of neuropeptides present in the SCN of rats using a label-free quantification approach that is based on integrating peak intensities between daytime, Zeitgeber time (ZT) 6, and nighttime, ZT 18. From nine analyses comparing the levels between these two time points, 10 endogenous peptides derived from eight prohormones exhibited significant differences in their expression levels (adjusted p-value <0.05). Of these, seven peptides derived from six prohormones, including GRP, PACAP, and CART, exhibited ≥ 30% increases at ZT 18, and the VGRPEWWMDYQ peptide derived from proenkephalin A showed a >50% increase at nighttime. Several endogenous peptides showing statistically significant changes in this study have not been previously reported to alter their levels as a function of time of day, nor have they been implicated in prior functional SCN studies. This information on peptide expression changes serves as a resource for discovering unknown peptide regulators that affect circadian rhythms in the SCN.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Chemistry, Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Neckameyer WS, Argue KJ. Comparative approaches to the study of physiology: Drosophila as a physiological tool. Am J Physiol Regul Integr Comp Physiol 2012; 304:R177-88. [PMID: 23220476 DOI: 10.1152/ajpregu.00084.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Numerous studies have detailed the extensive conservation of developmental signaling pathways between the model system, Drosophila melanogaster, and mammalian models, but researchers have also profited from the unique and highly tractable genetic tools available in this system to address critical questions in physiology. In this review, we have described contributions that Drosophila researchers have made to mathematical dynamics of pattern formation, cardiac pathologies, the way in which pain circuits are integrated to elicit responses from sensation, as well as the ways in which gene expression can modulate diverse behaviors and shed light on human cognitive disorders. The broad and diverse array of contributions from Drosophila underscore its translational relevance to modeling human disease.
Collapse
Affiliation(s)
- Wendi S Neckameyer
- Dept. of Pharmacological and Physiological Science, St. Louis Univ. School of Medicine, St. Louis, MO 63104, USA.
| | | |
Collapse
|
37
|
Tanenhaus AK, Zhang J, Yin JCP. In vivo circadian oscillation of dCREB2 and NF-κB activity in the Drosophila nervous system. PLoS One 2012; 7:e45130. [PMID: 23077489 PMCID: PMC3471920 DOI: 10.1371/journal.pone.0045130] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/14/2012] [Indexed: 12/15/2022] Open
Abstract
cAMP response element-binding protein (CREB) and nuclear factor kappa-B (NF-κB) are two ubiquitous transcription factors involved in a wide number of cellular processes, including the circadian system. Many previous studies on these factors use cellular assays that provide limited information on circadian activity or anatomical specificity. The ability to study transcription factors in defined tissue within intact animals will help to bridge the gap between cellular and in vivo data. We have used the GAL4-UAS and FLP-FRT systems to gain spatial control over reporter gene expression. Using a luciferase-based reporter, we show in vivo that Drosophila dCREB2- and NF-κB-mediated transcription oscillates in neuronal cells, glia, and in the mushroom body, a higher-order brain center in flies. This oscillation is under circadian control, cycling with a 24-hour rhythm, under both light-dark and dark-dark conditions. In light-light conditions, dCREB2 and NF-κB reporter flies exhibit a suppression of rhythmic activity. Furthermore, neuronal cycling of dCREB2 and NF-κB activity are modulated in period mutant flies, indicating these oscillations are controlled through the central clock. This study shows for the first time region-specific circadian oscillation of dCREB2/NF-κB activity in the Drosophila nervous system.
Collapse
Affiliation(s)
- Anne K. Tanenhaus
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Jiabin Zhang
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Jerry C. P. Yin
- Departments of Genetics and Neurology, University of Wisconsin-Madison, Madison, WI 53706
- * E-mail:
| |
Collapse
|
38
|
Mizrak D, Ruben M, Myers GN, Rhrissorrakrai K, Gunsalus KC, Blau J. Electrical activity can impose time of day on the circadian transcriptome of pacemaker neurons. Curr Biol 2012; 22:1871-80. [PMID: 22940468 DOI: 10.1016/j.cub.2012.07.070] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/29/2012] [Accepted: 07/31/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Circadian (∼24 hr) rhythms offer one of the best examples of how gene expression is tied to behavior. Circadian pacemaker neurons contain molecular clocks that control 24 hr rhythms in gene expression that in turn regulate electrical activity rhythms to control behavior. RESULTS Here we demonstrate the inverse relationship: there are broad transcriptional changes in Drosophila clock neurons (LN(v)s) in response to altered electrical activity, including a large set of circadian genes. Hyperexciting LN(v)s creates a morning-like expression profile for many circadian genes while hyperpolarization leads to an evening-like transcriptional state. The electrical effects robustly persist in per(0) mutant LN(v)s but not in cyc(0) mutant LN(v)s, suggesting that neuronal activity interacts with the transcriptional activators of the core circadian clock. Bioinformatic and immunocytochemical analyses suggest that CREB family transcription factors link LN(v) electrical state to circadian gene expression. CONCLUSIONS The electrical state of a clock neuron can impose time of day to its transcriptional program. We propose that this acts as an internal zeitgeber to add robustness and precision to circadian behavioral rhythms.
Collapse
Affiliation(s)
- Dogukan Mizrak
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | | | | | |
Collapse
|
39
|
Chen CC, Wu JK, Lin HW, Pai TP, Fu TF, Wu CL, Tully T, Chiang AS. Visualizing long-term memory formation in two neurons of the Drosophila brain. Science 2012; 335:678-85. [PMID: 22323813 DOI: 10.1126/science.1212735] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Long-term memory (LTM) depends on the synthesis of new proteins. Using a temperature-sensitive ribosome-inactivating toxin to acutely inhibit protein synthesis, we screened individual neurons making new proteins after olfactory associative conditioning in Drosophila. Surprisingly, LTM was impaired after inhibiting protein synthesis in two dorsal-anterior-lateral (DAL) neurons but not in the mushroom body (MB), which is considered the adult learning and memory center. Using a photoconvertible fluorescent protein KAEDE to report de novo protein synthesis, we have directly visualized cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB)-dependent transcriptional activation of calcium/calmodulin-dependent protein kinase II and period genes in the DAL neurons after spaced but not massed training. Memory retention was impaired by blocking neural output in DAL during retrieval but not during acquisition or consolidation. These findings suggest an extra-MB memory circuit in Drosophila: LTM consolidation (MB to DAL), storage (DAL), and retrieval (DAL to MB).
Collapse
Affiliation(s)
- Chun-Chao Chen
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Gerstner JR. On the evolution of memory: a time for clocks. Front Mol Neurosci 2012; 5:23. [PMID: 22403527 PMCID: PMC3289401 DOI: 10.3389/fnmol.2012.00023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/11/2012] [Indexed: 12/16/2022] Open
Abstract
Evolutionarily, what was the earliest engram? Biology has evolved to encode representations of past events, and in neuroscience, we are attempting to link experience-dependent changes in molecular signaling with cellular processes that ultimately lead to behavioral output. The theory of evolution has guided biological research for decades, and since phylogenetically conserved mechanisms drive circadian rhythms, these processes may serve as common predecessors underlying more complex behavioral phenotypes. For example, the cAMP/MAPK/CREB cascade is interwoven with the clock to trigger circadian output, and is also known to affect memory formation. Time-of-day dependent changes have been observed in long-term potentiation (LTP) within the suprachiasmatic nucleus and hippocampus, along with light-induced circadian phase resetting and fear conditioning behaviors. Together this suggests during evolution, similar processes underlying metaplasticity in more simple circuits may have been redeployed in higher-order brain regions. Therefore, this notion predicts a model that LTP and metaplasticity may exist in neural circuits of other species, through phylogenetically conserved pathways, leading to several testable hypotheses.
Collapse
Affiliation(s)
- Jason R Gerstner
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
41
|
Özkaya Ö, Rosato E. The Circadian Clock of the Fly: A Neurogenetics Journey Through Time. GENE-ENVIRONMENT INTERPLAY 2012; 77:79-123. [DOI: 10.1016/b978-0-12-387687-4.00004-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Lee B, Li A, Hansen KF, Cao R, Yoon JH, Obrietan K. CREB influences timing and entrainment of the SCN circadian clock. J Biol Rhythms 2011; 25:410-20. [PMID: 21135157 DOI: 10.1177/0748730410381229] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The transcriptional feedback circuit, which is at the core of the suprachiasmatic nucleus (SCN) circadian (i.e., 24 h) clock, is tightly coupled to both external entrainment cues, such as light, as well as rhythmic cues that arise on a system-wide level within the SCN. One potential signaling pathway by which these cues are conveyed to the molecular clock is the CREB/CRE transcriptional cascade. In this study, we employed a tetracycline-inducible CREB repressor mouse strain, in which approximately 60% of the SCN neurons express the transgene, to test CREB functionality in the clock and its effects on overt rhythmicity. We show that attenuated CREB signaling in the SCN led to a significant reduction in light-evoked clock entrainment. An examination of circadian timing revealed that CREB repressor mice exhibited normal free-running rhythms in the absence of external lighting cues. However, under conditions of constant light, which typically leads to a lengthening of the circadian period, CREB repressor mice exhibited a dramatic arrhythmic phenotype, which could be reversed with doxycycline. At a cellular level, the repression of CREB led to a significant reduction in both the expression of the circadian clock proteins PERIOD1 and PERIOD2 and the clock output hormones AVP and VIP. Together, these data support the idea that the CRE transcriptional pathway orchestrates transcriptional events that are essential for both the maintenance of SCN timing and light entrainment of the circadian clock.
Collapse
Affiliation(s)
- Boyoung Lee
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
There has been considerable progress in elucidating the molecular mechanisms that contribute to memory formation and the generation of circadian rhythms. However, it is not well understood how these two processes interact to generate long-term memory. Recent studies in both vertebrate and invertebrate models have shown time-of-day effects on neurophysiology and memory formation, and have revealed a possible role for cycling molecules in memory persistence. Together, these studies suggest that common mechanisms underlie circadian rhythmicity and long-term memory formation.
Collapse
Affiliation(s)
- Jason R Gerstner
- Department of Genetics, University of Wisconsin-Madison, 3476 Genetics and Biotechnology, 425 Henry Mall, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
44
|
Hughes V. A wake-up call for dozing Drosophila. Nature 2010. [DOI: 10.1038/news.2010.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Abstract
Circadian clocks organize behavior and physiology to adapt to daily environmental cycles. Genetic approaches in the fruit fly, Drosophila melanogaster, have revealed widely conserved molecular gears of these 24-h timers. Yet much less is known about how these cell-autonomous clocks confer temporal information to modulate cellular functions. Here we discuss our current knowledge of circadian clock function in Drosophila, providing an overview of the molecular underpinnings of circadian clocks. We then describe the neural network important for circadian rhythms of locomotor activity, including how these molecular clocks might influence neuronal function. Finally, we address a range of behaviors and physiological systems regulated by circadian clocks, including discussion of specific peripheral oscillators and key molecular effectors where they have been described. These studies reveal a remarkable complexity to circadian pathways in this "simple" model organism.
Collapse
Affiliation(s)
- Ravi Allada
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|
46
|
Miyazaki K, Wakabayashi M, Hara Y, Ishida N. Tumor growth suppression in vivo by overexpression of the circadian component, PER2. Genes Cells 2010; 15:351-8. [PMID: 20236181 DOI: 10.1111/j.1365-2443.2010.01384.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Some reports have indicated that the core clock gene, Per2 regulates the cell cycle, immune system and neural functions. To understand the effects of PER2 on tumor growth in vivo, stable transformants of murine sarcoma 180 (S-180) cell lines expressing different levels of PER2 were established. The growth of stable PER2 transformants in vivo was significantly and dose-dependently suppressed according to the amount of PER2 expressed, indicating that PER2 plays a role in the growth suppression of sarcoma cells. The anchorage-dependent and -independent growth in vitro and expression of the clock controlled cell-cycle related genes, wee1, myc, and VEGF were not altered in stable PER2 transformants. In contrast, susceptibility to murine natural killer (NK) cell cytolytic activity was enhanced in PER2 transformants. Furthermore, PER2 transformants suppressed cell motility and reduced fibronectin expression, but the expression of integrin receptors was not affected. These results suggest that sarcoma cells overexpressing PER2 suppress tumors in vivo by changing the nature of tumor cell adhesion.
Collapse
Affiliation(s)
- Koyomi Miyazaki
- Clock Cell Biology Group, Institute for Biological Resource and Function, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | |
Collapse
|
47
|
Regulation of energy stores and feeding by neuronal and peripheral CREB activity in Drosophila. PLoS One 2009; 4:e8498. [PMID: 20041126 PMCID: PMC2795867 DOI: 10.1371/journal.pone.0008498] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Accepted: 12/03/2009] [Indexed: 11/21/2022] Open
Abstract
The cAMP-responsive transcription factor CREB functions in adipose tissue and liver to regulate glycogen and lipid metabolism in mammals. While Drosophila has a homolog of mammalian CREB, dCREB2, its role in energy metabolism is not fully understood. Using tissue-specific expression of a dominant-negative form of CREB (DN-CREB), we have examined the effect of blocking CREB activity in neurons and in the fat body, the primary energy storage depot with functions of adipose tissue and the liver in flies, on energy balance, stress resistance and feeding behavior. We found that disruption of CREB function in neurons reduced glycogen and lipid stores and increased sensitivity to starvation. Expression of DN-CREB in the fat body also reduced glycogen levels, while it did not affect starvation sensitivity, presumably due to increased lipid levels in these flies. Interestingly, blocking CREB activity in the fat body increased food intake. These flies did not show a significant change in overall body size, suggesting that disruption of CREB activity in the fat body caused an obese-like phenotype. Using a transgenic CRE-luciferase reporter, we further demonstrated that disruption of the adipokinetic hormone receptor, which is functionally related to mammalian glucagon and β-adrenergic signaling, in the fat body reduced CRE-mediated transcription in flies. This study demonstrates that CREB activity in either neuronal or peripheral tissues regulates energy balance in Drosophila, and that the key signaling pathway regulating CREB activity in peripheral tissue is evolutionarily conserved.
Collapse
|
48
|
Mitochondrial mislocalization underlies Abeta42-induced neuronal dysfunction in a Drosophila model of Alzheimer's disease. PLoS One 2009; 4:e8310. [PMID: 20016833 PMCID: PMC2790372 DOI: 10.1371/journal.pone.0008310] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 11/21/2009] [Indexed: 11/19/2022] Open
Abstract
The amyloid-beta 42 (Abeta42) is thought to play a central role in the pathogenesis of Alzheimer's disease (AD). However, the molecular mechanisms by which Abeta42 induces neuronal dysfunction and degeneration remain elusive. Mitochondrial dysfunctions are implicated in AD brains. Whether mitochondrial dysfunctions are merely a consequence of AD pathology, or are early seminal events in AD pathogenesis remains to be determined. Here, we show that Abeta42 induces mitochondrial mislocalization, which contributes to Abeta42-induced neuronal dysfunction in a transgenic Drosophila model. In the Abeta42 fly brain, mitochondria were reduced in axons and dendrites, and accumulated in the somata without severe mitochondrial damage or neurodegeneration. In contrast, organization of microtubule or global axonal transport was not significantly altered at this stage. Abeta42-induced behavioral defects were exacerbated by genetic reductions in mitochondrial transport, and were modulated by cAMP levels and PKA activity. Levels of putative PKA substrate phosphoproteins were reduced in the Abeta42 fly brains. Importantly, perturbations in mitochondrial transport in neurons were sufficient to disrupt PKA signaling and induce late-onset behavioral deficits, suggesting a mechanism whereby mitochondrial mislocalization contributes to Abeta42-induced neuronal dysfunction. These results demonstrate that mislocalization of mitochondria underlies the pathogenic effects of Abeta42 in vivo.
Collapse
|
49
|
Gerstner JR, Lyons LC, Wright KP, Loh DH, Rawashdeh O, Eckel-Mahan KL, Roman GW. Cycling behavior and memory formation. J Neurosci 2009; 29:12824-30. [PMID: 19828795 PMCID: PMC4077269 DOI: 10.1523/jneurosci.3353-09.2009] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/13/2009] [Accepted: 08/24/2009] [Indexed: 01/27/2023] Open
Abstract
Circadian research has spent considerable effort in the determining clock output pathways, including identifying both physiological and behavioral processes that demonstrate significant time-of-day variation. Memory formation and consolidation represent notable processes shaped by endogenous circadian oscillators. To date, very few studies on memory mechanisms have considered potential confounding effects of time-of-day and the organism's innate activity cycles (e.g., nocturnal, diurnal, or crepuscular). The following studies highlight recent work describing this interactive role of circadian rhythms and memory formation, and were presented at a mini-symposium at the 2009 annual meeting of the Society for Neuroscience. The studies illustrate these time-of-day observations in a variety of behavioral paradigms and model organisms, including olfactory avoidance conditioning in Drosophila, long-term sensitization in Aplysia, active-avoidance conditioning in Zebrafish, and classical fear conditioning in rodents, suggesting that the circadian influence on memory behavior is highly conserved across species. Evidence also exists for a conserved mechanistic relationship between specific cycling molecules and memory formation, and the extent to which proper circadian cycling of these molecules is necessary for optimal cognitive performance. Studies describe the involvement of the core clock gene period, as well as vasoactive intestinal peptide, melatonin, and the cAMP/MAPK (cAMP/mitogen-activated protein kinase) cascade. Finally, studies in humans describe evidence for alterations in cognitive performance based on an interaction between sleep-wake homeostasis and the internal circadian clock. Conservation of a functional relationship between circadian rhythms with learning and memory formation across species provides a critical framework for future analysis of molecular mechanisms underlying complex behavior.
Collapse
Affiliation(s)
- Jason R Gerstner
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Song H, Sun Y, Zhang Y, Li M. Molecular cloning and characterization of Bombyx mori CREB gene. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 71:31-44. [PMID: 19194985 DOI: 10.1002/arch.20292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cAMP response element binding protein (CREB), as one of the best characterized stimulus-induced transcription factors, plays critical roles in activating transcription of target genes in response to a variety of environmental stimuli. To characterize this important molecule in the silkworm, Bombyx mori, we cloned a full-length cDNA of CREB gene from B. mori brains by using RACE-PCR. The sequence of B. mori CREB (named BmCREB1) gene contains a 88 bp 5' UTR, a 783 bp open reading frame (ORF) encoding 261 amino acids and a 348 bp 3' UTR. The deduced BmCREB amino acid sequence has 56.7% and 37.2% homology with CREB from Apis mellifera carnica and Drosophila melanogaster, respectively. The primary structure of the deduced BmCREB1 protein contains a kinase-inducible domain (KID) and a basic region/leucine zipper (bZIP) dimerization domain which exists in all CREB family members. Genomic analysis showed there are 9 exons and 5 introns in B. mori CREB genome sequences. We identified three different isoforms of BmCREB (BmCREB1, BmCREB2 and BmCREB3) through alternative splicing in C terminal. In addition, the expression of BmCREB in different developmental stages was investigated by using quantitative real-time PCR in both diapause and non-diapause type of B. mori bivoltine race (Dazao). BmCREB transcripts showed two peaks in embryonic stage and pupal stage in both types of bivoltine race. However, consistently higher expression of BmCREB was found throughout the developmental stages in the diapause type than in the non-diapause type. These results suggest that BmCREB is involved in the process of diapause induced by environmental factors.
Collapse
Affiliation(s)
- Hongsheng Song
- College of Life Sciences, Shanghai University, Shanghai, P.R. China, 200444.
| | | | | | | |
Collapse
|